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a b s t r a c t

We study the accuracy of a variety of estimators of asset price variation constructed from high-frequency
data (‘‘realized measures’’), and compare them with a simple ‘‘realized variance’’ (RV) estimator. In
total, we consider over 400 different estimators, using 11 years of data on 31 different financial assets
spanning five asset classes. When 5-minute RV is taken as the benchmark, we find little evidence that it
is outperformed by any other measures. When using inference methods that do not require specifying a
benchmark, we find some evidence that more sophisticated measures outperform. Overall, we conclude
that it is difficult to significantly beat 5-minute RV.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the past fifteen years, many new estimators of asset return
volatility constructed using high frequency price data have been
developed (see Andersen et al. (2006), Barndorff-Nielsen and
Shephard (2007), Meddahi (2011) and Aït-Sahalia and Jacod
(2014), inter alia, for recent surveys and collections of articles).
These estimators generally aim to estimate the quadratic variation
or the integrated variance of a price process over some interval
of time, such as one day or week. We refer to estimators of this
type collectively as ‘‘realized measures’’. This area of research
has provided practitioners with an abundance of alternatives,
inducing demand for some guidance on which estimators to use
in empirical applications. In addition to selecting a particular
estimator, these nonparametric measures often require additional
choices for their implementation. For example, the practitioner
must choose the sampling frequency to use andwhether to sample
prices in calendar time (every x seconds) or tick-time (every x
trades). When both transaction and quotation prices are available,
the choice of which price to use also arises. Finally, some realized
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measures further require choices about tuning parameters such as
a kernel bandwidth or ‘‘block size’’.

The aim of this paper is to provide guidance on the choice of
realized measure to use in applications. We do so by studying the
performance of a large number of realizedmeasures across a broad
range of financial assets. In total we consider over 400 realized
measures, across eight distinct classes of estimators, and we apply
these to 11 years of daily data on 31 individual financial assets
covering five asset classes. We compare the realized measures in
terms of their estimation accuracy for the latent true quadratic
variation, and in terms of their forecast accuracy when combined
with a simple and well-known forecasting model. We employ
model-free data-based comparison methods that make minimal
assumptions on properties of the efficient price process or on the
marketmicrostructure noise that contaminates the efficient prices.

To our knowledge, no existing papers have used formal tests
to compare the estimation accuracy of a large number of realized
measures using real financial data. The fact that the target
variable (quadratic variation) is latent, even ex-post, creates an
obstacle to applying standard techniques. Previous research on the
selection of estimators of quadratic variation has often focused
on recommending a sampling frequency based on the underlying
theory using plug-in type estimators of nuisance parameters. For
some estimators, a formula for the optimal sampling frequency
under a set of assumptions is derived and can be computed
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using estimates of higher order moments, see Bandi and Russell
(2008) among others. However, these formulas are usually
heavily dependent on assumptions about themicrostructure noise
and efficient price process, such as independence of the noise
from the price and a lack of serial correlation in the noise.
Gatheral and Oomen (2010) use simulated data from an agents-
based model to evaluate a variety of realized measures, and
include recommendations on data sampling and implementing the
estimators they study.

Many papers that introduce novel realized measures provide
evidence that details the newestimator’s advantages over previous
estimators. This evidence can be in the form of theoretical
properties of estimators such as consistency, asymptotic efficiency,
and rate of convergence, or results from Monte Carlo simulations
using common stochastic volatility models. These comparisons
inevitably require making specific assumptions on important
properties of the price process. Empirical applications are also
common, although typically only a small number of assets from a
single asset class are used, and it is rare that any formal comparison
testing is carried out. Moreover, most papers proposing new
estimators consider (perhaps reasonably) only a relatively small
range of alternative estimators.

Our objective is to compare a large number of available
realized measures in a unified, data-based framework. We use the
data-based ranking method of Patton (2011a), which makes no
assumptions about the properties of the market microstructure
noise, aside from standard moment and mixing conditions. The
main contribution of this paper is an empirical study of the
relative performance of estimators of daily quadratic variation
from 8 broad classes of realized measures using data from 31
financial assets spanning different classes. We obtain tick-by-tick
transaction and quotation prices from January 2000 to December
2010, and additionally sample prices in calendar-time and tick-
time, using sampling frequencies varying from 1 s to 15 min. We
use the ‘‘model confidence set’’ of Hansen et al. (2011) to construct
sets of realized measures that contain the best measure with a
given level of confidence. We are also interested whether a simple
RV estimator with a reasonable choice of sampling frequency,
namely 5-minute RV, can stand in as a ‘‘good enough’’ estimator
for QV, for the assets we consider. This is similar to the comparison
of more sophisticated volatility models with a simple benchmark
model presented in Hansen and Lunde (2005). We use the step-
wise multiple testing method of Romano and Wolf (2005), which
allows us to determine whether any of the 400+ competing
realized measures is significantly more accurate than a simple
realized variance measure based on 5-minute returns. We also
conduct an out-of-sample forecasting experiment to study the
accuracy of volatility forecasts based on these individual realized
measures,whenused in the ‘‘heterogeneous autoregressive’’ (HAR)
forecasting model of Corsi (2009), for forecast horizons ranging
from 1 to 50 trading days.

Finally, we undertake a panel investigation of the market mi-
crostructure andmarket condition variables that explain the differ-
ences in the accuracy of the realized measures considered in this
paper. While 5-minute RV is beaten on average by (well-chosen)
more sophisticated alternatives, the differences are smaller when
microstructure noise, somehow measured, is higher, or when
volatility is higher. Interestingly, we also find that more sophisti-
cated realized measures generally perform significantly worse in
non-US markets than in US markets, the latter having been the fo-
cus ofmuch of this literature. This is potentially indicative of differ-
ent market microstructure effects in non-US markets, which may
be better handled with new approaches.

The remainder of this paper is organized as follows. Section 2
provides a brief description of the classes of realized measures.
Section 3 describes ranking methodology and tests used to
compare the realized measures. Section 4 describes the high
frequency data and the set of realized measures we construct. Our
main analysis is presented in Section 5, and Section 6 concludes.

2. Measures of asset price variability

To fix ideas and notation, consider a general jump-diffusion
model for the log-price p of an asset:

dp (t) = µ (t) dt + σ (t) dW (t) + κ (t) dN (t) (1)

where µ is the instantaneous drift, σ is the (stochastic) volatility,
W is a standard Brownian motion, κ is the jump size, and N is a
counting measure for the jumps. In the absence of jumps the third
term on the right-hand side above is zero. The quadratic variation
of the log-price process over period t + 1 is defined

QVt+1 = plim
n→∞

n
j=1

r2t+j/n, (2)

rt+j/n = pt+j/n − pt+(j−1)/n

where the price series on day t + 1 is assumed to be observed
n times


pt+1/n, . . . , pt+1−1/n, pt+1


. See Andersen et al. (2006),

Barndorff-Nielsen and Shephard (2007) and Aït-Sahalia and Jacod
(2014) for surveys of volatility estimation and forecasting using
high frequency data. The objective of this paper is to compare
the variety of estimators of QV that have been proposed in the
literature to date.Wedo sowith emphasis on comparisonswith the
simple realized variance estimator, which is the empirical analog
of QV:

RVt+1 =

n
j=1

r2t+j/n. (3)

2.1. Sampling frequency, sampling scheme, and sub-sampling

We consider a variety of classes of estimators of asset price
variability. All realized measures require a choice of sampling
frequency (e.g., 1-second or 5-minute sampling), sampling scheme
(calendar time or tick time), whether to use transaction prices or
mid-quotes, when both are available. Thus even for a very simple
estimator such as realized variance, there are a number of choices
to be made. To examine the sensitivity of realized measures to
these choices, we implement each measure using calendar-time
sampling of 1 s, 5 s, 1 min, 5 min and 15 min. We also consider
tick-time sampling using samples that yield average durations that
match the values for calendar-time sampling, as well as a ‘‘tick-
by-tick’’ estimator that simply uses every available observation.
Subsampling,1 introduced by Zhang et al. (2005), is a simple way
to improve efficiency of some sparse-sampled estimators. We
consider subsampled versions of all estimators (except estimators
using tick-by-tick data, which cannot be subsampled).2 The sub-
sampled version of RV (which turns out to perform verywell in our
analysis) was first studied as the ‘‘second best’’ estimator in Zhang
et al. (2005).

In total we have 5 calendar-time implementations, 6 tick-time
implementations, and 5 + 6 − 1 = 10 corresponding subsam-
pled implementations, yielding 21 realized measures for a given
price series. Estimating these on both transaction and quote prices

1 Subsampling involves using multiple ‘‘grids’’ of prices sampled at a given
frequency to obtain a collection of realized measures, which are then averaged to
yield the ‘‘subsampled’’ version of the estimator. For example, 5-minute RV can be
computed using prices sampled at 9:30, 9:35, etc. and can also be computed using
prices sampled at 9:31, 9:36, etc.
2 In general, we implement subsampling using a maximum of 10 partitions.
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yields a total of 42 versions of each realized measure. Of course,
some of these combinations are expected to perform poorly em-
pirically (given the extant literature on microstructure biases and
the design of some of the estimators described below), and by in-
cluding them in our analysis we thus have an ‘‘insanity check’’ on
whether our tests can identify these poor estimators.

2.2. Classes of realized measures

The first class of estimators is standard realized variance (RV),
which is the sum of squared intra-daily returns. This simple es-
timator is the sample analog of quadratic variation, and in the
absence of noisy data, it is the nonparametric maximum likeli-
hood estimator, and so is efficient, see Andersen et al. (2001b)
and Barndorff-Nielsen (2002). However, market microstructure
noise induces serial auto-correlation in the observed returns,
which biases the realized variance estimate at high sampling fre-
quencies (see Hansen and Lunde (2006b) for a detailed analysis of
the effects of microstructure noise). When RV is implemented in
practice, the price process is often sampled sparsely to strike a bal-
ance between increased accuracy fromusing higher frequency data
and the adverse effects of microstructure noise. Popular choices
include 1-minute, 5-minute (as in the title of this paper), or 30-
minute sampling.

We next draw on the work of Bandi and Russell (2008), who
propose a method for optimally choosing the sampling frequency
to use with a standard RV estimator. This sampling frequency
is calculated using estimates of integrated quarticity3 and vari-
ance of the microstructure noise. These authors also propose a
bias-corrected estimator that removes the estimated impact of
market microstructure noise. Since the key characteristic of the
Bandi–Russell estimator is the estimated optimal sampling fre-
quency, we do not vary the sampling frequency when implement-
ing it. This reduces the number of versions of this estimator from
42 to 8.4

The third class of realized measures we consider is the
first-order autocorrelation-adjusted RV estimator (RVac1) used
by French et al. (1987) and Zhou (1996), and studied extensively by
Hansen and Lunde (2006b). This estimatorwas designed to capture
the effect of autocorrelation in high frequency returns induced by
market microstructure noise.

The fourth class of realized measures includes the two-scale
realized variance (TSRV) of Zhang et al. (2005) and the multi-
scale realized variance (MSRV) of Zhang (2006). These estimators
compute a subsampled RV on one or more slower time scales
(lower frequencies) and then combine with RV calculated on a
faster time scale (higher frequency) to correct for microstructure
noise. Under certain conditions on the market microstructure
noise, these estimators are consistent at the optimal rate. In our
analysis, we set the faster time scale by using one of the 21
sampling frequency/sampling scheme combinations mentioned
above, while the slower time scale(s) are chosen to minimize the
asymptotic variance of the estimator using themethods developed
in the original papers. It isworthnotinghere that ‘‘subsampledRV’’,
which we have listed in our first class of estimators, corresponds
to the ‘‘second-best’’ form of TSRV in Zhang et al. (2005), in that
it exploits the gains from subsampling but does not attempt to

3 Estimates of daily integrated quarticity are estimated using 39 intra-day prices
sampled uniformly in tick-time.
4 Note that the Bandi–Russell RVmeasure is not consistent for QV in the presence

of jumps. (This is also the case for realized range and MLRV, described below.) We
include these estimators in our comparison as these are widely-used and cited
realized measures, and we leave it to the data to shed light on which estimators
perform well empirically.
estimate and remove any bias in this measure. We keep any
measure involving twoormore time scales in the TSRV/MSRV class,
and any measure based on a single time scale is listed in the RV
class.

The fifth class of realized measures is the realized kernel
(RK) estimator of Barndorff-Nielsen et al. (2008). This measure
is a generalization of RVac1, accommodating a wider variety
of microstructure effects and leading to a consistent estima-
tor. Barndorff-Nielsen et al. (2008) present realized measures us-
ing several different kernels, and we consider RK with the ‘‘flat
top’’ versions of the Bartlett, cubic, and modified Tukey–Hanning2
kernel, and the ‘‘non-flat-top’’ Parzen kernel. The Bartlett and
cubic RK estimators are asymptotically equivalent to TSRV and
MSRV, respectively, and modified Tukey–Hanning2 was the rec-
ommended kernel in Barndorff-Nielsen et al. (2008) in their em-
pirical application to GE stock returns. The non-flat-top Parzen
kernel was studied further in Barndorff-Nielsen et al. (2011) and
results in a QV-estimator that is always positive while allowing for
dependence and endogeneity in the microstructure noise. We im-
plement these realized kernel estimators using the 21 sampling
frequency/sampling scheme combinations mentioned above, and
estimate the optimal bandwidths for these kernels separately for
each day, using themethods in Barndorff-Nielsen et al. (2011). The
realized kernel estimators are not subsampled because Barndorff-
Nielsen et al. (2011) report that for ‘‘kinked’’ kernels such as the
Bartlett kernel, the effects of subsampling are neutral, while for
the other three ‘‘smooth’’ kernels, subsampling is detrimental. (The
RVac1measure corresponds to the use of a ‘‘truncated’’ kernel, and
subsampling improves performance, so we include the subsam-
pled versions of RVac1 in the study.)

The sixth class of estimators are pre-averaged realized vari-
ances (RVpa) estimators first introduced by Podolskij and Vetter
(2009a) and further studied in Jacod et al. (2009). Pre-averaging ap-
plies a kernel-like weighting function to observed returns to con-
struct pre-averaged returns. Themost commonweighting function
has a Bartlett kernel-like tent shape and so it is identical to first
locally averaging prices and then constructing returns as the dif-
ference between two adjacent pre-averaged prices. Pre-averaged
realized variance and realized kernels are closely related, and in
general only differ in the treatment of edge effects—the handling
of the first and last few observations. Given a particular sampling
scheme, RVpa is implemented using all (overlapping) pre-averaged
returns. Following the empirical work of Christensen et al. (2014)
and Hautsch and Podolskij (2013), we use a kernel bandwidth K =

⌈θ
√
n⌉, where θ = 1 and n is the number of sampled intraday re-

turns.
The seventh class of estimators is the ‘‘realized range-based

variance’’ (RRV) of Christensen and Podolskij (2007) and Martens
and Van Dijk (2007). Early research by Parkinson (1980), Ander-
sen and Bollerslev (1998) and Alizadeh et al. (2002) show that the
properly scaled, daily high-low range of log prices is an unbiased
estimator of daily volatility when constant, and is more efficient
than squared daily open-to-close returns. Correspondingly, Chris-
tensen and Podolskij (2007) and Martens and Van Dijk (2007) ap-
ply the same arguments to intraday data, and improve on the RV
estimator by replacing each intraday squared returnwith the high-
low range from a block of intra-day returns. To implement RRV, we
use the sampling schemes described above, and then use block size
of 5, following Patton and Sheppard (2009b), and block size of 10,
which is close to the average block size used in Christensen and
Podolskij’s application to General Motors stock returns.

Finally, we include the maximum likelihood Realized Variance
(MLRV) of Aït-Sahalia et al. (2005), which assumes that the
observed price process is composed of the efficient price plus i.i.d.
noise such that the observed return process follows an MA(1)
process with parameters that can be estimated using Gaussian
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MLE. This estimator is shown to be robust tomisspecification of the
marginal distribution of the microstructure noise by Aït-Sahalia
et al. (2005), but is sensitive to the independence assumption of
noise, as demonstrated in Gatheral and Oomen (2010).

The total number of realized measures we compute for a single
price series is 210, so an asset with both transactions and quote
data has a set of 420 realized measures.5,6

2.3. Additional realized measures

Our main empirical analysis focuses on realized measures that
estimate the quadratic variation of an asset price process. From a
forecasting perspective, work by Andersen et al. (2007) and others
has shown that there may be gains to decomposing QV into the
component due to continuous variation (integrated variance, or IV)
and the component due to jumps (denoted JV):

QVt+1 = plim
n→∞

n
j=1

r2t+j/n =

 t+1

t
σ 2 (s) ds  

IVt+1

+


t<s≤t+1

κ2 (s)  
JVt+1

. (4)

Thus for our forecasting application in Section 5.6, we also consider
four classes of realized measures that are ‘‘jump robust’’, i.e., they
estimate IVnotQV. The first of these is the bi-power variation (BPV)
of Barndorff-Nielsen and Shephard (2006), which is a scaled sum
of products of adjacent absolute returns. We also estimate a pre-
averaged version of Bipower Variation, motivated by Podolskij and
Vetter (2009b) and Christensen et al. (2014).

The second class of jump-robust realized measures is the
quantile-based realized variance (QRV) of Christensen et al.
(2010). QRV is based on combinations of locally extreme quantile
observations within blocks of intra-day returns, and requires
choice of block length and quantiles. It is reported to have better
finite sample performance than BPV in the presence of jumps, and
additionally is consistent, efficient and jump-robust even in the
presence of microstructure noise. For implementation, we use the
asymmetric version of QRV with rolling overlapping blocks7 and
quantiles approximately equal to 0.85, 0.90 and 0.96, following
the authors’ application to Apple stock returns. The block lengths
are chosen to be around 100, with the exact value depending on
the number of filtered daily returns, and the quantile weights are
calculated optimally following the method in Christensen et al.
(2010). QRV is the most time-consuming realized measure to
estimate, and thus is not further subsampled.

The third class of jump-robust realized measures are the
‘‘nearest neighbor truncation’’ estimators of Andersen et al. (2012),
specifically their ‘‘MinRV’’ and ‘‘MedRV’’ estimators. These are

5 Specifically, for each of RV, RVpa, TSRV, MSRV, MLRV, RVac1, RRV (with
two choices of block size) and RK (with 4 different kernels), 11 not-subsampled
estimators, which span different sampling frequencies and sampling schemes, are
implemented on each of the transactions and midquotes price series. In addition,
we estimate 2 bias-corrected Bandi–Russell realized measures and 2 not-bias-
corrected BR measures (calendar-time and tick-time sampling) per price series.
These estimators account for 12×11×2+(2+2)×2 = 272of the total set. RV, TSRV,
MSRV, MLRV, RVac1 and RRV (m = 5 and 10) also have 10 subsampled estimators
per price series, and there are 4 subsampled BR estimators per price series, which
adds 7×10×2+4×2 = 148 subsampled estimators to the set. In total, this makes
272 + 148 = 420 estimators.
6 Research on estimating volatility using high-frequency data has continued since

this project began, and some new estimators have recently been proposed that are
not included in our analysis, e.g., the estimators of Bibinger et al. (2014) and Jacod
and Todorov (2014).
7 Christensen et al. (2010) refers to this formulation of the QRV as ‘‘subsampled

QRV’’, as opposed to ‘‘block QRV’’, which has adjacent non-overlapping blocks.
However, we do not use this terminology as this type of ‘‘subsampling’’ is different
from the subsampling we implement for the other estimators.
the scaled square of the minimum of two consecutive intra-
day absolute returns or the median of 3 consecutive intra-day
absolute returns. These estimators are more robust to jumps and
microstructure noise than BPV, and MedRV is designed to handle
outliers or incorrectly entered price data.

The final class of jump-robust measures estimators is the
truncated or threshold realized variance (TRV) of Mancini (2001,
2009), which is the sum of squared returns, but only including
returns that are smaller in magnitude than a certain threshold.
Following Corsi et al. (2010), we take the threshold to be three
times a local (intra-day) volatility estimate.8

In total, across sampling frequencies and subsampling/not
subsamplingwe include 228 jump-robust realizedmeasures in our
forecasting application, in addition to the 420 estimators described
in the previous section.

3. Comparing the accuracy of realized measures

We examine the empirical accuracy of our set of competing
measures of asset price variability using two complementary
approaches.

3.1. Comparing estimation accuracy

We first compare the accuracy of realized measures in terms
of their estimation error for a given day’s quadratic variation.
QV is not observable, even ex post, and so we cannot directly
calculate a metric like mean-squared error and use that for the
comparison. We overcome this by using the data-based ranking
method of Patton (2011a). This approach requires employing a
proxy (denoted θ̃ ) for the quadratic variation that is assumed
to be unbiased, but may be noisy.9 This means that we must
choose a realized measure that is unlikely to be affected by market
microstructure noise. Using proxies that aremore noisywill reduce
the ability to discriminate between estimators, but will not affect
consistency of the procedure. We use the squared open-to-close
returns from transaction prices (RVdaily) for our main analysis,
and further consider 15-minute RV, 5-minute RV, 1-minute MSRV
and 1-minute RKth2, all computed on transaction prices using tick-
time sampling, as possible alternatives.10 Since estimators based
on the same price data are correlated, it is necessary to use an
instrument for the proxy to ‘‘break’’ the dependence between the
estimation error in the realized measure under analysis and the
estimation error in the proxy. As our instrument we use a one-day
lead of the proxy.11

8 The algorithm to compute local volatility can fail when very high-frequency
sampling is applied to days with low liquidity, and in such cases we consider the
TRV to be non-implementable. These occurrences are generally limited to 1-second
sampling or, less often, 5-second sampling of illiquid assets such as computed
indices or individual equities.
9 Numerous estimators of quadratic variation can be shown to be asymptotically

unbiased as the sampling interval goes to zero, however this approach requires
unbiasedness for a fixed sampling interval.
10 These four additional proxies were found to be unbiased for the RVdaily
measure for themajority of assets, and in addition, are generallymuchmore precise.
11 As described in Patton (2011a), the use of a lead (or lag) of the proxy
formally relies on the daily quadratic variation following a randomwalk. Numerous
papers, see Bollerslev et al. (1994) and Andersen et al. (2006) for example, find
that conditional variance is a highly persistent process, close to being a random
walk. Hansen and Lunde (2014) study the quadratic variation of all 30 constituents
of the Dow Jones Industrial Average and reject the null of a unit root for few of the
stocks. Meddahi (2003) shows analytically that certain classes of continuous time
stochastic volatility processes imply that their daily integrated variance follows an
ARMA process, with autoregressive persistence governed by the persistence of the
spot variance. Simulation results in Patton (2011a) show that inference based on a
random walk approximation has acceptable finite-sample properties for DGPs that
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The comparison of estimation accuracy also, of course, requires
a metric for measuring accuracy. The approach of Patton (2011a)
allows for a variety of metrics, including the MSE and QLIKE loss
functions. Simulation results in Patton and Sheppard (2009a), and
empirical results inHansen and Lunde (2005), Patton and Sheppard
(2009b) and Patton (2011a) all suggest that using QLIKE leads to
more power to reject inferior estimators.12 The QLIKE loss function
is defined as:

QLIKE L (θ,M) =
θ

M
− log

θ

M
− 1 (5)

where θ is QV, or a proxy for it, and M is a realized measure. With
this in hand, we obtain a consistent (as T → ∞) estimate of the
difference in accuracy between any two realized measures:

1
T

T
t=1

∆L̃ij,t
p

−→ E

∆Lij,t


(6)

where ∆L̃ij,t ≡ L

θ̃t ,Mit


− L


θ̃t ,Mjt


and ∆Lij,t ≡ L (θt ,Mit) −

L

θt ,Mjt


. Under standard regularity conditions (see Patton

(2011a) for example) we can use a block bootstrap to conduct tests
on the estimated differences in accuracy, such as the pair-wise
comparisons of Diebold and Mariano (2002) and Giacomini and
White (2006), the ‘‘reality check’’ of White (2000) as well as the
multiple testing procedure of Romano and Wolf (2005), and the
‘‘model confidence set’’ of Hansen et al. (2011).

3.2. Comparing forecast accuracy

The second approach we consider for comparing realized mea-
sures is through a simple forecasting model. As we describe in
Section 5.6, we construct volatility forecasts based on the hetero-
geneous autoregressive (HAR) model of Corsi (2009), estimated
separately for each realized measure. The problem of evaluating
volatility forecasts has been studied extensively, see Hansen and
Lunde (2005, 2006a), Andersen et al. (2005), and Patton (2011b)
among several others. The latter two papers focus on applications
where an unbiased volatility proxy is available, and again under
standard regularity conditions we can use block bootstrap meth-
ods to conduct tests such as those of Diebold and Mariano (2002),
White (2000), Romano and Wolf (2005), Giacomini and White
(2006), and Hansen et al. (2011).

4. Data description

We use high frequency (intra-daily) asset price data for 31
assets spanning five asset classes: individual equities (from the
US and the UK), equity index futures, computed stock indices,
currency futures and interest rate futures. Thedata are transactions
and quotations prices taken from Thomson Reuter’s Tick History.
The sample period is January 2000 to December 2010, though data
availability limits us to a shorter sub-period for some assets. Short
days, defined as days with prices recorded for less than 60% of the
regular market operation hours, are omitted. For each asset, the
number of short days is small compared to the total number of
days—the largest proportion of days omitted is 1.7% for ES (E-mini

are persistent but strictly not random walks, and we confirm in Table A4, in the
appendix, that all series studied here are highly persistent. In Section 5 we also
present results based on an AR(1) approximation rather than a random walk. We
also consider the use of a one-day lag of the proxy, and find the results (reported in
the appendix) to be very similar to our base case using a one-day lead.
12 We also present some results based on the MSE loss function. See Section 5 and
the online appendix.
S&P500 futures). Across assets, we have an average of 2537 trading
days, with the shortest sample being 1759 trade days (around
7 years) and the longest 2782 trade days. All series were cleaned
according to a set of baseline rules similar to those in Barndorff-
Nielsen et al. (2009). Data cleaning details are provided in the
appendix.13

Table 1 presents the list of assets, along with their sample
periods and some summary statistics. Computed stock indices
are not traded assets and are constructed using trade prices, and
so quotes are unavailable. This table reveals that these assets
span not only a range of asset classes, but also characteristics:
average annualized volatility ranges from under 2%, for interest
rate futures, to over 40%, for individual equities. The average time
between price observations ranges from under one second, for the
E-mini S&P 500 index futures contract, to nearly one minute, for
some individual equities and computed equity indices.14

Given the large number of realized measures and assets, it
is not feasible to present summary statistics for all possible
combinations. Table A1 in the appendix describes the shorthand
used to describe the various estimators,15 and in Table 2 we
present summary statistics for a selection of realized measures for
two assets, Microsoft and the US dollar/Australian dollar futures
contract.16 Tables A3 and A4 in the appendix containmore detailed
summary statistics. Table 2 reveals some familiar features of
realized measures: those based on daily squared returns have
similar averages to realized measures using high (but not too
high) frequency data, but are more variable, reflecting greater
measurement error. For Microsoft, for example, RVdaily has an
average of 3.20 (28.4% annualized) compared with 3.37% for
RV5min, but its standard deviation is more than 25% larger than
that of RV5min. We also note that RV computed using tick-by-
tick sampling (i.e., the highest possible sampling) is much larger
on average than the other estimators, more than 3 times larger for
Microsoft and around 50% larger for the USD/AUD exchange rate,
consistent with the presence of market microstructure noise. This
distortion vanishes when pre-averaging is used.

In the last four columns of Table 2 we report the first- and
second-order sample autocorrelations of the realized measures, as
well as estimates of the first- and second-order autocorrelation of
the underlying quadratic variation using the estimation method
in Hansen and Lunde (2014).17 As expected, the latter estimates
are much higher than the former, reflecting the attenuation bias
due to the estimation error in a realized measure. Using the
method of Hansen and Lunde (2014), the estimated first-order
autocorrelation of QV for Microsoft and the USD/AUD exchange
rate is around 0.95, while the sample autocorrelations for the
realized measures themselves average around 0.68. Table A4

13 The sensitivity of estimators in different classes to data cleaning methods is
an interesting topic, as is developing estimators that are more robust to various
data cleaning rules. We do not explore these issues. We note here that the data
provided by Thomson Reuter’s Tick History, especially the data on futures, is very
clean compared with the more-widely used NYSE TAQ data.
14 Most futures contracts trade nearly 24 h a day. However, their liquidity is
typically concentrated around a relatively short interval, usually less than half of
the day. We measured the percentage of trades that occurred in five minute block
of the day using local time-stamps to avoid issueswith daylight saving changes, and
selected the largest contiguous block where the percentage of observations in the
block was above 20% of 1/288.
15 For example, ‘‘RV_1m_ct_ss’’ refers to realized variance (RV), computed on
1-minute data (1m) sampled in calendar time (c), using trade prices (t), with
subsampling (ss). See Table A1 for details.
16 All realized measures were computed using code based on Kevin Sheppard’s
‘‘Oxford Realized’’ toolbox for Matlab,
https://www.kevinsheppard.com/MFEToolbox.
17 Following their empirical application to the 30 DJIA stocks, we use the
demeaned 4th through 10th lags of the daily QV estimator as instruments.

https://www.kevinsheppard.com/MFEToolbox
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Table 1
Description of assets and price series.

Assets Dates T Avg. Ann. Vol. Avg. Trade Dur. Avg. Quote Dur.

US equities (NYSE)
KO Coca Cola 1/3/2000–12/31/2010 2766 18.8 7.6 2.6
LSI LSI corp. 1/3/2000–12/31/2010 2767 48.5 15.6 3.8
MSFT Microsoft 1/3/2000–12/31/2010 2763 24.5 2.7 1.5
IFF Intl. Flavors & Fragrances 1/3/2000–12/31/2010 2767 23.9 26.6 5.4
SYY Sysco 1/3/2000–12/31/2010 2766 22.1 12.5 3.4
UK equities (LSE)
DGE Diageo 1/4/2000–12/31/2010 2769 23.9 15.8 3.6
VOD Vodaphone 1/4/2000–12/31/2010 2770 29.5 7.0 2.3
SAB SABMiller 1/4/2000–12/31/2010 2733 27.9 23.6 3.8
SDR Schroders 1/4/2000–12/31/2010 2757 45.8 52.4 8.7
RSA RSA Ins. 1/4/2000–12/31/2010 2768 39.1 28.1 6.4
Interest rate futures
TU 2 yr Treasury note 1/2/2003–12/31/2010 1994 1.4 7.6 0.5
FV 5 yr Treasury note 1/2/2001–12/31/2010 2486 3.5 3.0 0.3
TY 10 yr Treasury note 1/2/2001–12/31/2010 2484 5.2 1.9 0.3
US 30 yr Treasury bond 1/2/2001–10/29/2010 2449 8.1 2.4 0.4
FGBS German short term govt bond 1/3/2000–10/29/2010 2735 1.3 9.0 1.9
FGBL German long term govt bond 1/3/2000–10/29/2010 2741 4.6 2.7 1.0
Currency futures
CD Canadian Dollar 1/2/2004–12/31/2010 1763 8.4 4.1 0.6
AD Australian Dollar 1/2/2004–12/30/2010 1759 9.3 4.9 0.5
BP British Pound 1/2/2004–12/31/2010 1762 6.7 2.9 0.4
URO Euro 1/2/2004–12/31/2010 1762 6.9 1.4 0.3
JY Japanese Yen 1/2/2004–12/31/2010 1763 7.3 3.1 0.4
Index futures
STXE EuroStoxx50 1/3/2000–12/30/2010 2782 17.9 2.0 0.7
JNI Nikkei 225 1/4/2000–10/29/2010 2644 15.2 3.5 0.9
FDX DAX 40 1/3/2000–10/29/2010 2738 17.9 1.5 0.8
FFI FTSE 100 1/4/2000–10/29/2010 2707 15.6 1.9 0.5
ES e-mini S&P 500 1/3/2000–12/31/2010 2750 14.6 0.5 0.2
Market indices
SPX S&P500 1/3/2000–12/31/2010 2719 16.1 15.9 –
STOXX50E EuroStoxx50 1/3/2000–12/30/2010 2782 18.6 15.2 –
DAX DAX 40 1/4/2006–12/30/2010 2781 19.4 2.9 –
FTSE FTSE 100 1/4/2000–12/31/2010 2762 15.9 4.9 –
N225 Nikkei 225 1/5/2000–12/30/2010 2665 14.7 48.1 –

Notes: This table presents the 31 assets included in the analysis, the sample period and number of trading days for each asset, and some
summary statistics: the average volatility (annualized, estimated using squared open-to-close returns), and the average trade and quote
durations (in seconds).
Table 2
Summary statistics of some sample realized measures for two representative assets.

Mean Std. dev. Skew Kurt Min Max ac(1) ac(2) ac∗(1) ac∗(2)

Microsoft (MSFT)
RVdaily 3.20 7.21 6.53 72.09 0.00 112.86 0.26 0.29 0.96 0.99
RV_5m_ct 3.37 4.48 4.56 36.86 0.18 63.14 0.72 0.68 0.96 0.95
RV_5m_ct_ss 3.27 4.38 4.84 44.17 0.17 71.69 0.72 0.68 0.96 0.95
RV_1t_bt 11.24 20.36 3.75 20.96 0.27 207.58 0.94 0.92 0.99 0.98
RVpa_1t_bt 3.27 4.28 5.78 71.95 0.19 86.52 0.72 0.72 0.94 0.92
RVac1_1m_ct 3.40 4.54 5.22 53.70 0.15 81.89 0.72 0.70 0.94 0.94
RKth2_1m_bt 3.32 4.47 4.71 40.64 0.09 69.96 0.71 0.67 0.95 0.95
MSRV_1m_ct 3.23 4.51 4.81 41.16 0.13 68.19 0.69 0.65 0.96 0.95
MLRV_5s_ct 3.21 3.62 5.02 50.41 0.26 63.32 0.80 0.77 0.95 0.93
RRVm5_1m_ct 3.34 4.23 5.37 61.72 0.21 81.49 0.74 0.72 0.94 0.93
USD/AUD exchange rate future (AD)
RVdaily 0.46 1.37 9.88 149.55 0.00 28.95 0.39 0.40 0.98 0.93
RV_5m_ct 0.52 1.05 7.90 91.46 0.04 17.21 0.71 0.78 0.94 0.93
RV_5m_ct_ss 0.51 1.02 7.69 86.66 0.04 15.77 0.74 0.80 0.92 0.91
RV_1t_bt 0.70 1.04 7.61 92.73 0.07 18.37 0.70 0.70 0.95 0.91
RVpa_1t_bt 0.51 1.01 7.81 91.26 0.04 16.70 0.76 0.79 0.94 0.91
RVac1_1m_ct 0.52 1.02 7.95 96.27 0.04 18.14 0.73 0.78 0.94 0.93
RKth2_1m_bt 0.51 1.04 8.44 107.35 0.04 17.70 0.71 0.78 0.92 0.90
MSRV_1m_ct 0.51 1.04 8.06 95.30 0.04 17.04 0.72 0.79 0.92 0.91
MLRV_5s_ct 0.57 0.99 6.91 71.92 0.06 16.06 0.79 0.78 0.96 0.92
RRVm5_1m_ct 0.54 1.00 7.29 78.92 0.05 16.25 0.78 0.79 0.95 0.91

Notes: This table displays the summary statistics for several estimators for Microsoft an Australian–US Dollar futures.
Referring to the four right-most columns, ac(p) denotes the pth sample autocorrelation, and ac∗(p) denotes the pth
estimated autocorrelation of QV based on a realizedmeasure, using the instrumental variables method of Hansen and
Lunde (2014).



L.Y. Liu et al. / Journal of Econometrics 187 (2015) 293–311 299
presents summaries of these autocorrelations for all 31 assets, and
reveals that the estimated first- (second-) order autocorrelation of
the underlyingQV is high for all assets. The average estimate across
all assets and realized measures, even including poor estimators,
equals 0.95 (0.92). These findings support our use, in the next
section, of the ranking method of Patton (2011a), which relies on
high persistence of QV.

5. Empirical results on the accuracy of realized measures

We now present the main analysis of this paper. We firstly
discuss simple rankings of the realized measures, and then move
on to more sophisticated tests to formally compare the various
measures. As described in Section 3, we measure accuracy using
the QLIKE distance measure, using squared open-to-close returns
(RVdaily) as the volatility proxy, with a one-day lead to break the
dependence between estimation error in the realizedmeasure and
error in the proxy. In some of the analysis below we consider
using higher frequency RV measures for the proxy (RV15min and
RV5min), as well as some non-RV proxies, namely 1-minute MSRV
and 1-minute Tukey–Hanning2 realized kernel.

5.1. Rankings of average accuracy

We firstly present a summary of the rankings of the 420 realized
measures applied to the 31 assets in our sample. These rankings are
based on average, unconditional distance of the measure from the
true QV, and in Section 5.5 we consider conditional rankings.

The top panel of Table 3 presents the ‘‘top 10’’ individual
realizedmeasures, according to their average rank across all assets
in a given class.18 It is noteworthy that 5-minute RV does not
appear in the top 10 for any of these asset classes. This is some
initial evidence that there are indeed better estimators of QV
available, and we test whether this outperformance is statistically
significant in the sections below.

With the caveat that these estimated rankings do not comewith
any measures of significance, and that realized measures in the
same class are likely highly correlated,19 we note the following
patterns in the results. Realized kernels appear to do well for
individual equities (taking 4 and 5 of the top 10 slots, respectively,
for US and UK equities), realized range does well for interest rate
futures (8 out of top 10), and two/multi-scales RV do well for
currency futures (6 out of the top 10). For computed indices, RVac1
and realized kernels comprise the entire top 10. The top 10 realized
measures for index futures contain a smattering ofmeasures across
almost all classes. The lower panel of Table 3 presents a summary
of the upper panel, sorting realizedmeasures by class and sampling
frequency.

It is perhaps also interesting to note which price series is most
often selected. We observe a mix of trades and quotes for individ-
ual equities,20 while we see mid-quotes dominating the top 10 for
interest rate futures and currency futures. For equity index futures,
transaction prices make up the entire top 10. (Our computed in-
dices are only available with transaction prices, so no comparisons
are available for that asset class.)

18 Table A6 in the appendix presents rank correlation matrices for each asset
class, and confirms that the rankings of realized measures for individual assets in
a given asset class are relatively consistent, with average within-asset-class rank
correlations ranging from 0.70 to 0.87.
19 See Table A5 in the appendix for a summary of the correlations between realized
measures.
20 In fact, decomposing this group into US equities and UK equities, we see that
the top 10 realizedmeasures for US equities all use transaction prices, while the top
10 for UK equities all use mid-quotes, perhaps caused by different forms of market
microstructure noise on theNYSE (the exchange for 4 of the 5US stocks) and the LSE.
5.2. Pair-wise comparisons of realized measures

To better understand the characteristics of a ‘‘good’’ realized
measure,we present results on pair-wise comparisons ofmeasures
that differ only in one aspect. We consider four features: the use
of transaction prices vs. mid-quotes; the use of calendar-time vs.
tick-time sampling; the use of subsampling; and the use of pre-
averaging. For each class of realized measures and for each sam-
pling frequency, we compare pairs of estimators that differ in one
of these dimensions, and compute a robust t-statistic on the aver-
age difference in loss, separately for each asset.21 Table 4 presents
the proportion (across the 31 assets) of t-statistics that are signif-
icantly positive minus the proportion that are significantly nega-
tive.22 A negative entry in a given element indicates that the first
approach (e.g., transaction prices, in the toppanel) outperforms the
second approach.

The top panel of Table 4 shows that for these assets, transaction
prices are generally preferred to quote prices for most estimator-
frequency combinations, especially at lower frequencies. This is
unsurprising since at these frequencies the sampling frequency
limits the effects of bid–ask bounce microstructure noise. Excep-
tions are RV, MLRV and RRV at the highest frequencies (1-tick
and/or 1-second) and MSRV at low frequencies. Most noise ro-
bust estimators prefer transaction prices, which is consistent with
these estimators being designed specifically to mitigate the effect
of transaction price noise.

The second panel of Table 4 reveals that for high frequencies
(1-second and 5-second), calendar time sampling is preferred to
tick-time sampling, while for lower frequencies (5-minute and
15-minute), tick-time sampling generally leads to better realized
measures. Oomen (2006b) and Hansen and Lunde (2006b) provide
theoretical grounds forwhy tick-time sampling should outperform
calendar-time sampling, and at lower frequencies this appears to
be true. Microstructure noise, and in particular the dependence in
the noise, likely plays a role at the highest frequencies, and the
ranking of calendar-time and tick-time sampling depends on their
sensitivity to this noise. RVpa and RK appear to be insensitive to
the sampling scheme at the highest frequencies.

The third panel of Table 4 compares realized measures with
and without subsampling. Theoretical work by Zhang et al. (2005)
and Zhang (2006) suggests that subsampling is a simple way
to improve the efficiency of a realized measure. Our empirical
results generally confirm that subsampling is helpful, at leastwhen
using lower frequency (5-minute and 15-minute) data. For higher
frequencies (1-second to 1-minute), subsampling has either no
effect or a negative effect on accuracy. Interestingly, we note that
for realized range (RRV), subsampling reduces accuracy across all
sampling frequencies.

Finally, the bottom panel presents clear advice on pre-
averaging: it is beneficial at the highest sampling frequencies (5 s
or less) and harmful at frequencies lower than one minute. This
is consistent with the theoretical underpinnings of pre-averaging,
see Podolskij and Vetter (2009a) and Jacod et al. (2009), both
of which suggest applying pre-averaging to data sampled at the
highest frequency.

21 This is done as a panel regression for a single asset, as for each measure of a
specific estimator class and sampling frequency, there are 2 × 2 × 2 = 8 versions
(cal-time vs. tick time, trades vs. quotes, not subsampled vs. subsampled), and
conditioning on one of these characteristics leaves 4 versions.
22 Columns that are not relevant for the comparison have blank values. For
example, there is no calendar time equivalent to 1-tick sampling. Additionally, the
second panel covers only 26 assets, since there are no quotation prices for the 5
computed indices. Finally, the third panel does not contain the RK row, given the
work of Barndorff-Nielsen et al. (2011).
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5.3. Does anything beat 5-minute RV?

Realized variance, computed with a reasonable choice of sam-
pling frequency, is often taken as a benchmark or rule-of-thumb
estimator for volatility, see Andersen et al. (2001a) and Barndorff-
Nielsen (2002) for example. Thismeasure has been used as far back
as French et al. (1987), is simple to compute, and when imple-
mented on a relatively low sampling frequency (such as five min-
utes) requires much less data and cleaning.23 Thus it is of great
interest to know whether it is significantly outperformed by one
of themanymore sophisticated realizedmeasures proposed in the
literature.

We use the stepwise multiple testing method of Romano and
Wolf (2005) to address this question. The Romano–Wolf method
tests the unconditional accuracy of a set of estimators relative to
that of a benchmark realized measure, which we take to be RV
computed using 5-minute calendar-time sampling on transaction
prices (which we denote RV5min). This procedure is an extension
of the ‘‘reality check’’ of White (2000), allowing us to determine
not only whether the benchmark measure is rejected, but to
identify the competingmeasures that led to the rejection. Formally,
the Romano–Wolf stepwise method examines the set of null
hypotheses:

H(s)
0 : E


L

θt ,Mt,0


= E


L

θt ,Mt,s


, for s = 1, 2, . . . , S (7)

and looks for realized measures, Mt,s, such that either E

L

θt ,

Mt,0


> E

L

θt ,Mt,s


or E


L

θt ,Mt,0


< E


L

θt ,Mt,s


.

The Romano–Wolf procedure controls the ‘‘family-wise error rate’’,
which is the probability of making one or more false rejections
among the set of hypotheses. We run the Romano–Wolf test in
both directions, first to identify the set of realized measures that
are significantly worse than RV5min, and then to identify the set
of realizedmeasures that are significantly better than RV5min. We
implement the Romano–Wolf procedure using the Politis and Ro-
mano (1994) stationary bootstrapwith 1000 bootstrap replications
and an average block size of 10 days.24 A summary of results is pre-
sented in Table 5, and detailed results can be found in the online
appendix.

The striking feature of Table 5 is the preponderance of
estimators that are significantly beaten by RV5min, and the
almost complete lack of estimators that significantly beat RV5min.
Concerns about potential low power of this inference method are
partially addressed by the ability of this method to reject so many
estimators as significantly worse than RV5min: using RVdaily as
the proxy we reject an average of 193 estimators (out of 420) as
significantly worse than RV5min, which represents almost half of
the set of competing measures.25

23 Of course, a sampling frequency of fiveminutes is only ‘‘relatively low’’ for liquid
assets; for some assets, such as corporate bonds, a five-minute sampling frequency
would be quite high. Five-minute sampling has emerged as a rough benchmark
in the extant literature since the vast majority of empirical studies look at very
liquid assets like exchange rates and US equities. Given that all of our 31 assets are
relatively liquid, we adopt five-minute RV as our benchmark estimator.
24 The ideal choice of block size length is driven by the persistence in the
variable we are interested in testing, which in our case is the loss difference,
∆L(θ̃t ,Mt,0,Mt,s). The QLIKE loss, which is based on the realized measure and a
proxy, is substantially less persistent than the realized measure, and by taking the
difference between twomeasures and a proxywe further reduce the persistence. To
confirm this, we compute the optimal block length, using the method of Politis and
White (2004), for all pairs ofmeasures and all assets. Themean optimal block length
for loss differences is 4, and the median is 2. In contrast, the mean optimal block
length for the measures themselves is 97, and the median is 103. A block length of
10 for the loss differences is thus a reasonably conservative choice.
25 Note that the Romano-Wolf test controls the family-wise error (FWE) rate,
defined as the probability of rejecting a single true null hypothesis across all 420
Table 4
Pairwise comparison of realized measures.

Notes: This table summarizes results on pairwise comparisons of realized measures
that differ only in the price series used (top panel), sampling scheme used (middle
panel), or use of subsampling or pre-averaging (bottom two panels). For each pair, a
robust t-statistic on the average loss difference is computed per asset and estimator
type. Each table cell summarizes the pairwise comparisons for a given estimator
class and frequency by reporting the proportion of significantly positive t-statistics
minus the proportion of significantly negative t-statistics. A negative value indicates
that the first approach (e.g., calendar-time sampling in the top panel) outperforms
the second approach, a positive value indicates the opposite. Values less than −33
are dark-shaded, and values greater than 33 are light-shaded. ‘RK’ aggregates the
resulting t-statistics from the 4 types of Realized Kernels, MSRV and TSRV results
are combined in ‘M/TSRV’, and RRVm5 and RRVm10 results are combined.

We also present results using the other four proxies. These
proxies are more precise, although they are potentially more
susceptible to market microstructure noise. (Proxies that have
an unconditional mean that is significantly different from that of

nulls, and so for each use of the Romano-Wolf test wewould expect to falsely reject
only 0.05 of a measure. Of course, we run this test on 31 different assets, and so
across all assets we expect one or two of the testing procedures to result in false
rejections.
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Table 5
Number of estimators that are significantly different from RV5min in Romano–Wolf Tests.

QV Proxy: Worse Better Total estimators
RV
daily

RV
15 min

RV
5 min

MSRV
1 min

RKth2
1 min

RV
daily

RV
15 min

RV
5 min

MSRV
1 min

RKth2
1 min

KO 194 243 228 252 249 0 0 0 0 0 418
LSI 183 281 274 288 294 0 0 0 0 0 417
MSFT 284 298 287 302 304 0 0 0 0 0 418
IFF 148 252 268 272 265 0 0 0 0 0 413

SYY 155 225 221 203 203 0 0 0 0 0 414

DGE 184 336 354 244 261 0 0 0 0 0 420

VOD 219 294 371 220 222 0 0 0 0 0 419

SAB 146 338 295 326 329 0 0 0 0 0 420

SDR 142 319 313 277 288 0 0 0 0 0 416

RSA 162 308 381 175 213 0 0 0 0 0 419

TU 246 191 208 179 200 0 0 0 0 0 419
FV 231 254 237 238 253 0 0 0 0 0 420
TY 224 246 230 227 241 0 9 24 28 23 420
US 245 263 257 260 272 0 0 0 0 0 419
FGBL 220 289 286 287 288 0 0 0 0 0 420
FGBS 372 386 143 379 359 0 0 0 0 0 420
CD 141 189 191 190 191 0 0 0 0 0 420
AD 126 183 186 192 193 0 0 0 0 0 420
BP 161 178 182 177 178 0 0 0 0 0 420
URO 177 179 184 184 184 0 0 0 0 0 420
JY 163 185 191 188 185 0 0 0 0 0 420
STXE 211 68 198 299 302 0 0 0 0 0 420
JNI 296 339 348 332 333 0 0 0 0 0 416
FDX 169 157 157 194 193 0 0 0 0 0 420
FFI 175 196 194 196 197 0 0 0 0 0 420
ES 186 216 216 216 218 0 0 0 0 0 420

SPX 182 178 178 161 172 0 0 0 7 1 210

STOXX50E 144 181 179 149 177 0 0 0 0 0 210
DAX 145 157 164 155 161 0 0 0 0 0 210
FTSE 184 186 183 135 180 0 0 0 0 0 210

N225 168 168 170 170 169 0 0 0 0 0 208

Note: Results are displayed shaded gray if the measure used as the QV proxy has a significantly different mean than RVdaily.
RVdaily, an indication of bias, have results shaded gray in Table 5.)
Results from the more precise proxies are very similar: we can
reject over half of the competing estimators as being significantly
worse than RV5min, but we find just one asset out of 31 with
any measures that significantly outperform RV5min.26 It is worth
noting here that Table 5 reveals that the use of a particular realized
measure as a proxy does not lead to an apparent improvement
in the performance of measures from the same class. Specifically,
using a RV as the proxy does not ‘‘favor’’ RVmeasures, and using RK
or TSRV does not favor RK or TSRV measures. The use of a one-day
lead of the proxy solves this potential problem.27

26 We also implemented the Romano-Wolf procedure swapping the ‘‘reality
check’’ step with a step based on the test of Hansen (2005). This latter test is
designed to be less sensitive to poor alternatives with large variances (a potential
concern in our application) and so should have better power. We found no change
in the number of rejections. In amore forceful attempt to examine the sensitivity to
poor alternatives: we identified, ex ante, 72 estimators that the existing literature
would suggest are likely to have poor performance (for example, realized kernels
on 15-minute returns). We removed this group of estimators from the competing
set, and conducted the Romano-Wolf procedure on the remainder of the competing
set. We found virtually no change in results of the tests—in fact, counting across the
two Romano–Wolf tests for each of 31 assets, there was only one instance where
an estimator was found to have different outcome from the original test.
27 In Table A8 of the web appendix we present some variations of the methods
used to obtain the results in Table 5. First, we change the loss function from QLIKE
to MSE. Simulation results in Patton and Sheppard (2009a), and empirical results
in Hansen and Lunde (2005), Patton and Sheppard (2009b) and Patton (2011a)
The asset for which we find that RV5min is significantly beaten,
the 10-year US Treasury note futures contract (TY), is among the
most frequently traded in our sample. (It is noteworthy, however,
that there are five other assets that are even more frequently
traded, see Table 1, but for which we find no realized measure
significantly better than RV5min.) For the 10-year Treasury note,
the realized measures that outperform RV5min include MSRV, RK
and RRV all estimated using 1-second or 5-second sampling (in
calendar-time or business-time, with or without subsampling),
and 1-minute RV and 1-minute RVac1; a collection of measures
that one might expect to do well for a very liquid asset.

It is also noteworthy, that, combining the set of estimators
that are significantly worse than RV5min (around one half of all
estimators) with those that are significantly better (approximately
zero), leaves, obviously, aroundonehalf of the set of 420 estimators
that are not significantly different than RV5min in terms of average
accuracy.

suggest that tests based onMSEhave lower power than underQLIKE, and our results
are consistent with this: under MSE we continue to find no cases where RV5min
is significantly beaten by an alternative, and a reduction in the number of cases
where RV5min is identified as significantly better than an alternative. Second we
consider this test based on a mean-reverting AR(1) approximation for QV rather
than the maintained random walk approximation. Consistent with the simulation
results in Patton (2011a) and the results under MSE, we find similar results to our
base case but with lower power. Finally we consider the use of a one-day lag, or an
average of the one-day lag and one-day lead, as the proxy rather than the one-day
lead. The results are mostly unchanged, indicating that either of these instruments
for the day t proxy are also suitable.
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Table 6
Proportion of realized measures significantly worse than RV5min.

Notes: This table aggregates, for groups of assets (either all 31 assets or assets belonging to one class), the Romano–Wolf test results identifying estimators
that are significantly worse than the benchmark 5-minute RV (calendar-time, trades prices) estimator. Each table cell reports the proportion of estimators
of a certain estimator class and sampling frequency (across assets, and allowing for different sampling schemes and sampled price series) that are found to
be significantly worse than the benchmark estimator in a Romano–Wolf test.
To better understand the results of the Romano-Wolf tests
applied to this large collection of assets and realized measures,
Table 6 presents the proportion (across assets) of estimators that
are significantly worse than RV5min by class of estimator and
sampling frequency.28 Darker shaded regions represent ‘‘better’’
estimators, in the sense that they are rejected less often. Across the
five asset classes and the entire set of assets, we observe a darker
region running from the top right to the bottom left. This indicates
that the simpler estimators in the top rows (RV and variants) do
better, on average, when implemented on lower frequency data,
such as 1-minute and 5-minute data, while themore sophisticated
estimators (RK, MSRV, TSRV and RRV) do relatively better when
implemented on higher frequency data, such as 1-second and 5-
second data.

5.4. Estimating the set of best realized measures

The tests in the previous section compare a set of competing
realized measures with a given benchmark measure. The RV5min
measure is a reasonable, widely-used, benchmark estimator, but
one might also be interested in determining whether maintaining
that estimator as the ‘‘null’’ gives it undue preferential treatment.
To address this question, we undertake an analysis based on the
‘‘model confidence set’’ (MCS) of Hansen et al. (2011). Given a set
of competing realized measures, this approach identifies a subset
that contains the unknown best estimator with some specified
level of confidence, with the other measures in the MCS being
not significantly different from the true best realized measure. As
above, we use the QLIKE distance and a one-day lead of RVdaily
as the proxy for QV, and Politis and Romano’s (1994) stationary

28 In this table we aggregate across calendar-time and tick-time, trade prices and
quote prices, to focus on the class of realized measure and sampling frequency
dimensions.
bootstrap with 1000 bootstrap replications and average block-size
equal to 10.29

The number of realized measures in the model confidence
sets varies across individual assets, from 2 to 148 (corresponding
to a range of 1% to 36% of all measures), with the average size
being 39 estimators, representing just under 10% of our set of 420
realized measures. Index futures and interest rate futures have
the smallest model confidence sets, containing around 5% of all
realized measures, while individual equities have the largest sets,
containing around 17% of all measures. Table A7 in the appendix
contains further information on the MCS size for each asset.

In Table 7, we summarize these results by reporting the propor-
tion of estimators from a given class and given frequency that are
included in model confidence sets, aggregating results across as-
sets. Darker shaded elements represent the ‘‘better’’ realized mea-
sures. Table 7 reveals a number of interesting features. Focusing
on the results for all 31 assets, presented in the upper-left panel,
we see that the ‘‘best’’ realized measure, in terms of number of ap-
pearances in a MCS, is not 5-minute RV but 1-minute subsampled
RV. Realized kernels sampled at the one-second frequency also do
very well, as do the preaveraged realized variance estimators. The
performance of these noise robust measures is particularly strong
for individual equities, possibly reflecting this asset class’ position
as the focus of most existing empirical work.

Looking across asset classes, we see a similar pattern to that
in Table 6: a dark region of good estimators includes RV and
variants based on lower frequency data (5 s to 5 min) and more
sophisticated estimators (RK, MSRV/TSRV, MLRV and RRV) based
on higher frequency data (1 s and 5 s). We also observe that for

29 Similar to above, we also consider 15-minute RV, 5-minute RV, 1-minuteMSRV,
and 1-minute RKth2 (calendar-time, trades prices) as proxies for QV. Again, we find
that using one of these more accurate proxies leads to greater power in the test,
i.e. smaller model confidence sets. However, the results show similar patterns to
those using RVdaily as the proxy, and importantly, we find that using a proxy of a
certain class (RV, TSRV, RK) does not bias the results of the test in favor of estimators
of the same class. Detailed results can be found in the online appendix.



304 L.Y. Liu et al. / Journal of Econometrics 187 (2015) 293–311
Table 7
Proportion of realized measures in 90% model confidence sets.

Notes: This table aggregates, for groups of assets (either all 31 assets or assets belonging to one class), the 90%Model Confidence Sets identifying the subset
containing ‘‘best’’ estimators. Each table cell reports the percentage of all estimators of a certain estimator class and sampling frequency (across assets, and
aggregating estimators using different sampling schemes and sampled price series) that are found to be in a Model Confidence Set.
more liquid asset classes, such as currency futures, interest rate
futures, and index futures, realizedmeasures appear in aMCSmore
often if based on higher frequency data. In contrast, for individual
equities and for computed equity indices, the preferred sampling
frequencies are generally lower.

We can also use the estimated model confidence sets to shed
light on the particularly poorly performing realized measures.
Across all 31 assets, we see that realized measures based on 15-
minute data almost never appear in a MCS. Similarly, we observe
that themore sophisticated realizedmeasures, TSRV/MSRV,MLRV,
RK and RRV are almost never in a MCS when sampling every 5- or
15-minutes, which appears to be too low for these estimators. In
addition, for the highly liquid futures contracts, even a sampling
frequency of 1-minute is not high enough to use with these
sophisticated realized measures. This is consistent with the
implementations of these estimators in the papers that introduced
them to the literature, and so is not surprising.

Overall, the results from the previous section revealed that
it was very rare to find a realized measure that significantly
outperformed 5-minute RV. The analysis in this section, which
avoids the need to specify a ‘‘benchmark’’ realizedmeasure, reveals
evidence that some measures are indeed more accurate than
5-minute RV. We find that 1-minute RV and RVac1, 1-second and
5-second Realized Kernels and Multi-scale RV, and 5-second and
1-minute Realized Range estimators appear more often in the
MCS than 5-minute RV. Subsampled RV at moderate frequencies
(1-minute or 5-minute) also outperforms regular 5-minute RV.

5.5. Explaining performance differences

We now seek to shed light on the factors that explain the
differences in the accuracy of the realized measures considered
in this paper. The results in the previous sections are related to
average accuracy over the entire sample period, and in this section
we study relative conditional accuracy using a panel version of the
approach of Giacomini and White (2006). This approach enables
us to examine whether the relative performance of two realized
measures varies with some set of conditioning variables. We use
a panel specification to exploit both the time series and the
cross-sectional information in our data, and we consider a variety
of conditioning variables to try to explain when one measure
outperforms another. All of the specifications that we consider are
of the form:

L(θ̃ i
t ,M

i
0,t) − L(θ̃ i

t ,M
i
j,t) = β′

jX
i
t−1 + γ ′

j Z
i
+ εi

j,t ,

for t = 1, 2, . . . , T ; i = 1, 2, . . . ,N (8)

where the first realized measure, M i
0,t , is taken to be RV5min,

and the competing measure, M i
j,t , is one of the better-performing

realized measures identified in the previous section, namely,
5-second MSRV, 1-minute RVac1, 5-second RKth2 and 1-second
MLRV.30 We also include 1-minute RV and RVdaily to study the
accuracy gains from using higher-frequency price data. All of these
estimators are computed on transaction prices with calendar-time
sampling. The panel is unbalanced as the assets do not all trade on
the same days, and the maximum dimensions of the panel are T =

2860 and N = 31. We estimate this model using an unbalanced
panel framework and Driscoll and Kraay (1998) standard errors,
which are robust to heteroskedasticity, serial correlation, and
cross-sectional dependence.31

Our conditioning variables include a variety of variables

Xi

t−1


that might be thought to influence the accuracy of realized
measures. Numerous measures of market liquidity exist in the
literature (see Hautsch and Podolskij (2013) and Aït-Sahalia and

30 The fact that we examine realized measures identified as ‘‘good’’ in previous
analysis of course biases the interpretation of any subsequent tests of unconditional
accuracy. In this section we focus on whether the relative performance of these
measures varies significantly with some conditioning variables (X, Z) , and the
problem of pre-test bias does not arise here.
31 Panel regressions were estimated using the Stata program ‘‘xtscc’’ (Hoechle,
2007) downloaded from http://ideas.repec.org/c/boc/bocode/s456787.html. These
standard errors are essentially a ‘‘HAC of cross-sectional averages’’, and based on
the length of the data, the program selects 8 lags to use for the Newey–West kernel.
We also used an alternate version of Driscoll–Kraay standard errors developed
in Vogelsang (2012), which uses fixed-b asymptotic theory, but we found that the
differences in the standard errors were extremely small in this application.

http://ideas.repec.org/c/boc/bocode/s456787.html
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Yu (2009), for examples). We use three measures (see Bandi and
Russell (2006) and Diebold and Strasser (2013), for example) that
can be computed each day using our intraday price and volume
data: average time between trades (avgdur); total trade volume
in units of local currency (volm); and average bid–ask spreads
(BAsprd). All three of these variables exhibit a strong trend over
our sample period, and so we de-trend each series using a 60-day
moving average.32 Next we look at measures of noise and jumps in
the asset price series. For each daywemeasure the autocorrelation
in 5-second returns (ac1_5s). The autocorrelations of sampled
intraday returns have been studied in the context of measuring QV
(Hansen and Lunde, 2006b; Hautsch and Podolskij, 2013) because
they embed information about the properties of microstructure
noise, which may influence the performance of realized measures.
We also include an estimate of relative size of the noise:
the per-trade ratio of the noise variance to the total variance
(noiseratio), introduced in Oomen (2006a) and used by Hautsch
and Podolskij (2013),33 and the proportion of QV attributable to
jumps (jumpprop), measured as max (RVt − BPVt , 0) /RVt (both
measures use 5-minute tick-time sampled trades prices), to see if
the magnitude of noise or jump activity has an effect on realized
measure performance. Finally, we include a measure of volatility
(logQV), and for this we use subsampled RV5min. Tables A9 and
A10 in the web appendix present some summary statistics on
these conditioning variables, including the full-sample averages by
which the variables are de-meaned, and information on their cross-
correlations.34,35

Given the panel nature of this analysis, we are also able
to include variables


Zi


to capture some of the cross-sectional

variation in our data. We first include dummy variables for each
asset class (equities, bond futures, FX futures, index futures, and
computed indices), which capture some of the time-invariant
features of the markets on which these assets trade.36 We also
include geographic dummy variables (US, UK, Europe and Asia,
with the US dummy dropped to avoid perfect multicollinearity) to
see whether there are differences across countries in the relative
performance of these realized measures.37

32 Specifically, we set X̃t = Xt/X̄t−60,t−1 where X̄t−60,t−1 is the average value of the
variable over the past 60 days. We also examined using 120- and 250-day averages
and the results were qualitatively similar.
33 We compute noiseratio as in Hautsch and Podolskij (2013): noiseratiot =

α̂t/(Q̂V t/nt ), where the numerator is the first-order autocorrelation of the tick-
by-tick returns, and the denominator is 1-tick MLRV scaled by the number of
observations on that day.
34 We winsorize all conditioning variables at the 0.5% and 99.5% levels to reduce
the impact of extreme observations, and we de-mean all conditioning variables so
that the coefficients on the dummy variables can be interpreted as the average loss
difference when all conditioning variables are at their full-sample average values.
Finally, we normalize the loss differences by their full-sample standard deviations
so that the parameter estimates in Table 8 are comparable across columns.
35 The two strongest correlations are between avgdur and volm at −0.66, and
ac1_5s and noiseratio at −0.33. logQV is also mildly correlated to all of the
conditioning variables except jumpprop, with correlationmagnitudes ranging from
0.22 to 0.32. The remaining cross-correlations are fairly small.
36 We do not have measures of volume and bid–ask spreads for our computed
indices due to the fact that they are constructed series rather than traded assets,
and so these two conditioning variables are missing. In the interests of retaining
these two interesting variables, we drop the five computed indices from the panel
specification reported in Table 8, thereby reducing the cross-sectional dimension
to 26. In the web appendix (Table A11), we report a corresponding table with
the computed indices included in the panel and with average spread and volume
variables dropped. The main conclusions from this sub-section are unaffected.
37 Note that the ‘‘Asia’’ dummy variable is dominated by Japan: this group only
includes the Nikkei 225 index future, the Nikkei 225 computed index, the yen/USD
exchange rate and the Australian dollar/USD exchange rate. Further, since all
currency pairs are against the USD,we assign the currency futures to the geographic
region of its pairing, with the exception of the CAD/USD currency futures, which are
assigned to the ‘‘US’’ (in effect, ‘‘North America’’) region.
Table 8 presents the results of these panel regressions, with
each column of this table representing a separate estimation to
compare RV5min with the competing measure listed in the top
row.Wepresent the t-statistics above and the parameter estimates
in parentheses below. We focus on the t-statistics since, like
Diebold–Mariano-type tests, the average loss differential, or in
this case, the conditional loss differential, is difficult to directly
interpret. The t-statistics in the middle panel correspond to the
coefficients on the asset class dummies, and can be interpreted
as those on the average difference in performance holding the
conditioning variables at their average levels. The first column of
Table 8 confirms our earlier results: RVdaily is significantly worse
that RV5min across all asset classes, evidenced by the large and
negative t-statistics for all four asset class dummy variables. For
most of the other, more sophisticated estimators, we find that
RV5min is significantly beaten, on average, particularly for the very
liquid FX futures and index futures asset classes.

Looking at the conditioning variables across the columns we
see that two variables in particular exhibit power in explaining
differences in the performance of realized measures. The first of
these (noiseratio) measures the variance of the microstructure
noise relative to the variance of the return.We see a consistent im-
plication from the coefficients on this variable that as microstruc-
ture noise increases, the performance of the more sophisticated
realized measure deteriorates. In the first column the coefficient is
positive, indicating that the performance of RVdaily improves rel-
ative to that of RV5min as the noise increases, while in all of the
remaining columns, which consider estimators that are in some
way more sophisticated than RV5min, the coefficient is negative.
This result is in line with intuition: more sophisticated estimators,
sampled at higher frequencies, are more exposed to microstruc-
ture noise than less sophisticated alternatives, and so as the level of
noise increases we would expect the former to perform relatively
worse than the latter. Given the inclusion of an intercept in this
specification (the asset class dummy variables) this does not nec-
essarily imply as the level of noise increases the researcher should
switch from amore sophisticated estimator to a less sophisticated,
lower frequency, estimator; rather this just suggests that the gains
from using a more sophisticated estimator fall in those circum-
stances.38

The second conditioning variable with substantial predictive
power for relative performance is the level of volatility (logQV).
The estimation error of volatility measures is generally increasing
with the level of volatility, which may explain the usefulness of
this variable. The coefficient on this variable is generally negative
and significant, which has a different interpretation for the first
column than the remaining. In the first column, the negative
coefficient suggests that as volatility rises, the gains to using
RV5min increase. That is, in high volatility periods the gains to
using a moderately high sampling frequency rather than daily
sampling are particularly large. In the remaining columns, a
negative coefficient indicates that the gains from using a more
sophisticated realized measure rather than RV5min decrease in
periods of high volatility. This may be because the performance
of the more sophisticated estimators deteriorates faster than that
of RV5min as volatility increases, or it may be related to the fact
that the level of volatility is positively correlated with measures of
market Illiquidity such as the bid–ask spread and 5-second return
correlations, both of which are ex ante expected to indicate worse
conditions for more sophisticated estimators.

38 To determine whether the researcher should switch one would need to zoom
in on the loss difference for a given pair of estimators, for a given asset, on a given
day. Our panel specification allows for such analyses, but in the interests of space
and generality we do not attempt this here.
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Table 8
Conditional Relative Performance of Realized Measures and RV5min.

Notes: Each column of this table presents the t-statistics (top) and coefficient estimates (bottom, in
parentheses) for a pooled regression of the form L(θ̃ i
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j,t , for t =

1, 2, . . . , T ; i = 1, 2, . . . , 26, where M i
0,t is RV5min, M i

j,t is a competing realized measure listed in the
table header, Xi

t−1 are the set of 7 explanatory variables listed in the first 7 rows of first column, and Zi

are the set of 7 categorical variables listed in the last 7 rows of the first column. 26 assets (all assets
other than the computed indices) are included in each panel regression, and T=2860 (though panel
is unbalanced). All estimators are calendar-time sampled, transaction price estimators. Statistically
significant results (at 5% level) are shaded.
Finally we turn to the bottom panel of Table 8, which presents
the coefficients and t-statistics on geographic dummy variables.
These coefficients represent the average loss difference between
two estimators across all assets in a given geographic region,
compared with those for the assets in the US. The main result
that emerges from this panel, based on columns 2 to 6, is that
the more sophisticated estimators tend to perform better (relative
to RV5min) for US assets than for European or Asian assets; the
parameter estimates are almost all negative and significant. This is
perhaps related to the fact that much of the work underlying these
estimators has been undertaken with US assets in mind.

This analysis sheds light on the market conditions and market
features that lead to variations in the relative performance of
measures of volatility. Sophisticated estimators, such as MSRV, RK,
and RVpa, which perform well on average, see their performance
deteriorate relative to the simple 5-minute RV estimator in periods
of high noise and high volatility, periods that may be particularly
important to investors since they can represent conditions of crisis
(low liquidity and high volatility, as in the recent financial crisis).
In such times accurate measurement of volatility is important
for both pricing and risk management. The results from this
section also reveal the importance of US equity markets in
the development of sophisticated estimators. These estimators
generally perform significantly worse in non-US markets than in
US markets. This is perhaps indicative of microstructure effects of
a different form to those in US markets, providing motivation for
more detailed analyses of non-US market microstructures.

5.6. Out-of-sample forecasting with realized measures

The results above have all focused on the relative accuracy of
realized measures for estimating quadratic variation. One of the
mainuses of estimators of volatility is in the production of volatility
forecasts, and in this section we compare the relative accuracy of
forecasts based on our set of competing realized measures. We
do so based on the simple heterogeneous autoregressive (HAR)
forecastingmodel of Corsi (2009). Thismodel is popular in practice
as it captures long memory-type properties of quadratic variation,
while being simpler to estimate than fractionally integrated
processes, and performswell in volatility forecasting, see Andersen
et al. (2007) for example. For each realized measure, we estimate
the HAR model using the most recent 500 days of data:

θ̃t+h = β0,j,h + β1,j,hMjt + β2,j,h
1
5

4
k=0

Mj,t−k

+ β3,j,h
1
22

21
k=0

Mj,t−k + εjt , (9)
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Fig. 1. This figure presents the proportion of all realized measure based HAR-RV forecasts of QV that are included in the 90% model confidence set at each forecast horizon,
ranging from 1 to 50 days. The upper left panel presents the results over all 31 assets, and the remaining panels present results for each of the five asset classes separately.
whereMjt is a realizedmeasure from the competing set, and θ̃t+h is
the volatility proxy (the squared open-to-close return for day t+h,
which is a proxy for QV). We estimate this regression separately
for each forecast horizon, h, ranging from 1 to 50 trading days, and
from those estimates we obtain a h-day ahead volatility forecast,
which we then compare with our volatility proxy. We re-estimate
the model each day using a rolling window of 500 days.

In addition to the 420 realized measures we have analyzed
so far, for forecasting analysis we also consider some ‘‘jump-
robust’’ estimators of volatility. These measures, described in
Section 2.3, are designed to estimate only the integrated variance
component of quadratic variation, see Eq. (2). The inclusion of these
estimators is motivated by studies such as Andersen et al. (2007)
and Patton and Sheppard (forthcoming), which report that the
predictability of the integrated variance component of quadratic
variation is stronger than the jump component, and thus there
may be gains to separately forecasting the two components. Using
a HAR model on these jump-robust realized measures effectively
treats the jump component as unpredictable, while using a HAR
model on estimators of QV (our original set of 420measures) treats
the two components as having equal predictability.39 (These are
of course extreme viewpoints; a more nuanced approach would
allow both components to have non-zero and possibly different
levels of predictability, as in Andersen et al. (2007), but in the
interests of space we do not consider that here.) Extending our set
to include 228 jump-robust measures increases its total number to
648 realized measures.

For each forecast horizon between one day and 50 days we
estimate the model confidence set of Hansen et al. (2011). It is
not feasible to report the results of each of these estimates for
each horizon, and so we summarize them in two ways. Firstly, in
Fig. 1 we present the size of the MCS, measured as the proportion

39 If QV is comprised of two AR(1) components (namely integrated variation
and jump variation) with differing degrees of persistence, then it will follow
an ARMA(1,1) process. This is clearly not consistent with our maintained random
walk approximation for QV. In Table A8 of the web appendix we consider two
alternative approximations for QV, an AR(1) and an AR(5), the latter motivated as
an alternative to an ARMA approximation.We find reduced power from these tests,
but the rejections we do obtain are consistent with those found under the random
walk approximation.
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Table 9
Proportion of RM-based HAR-RV models in 90% Model Confidence Sets, for forecast horizons 1 through 5.

Notes: This table aggregates, for groups of assets (either all 31 assets, or assets belonging to one class), the 90% Model Confidence Sets identifying the subset containing
‘‘best’’ estimators. Each table cell reports the percentage of all estimators of a certain estimator class and sampling frequency (across assets, and aggregating estimators
using different sampling schemes and sampled price series) that are found to be in aModel Confidence Set. ‘-’ indicates that for the assets under consideration, all estimators
of that class and sampling frequency yield values that are unrealistically small and thus dropped from the competing set (see section 7.2 in the Appendix).
of realized measures that are included in the MCS, across forecast
horizons. From this figure we observe that the MCSs are relatively
small for short horizons, consistent with our results in Section 5.4
and with the well-known strong persistence in volatility. As the
forecast horizon grows, the size of the MCSs increase, reflecting
the fact that for longer horizons more precise measurement of
current volatility provides less of a gain than for short horizons.
It is noteworthy that even at horizons of 50 days, we are able to
exclude 43% of realized measures from the MCS, averaging across
all 31 assets. This proportion varies across asset classes, with the
proportion of estimators included at h = 50 equal to 18% for the
class of interest rate futures, 35% for individual equities, and near
100% (i.e., no realizedmeasures are excluded) for computed equity
indices, index futures and currency futures.

In Table 9 we study these results in greater detail. This table
has the same format as Table 7, and reports the proportion of
realized measures from a given class and given frequency that
belong to a model confidence set, aggregating results across assets
and forecast horizons between 1 and 5 days. As in Table 7, darker
shaded elements represent the better forecasts. What is most
striking about this table is the relative success of the jump-robust
realized measures for volatility forecasting. For four of the five
asset classes, the best measure is one of truncated RV (TRV) at
the 5-minute or 15-minute frequency, or quantile-RV (QRV) at
the 5-minute frequency. Individual equities is the only asset class
where nonjump-robust estimators (RVss on 15-minute sampling
and 5-minute RRV) tie with a noise-robust estimator (1-minute
BPVpa) for highest proportion of forecasts belonging in MCSs.
This broad pattern that the best realized measures for volatility
forecasting appears to be jump-robust measures, estimated using
relatively low (5- or 15-minute) frequency data is consistent with
the existing results in the literature, see Andersen et al. (2007)
and Corsi et al. (2010) for example, who find that separating QV
into continuous and jump components leads to better out-of-
sample forecast performance.

In Fig. 2we present the proportion (across assets) ofmodel con-
fidence sets that contain RV5min and TRV5min (both computed on
transaction prices with calendar-time sampling), for each forecast
horizon. We see that, across all assets, RV5min appears in around
30% of MCSs for shorter horizons, rising to around 60% for longer
horizons.40 RV5min does best for currency futures and individual
equities, and relatively poorly for interest rate futures. Fig. 2 also
presents the corresponding proportion for TRV5min, and we see
that this measure does almost uniformly better than RV5min, with
the exceptions being for the individual equities, where it is domi-
nated by RV5min, and index futures, where TRV5min and RV5min
forecasting models show similar performance. TRV5min does par-
ticularly well for currency futures and interest rate futures.

Our study of a broad collection of assets and a large set of
realized measures necessitates simplifying the analysis in several
ways, and a few caveats to the above conclusions apply. Firstly,
these results are based on each realized measure being used in
conjunction with the HAR model of Corsi (2009). This model has
proven successful in a variety of volatility applications, but it is
by no means the only relevant volatility forecasting model in

40 Note that this analysis only counts RV5min computed in calendar time, using
transaction prices, and not subsampled. Thus this represents a lower bound on the
proportion of MCSs that include any RV5min.
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Fig. 2. This figure presents the proportion of 90%model confidence sets (across assets) that contain 5-minute RV and 5-minute truncated RV (under calendar-time sampling,
and using transactions prices if available) at each forecast horizon ranging from 1 to 50 days. The upper left panel presents the results across all 31 assets, and the remaining
panels present results from each of the 5 asset classes separately.
the literature, and it is possible that the results and rankings
change with the use of a different model. Secondly, by treating the
prediction of future QV as a univariate problem, we have implicitly
made a strong assumption about the predictability of volatility
attributable to jumps, either that it is identical to that of integrated
variance, or that it is not predictable at all. A more sophisticated
approach might treat these two components separately. Thirdly,
we have only considered forecasting models based on a single
realized measure, and it may be possible that a given realized
measure is not very useful on its own, but informative when
combined with another realized measure.

6. Summary and conclusion

Motivated by the large body of research on estimators of
asset price volatility using high frequency data (so-called ‘‘realized
measures’’), this paper considers the problem of comparing the
empirical accuracy of a large collection these measures across a
range of assets. In total, we consider over 400 different estimators,
applied to 11 years of data on 31 different financial assets across
five asset classes, including equities, indices, exchange rates and
interest rates. We apply data-based ranking methods to the
realized measures and to forecasts based on these measures, for
forecast horizons ranging from 1 to 50 trading days.

Our main findings for these 31 assets can be summarized
as follows. Firstly, if 5-minute RV is taken as the benchmark
realized measure, then using the testing approach of Romano and
Wolf (2005), we find very little evidence that it is significantly
outperformed by any of the competing measures in terms of
estimation accuracy, across any of the 31 assets under analysis.
If, on the other hand, the researcher wishes to remain agnostic
about the ‘‘benchmark’’ realized measure, then using the model
confidence set of Hansen et al. (2011), we find that 5-minute RV
is indeed outperformed by a small number of estimators, most
notably 1-minute sub-sampled RV, and 1- and 5-second realized
kernels andMSRV. Finally, when using forecast performance as the
method of ranking realizedmeasures, we find that 5-minute or 15-
minute truncated RV provides the best performance on average,
which is consistent with the work of Andersen et al. (2007), who
find that jumps are not very persistent. The rankings of realized
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measures vary across asset classes, with 5-minute RV performing
better on the relatively less liquid classes (individual equities and
computed equity indices), and the gains from more sophisticated
estimators like MSRV and realized kernels being more apparent
for more liquid asset classes (such as currency futures and equity
index futures). We also find that for realized measures based on
frequencies of around five minutes, sampling in tick time and
subsampling the realizedmeasure both generally lead to increased
accuracy.

It is important to acknowledge here that while we consider a
relatively large collection of assets, they all share the characteristic
of being relatively liquid assets on well-developed markets, and
our conclusions require some adjustment before considering
them for other assets. We suggest the following three general
conclusions. First, sampling relatively sparsely appears to accrue
much of the benefits of ‘‘high frequency’’ data (whatever that
means for a given asset)without exposing themeasure to problems
from microstructure noise. Five-minute sampling is an example
of sparse sampling for moderately liquid assets; for less liquid
assets 15 min to one hour might be more appropriate, and as
the assets we study get more liquid, one-minute sampling may
be interpretable as ‘‘sparse’’. Second, ‘‘subsampling’’ (Zhang et al.,
2005) is an easy, and robust, way to improve the accuracy of
sparsely-sampled realized measures. Finally, the gains from high
frequency data are greatest when microstructure noise, somehow
measured, is relatively low, and when volatility is high. These
two quantities can vary substantially through time, as well as
across assets. Investigating the performance of these, and newly-
developed, realizedmeasures on an even broader set of assets (less
liquid, perhaps on developingmarkets) is an interesting avenue for
future research.
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