Asymptotic inference about predictive accuracy using high frequency data

Jia Li, Andrew J. Patton

Department of Economics, Duke University, USA

Abstract

This paper provides a general framework that enables many existing inference methods for predictive accuracy to be used in applications that involve forecasts of latent target variables. Such applications include the forecasting of volatility, correlation, beta, quadratic variation, jump variation, and other functionals of an underlying continuous-time process. We provide primitive conditions under which a “negligibility” result holds, and thus the asymptotic size of standard predictive accuracy tests, implemented using a high-frequency proxy for the latent variable, is controlled. An extensive simulation study verifies that the asymptotic results apply in a range of empirically relevant applications, and an empirical application to correlation forecasting is presented.

1. Introduction

A central problem in time series analysis is the forecasting of economic variables. In financial applications, the variables to be forecast are often risk measures, such as volatility, beta, correlation, and jump characteristics (see Andersen et al., 2006 for a survey). Since the seminal work of Engle (1982), numerous models have been proposed to forecast risk measures, and these forecasts are of fundamental importance in financial decisions. The problem of evaluating the performance of these forecasts is complicated by the fact that many risk measures, although well-defined in models, are not observable even ex post. A large literature (see West, 2006 for a survey) has evolved presenting methods for (pseudo) out-of-sample inference for predictive accuracy, however existing work typically relies on the observability of the forecast target. The goal of the current paper is to provide a general methodology for extending the applicability of forecast evaluation methods to settings with unobservable forecast target variables.

Inspired by Andersen and Bollerslev (1998), we propose to evaluate competing forecasts with respect to a proxy of the latent target variable, with the proxy computed from high-frequency (intraday) data, in the application of forecast evaluation methods. Prima facie, such inference is not of direct economic interest, in that a good forecast for the proxy may not be a good forecast of the latent target variable. The gap, formally speaking, arises from the fact that hypotheses concerning the proxy (which we label “proxy hypotheses”) are not the same as those concerning the true target variable (i.e., “true hypotheses”). To fill this gap, we consider an asymptotic setting in which the proxy is constructed using data sampled from asymptotically-increasing frequencies. Under this setting, the proxy hypotheses can be considered as “local” to the true hypotheses, and we provide both high-level and primitive sufficient conditions under which the moments that specify the proxy hypotheses converge sufficiently fast to their counterparts in the true hypotheses. This convergence leads to an asymptotic negligibility result: forecast evaluation methods using proxies have the same asymptotic size and power properties under the proxy hypotheses as under the true hypotheses.
The strategy of using high-frequency proxies to conduct inference has proven successful in prior work on the estimation of stochastic volatility models. Bollerslev and Zhou (2002) estimate stochastic volatility models treating the realized variance as the unobserved integrated variance. Corradi and Distaño (2006) and Todorov (2009) generalize this approach by considering additional realized measures for the integrated variance using the generalized method of moments (GMM) of Hansen (1982). These authors provide theoretical justifications for this approach by providing conditions that ensure the asymptotic negligibility of the proxy error in GMM inference for stochastic volatility models. Realized measures for other volatility functionals have also been used for parametric and nonparametric estimation of stochastic volatility models: for example, Todorov et al. (2011) use the realized Laplace transform of volatility (Todorov and Tauchen, 2012) for estimating parametric stochastic volatility models; Renô (2006), Kanaya and Kristensen (2016) and Bandi and Renô (2016) consider nonparametric estimation of stochastic volatility models using spot volatility estimates (Foster and Nelson, 1996; Comte and Renault, 1998; Kristensen, 2010).

Our asymptotic negligibility result shares the same nature as that in the important work of Corradi and Distasio (2006), among others. However, the focus of the current paper is distinct from aforementioned work in two important aspects. First, compared with (in-sample) GMM estimation, the out-of-sample forecast evaluation problem has unique complications in the econometric structure. Indeed, even in the case with ex post observable forecast targets, it is well known that forecast evaluation procedures can be drastically different from each other depending on how unknown parameters in a forecast model are estimated and updated, on whether the competing forecast models are nested or nonnested, and on how critical values of tests are computed (e.g., via direct estimation or bootstrap); see, for example, Diebold and Mariano (1995), West (1996), White (2000), McCracken (2000), Hansen (2005), Giacomini and White (2006) and McCracken (2007), as well as the comprehensive review of West (2006). The apparent idiosyncrasies of these methods present a nontrivial challenge for designing a general theoretical framework for solving the latent-target problem for a broad range of evaluation methods. Second, while prior work used proxies of the volatility or its integrated functionals such as integrated volatility and the volatility Laplace transform for estimating stochastic volatility models, forecasting applications often concern a much broader set of risk factors, such as beta, correlation, total quadratic variation, semivariance and jump variations. The broad practical scope of financial forecasting thus calls for an extensive analysis on a wide spectrum of risk measures and proxies.

The main contribution of the current paper is to address these two issues in a general and compact framework. We achieve generality by using two sets of high-level conditions that are designed for bridging two large literatures: forecast evaluation and high-frequency econometrics. The first set of conditions posits an abstract structure on the forecast evaluation methods; we show that these conditions are readily verified for many inference methods proposed in the existing literature, including all of the evaluation methods cited above, and can be readily extended to stepwise testing procedures such as Romano and Wolf (2005) and Hansen et al. (2011). The second condition concerns the approximation accuracy of the high-frequency proxy relative to the latent target variable. The main technical contribution of this paper is to verify this condition under primitive conditions for general classes of high-frequency based estimators of volatility and jump risk measures in a general Itô semimartingale model for asset prices. In particular, we allow for realistic features such as the leverage effect and (active) price and volatility jumps. Our results cover many existing estimators as special cases, such as realized variation (Andersen et al., 2003), truncated variation (Mancini, 2001), bipower variation (Bardorff-Nielsen and Shephard, 2004b), realized covariation, beta and correlation (Bardorff-Nielsen and Shephard, 2004a), realized Laplace transform (Todorov and Tauchen, 2012), general integrated volatility functionals (Jacob and Potter, 2012; Jacob and Rosenbaum, 2013), realized skewness, kurtosis and their extensions (Lepingle, 1976; Jacob, 2008; Amaya et al., 2015), and realized semivariance (Bardorff-Nielsen et al., 2010; Patton and Sheppard, 2015). These technical results may be useful for other applications as well (e.g., Corradi and Distasio, 2006; Todorov, 2009).
distribution. All vectors are column vectors. For any matrix A, we denote its transpose by A^t and its (i,j) component by A_{ij}. The (i,j) component of a matrix-valued stochastic process A_t is denoted by $A_{ij,t}$. We write (a, b) in place of $(a^t, b^t)^t$. The jth component of a vector x is denoted by x_j. For $x, y \in \mathbb{R}^q$, $q \geq 1$, we write $x \preceq y$ if and only if $x_j \leq y_j$ for every $j \in \{1, \ldots, q\}$. For a generic vector X taking values in a finite-dimensional space, we use $\|\cdot\|$ to denote its dimensionality; the letter κ is reserved for such use. We use $\|\cdot\|$ to denote the Euclidean norm of a vector, where a matrix is identified as its vectorized version. For each $p \geq 1$, $\|\cdot\|$ denotes the L_p norm. We use \otimes to denote the Hadamard product between two identically sized matrices, which is computed simply by element-by-element multiplication. The notation \otimes stands for the Kronecker product. For two sequences of strictly positive real numbers a_t and b_t, $t \geq 1$, we write $a_t \asymp b_t$ if and only if the sequences a_t/b_t and b_t/a_t are both bounded.

2. The setting

2.1. A motivating example

We start with a simple motivating example that concerns one-period-head volatility forecasting and use this to illustrate the key concepts of our framework, and in the next section we present the general setting that we use for the remainder of the paper.

Let $(\sigma_t)_{t \geq 0}$ denote the stochastic volatility process of an asset and normalize the unit of time to be one day. Since Andersen and Bollerslev (1998), the integrated volatility $IV_t \equiv \int_0^t \sigma_s^2 ds$ has been widely used as a model-free measure of volatility. Although the IV is defined in continuous time, it is typical in practice to construct forecasts for it by using discrete-time models. One leading choice is the classical GARCH(1,1) model (Bollerslev, 1986) estimated using quasi maximum likelihood on daily returns. From this model, we have

$$
\hat{\sigma}_t^2 = \omega + \gamma \hat{\sigma}_{t-1}^2 + \alpha r_{t-1}^2,
$$

and the resulting volatility forecast at time $t+1$ is $\hat{\sigma}_{t+1}^2 = \hat{\sigma}_{t}^2$. Another popular forecasting model is the heterogeneous autoregressive (HAR) model (Corsi, 2009) estimated via ordinary least squares using realized variances (RV), that is,

$$
RV_t^2 = b_0 + b_1 RV_{t-1}^2 + b_2 \sum_{k=1}^5 RV_{t-k}^2 + e_t,
$$

where RV_t^2 denotes the RV formed as the sum of squared 5-min returns within day t and the volatility forecast at time $t+1$ is $\hat{\sigma}_{t+1}^2 = \hat{\sigma}_{t}^2$. Our goal in this example is to compare the predictive accuracy of the two competing IV forecast series, F_{t+1}, and F_{t+1}, where t ranges over the out-of-sample period $[R, \ldots, T]$.

Before discussing the evaluation problem, we make two remarks on these forecasts. Firstly, we stress that we shall be agnostic about the underlying true dynamics of the volatility process and we do not assume these forecasting models to be correctly specified. After all, potentially misspecified models can still produce good forecasts and are widely used in practice. Given this, we are not interested in the model parameters per se, but instead our focus is on comparing the forecasts that these models generate. Therefore, our focus is very different from the semiparametric estimation problems in stochastic volatility models studied by Corradi and Distasio (2006), Todorov (2009), Todorov et al. (2011), Kanaya and Kristensen (2016), Bandi and Renò (2016), among others.

Secondly, we treat the data that enters into the forecasts “as is,” and do not attempt to consider what the datasets might converge to. For example, when forming forecasts using Model 2, we treat the 5-min RV simply as an observed time series (which forms the conditioning information set when making forecasts), instead of as an approximation to the unobserved quadratic variation of the asset price. In other words, we do not aim to evaluate the infeasible forecasts that could be generated using Model 2 but with the 5-min RV replaced by the limiting (unobserved) quadratic variation. Doing so allows us to compare the forecasts from Model 2 with those formed similarly, say, by fitting the HAR model using the 1-min RV. This type of comparison is relevant in applications and, from a theoretical point of view, can only be done meaningfully by treating these forecasts as two distinct series, instead of as two approximations of the same infeasible forecast (because the latter would lead to the trivial conclusion that these forecasts are the same asymptotically).

We now turn to the forecast evaluation problem. Clearly, the inference would be standard if one could observe the forecast target (i.e., IV_{t+1}); the evaluation methods mentioned in the Introduction could be directly applied in this case. As an example, consider the Diebold–Mariano test for equal predictive ability under the absolute deviation loss, that is, a test for the null hypothesis

$$
H_0^*: \mathbb{E} \left(|IV_{t+1} - F_{t+1}^1| \right) = \mathbb{E} \left(|IV_{t+1} - F_{t+1}^2| \right),
$$

(2.3)

here, we use \mathbb{E} to highlight the dependency on the latent forecast target. If IV_{t+1} were observable, one could estimate the expected loss differential between the two forecasts using their sample analogue

$$
DM_t^1 \equiv \frac{1}{p} \sum_{t=R}^{T} \left(|IV_{t+1} - F_{t+1}^1| - |IV_{t+1} - F_{t+1}^2| \right),
$$

(2.4)

where $P = T - R + 1$ is the length of the testing sample. Under some mild weak-dependence assumptions on the series of loss differentials, we have

$$
\sqrt{p} \left(DM_t^1 - \mathbb{E}[DM_t^1] \right) \xrightarrow{d} N(0, S^1),
$$

(2.5)

where S^1 denotes the long-run variance of the loss differential series $|IV_{t+1} - F_{t+1}^1| - |IV_{t+1} - F_{t+1}^2|$. Under the null hypothesis H_0^*, $\mathbb{E}[DM_t^1] = 0$ holds, which can be tested by examining whether DM_t^2 is statistically different from zero.

The complication here, of course, is that IV_{t+1} is not directly observed; hence, the testing procedure above is infeasible. As suggested by Andersen and Bollerslev (1998), a feasible alternative to the above procedure is to use an observable proxy Y_{t+1} in place of IV_{t+1} for evaluating the forecasts. Possible choices of the proxy include the truncated variation of Mancini (2001) or the bipower variation of Barndorff-Nielsen and Shephard (2004b) constructed from high-frequency data, because these realized measures are known to estimate the IV while being robust to the presence of jumps. The feasible counterpart of DM_t^2 in (2.4) is then given by

$$
DM_t \equiv \frac{1}{p} \sum_{t=R}^{T} \left(|Y_{t+1} - F_{t+1}^1| - |Y_{t+1} - F_{t+1}^2| \right).
$$

Applying a central limit theorem on the series $|Y_{t+1} - F_{t+1}^1| - |Y_{t+1} - F_{t+1}^2|$, we have

$$
\sqrt{p} \left(DM_t - \mathbb{E}[DM_t] \right) \xrightarrow{d} N(0, S),
$$

(2.6)

where S denotes the associated long-run variance. In view of (2.6), we can implement a two-sided t-test at level α which rejects the null hypothesis of

$$
H_0 : \mathbb{E}[DM_t] = \frac{1}{p} \sum_{t=R}^{T} \mathbb{E} \left(|Y_{t+1} - F_{t+1}^1| - |Y_{t+1} - F_{t+1}^2| \right) = 0.
$$

(2.7)
\[|DM|_t > Z_\alpha/2 S^{1/2} \] where \(S \) is a consistent estimator of \(S \) and \(Z_\alpha/2 \) is the \(\alpha/2 \) upper quantile of the standard normal distribution.

Although this feasible test is readily implementable, we stress that the hypothesis being tested (i.e., (2.7)) is different from the original one (i.e., (2.3)), because the former concerns the relative closeness of the forecasts to the proxy rather than to the true forecast target. To differentiate (2.3) from (2.7), we refer to them as the true hypothesis and the proxy hypothesis, respectively.

Work in the forecast evaluation literature has established conditions under which the feasible test has desirable size and power properties under the proxy hypothesis. Our goal is to provide a set of sufficient conditions under which the feasible test also attains the same rejection probabilities under the true hypothesis. In the current simple example, a sufficient condition is

\[\sqrt{P} \left(E[|DM|] - E[|DM|] \right) = o(1). \] (2.8)

Indeed, under the condition in (2.8), Eq. (2.6) implies that

\[\sqrt{P} \left(DM - E[DM] \right) \overset{d}{\rightarrow} N(0, S). \] (2.9)

And so the feasible test has the same rejection probabilities also under the true hypothesis, which formally justifies the use of the feasible test for testing the true hypothesis.

Intuitively, condition (2.8) requires that replacing the forecast target with its proxy leads to asymptotically negligible difference in the expected loss differential. Since the true and the proxy hypotheses only depend on the expected loss differentials, we refer to condition (2.8) as a "convergence-of-hypotheses" condition. This high-level condition is closely related to the convergence rate of the high-frequency proxy \(Y_{t-1} \) toward the target \(Y_{t-1} \), as the sampling interval \(\Delta \) of the high-frequency data goes to zero. Section 4 is devoted to providing primitive conditions to ensure that (2.8) holds.

There are two building blocks underlying the above example, as well as the general theory that follows. Firstly, we establish (drawing on the large literature on forecast evaluation) the properties of the feasible test under the proxy hypothesis. In the example above, this relates to Eq. (2.6). Secondly, we ensure that the proxy hypothesis is indistinguishable, up to statistical precision, from the true hypothesis (relating to equation condition (2.8)), making them effectively the same for computing rejection probabilities.

Below we substantially generalize each of the two building blocks. Firstly, we accommodate essentially all leading forecast evaluation procedures in the econometrics literature. Unlike the Diebold–Mariano test considered above, which arguably has the simplest econometric structure among such procedures, other evaluation methods can be much more involved as we describe in Section 3. For example, the asymptotic behavior of the test statistic may depend on how the forecasts are updated (e.g., using fixed, rolling, or recursive windows); their asymptotic distribution may be nonstandard; the inference may be done by bootstrap; and the long-run variance estimator may be inconsistent. Despite these complications, we show that the econometric structure of most evaluation methods can be cast under a high-level condition that generalizes (2.6) in the above example and plays the same role in our general framework.

Secondly, we consider a broad class of forecast targets and proxies, beyond the simple realized variance considered above. This generalization is relevant in practice because researchers are interested in forecasting not only the IV but also general functions of volatility (e.g., beta, correlation and idiosyncratic variance) as well as functionals of jumps (e.g., power variations of jumps). To this end, we need to characterize, in a proper sense, the proxy accuracy of various high-frequency estimators so as to verify the convergence-of-hypotheses condition under general primitive conditions. These results are collected in Section 4.

2.2. True hypotheses and proxy hypotheses in a general setting

We now describe the setting for the general framework. Let \((Y_{t})_{t \geq 1} \) be the time series to be forecast, which takes values in \(\mathbb{R}^{y} \). We stress at the outset that \(Y_{t} \) is not observable, but a proxy \(\bar{Y}_{t} \) is available. At time \(t \), the forecaster uses data \(D_{t} = \{ D_{s} : 1 \leq s \leq t \} \) to form a forecast of \(Y_{t} \), where the horizon \(\tau \leq 1 \) is fixed throughout the paper. We consider \(k \) competing sequences of forecasts of \(Y_{t} \), collected by \(F_{t+\tau} \equiv \{ F_{t+\tau,1}, ..., F_{t+\tau,k} \} \). In practice, \(F_{t+\tau} \) is often constructed from forecast models that involve some parameter \(\beta \) (e.g., \(\beta = (\omega, \gamma, \alpha, b_{0}, b_{1}, b_{2}) \)) for the example in Section 2.1. We write \(\hat{F}_{t+\tau}(\beta) \) to emphasize such dependence and refer to the function \(\hat{F}_{t+\tau}(\beta) \) as the forecast model. Let \(\hat{\beta} \) be an estimator constructed using (possibly a subset of) the dataset \(D_{t} \) and \(\beta^{*} \) be its "population" analogue (i.e., the limit of \(\hat{\beta} \) in probability). We do not require the forecast model to be correctly specified, so we treat \(\beta^{*} \) as a pseudo-true parameter (White, 1982).

Two types of forecasts have been considered in the literature: the actual forecast \(F_{t+\tau} = F_{t+\tau}(\hat{\beta}) \) and the population forecast \(F_{t+\tau}(\beta^{*}) \). While our motivating example in the previous subsection concerns the evaluation of the actual forecasts, it is also possible to use them to make inference about \(F_{t+\tau}(\beta^{*}) \), that is, an inference concerning the forecast model (see, e.g., West, 1996). Of course, if the researcher is interested in assessing the performance of the actual forecasts in \(F_{t+\tau} \), he/she can treat the actual forecast as an observable sequence (see, e.g., Diebold and Mariano, 1995; Giacomini and White, 2006), which amounts to setting \(\beta^{*} \) to be empty. With this convention, we can use the notation \(\hat{F}_{t+\tau}(\beta^{*}) \) in the study of the inference for actual forecasts without conceptual ambiguity.

Given the target \(Y_{t} \), \(\tau \geq 1 \), the performance of the competing forecasts is measured by \(f_{t+\tau,*} = f_{t+\tau}(Y_{t+\tau}, \beta^{*}) \), where \(f_{t+\tau}(y, \beta) \equiv f(y, F_{t+\tau}(\beta)) \) for some known measurable \(\mathbb{R}^{y} \)-valued function \(f(\cdot) \). The function \(f(\cdot) \) plays the role of an evaluation measure. Typically, \(f(\cdot) \) computes the loss differential between competing forecasts: for example, \(f(y, (F_{t}, F_{t})) = |y - F_{t}| - |y - F_{t}| \) corresponds to the absolute deviation loss that is used in Section 2.1. The proxy of \(f_{t+\tau,*} \) is given by \(\hat{f}_{t+\tau} \equiv \hat{f}_{t+\tau}(Y_{t+\tau}, \beta^{*}) \), which in turn can be estimated by \(\hat{f}_{t+\tau} = \hat{f}_{t+\tau}(Y_{t+\tau}, \hat{\beta}) \). We then set

\[
\hat{f}_{t+\tau} \equiv P^{-1} \sum_{i=1}^{P} \hat{f}_{t+\tau,*}, \quad \hat{f}_{t+\tau} \equiv P^{-1} \sum_{i=1}^{P} \hat{f}_{t+\tau,*}, \quad \hat{f}_{t+\tau} \equiv P^{-1} \sum_{i=1}^{P} \hat{f}_{t+\tau,*},
\]

(2.10)

where \(T \) is the size of the full sample, \(P = T - R + 1 \) is the size of the prediction sample and \(R \) is the size of the estimation sample. In the sequel, we always assume \(P \propto T \) as \(T \to \infty \) without further mention, while \(R \) may be fixed or diverge to \(\infty \), depending on the application.

We now turn to the hypotheses of interest. We consider two classical testing problems for forecast evaluation: testing for equal predictive ability (one-sided or two-sided) and testing for superior predictive ability. Formally, we consider the following hypotheses: for some user-specified constant \(\chi \in \mathbb{R}^{y} \),

\[
\begin{align*}
\text{Equal Predictive Ability (EPA)} \quad & \{ H_{1}^{\chi} : E[\hat{f}_{t+\tau}^1] = \chi, \\
& \text{vs. } H_{0} : \liminf_{T \to \infty} E[\hat{f}_{t+\tau}^1] > \chi, \\
& \text{for some } j \in \{1, \ldots, k\}, \\
& \liminf_{T \to \infty} \| E[\hat{f}_{t+\tau}^1] - \chi \| > 0,
\end{align*}
\]

(2.11)

The notations \(P_{1} \) and \(R_{1} \) may be used in place of \(P \) and \(R \). We follow the literature and suppress the dependence on \(T \). The estimation and prediction samples are often called the in-sample and (pseudo-) out-of-sample periods.
where H_{1a}^{1} (resp. H_{2a}^{1}) in (2.11) is the one-sided (resp. two-sided) alternative. In practice, the constant χ is usually set to be zero.\(^2\) Note that despite their assigned labels, these hypotheses can also be used to test for forecast encompassing and forecast rationality by setting the function $f(\cdot)$ properly; see, for example, West (2006).

Since the hypotheses in (2.11) and (2.12) rely on the true forecast target Y_{t}^\dagger, we refer to them as the true hypotheses. These hypotheses allow for data heterogeneity and are cast in the same fashion as in Giacomini and White (2006). Under (mean) stationarity, these hypotheses coincide with those considered by Diebold and Mariano (1995), West (1996) and White (2000), among others. Clearly, if Y_{t}^\dagger were observable, these existing inference methods could be applied to test the true hypotheses by forming test statistics based on $f_{t+1}(Y_{t+1}, \beta_{t})$. However, the latency of Y_{t}^\dagger renders these inference methods infeasible.

Feasible versions of these tests can be implemented with Y_{t+T} replaced by Y_{t+T}. However, as we illustrated in the previous section, the hypotheses underlying the feasible inference procedure are proxy hypotheses given by

\[
\begin{align*}
\text{Proxy Equal Predictive Ability (PEPA)} & \quad \left\{ \begin{array}{l}
H_{0} : \mathbb{E}[f_{t}^\dagger] = \chi, \\
H_{1a} : \liminf_{T \to \infty} \mathbb{E}[f_{t}^\dagger] > \chi
\end{array} \right. \\
\text{for some } j \in \{1, \ldots, \kappa_{j}\},
\end{align*}
\]

\[
\begin{align*}
\text{Proxy Superior Predictive Ability (SPA)} & \quad \left\{ \begin{array}{l}
H_{0} : \mathbb{E}[f_{t}^\dagger] \leq \chi, \\
H_{2a} : \liminf_{T \to \infty} \mathbb{E}[f_{t}^\dagger] > \chi
\end{array} \right. \\
\text{for some } j \in \{1, \ldots, \kappa_{j}\}.
\end{align*}
\]

These hypotheses are not of immediate economic relevance, because economic agents are, by assumption, interested in forecasting the true target Y_{t+T}^\dagger, rather than its proxy.

Below, we provide conditions under which the moments that define the proxy hypotheses converge “sufficiently fast” to their equivalents under the true hypotheses, and we show that tests which are valid under the former are also valid under the latter.

3. Forecast evaluation methods with proxies

In this section, we present the asymptotic properties of the feasible evaluation methods using proxies. In Section 3.1, we focus on testing proxy hypotheses and introduce high-level conditions that link many apparently distinct tests of predictive accuracy into a unified framework. Doing so greatly simplifies the presentation in Section 3.2, where we show that the feasible tests using proxies are also asymptotically valid under the true hypotheses. This result relies on a high-level “convergence-of-hypotheses” condition, which can be verified under primitive conditions using the convergence rate results that we develop in Section 4.

3.1. Conditions on evaluation methods based on proxies

In this subsection, we introduce an abstract econometric structure that we show is common to most forecast evaluation procedures with an observable forecast target, the role of which is played by the proxy Y_{t} in the setting of the current paper. These conditions speak to the proxy hypotheses PEPA and PSPA, but not the true hypotheses. We link these conditions to the true hypotheses in Section 3.2.

We consider a test statistic of the form

\[
\psi_{T} \equiv \psi(a_{T}(\bar{f}_{T} - \chi), a_{T}^{*} S_{T})
\]

for some measurable function $\psi : \mathbb{R}^{\mathbb{N}} \times S \mapsto \mathbb{R}$, where $a_{T} \to \infty$ and a_{T}^{*} are known deterministic sequences, \bar{f}_{T} is defined in (2.10) and S_{T} is a sequence of S-valued estimators that is mainly used for studentization.\(^4\) In almost all cases, $a_{T} = P^{1/2}$ and $a_{T}^{*} \equiv 1$; recall that P increases with T. An exception is given by Example 3.4. In many applications, S_{T} plays the role of an estimator of some asymptotic variance, which may or may not be consistent (see Example 3.2); S is then the space of positive definite matrices.

Let $\alpha \in (0, 1)$ be the significance level of a test. We consider a (nonrandomized) test of the form $\psi_{T} = I(\psi_{T} > \chi, 1 - \alpha)$, that is, we reject the null hypothesis when the test statistic ψ_{T} is greater than some critical value $\chi_{1 - \alpha}$. We now introduce some high-level assumptions.

Assumption A1: $(a_{T}(\bar{f}_{T} - \chi), a_{T}^{*} S_{T}) \overset{d}{\rightarrow} (\xi, S)$ for some deterministic sequences $a_{T} \to \infty$ and a_{T}^{*}, and random variables (ξ, S). Here, (a_{T}, a_{T}^{*}) may be chosen differently under the null and the alternative hypotheses, but ψ_{T} is invariant to such choice.

Assumption A1 mainly posits that f_{T} is centered at $\mathbb{E}[f_{T}^\dagger]$ with a well-behaved asymptotic distribution. Since $\mathbb{E}[f_{T}^\dagger]$ characterizes the proxy hypotheses (recall (2.13) and (2.14)), Assumption A1 concerns an evaluation problem with the observed proxy instead of the latent true target. This assumption can be verified for many existing methods that involve observable forecast targets; for example (2.8) in our motivating example is a special case of Assumption A1. In this basic case, Assumption A1 is verified by using a (feasible) central limit theorem on the observed time series of proxy loss differentials for which general primitive conditions are well known in econometrics. Below we first discuss a generalized version of it, and then introduce a battery of additional examples that involve various complications that arise in forecast evaluation problems, and describe how to verify Assumption A1 in each of them.

Example 3.1. Giacomini and White (2006) consider tests for equal predictive ability between two sequences of actual forecasts, or “forecast methods” in their terminology, assuming R fixed. In this case, $f(Y_{t}, (F_{1}, F_{2})) = l(Y_{t}, F_{2}) - l(Y_{t}, F_{1})$ for some loss function $l(\cdot, \cdot)$. Moreover, one can set $\beta^{*} = 0$ to be empty and treat each actual forecast as an observed sequence, so $f_{T} = f_{T}^{1}$. Using a CLT for heterogeneous weakly dependent data, one can take $a_{T} = P^{1/2}$ and verify $a_{T}^{*}(\bar{f}_{T} - \mathbb{E}[f_{T}^\dagger]) \overset{d}{\rightarrow} \xi$, where ξ is centered Gaussian with long-run variance denoted by Σ. We then set $S = \Sigma$ and $a_{T}^{*} \equiv 1$, and let S_{T} be a heteroskedasticity and autocorrelation consistent (HAC) estimator of S (Newey and West, 1987; Andrews, 1991). Assumption A1 then follows from Slutsky’s lemma. Diebold and Mariano (1995) intentionally treat the actual forecasts as primitives without introducing the forecast model (and hence β^{*}); their setting is also covered by Assumption A1 by the same reasoning.

\(^2\) Allowing χ to be nonzero incurs no additional cost in our derivations. This flexibility is particularly useful in the design of Monte Carlo experiment that examines the finite-sample performance of the asymptotic theory below; see Section 6 for details.

\(^4\) The space S changes across applications, but is always implicitly assumed to be a Polish space.
Example 3.2. Consider the same setting as in Example 3.1, but let S_T be an inconsistent long-run variance estimator of Σ as considered by, for example, Kiefer and Vogelsang (2005). Using their theory, we verify $(P^{1/2}(f_T - E[f_T]), S_T) \overset{d}{\rightarrow} (\xi, S)$, where S is a (nondegenerate) random matrix and the joint distribution of ξ and S is known, up to the unknown parameter Σ, but is nonstandard.

Example 3.3. West (1996) considers inference for nonnested forecast models in a setting with $R \rightarrow \infty$. West's Theorem 4.1 shows that $(P^{1/2}(f_T - E[f_T]), S_T) \overset{d}{\rightarrow} \xi$, where ξ is centered Gaussian with its variance-covariance matrix denoted here by S, which captures both the sampling variability of the forecast error and the discrepancy between $\hat{\beta}$ and β^*. We can set S_T to be the consistent estimator of S as proposed in West's comment 6 to Theorem 4.1. Assumption A1 is then verified by using Slutsky's lemma for $a_T = P^{1/2}$ and $a_T' \equiv 1$. West's theory relies on the differentiability of the function $f_{t+1}(\cdot)$ with respect to β and concerns $\hat{\beta}_T$ in the recursive scheme. Similar results allowing for a nondifferentiable $f_{t+1}(\cdot)$ function can be found in McCracken (2000). Giacomini and Rossi (2009) generalize West's theory to settings without covariance stationarity. Assumption A1 can be verified similarly in these more general settings.

Example 3.4. McCracken (2007) considers inference on nested forecast models allowing for recursive, rolling, and fixed estimation schemes, all with $R \rightarrow \infty$. The evaluation measure \hat{f}_{t+1} is the difference between the quadratic losses of the nested and the nested models. For his OOS-t test, McCracken proposes using a normalizing factor $\tilde{\Omega}_T = P^{-1/2}\sum_{j=0}^T (f_{t+j} - f_T)^2$ and considers the test statistic $\psi_T \equiv \psi(P_{\tilde{\Omega}_T}, S_{\tilde{\Omega}_T})$, where $\psi(u, s) = u/\sqrt{s}$. Implicitly in his proof of Theorem 3.1, it is shown that under the null hypothesis of equal predictive ability, $(P^{1/2}(f_T - E[f_T]), P_{\tilde{\Omega}_T}) \overset{d}{\rightarrow} (\xi, S)$, where the joint distribution of (ξ, S) is nonstandard and is specified as a function of a multivariate Brownian motion. Assumption A1 is verified with $a_T = P$, $a_T' \equiv P$ and $S_T = \tilde{\Omega}_T$. The nonstandard rate arises as a result of the degeneracy between correctly specified nesting models. Under the alternative hypothesis, it can be shown that Assumption A1 holds for $a_T = P^{1/2}$ and $a_T' \equiv 1$, as in West (1996). Clearly, the OOS-t test statistic is invariant to the change of (a_T, a_T'), that is, $\psi_T = \psi(P^{1/2}f_{T}, \tilde{\Omega}_T)$ holds. Assumption A1 can also be verified for various extensions of McCracken (2007); see, for example, Inoue and Kilian (2004), Clark and McCracken (2005) and Hansen and Timmermann (2012).

Example 3.5. White (2000) considers a setting similar to West (1996), with an emphasis on considering a large number of competing forecasts, but uses a test statistic without studentization. Assumption A1 is verified similarly as in Example 3.3, but with S_T and S being empty.

Assumption A2: $\psi(\cdot, \cdot)$ is continuous almost everywhere under the law of (ξ, S).

Assumption A2 is satisfied by all standard test statistics used in forecast evaluation: for simple pair-wise forecast comparisons, the test statistic usually takes the form of t-statistic, that is, $\psi_{t\text{-stat}}(\xi, S) = \xi/\sqrt{S}$. For joint tests it may take the form of a Wald-type statistic, $\psi_{\text{wald}}(\xi, S) = \xi S^{-1} \xi$, or a maximum over individual (possibly studentized) test statistics $\psi_{\text{max}}(\xi, S) = \max(\xi; S) = \max|\xi|$ or $\psi_{\text{max}}(\xi, S) = \max|\xi|/\sqrt{S}$. Assumption A2 imposes continuity on $\psi(\cdot, \cdot)$ in order to facilitate the use of the continuous mapping theorem for studying the asymptotics of the test statistic ψ_T. More specifically, under the null hypothesis of PEPA, which is also the null least favorable to the alternative in PSPA (White, 2000; Hansen, 2005), Assumption A1 implies that $(a_T(\hat{f}_T - \chi), a_T' S_T) \overset{d}{\rightarrow} (\xi, S)$. By the continuous mapping theorem, Assumption A2 then implies that the asymptotic distribution of ψ_T under this null is $\psi(\xi, S)$. The critical value of a test at nominal level α is given by the $1 - \alpha$ quantile of $\psi(\xi, S)$, on which we impose the following condition.

Assumption A3: The distribution function of $\psi(\xi, S)$ is continuous at its $1 - \alpha$ quantile $z_{1-\alpha}$. Moreover, the sequence $z_{T, 1-\alpha}$ of critical values satisfies $z_{T, 1-\alpha} \overset{\mathbb{P}}{\rightarrow} z_{1-\alpha}$.

The first condition in Assumption A3 is very mild. Assumption A3 is mainly concerned with the availability of the consistent estimator of the $1 - \alpha$ quantile $z_{1-\alpha}$. This assumption is slightly stronger than what we actually need. Indeed, we only need the convergence to hold under the null hypothesis, while, under the alternative, we only need the sequence $z_{T, 1-\alpha}$ to be tight.

Below, we discuss examples for which Assumption A3 can be verified.

Example 3.6. In many cases, the limit distribution of ψ_T under the null of PEPA is standard normal or chi-square with some known number of degrees of freedom. Examples include tests considered by Diebold and Mariano (1995), West (1996) and Giacomini and White (2006). In the setting of Example 3.2 or 3.4, ψ_T is a t-statistic or Wald-type statistic, with an asymptotic distribution that is nonstandard but pivotal, with quantiles tabulated in the original paper. Assumption A3 for these examples can be verified by simply taking $z_{T, 1-\alpha}$ as the known quantile of the limit distribution.

Example 3.7. White (2000) considers tests for superior predictive ability. Under the null least favorable to the alternative, White's test statistic is not asymptotically pivotal, as it depends on the unknown covariance matrix of the limit variable ξ. White suggests computing the critical value via either simulation or the stationary bootstrap (Politis and Romano, 1994), corresponding respectively to his “Monte Carlo reality check” and “bootstrap reality check” methods. In particular, under stationarity, White shows that the bootstrap critical value consistently estimates $z_{1-\alpha}$.

Hansen (2005) considers test statistics with studentization and shows the validity of a refined bootstrap critical value, under stationarity. The validity of the stationary bootstrap holds in more general settings allowing for moderate heterogeneity (Gonçalves and White, 2002; Gonçalves and de Jong, 2003). We hence conjecture that the bootstrap results of White (2000) and Hansen (2005) can be extended to a setting with moderate heterogeneity, although a formal discussion is beyond the scope of the current paper. In these cases, the simulation- or bootstrap-based critical value can be used as $z_{T, 1-\alpha}$ in order to verify Assumption A3.

Finally, we need two alternative sets of assumptions on the test function $\psi(\cdot, \cdot)$ for one-sided and two-sided tests, respectively.

Assumption B1: For any $s \in S$, we have $\{i\} \psi(u, s) \leq \psi(u', s)$ whenever $u \leq u'$, where $u, u' \in \mathbb{R}^{F_T}$; if $\psi(u, s) \rightarrow \infty$ whenever $u_j \rightarrow \infty$ for some $1 \leq j \leq \kappa$ and $\tilde{s} \rightarrow s$.

Assumption B2: For any $s \in S, \psi(u, \tilde{s}) \rightarrow \infty$ whenever $\|u\| \rightarrow \infty$ and $\tilde{s} \rightarrow s$.

Assumption B1(i) imposes monotonicity on the test statistic as a function of the evaluation measure, and is used for size control.

4 One caveat is that the OOS-t statistic in McCracken (2007) is asymptotically pivotal only under the somewhat restrictive condition that the forecast errors form a conditionally homoskedastic martingale difference sequence. In the presence of conditional heteroskedasticity or serial correlation in the forecast errors, the null distribution generally depends on a nuisance parameter (Clark and McCracken, 2005). Nevertheless, the critical values can be consistently estimated via a bootstrap (Clark and McCracken, 2005) or plug-in method (Hansen and Timmermann, 2012).

in the PSPA setting. Assumption B1(iii) concerns the consistency of the test against the one-sided alternative and is easily verified for commonly used one-sided test statistics, such as $\psi_{\text{stat}}, \psi_{\text{max}}$ and ψ_{StuMax} described in the comment following Assumption A2. Assumption B2 serves a similar purpose for two-sided tests, and is also easily verifiable.

3.2. Asymptotic properties of the feasible inference procedure

In this subsection, we show that the feasible tests described in Section 3.1 are asymptotically valid under the true hypotheses. Similar to condition (2.8) in our basic example, we need a convergence-of-hypotheses condition so as to bridge the gap between the proxy hypotheses and the true hypotheses. In the general setting, this condition is formalized as follows:

Assumption C: $a_t(E[I_{\theta}^t] - E[I_{\theta}^\theta]) \to 0$, where a_t is given by Assumption A1.

Assumption C is closely related to the approximation accuracy of the proxies. Since we are interested in proxies constructed using high-frequency data, this condition is mainly related to the convergence rate of high-frequency estimators, together with the growth rates of the time-series sample span and the high-frequency sampling frequency. In Section 4, we consider broad classes of high-frequency proxies Y_t and forecast targets Y_{t+1}, and show under primitive conditions that

$$\|Y_t - Y_{t+1}\| \leq Kd_t^\theta,$$

for all t (3.2)

for some constants $K > 0$ and $\theta \in (0, 1/2]$, where d_t denotes the sampling mesh of the high-frequency data in day t and $\|\cdot\|$ denotes the L_p-norm for $p \geq 1$. Given the convergence rate condition (3.2), Assumption C mainly requires that the sequence (d_t) of sampling meshes goes to zero sufficiently fast relative to $T \to \infty$, provided that the evaluation measure $f(\cdot)$ is smooth in the target variable. Proposition 3.1 formalizes this statement and is useful for verifying Assumption C.

Proposition 3.1. Suppose (i) condition (3.2) holds for some $K > 0$ and $\theta \in (0, 1/2]$; (ii) there exist a constant $h \in (0, 1]$ and a sequence (m_t) of random variables such that for each t, $E[I_t F_t, F_t(\beta^*)] - f(Y_t, F_t(\beta^*)) \leq m_t \|Y_t - Y_{t+1}\|$; and (iii) $\sup_t m_t / p(p-1) < \infty$. The following statements hold:

(a) $E[I_{\theta}^t] = E[I_{\theta}^{t+1}] = 0$ (for $T^{-1} \sum_{t=1}^T d_t^h$).

(b) If, in addition, $a_t \asymp T^\alpha$ for some $k > 0$ and $T^{k+1} d_t^h < \infty$, then Assumption C holds.

Comments. (i) Part (a) of Proposition 3.1 characterizes the rate at which the proxy hypothesis converges to the true hypothesis. If the sampling mesh d_t does not change across days, so that $d_t = d$ identically, then the convergence rate is simply d^{-h}. Typically, the evaluation function $f(\cdot, \cdot)$ is stochastically Lipschitz in the forecast target, so $h = 1$. In addition, as shown in Section 4, a majority of high-frequency proxies satisfy (3.2) with $\theta = 1/2$. Hence, the “typical” rate of convergence of the proxy hypotheses is $\Delta^{-1/2}$.

(ii) As shown in Section 3.1, most (but not all) evaluation methods are associated with $k = T^{1/2}$. In view of the comment above, the “typical” sufficient condition for Assumption C is $T \to \infty$.

(iii) More generally, part (b) shows that Assumption C holds if the summability condition $\sum_{t=1}^T d_t^k d_t^h < \infty$ holds. This requires that the sampling mesh goes to zero sufficiently fast. A sufficient condition is $d_t = O(T^{-k/(k+h)}/(\log T)^{1/(1-h) - \eta})$ for some $\eta > 0$ that is arbitrarily small but fixed; see Theorem 2.31 in Davidson (1994).

3.3. Example

For common one-sided test statistics, such as in the PSPA setting. Assumption B1(ii) concerns the consistency of the test statistic ψ_{stat}, ψ_{max} and ψ_{StuMax} described in the comment following Assumption A2. Assumption B2 serves a similar purpose for two-sided tests, and is also easily verifiable.

Example 3.8. Consider a forecast comparison setting with the evaluation measure being the loss differential of two competing forecasts, that is, $f(Y_t, (F_{1t}, F_{2t})) = \epsilon(Y_t - F_{1t}) - \epsilon(Y_t - F_{2t})$, where $\epsilon(\cdot)$ is a loss function. If $\epsilon(\cdot)$ is Lipschitz (e.g., Lin–Loss), then $|f(Y_t, (F_{1t}, F_{2t}))| \leq K |Y_t - Y_{t+1}|$, so that the sequence m_t in Proposition 3.1 can be taken to be a constant.

Example 3.9. Non-Lipschitz loss functions can also be accommodated. Consider the same setting as in Example 3.8 but with $\epsilon(\cdot)$ being the quadratic loss (i.e., $\epsilon(x) = x^2$). We have $f(Y_t, (F_{1t}, F_{2t})) = 2(Y_t - F_{1t})(F_{2t} - F_{1t})$. If $\sup_{2p} |\epsilon(Y_t)| + |\epsilon(F_{2t})| < \infty$ for $p = 2/(p - 1)$, then the conditions in Proposition 3.1 are verified for $m_t = 2 |F_{2t} - F_{1t}|$, by the Cauchy–Schwarz inequality.

Example 3.10. Consider correlation forecasting for a bivariate asset price process $X_t = (X_{1t}, X_{2t})$. Let $Y_t = m(t - c)ds$ be the integrated covariance matrix and Y_{t+1} be a proxy of it (see, e.g., Theorems 4.1 and 4.2). Following Barndorff-Nielsen and Shephard (2004), we use the integrated correlation as a model-free correlation measure, which is defined as $H(Y_{t+1}) = Y_{t+1,22}/\sqrt{Y_{t+1,12}Y_{t+1,11}}$. For an evaluation problem under the absolute deviation loss, the associated evaluation measure is $f(Y_t, (F_{1t}, F_{2t})) = |H(Y_t) - F_{1t}| - |H(Y_t) - F_{2t}|$. By the mean-value theorem and the Cauchy–Schwarz inequality, condition (ii) in Proposition 3.1 is verified for $m_t = 2 \|\epsilon(Y_{t+1})\|$, where Y_{t+1} is some mean-value between $Y_{t+1,22}$ and $Y_{t+1,11}$. By Jensen’s inequality and Hölder’s inequality, we see that a sufficient condition for condition (iii) of Proposition 3.1 is that the variables $(Y_{t+1,22}, 1/Y_{t+1,12}, 1/Y_{t+1,11}, 1/Y_{t+1,22})$ have bounded qth moment, $q = 3p/(p - 1)$.

Finally, under the conditions discussed in Section 3.1 and Assumption C above, Proposition 3.2 shows that the feasible test ϕ_T is valid under the true hypotheses.

Proposition 3.2. The following statements hold under Assumptions A1–A3 and C.

(a) Under the EPA setting (2.11), $E\phi_T \to \alpha$ under H_0^θ. If Assumption B1(ii) (resp. B2) holds in addition, we have $E\phi_T \to 1$ under H_0^θ (resp. H_0^θ).

(b) Under the EPA setting (2.12) and Assumption B1, we have $\lim sup_{T \to \infty} E\phi_T \leq \alpha$ under H_0^θ and $E\phi_T \to 1$ under H_0^θ.

Comments. (i) It can be shown that the test ϕ_T satisfies the same asymptotic level and power properties under the proxy hypotheses, without requiring Assumption C. Assumption C is needed for deriving asymptotic properties of ϕ_T under the true hypotheses. In particular, Proposition 3.2 shows that the level and power properties of the test are the same for the true and the proxy
hypotheses. In this sense, the proxy error is negligible for the asymptotic inference about predictive accuracy.

(ii) Similar to our negligibility result, West (1996) defines cases exhibiting "asymptotic irrelevance" as those in which valid inference about predictive accuracy can be made while ignoring the presence of parameter estimation error $\beta_t - \beta^*$. Our negligibility result is very distinct from West’s result: here, the unobservable quantity is a latent stochastic process $(Y_t^\gamma)_{t \geq 1}$ that grows in T as $T \to \infty$, while in West’s setting it is a fixed deterministic and finite-dimensional parameter β^*. Unlike West’s (1996) case, where a correction can be applied when the asymptotic irrelevance condition (w.r.t. β^*) is not satisfied, no such correction (w.r.t. Y_t^γ) is readily available in our application, nor in that of Corradi and Distasio (2006), among others.

3.3. Discussion of an alternative approach

The theoretical framework that we develop above is based on the "convergence-of-hypotheses" approach. We have shown that if the proxy only results in an asymptotically negligible difference in the expected evaluation measure (i.e., Assumption C), then the feasible tests based on the proxy has desirable rejection probabilities under the true hypotheses (see Proposition 3.2).

We stress that the convergence-of-hypotheses approach is the natural choice here because we are interested in hypothesis testing. This is thus very different from prior work that derives asymptotic negligibility results involving high-frequency proxies in estimation problems of stochastic volatility models; see, for example, Corradi and Distasio (2006), Todorov (2009), Todorov et al. (2011), Kanaya and Kristensen (2016) and Bandi and Renò (2016). The approach used in these papers can be regarded as one with "convergence-of-statistics." That is, these authors show that certain feasible proxy-based statistics (e.g., the estimator of the parameter of interest and that of the asymptotic variance) has asymptotically negligible difference from their infeasible counterparts (which are constructed using latent variables such as the IV).

It is possible to use the convergence-of-statistics approach as an alternative proof strategy to show the validity of the feasible tests. For concreteness, we use the example in Section 2.1 to illustrate how this can be done. In this example, the feasible statistics include DM_T and the long-run variance estimator S_T. To fix idea, we suppose that S_T is the Newey–West estimator given by

$$S_T = \sum_{t = -b_T}^{b_T} w (t) \Gamma_{T,t},$$

where $\Gamma_{T,t}$ is a sample autocovariance function of the loss differential series $|Y_{t+1} - F_{t+1}| - |Y_{t+1} - F_{t+1}|$ at lag l, $w (\cdot)$ is a kernel function and h_T is a bandwidth parameter. The associated infeasible statistics are DM_T^0 and S_T^0, where S_T^0 is constructed similarly as S_T but with Y_t replaced by Y_t^γ. The feasible and infeasible t-statistics are then given by, respectively,

$$\psi_T = \sqrt{DM_T} / \sqrt{S_T}, \\
\psi_T^0 = \sqrt{DM_T^0} / \sqrt{S_T^0}.$$

The convergence-of-statistics approach amounts to seeking sufficient conditions that ensure $\psi_T - \psi_T^0 = o_p (1)$, for which it suffices to have

$$\sqrt{P} (DM_T - DM_T^0) = o_p (1), \quad S_T - S_T^0 = o_p (1). \quad (3.3)$$

In contrast, the convergence-of-hypotheses condition in this example is given by (2.8), which is recalled below for the reader’s convenience

$$\sqrt{P} \left(E[DM_T] - E[DM_T^0] \right) = o (1).$$

Immediately, we observe that this condition is very similar to the first part of (3.3). In fact, both are implied by $E[DM_T] - E[DM_T^0] = o (p^{-1/2})$, which is underlying the proof of Proposition 3.1. However, unlike (3.3), the convergence-of-hypotheses approach does not require the additional negligibility result concerning the long-run variance estimators, that is, $S_T - S_T^0 = o_p (1)$.

It is of course technically possible to show (3.3) in this simple example. However, our key observation is that this effort is unnecessary, because our “end goal” is not to recover the infeasible test statistic (i.e., ψ_T^0), but to ensure that the feasible test has the desired asymptotic rejection probabilities under the true hypotheses (which we have shown in Proposition 3.2). The former clearly implies the latter, but not without cost. In this sense, the convergence-of-hypotheses approach offers a “shorter path” for proving the validity of the feasible test than the convergence-of-statistics alternative.

More generally, the additional cost of recovering the infeasible test statistic can be much higher than establishing a negligibility result for the long-run variance. Indeed, as shown in the examples in Section 3.1, the test statistics may have non-standard asymptotic distributions, the long-run variance may not be consistently estimated, and the inference may be done via bootstrap. These idiosyncrasies would require a method-by-method calculation (together with additional method-specific regularity conditions) for showing the negligible difference between the feasible and the infeasible test statistics. This would defeat our goal of establishing a concise but general framework for studying a broad range of proxy-based forecast evaluation problems. This is the main reason why we have developed the convergence-of-hypotheses approach in the current study.

4. High-frequency proxies and their accuracy

In this section, we introduce high-frequency proxies Y_t for various risk measures Y_t^γ and verify the high-level Assumption C, invoked in the previous section, under primitive conditions in a range of cases. Section 4.1 introduces the setting for the high-frequency data. Sections 4.2–4.4 consider three general classes of proxies for various volatility and jump functionals and Section 4.5 considers some additional important examples. In Section 4.6, we compare these results with existing ones in the literature and summarize our technical contribution.

4.1. The underlying asset price process

In this subsection, we describe the setting for constructing proxies using high-frequency data. Our basic assumption is that the log price process $(X_t, \gamma > 0)$ is a d-dimensional Itô semimartingale defined on a filtered probability space $(\Omega, F, \{F_t, \gamma > 0\}, P)$ with the following form

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s,$$

where b_s is a d-dimensional càdlàg adapted process, W_s is a d-dimensional standard Brownian motion, σ_t is a $d \times d$ stochastic
volatility process, $\dot{\sigma} : \Omega \times \mathbb{R}_+ \times \mathbb{R} \mapsto \mathbb{R}^d$ is a predictable function, μ is a Poisson random measure on $\mathbb{R}_+ \times \mathbb{R}$ with compensator $\nu \cdot (ds, dz)$ for some σ-finite measure λ, and $\tilde{\mu} \equiv \mu - \nu$. Itô semimartingales are widely used for modeling asset prices in financial economics and econometrics; see, for example, Duffie (2001), Singleton (2006) and Jacob and Protter (2012).

The diffusive risk and the jump risk in X_t are respectively captured by the spot covariance matrix $\Sigma_t \equiv \sigma_t \sigma_t'$ and the jump process $\Delta X_t \equiv X_t - X_{t-}$, where $X_{t-} \equiv \lim_{\tau \to 0} X_{t-\tau}$. In practice, these risks are often summarized as various functional parameters of the processes σ_t and ΔX_t, which play the role of the latent forecast target Y_t in our analysis.

To simplify the discussion, we normalize the unit of time to be one day. For each day t, the process X is sampled at deterministic discrete times $t-1 = \tau(t, 0) < \cdots < \tau(t, n_t) = t$, where n_t is the number of intraday returns. We denote the returns and sampling durations by, respectively, $\Delta_t X_t \equiv X_{\tau(t, i)} - X_{\tau(t, i-1)}$, $d_{\tau} = \tau(t, i) - \tau(t, i-1)$, and denote the sampling mesh by $d_t = \max_{1 \leq i \leq n_t} d_{\tau,i}$. The basic assumption on the sampling scheme is that d_t should be “small” in the prediction sample, as formalized below.

Assumption S: $dt \to 0$ and $d_t = O(n_t^{-1})$ as $T \to \infty$.

Assumption S posits that the sampling mesh and the sample span T respectively go to 0 and ∞ in a joint, rather than a sequential, way. Under this condition, we characterize the rate of convergence of various high-frequency proxies in Section 4. This sampling scheme is essentially the same as the “double asymptotic” setting considered by Corradi and Distasio (2006) and Todorov (2009), among others. Indeed, the latter amounts to setting d_{τ} to be a constant Δ, so that Assumption S posits $\Delta \to 0$ and $T \to \infty$ asymptotically. Allowing for time-varying sampling incurs no additional cost in our derivation, but is conceptually desirable in practice. As the trading activity has grown substantially over the past two decades, later samples have a much larger number of, and less noisy, intraday observations than those in earlier samples, so it may be more efficient to sample more frequently in later samples (Aït-Sahalia et al., 2005; Zhang et al., 2005; Bandi and Russell, 2008). This setting is also aligned naturally with the focal point of our approximation argument: we are interested in using the proxy Y_{t+1} to approximate the true target Y_{t+1} in the prediction sample (i.e., $t \in [R, \ldots, T]$) for evaluation, while being agnostic about the regression sample (i.e., $t < R$).

We need the following regularity condition for the process X_t.

Assumption HF: Suppose that the following conditions hold for constants $\kappa \in [0, 2], k > 2$ and $C > 0$.

(i) The process σ_t is a $d \times d'$ Itô semimartingale with the form

$$\dot{\sigma}_t = \sigma_0 + \int_0^t \dot{\sigma}_s dW_s + \int_0^t \sigma_s d\mathcal{L} (s, dz, \mu (d s, dz)), \quad (4.2)$$

where $\dot{\sigma}$ is a $d \times d'$ càdlàg adapted process, σ is a $d \times d \times d'$ càdlàg adapted process and μ is a $d \times d'$ predictable function on $\Omega \times \mathbb{R}_+ \times \mathbb{R}$.

(ii) For some nonnegative deterministic functions $\Gamma (\cdot)$ and $\Gamma (\cdot)$ on \mathbb{R}, we have $|\delta (\omega, s, z)| \leq \Gamma (\cdot)$ and $\|\hat{\delta} (\omega, s, z)\| \leq \Gamma (\cdot)$ for all $(\omega, s) \in \Omega \times \mathbb{R}_+ \times \mathbb{R}$ and

$$\int_\mathbb{R} \Gamma (\gamma^2) \lambda (dz) + \int_\mathbb{R} \Gamma (\gamma^2) \hat{\lambda} (dz) < \infty, \quad (4.3)$$

where $\hat{\gamma} (\cdot) = \hat{\gamma} (\cdot)$.

(iii) Let $b' = b - \int_0^t \dot{\delta} (s, \mu (d s, dz)) \hat{\lambda} (dz)$ if $r \in [0, 1)$ and $b' = b$ if $r \in [1, 2]$. We have for all $s \geq 0$,

$$\mathbb{E} \|b'_s\|^k + \mathbb{E} |\sigma_t|^k + \mathbb{E} \|\dot{\sigma}_s\|^k + \mathbb{E} \|\hat{\sigma}_s\|^k \leq C. \quad (4.4)$$

Assumption HF(i) posits that the stochastic volatility process σ_t is also an Itô semimartingale. For the results below, we allow for volatility jumps of arbitrary activity. For this reason, we do not need to distinguish small jumps from big jumps in volatility, so we group them together as a purely discontinuous local martingale in (4.2). Assumption HF(ii) imposes a type of dominance condition on the random jump size for the price and the volatility. The constant r provides an upper bound for the generalized Blumenthal–Getoor index, or “activity,” of price jumps in X. The assumption is weaker when r is larger, in which case it is more difficult to separate jumps from the diffusive component of X_t. The kth-order integrability of $\Gamma (\cdot)$ and $\Gamma (\cdot)$ places restrictions on jump tails and it facilitates the derivation of bounds via sufficiently high moments. Assumption HF(iii) imposes integrability conditions that serve the same purpose.

In the subsections below, we show (3.2) under these primitive conditions. We stress that, unlike the existing convergence rate results under the fixed-T setting (see, e.g., Jacob and Protter, 2012), we consider rate results that are valid in the large-T setting, which demands different conditions and proofs; see Section 4.6 for a detailed discussion. Throughout the rest of this section, we maintain Assumption S without further mention.

4.2. Generalized realized variations for continuous processes

We start with the basic setting with X continuous; the continuity condition will be relaxed in later subsections. That said, we allow for general volatility jumps as described in Assumption HF. We consider the following general class of estimators: for any measurable function $g : \mathbb{R}^d \mapsto \mathbb{R}$, we set

$$\bar{\mathcal{I}}_t (g) \equiv \sum_{i=1}^{n_t} g (\Delta_t X/d_t^{1/2}) d_{\tau,i}.$$

We also associate g with the following function: for any $d \times d$ positive semidefinite matrix A, we set $\rho (A; g) = \mathbb{E} [g (U)]$ for $U \sim \mathcal{N} (0, A)$, provided that the expectation is well-defined. Theorem 4.1 provides a bound for the approximation error between the proxy $Y_t = \bar{\mathcal{I}}_t (g)$ and the target variable $Y_t = \mathcal{I}_t (g) = \int_{t-1}^{t}
ho (\cdot ; g) ds$.

In many applications, the function $\rho (\cdot ; g)$ and, hence, $\mathcal{I}_t (g)$ can be expressed in closed form. For example, in the scalar case (i.e., $d = 1$), if we take $g (x) = |x|^q/m_q$ for some $a \geq 2$, where m_q is the qth absolute moment of a standard normal variable, then $\mathcal{I}_t (g) = \int_{t-1}^{t} \|x\|^q/d_q^{1/2} ds$; the integrated variance is a special case with $a = 2$. Another univariate example is take $g (x) = \cos (\sqrt{2}ux)$, $u > 0$, yielding $\mathcal{I}_t (g) = \int_{t-1}^{t} \exp (-uc) ds$. In this case, $\mathcal{I}_t (g)$ is the realized Laplace transform of volatility (Todorov and Tauchen, 2012) and $\mathcal{I}_t (g)$ is the Laplace transform of the volatility occupation density which captures the distributional information of volatility. A simple bivariate example is $g (x_1, x_2) = x_1 x_2$, which leads to $\mathcal{I}_t (g) = \int_{t-1}^{t} c_{12} ds$, that is, the integrated covariance between the two components of X_t; see Barndorff-Nielsen and Shephard (2004a).

Theorem 4.1. Let $p \in [1, 2]$ and $C > 0$ be constants. Suppose (i) X_t is continuous; (ii) $g (\cdot)$ and $\rho (\cdot ; g)$ are continuously differentiable and, for some $q \geq 0$, $\|\dot{\sigma}_0 (s, z)\| \leq C (1 + \|x\|^q)$ and $\|\dot{\delta}_0 (A; g)\| \leq C (1 + \|A\|^q)$; (iii) Assumption HF with $k \geq \max (2p/(2-p), 2)$; (iv) $\mathbb{E} [\rho (\cdot ; g)] \leq C$ for all $s \geq 0$. Then $\|\bar{\mathcal{I}}_t (g) - \mathcal{I}_t (g)\| \leq Kd_t^{1/2}$ for some constant $K > 0$ and all t.

4.3. Jump-robust proxies for integrated volatility functionals

We now turn to a general setting in which X_t may have jumps. In this subsection, we consider jump–robust proxies for risk measures.
with the form \(I_t(g) = \int_{t-1}^t g(c,s)ds \), where \(g : \mathbb{R}^{d \times d} \rightarrow \mathbb{R} \) is a twice continuously differentiable function with at most polynomial growth. This class of risk factors is quite general; integrated variance and covariance, integrated quarticity, and volatility Laplace and Fourier transforms are special cases. The estimation and inference for this class of integrated volatility functionals has been studied by Kristensen (2010) in a case without price or volatility jumps.

In order to construct a jump-robust proxy for \(I_t(g) \), we first nonparametrically recover the spot covariance process by using a spot truncated covariation estimator given by

\[
\hat{e}_{t(i)} = \frac{1}{n} \sum_{i=1}^n d_{t,i+1}^{-1} \Delta X_{t,i+1} X_{t,i+1} \left\{ \left| \Delta X_{t,i+1} \right| \leq \hat{a} d_{t,i+1} \right\},
\]

where \(\hat{a} > 0 \) and \(\sigma \in (0, 1/2) \) are constant tuning parameters, and \(k_t \) is an integer that specifies the local window for the spot covariance estimation and may vary across days. We consider the sample analogue of \(I_t(g) \) as its proxy, that is, \(\hat{I}_t(g) = \sum_{i=0}^{n_k-1} g(\hat{e}_{t(i)}, i) \).

Theorem 4.4. Let \(q \geq 2, p \in [1, 2] \) and \(C > 0 \) be constants. Suppose (i) \(g \) is twice continuously differentiable and \(\|d_t g(x)\| \leq C(1+\|x\|^{q-1}) \) for \(j \in [0, 1/2] \); (ii) Assumption HF with \(k \geq \max(4q, 4p, 1) \); (iii) Assumption HF with \(k \geq \max(4q, 4p, 1) \). Then \(\|\hat{I}_t(g) - I_t(g)\|_p \leq K_{p/q}^{1/1-q/2} \) for some constant \(K \) and all \(t \).

Comments. (i) The rate exponent \(\theta_1 \) is associated with the contribution from the continuous part of \(X_t \). The exponent \(\theta_2 \) captures the approximation error due to the elimination of jumps. The larger these indexes, the faster the proxy hypothesis converges to the true ones; recall Proposition 3.1. If we further impose \(r < 1 \) and \(\sigma \notin \{q-1/2\}, 2\) , then \(\theta_2 \geq 1/2 \geq \theta_1 \). That is, the presence of “inactive” jumps does not affect the rate of convergence, provided that the jumps are properly truncated.

(ii) Jacob and Rosenbaum (2013) characterize the limit distribution of \(I_t(g) \) under the in-fill asymptotic setting with a fixed time span, under the assumption that \(g \) is three-times continuously differentiable and \(r < 1 \). The same rate is attained by Kristensen (2010) in the “fixed-T” setting for twice continuously differentiable functions in the case without price or volatility jumps. Here, we obtain the same rate of convergence under the \(L_2 \) norm, and under the \(L_p \) norm if \(\sigma_1 \) is continuous, in a setting with \(\Delta t \rightarrow 0 \) and \(T \rightarrow \infty \). Our results also cover the case with active jumps, that is, the setting with \(r \geq 1 \).

4.4. **Functionals of price jumps**

In this subsection, we consider jump risk measures. The target variable of interest takes the form \(J_t(g) = \sum_{t-1<s\leq t} g(\Delta X_s) \) for some function \(g : \mathbb{R}^{d \times d} \rightarrow \mathbb{R} \). The proxy is the sample analogue estimator \(\tilde{J}_t(g) = \sum_{t-1<s\leq t} g(\Delta X_s) \). Basic examples include jump power variations such as the unnormalized realized skewness \(g(x) = x^3 \), kurtosis \(g(x) = x^4 \), coskewness \(g(x_1, x_2) = x_1 x_2 \) and cokurtosis \(g(x_1, x_2) = x_1^2 x_2^2 \). See Amaya et al. (2015) for applications of these risk factors.

8 Spot variance estimators can be dated back to Foster and Nelson (1996) and Comte and Renault (1998); also see Kristensen (2010) and references therein. The truncation technique was proposed by Mancini (2001) for the estimation of integrated variance. The spot truncated covariation estimator appeared in Chapter 9 of Jacod and Protter (2012), although they have been considered as auxiliary results in other contexts (see, e.g., Art-Sahalia and Jacod, 2009).

\(\mathbb{R} \) respectively. The upside (+) and the downside (−) realized semivariances are defined as \(\overline{SV}_T^+ = \sum_{i=1}^{n_t} \gamma_i \Delta X_i^2 \), which serve as proxies for \(SV_T^+ = \frac{1}{2} \int_{t-1}^{t} \gamma_i \, ds + \sum_{t-1<s\leq t} \Delta X_s^2 \).

Theorem 4.6. Let \(p \) and \(p' \) be constants such that \(1 \leq p < p' \leq 2 \). Suppose that Assumption HF holds with \(d = 1 \), \(r \in [0, 1] \) and \(k \geq \max\{pp'/(p') - p, 4\} \). Then for some \(K \) and all \(t \), \(\|SV_T^{p} - SV_T^{p'}\|_p \leq KD_1^{(p' - 1)/2} \). (b) if, in addition, \(X \) is continuous, then \(\|SV_T^{\frac{1}{2}} - SV_T^{\frac{1}{2}}\|_p \leq KD_1^{1/2} \).

Comment. Part (b) shows that, when \(X \) is continuous, the approximation error of the semivariance achieves the \(\sqrt{n} \) rate, which agrees with the rate shown in Barndorff-Nielsen et al. (2010) under the fixed-span setting. Part (a) provides a bound for the rate of convergence in the case with jumps. The constant \(p' \) arises as a technical device in the proof. One should make it small so as to achieve a better rate, subject to the regularity condition \(k \geq \max\{pp'/(p') - p, 4\} \). In particular, the rate can be made close to that in the continuous case when \(p' \), hence \(p \), too, are close to 1. Barndorff-Nielsen et al. (2010) do not consider rate results in the case with price or volatility jumps.

4.6. Discussion: comparison with existing results

The high-frequency proxies studied in this section have been proposed in the literature; see Jacob and Proctor (2012) for a comprehensive review. However, the convergence rate results in this section are distinct from existing work in two important dimensions. First, with a few exceptions, prior work in the high-frequency literature mainly concerns an asymptotic setting in which the sampling interval goes to zero but the sample span \(T \) is fixed. In contrast, we consider a high-frequency long-span (double) asymptotic setting in which \(T \to \infty \), which requires different technical proofs. Second, we are only interested in the rate of convergence, rather than proving a central limit theorem; hence, we are able to derive rate results in cases even when there is no known central limit theorem.\(^{10}\)

The high-frequency long-span setting has also been used in the literature on proxy-based semiparametric estimation of stochastic volatility models; see Corradi and Distasio (2006), Todorov (2009), Todorov et al. (2011), Kanaya and Kristensen (2016) and Bandi and Renò (2016). Corradi et al. (2009, 2011) further consider the problem of nonparametric density estimation. These papers use proxies such as the realized variance, bipower variation, truncated variation, volatility Laplace transform and spot variance estimates, and establish asymptotic negligibility results for them. Our Theorems 4.1 and 4.2 cover these volatility functionals as special cases (but our econometric interest on forecast evaluation is very different from prior work on estimation). Indeed, instead of focusing on specific volatility functionals (such as the IV), we state our results for general transformations on the volatility, so that other risk measures, such as beta, correlation, idiosyncratic variance, volatility beta and eigenvalues can be readily incorporated in our forecast evaluation setting.

5. Extensions: additional forecast evaluation methods

In this section we discuss several extensions of our baseline result (Proposition 3.2). We first consider tests for instrumented conditional moment equalities, as in Giacomini and White (2006). We then consider stepwise evaluation procedures that include the multiple testing method of Romano and Wolf (2005) and the model confidence set of Hansen et al. (2011). Our purpose is twofold: one is to facilitate the application of these methods in the context of forecasting latent risk measures, the other is to demonstrate the generalizability of the framework presented above through known, but distinct, examples. The stepwise procedures (Romano and Wolf, 2005; Hansen et al., 2011) each involve some method-specific aspects that are not used elsewhere in the paper; hence, for the sake of readability, we only briefly discuss the results here, and present the details (assumptions, algorithms and formal results) in Supplemental Appendix B to this paper.

5.1. Tests for instrumented conditional moment equalities

Many interesting forecast evaluation problems can be stated as a test for the conditional moment equality:

\[H_{0,t}^i \colon \mathbb{E}[g(Y_{t+1}^i, F_{t+1}; \beta^*) | H_t] = 0, \quad \forall t \geq 0. \]

(5.1)

where \(H_t \) is a sub-\(\sigma \)-field that represents the forecast evaluator’s information set at day \(t \), and \(g(\cdot, \cdot) : \mathcal{Y} \times \mathbb{R}^k \to \mathbb{R}^k \) is a measurable function. Specific examples are given below. Let \(h_t \) denote a \(H_t \)-measurable \(\mathbb{R}^k \)-valued data sequence that serves as an instrument. The conditional moment equality (5.1) implies the following unconditional moment equality:

\[H_{0,t,h}^i \colon \mathbb{E}[g(Y_{t+1}^i, F_{t+1}; \beta^*) \otimes h_t] = 0, \quad \forall t \geq 0. \]

(5.2)

We cast (5.2) in the setting of Section 2 by setting \(f_{t+y}(y, \beta) \equiv g(y, F_{t+y}; \beta) \otimes h_t \). Then the theory in Section 3 can be applied without further change. In particular, Proposition 3.2 suggests that the two-sided PEPA test (with \(\chi = 0 \) using the proxy has a valid asymptotic level under \(H_0^i \) and is consistent against the alternative

\[H_{1,t,h}^i \colon \lim \inf_{T \to \infty} \mathbb{E}[g(Y_{t+1}^i, F_{t+1}; \beta^*) \otimes h_t] > 0. \]

(5.3)

Examples include tests for conditional predictive accuracy and tests for conditional forecast rationality. To simplify the discussion, we only consider scalar forecasts, so \(\kappa_{Y_t} = 1 \). Let \(U(\cdot, \cdot) : \mathcal{Y} \times \mathbb{R} \to \mathbb{R} \) be a loss function, with its first and second arguments being the target and the forecast, respectively.

Example 5.1. Giacomini and White (2006) consider two-sided tests for conditional equal predictive ability of two sequences of actual forecasts \(F_{t+1} = (F_{t+1}, F_{t+1}) \). The null hypothesis of interest is (5.1) with \(g(Y_{t+1}^i, F_{t+1}; \beta^*) = U(Y_{t+1}^i, F_{t+1}; \beta^*) - U(F_{t+1}, F_{t+1}; \beta^*) \). Since Giacomini and White (2006) concern the actual forecasts, we set \(\beta^* \) to be empty and treat \(F_{t+1} = (F_{t+1}, F_{t+1}) \) as an observable sequence. Primitive conditions for Assumptions A1 and A3 can be found in Giacomini and White (2006), which involve standard regularity conditions for weak convergence and HAC estimation. The test statistic is Wald-type and readily verifies Assumptions A2 and B2. As noted by Giacomini and White (2006), their test is consistent against the alternative (5.3) and the power generally depends on the choice of \(h_t \).

Example 5.2. The population forecast \(F_{t+1} = (Y_{t+1}^\ast, F_{t+1}; \beta^*) \), which is also the actual forecast if \(\beta^* \) is empty, is rational with respect to the information set \(H_t \) if it solves \(\min_{\beta \in \mathbb{R}^k} \mathbb{E}[g(Y_{t+1}^\ast, F_{t+1}; \beta^*) | H_t] \). Suppose that \(L(y, F) \) is differentiable in \(F \) for almost every \(y \) under the conditional law of \(Y_{t+1} \), given \(H_t \), with the partial derivative denoted by \(\partial_y L(\cdot, \cdot) \). As shown in Patton and Timmermann (2010), a test for conditional rationality can be carried out by testing the first-order condition of the minimization problem. That is to test the null hypothesis (5.1) with \(g(Y_{t+1}^\ast, F_{t+1}; \beta^*) = \partial_y L(Y_{t+1}^\ast, F_{t+1}; \beta^*) \). The variable \(g(Y_{t+1}^\ast, F_{t+1}; \beta^*) \) is the generalized forecast error (Granger, 1989). In particular, when \(L(y, F) = (F - y)^2/2 \), that is, the quadratic loss, we have \(g(Y_{t+1}^\ast, F_{t+1}; \beta^*) = (F - y)^2/2 \), that is, the quadratic loss, we have \(g(Y_{t+1}^\ast, F_{t+1}; \beta^*) = (F - y)^2/2 \).
5.2. Stepwise multiple testing procedure for superior predictive accuracy

In the context of forecast evaluation, the multiple testing problem of Romano and Wolf (2005) consists of \(k \) individual testing problems of pairwise comparison for superior predictive accuracy. Let \(F_{t+\tau} \) be the benchmark forecast model and let \(f_{t+\tau}^{(*),i} = \mathbb{L}(Y_{t+\tau}^{(i)}, F_{t+\tau}^{(i)}(\beta^*)) - \mathbb{L}(Y_{t+\tau}^{(i)}, f_{t+\tau}^{(*),i}) \), \(1 \leq j \leq k \), be the relative performance of forecast \(j \) relative to the benchmark. As before, \(f_{t+\tau}^{(*),i} \) is defined using the true target variable \(Y_{t+\tau}^{(i)} \). We consider \(k \) pairs of hypotheses:

\[
M_{t} = \begin{cases} H_{i}^{(j)} : \mathbb{P}[f_{t+\tau}^{(*),i} \leq 0] \leq 0 \text{ for all } t \geq 1, \\ H_{j}^{(i)} : \liminf_{t \to \infty} \mathbb{P}[f_{t+\tau}^{(*),i}] > 0, \end{cases} \tag{5.4}
\]

These hypotheses concern the true target variable and are stated in a way that allows for data heterogeneity.

Romano and Wolf (2005) propose a stepwise multiple (StepM) testing procedure that conducts decisions for individual testing problems while asymptotically controlling the familywise error rate (FWE), that is, the probability of any null hypothesis being falsely rejected. The StepM procedure relies on the observability of the forecast target. By imposing the condition on proxy accuracy (Assumption C), we can show that the StepM procedure, when applied to the proxy, asymptotically controls the FWE for the hypotheses (5.4) that concern the latent target. The details are in Supplemental Appendix B.1.

5.3. Model confidence sets

The model confidence set (MCS) proposed by Hansen et al. (2011), henceforth HLN, can be specialized in the forecast evaluation context to construct confidence sets for superior forecasts. To fix ideas, let \(f_{t+\tau}^{(*),i} \) denote the performance (e.g., the negative loss) of forecast \(j \) with respect to the true target variable. The set of superior forecasts is defined as:

\[
M_{t}^1 = \left\{ j \in \{1, \ldots, k\} : \mathbb{P}[f_{t+\tau}^{(*),i}] \leq 0 \text{ for all } 1 \leq l \leq k \text{ and } t \geq 1 \right\}.
\]

That is, \(M_{t}^1 \) collects the forecasts that are superior to others when asymptotically controlling the FWE. Similarly, the set of asymptotically inferior forecasts is defined as:

\[
M_{t}^- \equiv \left\{ j \in \{1, \ldots, k\} : \limsup_{t \to \infty} \mathbb{P}[f_{t+\tau}^{(*),i}] > 0 \text{ for some (and hence any) } l \in \mathcal{M}_{t}^1 \right\}.
\]

We are interested in constructing a sequence \(\mathcal{M}_{t_{1},-\alpha} \) of \(1 - \alpha \) nominal level MCS’s for \(\mathcal{M}_{t}^1 \) so that:

\[
\limsup_{t \to \infty} \mathbb{P}[\mathcal{M}_{t}^- \subseteq \mathcal{M}_{t_{1},-\alpha}] \geq 1 - \alpha, \\
\mathbb{P}(\mathcal{M}_{t_{1},-\alpha} \setminus \mathcal{M}_{t}^1 = \emptyset) \to 1. \tag{5.5}
\]

That is, \(\mathcal{M}_{t_{1},-\alpha} \) has valid (pointwise) asymptotic coverage and has asymptotic power one against fixed alternatives.

HLN’s theory for the MCS is not directly applicable due to the latency of the forecast target. Following the prevailing strategy of the current paper, we propose a feasible version of HLN’s algorithm that uses the proxy in place of the associated latent target. Under Assumption C, we can show that this feasible version achieves (5.5). The details are in Supplemental Appendix B.2.

6. Monte Carlo analysis

6.1. Simulation designs

We consider three simulation designs which are intended to cover some of the most common and important applications of high-frequency data in forecasting: (A) forecasting univariate volatility in the absence of price jumps; (B) forecasting univariate volatility in the presence of price jumps; and (C) forecasting correlation. In each design, we consider the EPA hypotheses, Eq. (2.11), under the quadratic loss for two competing one-day-ahead forecasts using the method of Giacomini and White (2006) and with the function \(\psi'(\cdot, \cdot) \) corresponding to the \(t \)-statistic. In addition, the proxies used below satisfy (3.2) with \(\theta = 1/2 \) and, in view of comments (i) and (ii) of Proposition 3.1, Assumption C is implied by \(T \Delta \to 0 \), where \(\Delta \) is the sampling interval.

Each forecast is formed using a rolling scheme with window size \(R \in \{250, 500, 1000\} \) days. The prediction sample contains \(P \in \{500, 1000, 2000\} \) days. The high-frequency data are simulated using the Euler scheme at every second, and proxies are computed using sampling interval \(\Delta = 5 \) s, 1 min, 5 min, or 30 min. As on the New York stock exchange, each day is assumed to contain 6.5 trading hours. There are 1000 Monte Carlo trials in each experiment and all tests are at the 5% nominal level.

We now describe the simulation designs. Following one of the simulation designs in Andersen et al. (2005), we simulate the logarithmic price \(X_t \) and the spot variance process \(\sigma_t^2 \) according to the following stochastic differential equations in simulation designs A and B:

\[
\begin{align*}
&dX_t = 0.0314dt + \sigma_t(-0.5760dW_{1,t} + \sqrt{1 - 0.5760^2}dW_{2,t}) + d\tilde{f}_t, \\
&d\log \sigma_t^2 = -0.0136(0.8382 + \log \sigma_t^2)dt + 0.1148dW_{1,t},
\end{align*} \tag{6.1}
\]

where \(W_1 \) and \(W_2 \) are independent Brownian motions. The values of the parameters of this process are taken from Andersen et al. (2005).

In Simulation A, we consider forecasting the logarithm of the quadratic variation of a continuous price process by setting \(J \) to be identically zero. The target variable to be forecast is \(\log \int_0^T \sigma_t^2 \) and the proxy is \(\log \hat{RV}_{t+\tau}^{(i)} \), where \(\hat{RV}_{t+\tau}^{(i)} \) is defined by (4.6) for data sampled at \(\Delta = 5 \) s, 1 min, 5 min, or 30 min.

The first forecast model in Simulation A is a GARCH(1, 1) model (Bollerslev, 1986) estimated using quasi maximum likelihood on daily returns:

\[
\begin{align*}
& \sigma_t^2 = \omega + \beta_1 \hat{RV}_{t-1}^\Delta + \alpha_t^2, \\
& \hat{RV}_{t}^\Delta = \sigma_t^2 (X_t - X_{t-1} - \alpha_t^2/\omega),
\end{align*} \tag{6.2}
\]

The second model is a heterogeneous autoregressive (HAR) model (Corsi, 2009) for \(RV_{t+\tau}^{\min} \) estimated via ordinary least squares:

\[
\begin{align*}
RV_{t+\tau}^{\min} &= \beta_0 + \beta_1 RV_{t+\tau-1}^{\min} + \beta_2 \sum_{k=1}^{5} RV_{t+\tau-k}^{\min} \\
& \quad + \beta_3 \sum_{k=1}^{22} RV_{t-k}^{\min} + \epsilon_t, \tag{6.3}
\end{align*}
\]

The logarithm of the one-day-ahead forecast for \(\sigma_{t+\tau}^2 \) (resp. \(RV_{t+\tau}^{\min} \)) from the GARCH (resp. HAR) model is taken as a forecast for \(\log \hat{RV}_{t+\tau}^{(i)} \).

In Simulation B, we also set the forecast target to be \(\log \hat{RV}_{t+\tau}^{(i)} \), but consider a more complicated setting with price jumps. We
simulate \(X_t \) and \(\sigma_t^2 \) according to (6.1) and, following Tauchen and Zhou (2011), we specify \(f_i \) as a compound Poisson process with intensity \(\lambda = 0.05 \) per day and with jump size distribution \(\lambda \mathcal{N}(0.2, 1.4^2) \). These parameter values are also in the middle of the ranges considered by Huang and Tauchen (2005). The proxy for \(\mathcal{I}_t \) is the bipower variation \(B_t^{V_2} \), where \(B_t^{V_2} \) is defined by (4.7) for data sampled with observation mesh \(\Delta \).

The competing forecast sequences in Simulation B are as follows. The first forecast is based on a simple random walk model, applied to the 5-min bipower variation \(V_t \):

Model B1: \[B_t^{V_{5\min}} = B_{t-1}^{V_{5\min}} + \varepsilon_t, \quad \text{where } \mathbb{E}[\varepsilon_t | F_{t-1}] = 0. \] (6.4)

The second model is a HAR model for \(B_t^{V_{1\min}} \):

Model B2:

\[
\begin{align*}
B_{t}^{V_{1\min}} &= \beta_0 + \beta_1 B_{t-1}^{V_{1\min}} + \beta_2 \sum_{k=1}^{5} B_{t-k}^{V_{1\min}} + \epsilon_t.
\end{align*}
\] (6.5)

The logarithm of the one-day-ahead forecast for \(B_t^{V_{2\min}} \) (resp. \(B_t^{V_{1\min}} \)) from the random walk (resp. HAR) model is taken as a forecast for \(\log \mathcal{I}_{t+1} \).

Finally, we consider correlation forecasting in Simulation C. This simulation exercise is of particular interest as our empirical application in Section 7 concerns a similar forecasting problem. We adopt the bivariate stochastic volatility model used in the simulation study of Barndorff-Nielsen and Shephard (2004a). Let \(W_t = (W_{1,t}, W_{2,t}) \). The bivariate logarithmic price process \(X_t \) is given by

\[
\begin{align*}
\sigma_t dW_t = \sigma_t dW_t, \quad \sigma_t \sigma_t^* &= \left(\begin{array}{c} \sigma_{1,t}^2 \\ \sigma_{2,t}^2 \\ \rho_{12} \sigma_{1,t} \sigma_{2,t} \end{array} \right).
\end{align*}
\]

Let \(B_{j,t}, j = 1, \ldots, 4 \), be Brownian motions that are independent of each other and of \(W_t \). The process \(\sigma_{1,t}^2 \) follows a two-factor stochastic volatility model:

\[
\begin{align*}
\begin{aligned}
dv_{t} &= -0.0429(v_t - 0.1110) dt + 0.2788 \sqrt{v_t} dB_{1,t}, \\
\tilde{v}_t &= -3.7400(\tilde{v}_t - 0.3980) dt + 2.6028 \sqrt{v_t} dB_{2,t}.
\end{aligned}
\end{align*}
\] (6.6)

The process \(\sigma_{2,t}^2 \) is specified as a GARCH diffusion:

\[
\begin{align*}
d\sigma_{2,t}^2 &= -0.0350(\sigma_{2,t}^2 - 0.6360) dt + 0.2360 \sigma_{2,t}^2 dB_{3,t}.
\end{align*}
\] (6.7)

The specification for the correlation process \(\rho_t \) is a GARCH diffusion for the inverse Fisher transformation of the correlation:

\[
\begin{align*}
\begin{aligned}
\rho_t &= (e^{2\gamma_t} - 1)/(e^{2\gamma_t} + 1), \\
d\gamma_t &= -0.0300(\gamma_t - 0.6400) dt + 0.1180 \gamma_t dB_{4,t}.
\end{aligned}
\end{align*}
\] (6.8)

The parameter values used here are the same as in Barndorff-Nielsen and Shephard (2004a), although our notation differs slightly.) In this simulation design we take the target variable to be the daily integrated correlation, which is defined as

\[
\begin{align*}
IC_t &\equiv \frac{QV_{12,t}}{\sqrt{QV_{11,t}} \sqrt{QV_{22,t}}}.
\end{align*}
\] (6.9)

The proxy is given by the realized correlation computed using returns sampled at frequency \(\Delta \):

\[
\begin{align*}
RC_t^{\Delta} &\equiv \frac{RV_{12,t}^{\Delta}}{\sqrt{RV_{11,t}^{\Delta} RV_{22,t}^{\Delta}}}.
\end{align*}
\] (6.10)

The first forecasting model is a GARCH(1,1)–DCC(1,1) model (Engle, 2002) applied to daily returns \(r_t = X_t - X_{t-1} \):

\[
\begin{align*}
f_{j,t} = \sigma_t f_{j,t-1}, \\
\sigma_t^2 = \omega_0 + \beta_0 \sigma_{t-1}^2 + \alpha_j \epsilon_{t-1}^2, \\
\rho_t = \frac{Q_{12,t}}{\sqrt{Q_{11,t} Q_{22,t}}}.
\end{align*}
\] (6.11)

Model C1:

\[
\begin{align*}
Q_t &= \begin{pmatrix} Q_{11,t} & Q_{12,t} \\ Q_{21,t} & Q_{22,t} \end{pmatrix}, \\
\rho_t &= \frac{Q_{12,t}}{\sqrt{Q_{11,t} Q_{22,t}}}.
\end{align*}
\] (6.11)

The forecast for \(IC_{t+1} \) is the one-day-ahead forecast of \(\rho_{t+1} \).

The second forecasting model extends Model C1 by adding the lagged 30-min realized correlation to the evolution of \(Q_t \):

Model C2:

\[
\begin{align*}
Q_t &= \begin{pmatrix} Q_{11,t} & Q_{12,t} \\ Q_{21,t} & Q_{22,t} \end{pmatrix}, \\
\rho_t &= \frac{Q_{12,t}}{\sqrt{Q_{11,t} Q_{22,t}}} + g RC_{t-1}^{30\min}.
\end{align*}
\] (6.12)

In each simulation, we set the evaluation function \(f(\cdot) \) to be the loss of Model 1 less that of Model 2 and conduct the one-sided EPA test (see Eq. (2.11)). We note that the competing forecasts are not engineered to have the same mean-squared error (MSE). Therefore, for the purpose of examining size properties of the tests, the hypotheses to be imposed are those in (2.11) with \(\chi \) being the population MSE of Model 1 less that of Model 2. We remind the reader that the population MSE is computed using the true latent target variable, whereas the feasible tests are conducted using proxies. The goal of this simulation study is to determine whether our feasible tests have finite-sample rejection rates similar to those of the infeasible tests (i.e., tests based on true target variables), and, moreover, whether these tests have satisfactory size properties under the true null hypothesis.

6.2. Results

The results for Simulations A, B and C are presented in Tables 1–3, respectively. In the top row of each panel are the results for the infeasible tests that are implemented with the true target variable, and in the other rows are the results for feasible tests based on proxies. We consider two implementations of the Giacomini–White (GW) test: the first is based on a Newey–West estimate of the long-run variance and critical values from the standard normal distribution. The second is based on the “fixed-b” asymptotics of Kiefer and Vogelsang (2005), using the Bartlett kernel. We denote these two implementations as NW and KV, respectively. The KV method is of interest here because of the well-known size distortion problem for inference procedures based on the standard HAC estimation theory; see Müller (2014) and references therein. We set the truncation lag to be \(3T^{1/3} \) for NW and to be 0.5 for KV.

Overall, we find that the rejection rates of the feasible tests based on proxies are generally very close to the rejection rates of the infeasible tests using the true forecast target, and thus that

11 Due to the complexity from the data generating processes and volatility models we consider, computing the population MSE analytically for each forecast sequence is difficult. We instead compute the population MSE by simulation, using a Monte Carlo sample of 500,000 days. Similarly, it is difficult to construct data generating processes under which two forecast sequences have identical population MSE, which motivates our considering a nonzero \(\chi \) in the null hypothesis, Eq. (2.11), of our simulation design. Doing so enables us to use realistic data generating processes and reasonably sophisticated forecasting models which mimic those used in prior empirical work.

12 In the KV case, the one-sided critical value for the \(t \)-statistic is 2.774 at 5% level when the truncation lag is 0.5P; see Table 1 in Kiefer and Vogelsang (2005).
our negligibility result holds well in a range of realistic simulation scenarios. The standard GW–NW method has reasonable size control in Simulations A and B, but has nontrivial size distortion for Simulation C.\footnote{The reason for the large size distortion of the NW method in Simulation C appears to be the relatively high persistence in the quadratic loss differentials. In Simulations A and B, the autocorrelations of the loss differential sequence essentially vanish at about the 50th and the 30th lag, respectively, whereas in Simulation C they remain non-negligible even at the 100th lag.} This size distortion occurs even when the true target variable is used, and is not exacerbated by the use of proxies. The GW–KV method has better size control in these simulation scenarios, being somewhat conservative in Simulations A and B, and having good rejection rates in Simulation C for $P = 1000$ and $P = 2000$. Supplemental Appendix S.C presents results that confirm that these findings are robust with respect to the choice of the truncation lag in the estimation of the long-run variance, along with some additional results on the disagreement between the feasible and the infeasible tests. We caution here, though, that our simulation study is clearly not exhaustive (for example, we focus on one-step-ahead forecasts and use the quadratic loss function). It may be advisable that future researchers conduct further simulations if their application differs greatly from those considered here.

7. Application: Comparing correlation forecasts

7.1. Data and model description

We now illustrate the use of our method with an empirical application on forecasting the integrated correlation between two assets. Correlation forecasts are critical in financial decisions such as risk management and portfolio optimization.
as portfolio construction and risk management; see Engle (2008) for example. Standard forecast evaluation methods do not directly apply here due to the latency of the target variable, and methods that rely on an unbiased proxy for the target variable (e.g., Hansen and Lunde, 2006; Patton, 2011) cannot be used either, due to the absence of any such proxy.14 This is thus an ideal example to illustrate the usefulness of the method proposed in the current paper.

Our sample consists two pairs of stocks: (i) Procter and Gamble (NYSE: PG) and General Electric (NYSE: GE) and (ii) Microsoft (NYSE: MSFT) and Apple (NASDAQ: AAPL). The sample period ranges from January 2000 to December 2010, consisting of 2733 trading days, and we obtain our data from the TAQ database. As in Simulation C from the previous section, we take the proxy to be the realized correlation \(R_{13} \) formed using intraday returns with sampling interval \(\Delta \).15 We consider \(\Delta \) ranging from 1 to 130 min, which covers sampling intervals typically employed in empirical work.

We compare four forecasting models, all of which have the following specification for the conditional mean and variance: for stock \(i, j = 1 \) or 2, its daily logarithmic return \(r_{it} \) follows

\[
\begin{align*}
 r_{it} & = \mu_i + \sigma_i \varepsilon_{it}, \\
 \sigma_{it}^2 & = \omega_i + \beta_i \sigma_{it-1}^2 + \alpha_i \varepsilon_{it-1}^2 + \delta_i \varepsilon_{it-1}^2 \sigma_{it-1}^2, \\
 & + \gamma_i R_{13}^{\min} \text{.} \\
\end{align*}
\]

That is, we assume a constant conditional mean, and a GJR-GARCH (Glosten et al., 1993) volatility model augmented with lagged one-min RV.

The baseline correlation model is Engle’s (2002) DCC model as considered in Simulation C; see Eq. (6.11). The other three models are extensions of the baseline model. The first extension is the asymmetric DCC (A-DCC) model of Cappiello et al. (2006), which is designed to capture asymmetric reactions in correlation to the sign of past shocks:

\[
Q = \overline{Q}(1 - a - b - d) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top \\
+ d \eta_{t-1} \eta_{t-1}, \quad \text{where } \eta_t \equiv \varepsilon_t \odot 1_{|t| \leq 0}. \tag{7.2}
\]

The second extension (R-DCC) augments the DCC model with the 65-min realized correlation matrix. This extension is in the same spirit as Noureldin et al. (2012), and is designed to exploit high-frequency information about current correlation:

\[
Q = \overline{Q}(1 - a - b - g) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top \\
+ d \eta_{t-1} \eta_{t-1} + g R_{13}^{65 \min}. \tag{7.3}
\]

The third extension (AR-DCC) encompasses both A-DCC and R-DCC with the specification

\[
Q = \overline{Q}(1 - a - b - d - g) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top \\
+ d \eta_{t-1} \eta_{t-1} + g R_{13}^{65 \min}. \tag{7.4}
\]

We conduct pairwise comparisons, under the quadratic loss function, of forecasts based on these four models, which include both nested and nonnested cases. We use the framework of Giacomini and White (2006), so that nested and nonnested models can be treated in a unified manner. Each one-day-ahead forecast is constructed in a rolling scheme with fixed estimation sample size \(R = 1500 \) and prediction sample size \(P = 1233 \).

7.2 Results

Table 4 presents results for comparisons of each of the three generalized models and the baseline DCC model, using both the GW–NW and the GW–KV tests; this amounts to conducting one-sided \(t \)-test for (2.11) with \(\chi \) set to be zero. The results in the first and fourth columns indicate that the A-DCC model does not improve predictive accuracy relative to the baseline DCC model. The GW–KV tests reveal that the loss of the A-DCC forecast is not statistically different from that of DCC. The GW–NW tests, on the other hand, report statistically significant outperformance of the A-DCC model relative to the DCC for some proxies, however this finding should be interpreted with care, as the GW–NW test.

Table 3

Giacomini–White test rejection frequencies for Simulation C. The nominal size is 0.05, \(R \) is the length of the estimation sample, \(P \) is the length of the prediction sample, and \(\Delta \) is the sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b” asymptotics.

<table>
<thead>
<tr>
<th>Proxy</th>
<th>RC(_{13}^{\Delta})</th>
<th>GW–NW</th>
<th>GW–KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta = 5) s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta = 1) min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta = 5) min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta = 30) min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R = 250)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True (y_{t,1})</td>
<td>0.25</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>(R = 500)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True (y_{t,1})</td>
<td>0.29</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>(R = 1000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True (y_{t,1})</td>
<td>0.27</td>
<td>0.23</td>
<td>0.20</td>
</tr>
</tbody>
</table>
was found to over-reject in finite samples in Simulation C of the previous section. Interestingly, for the MSFT–AAPL pair, the more general A-DCC model actually underperforms the baseline model, though the difference is not significant. The next columns reveal that the R-DCC model outperforms the DCC model, particularly for the MSFT–AAPL pair, where the finding is highly significant and robust to the choice of proxy. Finally, we find that the AR-DCC model outperforms the DCC model, particularly for the MSFT–AAPL pair, where the finding is highly significant and robust to the choice of proxy.

Table 5 presents results from pairwise comparisons among the generalized models. Consistent with the results in Table 4, we find that the A-DCC forecast underperforms those of R-DCC and AR-DCC, and significantly so for MSFT–AAPL. The comparison between R-DCC and AR-DCC yields mixed, but statistically insignificant, findings across the two pairs of stocks. Overall, we find that augmenting the DCC model with lagged realized correlation significantly improves its predictive ability, while adding an asymmetric term to the DCC model generally does not improve, and sometimes hurts, its forecasting performance. These findings are robust to the choice of proxy.

8. Concluding remarks

This paper proposes a simple but general framework for the problem of testing predictive ability when the target variable is unobservable. We consider an array of popular forecast evaluation methods, including, for example, Diebold and Mariano (1995), West (1996), White (2000), Giacomini and White (2006) and McCracken (2007), in cases where the latent target variable is replaced by a proxy computed using high-frequency (intraday) data. We derive convergence rate results for general classes of high-frequency-based estimators of volatility and jump functionals, which cover a majority of existing estimators as special cases, such as realized (co)variance, truncated (co)variance, bipower variation, realized correlation, realized beta, jump power variation, realized semivariance, realized Laplace transform, realized skewness and kurtosis. Based on these results, we provide conditions under which the moments that define the proxy hypotheses converge sufficiently quickly to their counterparts under the true hypotheses, so that the feasible tests based on proxies are valid under not only the former, but also the latter. In so doing, we bridge the vast literature on forecast evaluation and the burgeoning literature on high-frequency time series. The theoretical framework is structured in a way to facilitate further extensions in both directions.
We verify that the asymptotic results perform well in three distinct and realistically calibrated Monte Carlo studies, though it is possible that finite-sample adjustments may be employed in specific applications for further improvement. The results in this paper may serve as a general benchmark for future work along this line. Our empirical application uses these results to reveal the out-of-sample predictive gains from augmenting the widely-used DCC model (Engle, 2002) with high-frequency estimates of correlation.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2017.10.005.

References

