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Supplemental Appendix A: Proofs of main results

In this appendix, we prove the results in the main text. Results in Sections 2 and 3 are proved in

Appendices A.1 and A.2, respectively. Technical lemmas that are used in these proofs are proved

in Appendix A.3. Below, we use K to denote a generic constant, which may change from line to

line but does not depend on the time index t.

A.1 Proofs for Section 2

Proof of Proposition 2.1. (a) UnderH0, E[ �f�T ] = �. By Assumption A1, (aT ( �fT��); a0TST )
d�!

(�; S). By the continuous mapping theorem and Assumption A2, 'T
d�! ' (�; S). By Assumption

A3, E�T ! �.

Now consider H1a, so Assumption B1(b) is in force. Under H1a, the nonrandom sequence

aT (E[ �f�j;T ]� �j) diverges to +1. Hence, by Assumption A1 and Assumption B1(b), 'T diverges
to +1 in probability. (To see this, one can use the almost sure representation of the weak

convergence in Assumption A1, and then show the pathwise divergence towards +1 by using

Assumption B1(b).) Since the law of (�; S) is tight, the law of ' (�; S) is also tight by Assumption

A2. Therefore, zT;1�� = Op (1). It is then easy to see E�T ! 1 under H1a.

The case with H2a can be proved similarly.

(b) Under H0, aT ( �fT ��) � aT ( �fT �E[ �f�T ]). Let ~�T = 1f'
�
aT ( �fT � E

�
�f�T
�
); a0TST

�
> zT;1��g.

By monotonicity (Assumption B1(a)), �T � ~�T . Following a similar argument as in part (a),

E~�T ! �. Then lim supT!1 E�T � � readily follows. The case under Ha follows a similar

argument as in part (a). Q:E:D:

Proof of Theorem 2.1. By Assumptions A1 and C1, (aT ( �fT � E[ �f yT ]); a0TST )
d�! (�; S). With

this convergence replacing that in Assumption A1, we use the same argument as in Proposition

2.1 to prove Theorem 2.1. The details are omitted. Q:E:D:

Proof of Lemma 2.1. We observe that

aT kE[ �f�T ]� E[ �f
y
T ]k � (aT =P )

TX
t=R

Ekf�t+� � f
y
t+�k

� (aT =P )

TX
t=R

E
h
mt+�




Yt+� � Y yt+�


i
� K(aT =P )

TX
t=R

kmt+�kp=(p�1)



Yt+� � Y yt+�




p

� K(aT =P )

TX
t=R

d�t+� ! 0;
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where the �rst inequality is due to the triangle inequality; the second inequality is by Assumption

C3(a); the third inequality is by Hölder�s inequality; the fourth inequality is by Assumptions C2

and C3(a); the convergence follows from Assumption C3(b). Hence, aT (E[ �f�T ] � E[ �f
y
T ]) ! 0 as

claimed. Q:E:D:

A.2 Proofs for Section 3

Throughout this section, we denote

X 0
t = X0 +

Z t

0
b0sds+

Z t

0
�sdWs; X 00

t = Xt �X 0
t; (A.1)

where the process b0s is de�ned in Assumption HF(d). Below, for any process Z, we denote the ith

return of Z in day t by �t;iZ = Z�(t;i) � Z�(t;i�1).

Proof of Proposition 3.1. Denote �t;i = ��(t;i�1)�t;iW=d
1=2
t;i : Observe that for m = 2=p and

m0 = 2=(2� p);

E
���g(�t;iX=d1=2t;i )� g(�t;i)���p
� KE

h�
1 + k�t;ikpq + k�t;iX=d

1=2
t;i k

pq
�
k�t;iX=d1=2t;i � �t;ik

p
i

� K
�
E
h�
1 + k�t;ikpqm

0
+ k�t;iX=d1=2t;i k

pqm0
�i�1=m0 �

Ek�t;iX=d1=2t;i � �t;ik
pm
�1=m

� Kdp=2t;i ;

where the �rst inequality follows the mean-value theorem, the Cauchy-Schwarz inequality and

condition (ii); the second inequality is due to Hölder�s inequality; the third inequality holds because

of condition (iii) and Ek�t;iX=d1=2t;i � �t;ik2 � Kdt;i. Hence, kg(�t;iX=d
1=2
t;i ) � g(�t;i)kp � Kd

1=2
t;i ,

which further implies 




bIt(g)�
ntX
i=1

g
�
�t;i
�
dt;i







p

� Kd1=2t : (A.2)

Below, we write � (�) in place of � ( � ; g) for the sake of notational simplicity. Let �t;i =

g(�t;i)��(c�(t;i�1)). By construction, �t;i forms a martingale di¤erence sequence. By condition (iv),
for all i, E[(�t;i)2] � E[�(c�(t;i�1); g2)] � K. Hence, Ej

Pnt
i=1 �t;idt;ij2 =

Pnt
i=1 E[(�t;i)2]d2t;i � Kdt,

yielding 





ntX
i=1

�t;idt;i







p

�






ntX
i=1

�t;idt;i







2

� Kd1=2t : (A.3)
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In view of (A.2) and (A.3), it remains to show





Z t

t�1
�(cs)ds�

ntX
i=1

�
�
c�(t;i�1)

�
dt;i







p

� Kd1=2t : (A.4)

First note thatZ t

t�1
� (cs) ds�

ntX
i=1

�
�
c�(t;i�1)

�
dt;i =

ntX
i=1

Z �(t;i)

�(t;i�1)

�
� (cs)� �

�
c�(t;i�1)

��
ds:

We then observe that, for all s 2 [�(t; i� 1); �(t; i)] and with m = 2=p and m0 = 2= (2� p),

� (cs)� � �c�(t;i�1)�

p
� K

�
E
h�
1 + kcskpq=2 + kc�(t;i�1)kpq=2

�
kcs � c�(t;i�1)kp

i�1=p
� K

�
E
h�
1 + k�skpqm

0
+ k��(t;i�1)kpqm

0
�i�1=pm0 �

Ekcs � c�(t;i�1)kpm
�1=pm

� Kd1=2t;i ;

where the �rst inequality follows from the mean-value theorem, the Cauchy-Schwarz inequality

and condition (ii); the second inequality is due to Hölder�s inequality; the third inequality follows

from condition (iii) and the standard estimate Ekcs� c�(t;i�1)k2 � Kdt;i. From here (A.4) follows.

This �nishes the proof. Q:E:D:

Proof of Proposition 3.2. Step 1. For x; y 2 Rd, we set(
k (y; x) = g (y + x)� g (x)� g (y)
h (y; x) = g (y + x)� g (x)� g (y)� @g (y)| x1fkxk�1g:

(A.5)

By Taylor�s theorem and condition (ii),8>>>>><>>>>>:
jk (y; x)j � K

2X
j=1

�
kykqj�1 kxk+ kxkqj�1 kyk

�
;

jh (y; x)j � K
2X
j=1

�
kykqj�2 kxk2 + kxkqj�1 kyk+ kykqj�1 kxk 1fkxk>1g

�
:

(A.6)

We consider a process (Zs)s2[t�1;t] that is given by Zs = Xs�X�(t;i�1) when s 2 [�(t; i�1); �(t; i)).
We de�ne Z 0s similarly but with X

0 replacing X; recall that X 0 is de�ned in (A.1). We then set
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Z 00s = Zs � Z 0s. Under Assumption HF, we have(
v 2 [0; k]) E[sups2[�(t;i�1);�(t;i)] kZ 0skv] � Kd

v=2
t;i ;

v 2 [2; k]) E[sups2[�(t;i�1);�(t;i)] kZ 00s kvjF�(t;i�1)] � Kdt;i;
(A.7)

where the �rst line follows from a classical estimate for continuous Itô semimartingales, and the

second line is derived by using Lemmas 2.1.5 and 2.1.7 in Jacod and Protter (2012).

By Itô�s formula, we decompose

bJt (g)� Jt (g)
=

Z t

t�1
@g (Zs�)

| bsds+
1

2

dX
j;l=1

Z t

t�1
@2j;lg (Zs�) cjl;sds

+

Z t

t�1
ds

Z
R
h (Zs�; � (s; z))� (dz) +

Z t

t�1
@g (Zs�)

| �sdWs

+

Z t

t�1

Z
R
k (Zs�; � (s; z)) ~� (ds; dz) :

(A.8)

Below, we study each component in the above decomposition separately.

Step 2. In this step, we show



Z t

t�1
@g (Zs�)

| bsds






p

� Kd1=2t : (A.9)

Let m = 2=p and m0 = 2= (2� p). Observe that, for all s 2 [�(t; i� 1); �(t; i)],

k@g (Zs�)| bskp � K

0@E
������
2X
j=1

kZs�kqj�1 kbsk

������
p1A1=p

� K

2X
j=1

�
E kZs�k(qj�1)pm

�1=pm �
E kbskpm

0
�1=pm0

� K
2X
j=1

�
E kZs�k2(qj�1)

�1=2 �
E kbskpm

0
�1=pm0

� Kd
1=2
t;i ;

where the �rst inequality is due to condition (ii) and the Cauchy-Schwarz inequality; the second

inequality is due to Hölder�s inequality; the third inequality follows from our choice of m; the last

inequality follows from (A.7). The claim (A.9) then readily follows.
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Step 3. In this step, we show





12
dX

j;l=1

Z t

t�1
@2j;lg (Zs�) cjl;sds








p

� Kd1=2t : (A.10)

By a component-wise argument, we can assume that d = 1 without loss of generality and suppress

the component subscripts in our notation below. Let m0 = 2=(2� p). We observe

k@2g (Zs�) cskp � K
2X
j=1

�
E
h
jZs�jp(qj�2)jcsjp

i�1=p
� K

2X
j=1

(E jZs�j2(qj�2))1=2
�
E jcsjpm

0
�1=pm0

� Kd
1=2
t;i ;

where the �rst inequality follows from condition (ii); the second inequality is due to Hölder�s

inequality and our choice of m0; the last inequality follows from (A.7). The claim (A.10) is then

obvious.

Step 4. In this step, we show



Z t

t�1
ds

Z
R
h (Zs�; � (s; z))� (dz)






p

� Kd1=2t : (A.11)

By (A.6) and k� (s; z) k � � (z),

jh (Zs�; � (s; z))j � K
2X
j=1

�
kZs�kqj�2 � (z)2 + � (z)qj�1 kZs�k+ kZs�kqj�1 � (z) 1f�(z)>1g

�
:

Hence, by condition (iii),

����Z
R
h (Zs�; � (s; z))� (dz)

���� � K 2X
j=1

�
kZs�kqj�2 + kZs�k+ kZs�kqj�1

�
:
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By (A.7), for any s 2 [�(t; i� 1); �(t; i)],



Z
R
h (Zs�; � (s; z))� (dz)






2

� K
2X
j=1

��
E kZs�k2(qj�2)

�1=2
+
�
E kZs�k2

�1=2
+
�
E kZs�k2(qj�1)

�1=2�
� Kd1=2t;i :

The claim (A.11) then readily follows.

Step 5. In this step, we show



Z t

t�1
@g (Zs�)

| �sdWs






2

� Kd1=2t : (A.12)

By the Burkholder�Davis�Gundy inequality,

E
����Z t

t�1
@g (Zs�)

| �sdWs

����2
� KE

�Z t

t�1
k@g (Zs)k2 k�sk2 ds

�
� KE

�Z t

t�1



@g �Z 0s�

2 k�sk2 ds�
+KE

"
ntX
i=1

Z �(t;i)

�(t;i�1)



@g (Zs)� @g �Z 0s�

2 

��(t;i�1)

2 ds
#

+KE

"
ntX
i=1

Z �(t;i)

�(t;i�1)



@g (Zs)� @g �Z 0s�

2 

�s � ��(t;i�1)

2 ds
#
:

(A.13)

We �rst consider the �rst term on the majorant side of (A.13). By Hölder�s inequality, we have,

for s 2 [�(t; i� 1); �(t; i)],

E
h

@g �Z 0s�

2 k�sk2i � K 2X

j=1

�
E


Z 0s

2qj�(qj�1)=qj �E k�sk2qj�1=qj � Kdq1�1t ;

where the second inequality is due to (A.7). This estimate implies

E
�Z t

t�1



@g �Z 0s�

2 k�sk2 ds� � Kdt: (A.14)
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Now turn to the second term on the majorant side of (A.13). Observe that

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



@g (Zs)� @g �Z 0s�

2 

��(t;i�1)

2 ds
#

� K
2X
j=1

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)

�

Z 0s

2(qj�2) + 

Z 00s 

2(qj�2)�

Z 00s 

2 

��(t;i�1)

2 ds
#

� K
2X
j=1

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



Z 0s

2(qj�2) 

Z 00s 

2 

��(t;i�1)

2 ds
#

+K

2X
j=1

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



Z 00s 

2(qj�1) 

��(t;i�1)

2 ds
#
:

(A.15)

By repeated conditioning and (A.7), we have

2X
j=1

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



Z 00s 

2(qj�1) 

��(t;i�1)

2 ds
#
� Kdt: (A.16)

Moreover, by Hölder�s inequality and (A.7), for s 2 [�(t; i� 1); �(t; i)],

E
h

Z 0s

2(qj�2) 

Z 00s 

2 

��(t;i�1)

2i
�
�
E


Z 0s

2qj�(qj�2)=qj �E

Z 00s 

2qj�1=qj �E

��(t;i�1)

2qj�1=qj

� Kdqj�2t;i d
1=qj
t;i :

Therefore,
2X
j=1

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



Z 0s

2(qj�2) 

Z 00s 

2 

��(t;i�1)

2 ds
#
� Kdt: (A.17)

Combining (A.15)�(A.17), we have

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



@g (Zs)� @g �Z 0s�

2 

��(t;i�1)

2 ds
#
� Kdt: (A.18)

We now consider the third term on the majorant side of (A.13). By the mean-value theorem
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and condition (ii),

E
h

@g (Zs)� @g �Z 0s�

2 

�s � ��(t;i�1)

2i
� K

2X
j=1

E
h

Z 0s

2(qj�2) 

Z 00s 

2 

�s � ��(t;i�1)

2i

+K
2X
j=1

E
h

Z 00s 

2(qj�1) 

�s � ��(t;i�1)

2i :

(A.19)

By Hölder�s inequality and (A.7),

E
h

Z 00s 

2(qj�1) 

�s � ��(t;i�1)

2i
�
�
E


Z 00s 

2qj�(qj�1)=qj �E

�s � ��(t;i�1)

2qj�1=qj

� Kd(qj�1)=qjt;i d
1=qj
t;i � Kdt;i:

(A.20)

Similarly,

E
h

Z 0s

2(qj�2) 

Z 00s 

2 

�s � ��(t;i�1)

2i
�
�
E


Z 0s

2qj�(qj�2)=qj �E

Z 00s 

2qj�1=qj �E

�s � ��(t;i�1)

2qj�1=qj

� Kdqj�2t;i d
1=qj
t;i d

1=qj
t;i � Kdt:

(A.21)

Combining (A.19)�(A.21), we have

E
h

@g (Zs)� @g �Z 0s�

2 

�s � ��(t;i�1)

2i � Kdt:

Hence,

E

"
ntX
i=1

Z �(t;i)

�(t;i�1)



@g (Zs�)� @g �Z 0s�

2 

�s � ��(t;i�1)

2 ds
#
� Kdt: (A.22)

We have shown that each term on the majorant side of (A.13) is bounded by Kdt; see (A.14),

(A.18) and (A.22). The estimate (A.12) is now obvious.

Step 6. We now show 



Z t

t�1

Z
R
k (Zs�; � (s; z)) ~� (ds; dz)






2

� Kd1=2t : (A.23)
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By Lemma 2.1.5 in Jacod and Protter (2012), (A.6) and Assumption HF,

E
����Z t

t�1

Z
R
k (Zs�; � (s; z)) ~� (ds; dz)

����2
� K

2X
j=1

E
�Z t

t�1
ds

Z
R

�
kZs�kqj�1 k� (s; z)k+ kZs�k k� (s; z)kqj�1

�2
� (dz)

�

� K
2X
j=1

E
�Z t

t�1
ds

Z
R

�
kZsk2(qj�1) � (z)2 + kZsk2 � (z)2(qj�1)

�
� (dz)

�
� Kdt;

which implies (A.23).

Step 7. Combining the estimates in Steps 2�6 with the decomposition (A.8), we derive k bJt(g)�
Jt (g) kp � Kd1=2t as wanted. Q:E:D:

We now turn to the proof of Proposition 3.3. Recalling (A.1), we set

ĉ0�(t;i) =
1

kt

ktX
j=1

d�1t;i+j(�t;i+jX
0)(�t;i+jX

0)|:

The proof of Proposition 3.3 relies on the following technical lemmas that are proved in Appendix

A.3.

Lemma A1: Let w � 2 and v � 1. Suppose (i) Assumption HF holds for some k � 2wv and
(ii) kt � d�1=2t as t!1. Then




E h


ĉ0�(t;i) � c�(t;i)


w���F�(t;i)i



v
�
(
Kd

1=2
t in general,

Kd
w=4
t if �t is continuous.

Lemma A2: Let w � 1 and v � 1. Suppose (i) Assumption HF holds for some k � 2wv and
(ii) kt � d�1=2t as t!1. Then





E h ĉ0�(t;i) � c�(t;i)���F�(t;i)i


w




v
� Kdw=2t :

Lemma A3: Let w � 1. Suppose Assumption HF hold with k � 2w. We have Ekĉ�(t;i) �
ĉ0�(t;i)k

w � Kd
��(k;w;$;r)
t , where

�� (k;w;$; r)

= min fk=2�$ (k � 2w)� w;
1�$r + w(2$ � 1); w($ � 1=2) + (1�$r)minfw=r; (k � w)=kgg :
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Proof of Proposition 3.3. Step 1. Throughout the proof, we denote E[ � jF�(t;i)] by Ei[ � ].
Consider the decomposition: bI?t (g)� I?t (g) =P4

j=1Rj , where

R1 =

nt�ktX
i=0

�
g(ĉ0�(t;i))� g(c�(t;i))� @g(c�(t;i))

|(ĉ0�(t;i) � c�(t;i))
�
dt;i

R2 =

nt�ktX
i=0

@g(c�(t;i))
|(ĉ0�(t;i) � c�(t;i))dt;i

R3 =

nt�ktX
i=0

g(c�(t;i))dt;i �
Z t

t�1
g(cs)ds

R4 =

nt�ktX
i=0

(g(ĉ�(t;i))� g(ĉ0�(t;i)))dt;i;

note that in the �rst two lines of the above display, we have treated ĉ0�(t;i) and c�(t;i) as their

vectorized versions so as to simplify notations. In this step, we show that

kR1kp �
(
Kd

1=(2p)
t in general,

Kd
1=2
t if �t is continuous.

(A.24)

By Taylor�s expansion and condition (i),

jR1j � K

nt�ktX
i=0

dt;i(1 + kc�(t;i)kq�2 + kĉ0�(t;i)k
q�2)kĉ0�(t;i) � c�(t;i)k

2

� K

nt�ktX
i=0

dt;i

�
(1 + kc�(t;i)kq�2)kĉ0�(t;i) � c�(t;i)k

2 + kĉ0�(t;i) � c�(t;i)k
q
�
:

(A.25)

Let v = q=2 and v0 = q=(q � 2). Notice that

E
h
(1 + kc�(t;i)kq�2)pkĉ0�(t;i) � c�(t;i)k

2p
i

� K


(1 + kc�(t;i)kq�2)p

v0 


Eikĉ0�(t;i) � c�(t;i)k2p


v

�
(
Kd

1=2
t in general,

Kd
p=2
t when �t is continuous,

where the �rst inequality follows from repeated conditioning and Hölder�s inequality, and the

second inequality is derived by using Lemma A1 with w = 2p. Applying Lemma A1 again (with

w = qp and v = 1), we derive Ekĉ0�(t;i) � c�(t;i)k
qp � Kd1=2t and, when �t is continuous, the bound

can be improved as Kdqp=4t � Kdp=2t . The claim (A.24) then follows from (A.25).
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Step 2. In this step, we show that

kR2kp � Kd
1=2
t : (A.26)

Denote �i = @g(c�(t;i))
|(ĉ0�(t;i)�c�(t;i)), �

0
i = Ei[�i] and � 00i = �i�� 0i. Notice that � 0i = @g(c�(t;i))|Ei[ĉ0�(t;i)�

c�(t;i)]. By condition (i) and the Cauchy�Schwarz inequality, j� 0ij � K(1 + kc�(t;i)kq�1)kEi[ĉ0�(t;i) �
c�(t;i)]k. Observe that, with v = q and v0 = q=(q � 1),

E
��� 0i��p � K




1 + kc�(t;i)kp(q�1)



v0




kEi[ĉ0�(t;i) � c�(t;i)]kp



v

� Kd
p=2
t ;

where the �rst inequality is by Hölder�s inequality, and the second inequality is derived by using

Lemma A2 (with w = p). Hence, 





nt�ktX
i=0

� 0idt;i







p

� Kd1=2t : (A.27)

Next consider � 00i . First notice that

E
��� 00i ��2 � KE j�ij2

� KE
h
(1 + kc�(t;i)kq�1)2kĉ0�(t;i) � c�(t;i)k

2
i

� K



1 + kc�(t;i)k2(q�1)




v0




Eikĉ0�(t;i) � c�(t;i)k2



v

� Kd
1=2
t ;

where the �rst inequality is obvious; the second inequality follows from condition (i) and the

Cauchy�Schwarz inequality; the third inequality is by repeated conditioning and Hölder�s inequal-

ity; the fourth inequality is derived by applying Lemma A1 (with w = 2). Further notice that � 00i
and � 00l are uncorrelated whenever ji � lj � kt. By the Cauchy�Schwarz inequality and the above
estimate, as well as condition (ii),

E

�����
nt�ktX
i=0

� 00i dt;i

�����
2

� Kkt
nt�ktX
i=0

Ej� 00i j2d2t;i � Kdt:

Therefore, k
Pnt�kt
i=0 � 00i dt;ik2 � Kd

1=2
t . This estimate, together with (A.27), implies (A.26).

Step 3. Consider R3 in this step. Let v = 2=p and v0 = 2=(2 � p). Notice that for s 2
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[�(t; i� 1); �(t; i)],

Ejg(cs)� g(c�(t;i�1))jp � KE
h
(1 +



c�(t;i)

p(q�1) + kcskp(q�1))

cs � c�(t;i�1)

pi
� K




1 + 

c�(t;i)

p(q�1) + kcskp(q�1)



v0





cs � c�(t;i�1)

p

v
� Kd

p=2
t;i :

Hence,


g(cs)� g(c�(t;i�1))

p � Kd1=2t;i . This estimate further implies

kR3kp � Kd1=2t : (A.28)

Step 4. By a mean-value expansion and condition (i),

jg(ĉ�(t;i))� g(ĉ0�(t;i))j � K(1 + kĉ
0
�(t;i)k

q�1)kĉ�(t;i) � ĉ0�(t;i)k+Kkĉ�(t;i) � ĉ
0
�(t;i)k

q:

By Lemma A3,

Ekĉ�(t;i) � ĉ0�(t;i)k
q � Kd

��(k;q;$;r)
t .

Let m0 = k=2(q � 1) and m = k=(k � 2(q � 1)). By Hölder�s inequality and Lemma A3,

E
h
(1 + kĉ0�(t;i)k

q�1)kĉ�(t;i) � ĉ0�(t;i)k
i

�



(1 + kĉ0�(t;i)kq�1)




m0




ĉ�(t;i) � ĉ0�(t;i)



m

� Kd
��(k;m;$;r)=m
t :

Therefore, we have

EjR4j � Kdminf
��(k;q;$;r);��(k;m;$;r)=mg

t : (A.29)

We now simplify the bound in (A.29). Note that the condition k � (1�$r)=(1=2�$) implies,
for any w � 1, (

k=2�$ (k � 2w)� w � 1�$r + w(2$ � 1);
w($ � 1=2) + (1�$r) (k � w)=k � 1�$r + w(2$ � 1);

(A.30)

and, recalling m = k=(k � 2(q � 1)),

(1�$r +m(2$ � 1)) =m � 1�$r + q(2$ � 1): (A.31)

Using (A.30) and q � 2 � r, we simplify �� (k; q;$; r) = 1 � $r + q(2$ � 1); similarly,
�� (k;m;$; r) = minf1�$r +m(2$ � 1);m (1=r � 1=2)g. We then use (A.31) to simplify (A.29)
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as

EjR4j � Kdminf1�$r+q(2$�1);1=r�1=2gt : (A.32)

Combining (A.24), (A.26), (A.28) and (A.32), we readily derive the assertion of the proposition.

Q:E:D:

Proof of Proposition 3.4. De�ne Zs as in the proof of Proposition 3.2. By applying Itô�s

formula to (�t;iX)(�t;iX)| for each i, we have the following decomposition:

RVt �QVt = 2

Z t

t�1
Zs�b

|
sds

+2

Z t

t�1
ds

Z
R
Zs�� (s; z)

| 1fk�(s;z)k>1g� (dz)

+2

Z t

t�1
Zs� (�sdWs)

| + 2

Z t

t�1

Z
R
Zs�� (s; z)

| ~� (ds; dz) :

(A.33)

Recognizing the similarity between (A.33) and (A.8), we can use a similar (but simpler) argument

as in the proof of Proposition 3.2 to show that the Lp norm of each component on the right-hand

side of (A.33) is bounded by Kd1=2t . The assertion of the proposition readily follows. Q:E:D:

Proof of Proposition 3.5. Step 1. Recall (A.1). We introduce some notation8>><>>:
BV 0t =

nt
nt�1

�
2

Pnt�1
i=1 jd�1=2t;i �t;iX

0jjd�1=2t;i+1�t;i+1X
0jdt;i;

�1;i = jd
�1=2
t;i �t;iXj jd�1=2t;i+1�t;i+1X

00j; �2;i = jd
�1=2
t;i �t;iX

00j jd�1=2t;i+1�t;i+1X
0j;

R1 =
Pnt�1
i=1 �1;idt;i; R2 =

Pnt�1
i=1 �2;idt;i:

It is easy to see that jBVt�BV 0t j � K(R1+R2). By Lemmas 2.1.5 and 2.1.7 in Jacod and Protter
(2012), E[jd�1=2t;i+1�t;i+1X

00jpjF�(t;i)] � Kd
(p=r)^1�p=2
t : Moreover, note that

Ejd�1=2t;i �t;iXjp � KEjd�1=2t;i �t;iX
0jp +KEjd�1=2t;i �t;iX

00jp � K:

By repeated conditioning, we deduce k�i;1kp � Kd
(1=r)^(1=p)�1=2
t , which further yields kR1kp �

Kd
(1=r)^(1=p)�1=2
t .

Now turn to R2. Let m = p0=p and m0 = p0= (p0 � p). Since pm0 � k by assumption, we use

Hölder�s inequality and an argument similar to that above to derive



�2;i

p � �Ejd�1=2t;i �t;iX
00jpm

�1=pm �
Ejd�1=2t;i+1�t;i+1X

0jpm0
�1=pm0

� Kd(1=r)^(1=p
0)�1=2

t :
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Hence, kR2kp � Kd(1=r)^(1=p
0)�1=2

t . Combining these estimates, we deduce



BVt �BV 0t 

p � K kR1kp +K kR2kp � Kd(1=r)^(1=p0)�1=2t : (A.34)

Step 2. In this step, we show 



BV 0t � Z t

t�1
csds






p

� Kd1=2t : (A.35)

For j = 0 or 1, we denote �t;i;j = ��(t;i�1)d
�1=2
t;i+j�t;i+jW and �t;i;j = d

�1=2
t;i+j�t;i+jX

0��t;i;j . Observe
that �����BV 0t � nt

nt � 1
�

2

nt�1X
i=1

j�t;i;0jj�t;i;1jdt;i

�����
� K

nt�1X
i=1

�
jd�1=2t;i �t;iX

0j j�t;i;1j+ j�t;i;0j j�t;i;1j
�
dt;i:

Let m = 2=p and m0 = 2= (2� p). By Hölder�s inequality and Assumption HF,




jd�1=2t;i �t;iX
0j j�t;i;1j





p
�

�
Ejd�1=2t;i �t;iX

0jpm0
�1=pm0

(Ej�t;i;1jpm)1=pm

� Kd
1=2
t ;

where the second inequality follows from Ejd�1=2t;i �t;iX
0jq � K for each q 2 [0; k] and Ej�t;i;j j2 �

Kdt;i+j . Similarly, kj�t;i;0j j�t;i;1jkp � Kd
1=2
t . Combining these estimates, we have




BV 0t � nt

nt � 1
�

2

nt�1X
i=1

j�t;i;0jj�t;i;1jdt;i







p

� Kd1=2t : (A.36)

Let �i = (�=2)j�t;i;0jj�t;i;1j, �0i = E
�
�ijF�(t;i�1)

�
and �00i = �i � �0i. Under Assumption HF with

k � 4, Ej�00i j2 � Ej�ij2 � K:Moreover, notice that �00i is F�(t;i+1)-measurable and E[�00i jF�(t;i�1)] = 0.
Therefore, �00i is uncorrelated with �

00
l whenever ji� lj � 2. By the Cauchy-Schwarz inequality,

E

�����
nt�1X
i=1

�00i dt;i

�����
2

� Kdt
nt�1X
i=1

Ej�00i j2dt;i � Kdt: (A.37)

By direct calculation, �0i = c�(t;i�1). By a standard estimate, for any s 2 [�(t; i � 1); �(t; i)], we
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have kcs � c�(t;i�1)kp � Kd
1=2
t and, hence,






nt�1X
i=1

�0idt;i �
Z t

t�1
csds







p

� Kd1=2t : (A.38)

Combining (A.36)�(A.38), we derive (A.35).

Step 3. We now prove the assertions of the proposition. We prove part (a) by combining (A.34)

and (A.35). In part (b), BV 0t coincides with BVt because X is continuous. The assertion is simply

(A.35). Q:E:D:

Proof of Proposition 3.6. We only consider dSV +t for brevity. To simplify notation, let

g (x) = fxg2+, x 2 R. We also set k(y; x) = g(y + x) � g(y) � g(x). It is elementary to see that
jk(y; x)j � Kjxjjyj for x; y 2 R. We consider the decomposition

ntX
i=1

g (�t;iX) =

ntX
i=1

g
�
�t;iX

0�+ ntX
i=1

g
�
�t;iX

00�+ ntX
i=1

k(�t;iX
0;�t;iX

00): (A.39)

By Proposition 3.1 with It(g) �
R t
t�1 �(cs; g)ds = (1=2)

R t
t�1 csds, we deduce






ntX
i=1

g
�
�t;iX

0�� It(g)






p

� Kd1=2t : (A.40)

Hence, when X is continuous (so X = X 0), the assertion of part (b) readily follows.

Now consider the second term on the right-hand side of (A.39). We de�ne a process (Zs)s2[t�1;t]
as follows: Zs = X 00

s � X 00
�(t;i�1) when s 2 [�(t; i � 1); �(t; i)). Since r � 1 by assumption, Z is a

�nite-variational process. Observe that

E

�����
ntX
i=1

g(�t;iX
00)�

Z t

t�1

Z
R
g (� (s; z))� (ds; dz)

�����
p

= E
����Z t

t�1

Z
R
k (Zs�; � (s; z))� (ds; dz)

����p
� KE

����Z t

t�1

Z
R
jZs�j�(z)� (ds; dz)

����p
� KE

�Z t

t�1
ds

Z
R
jZs�jp � (z)p � (dz)

�
+KE

��Z t

t�1
ds

Z
R
jZs�j� (z)� (dz)

�p�
� Kdt;

where the equality is by Itô�s formula (Theorem II.31, Protter (2004)); the �rst inequality is due

to jk(y; z)j � Kjxjjyj; the second and the third inequalities are derived by repeatedly using Lemma
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2.1.7 of Jacod and Protter (2012). It then readily follows that





ntX
i=1

g
�
�t;iX

00�� Z t

t�1

Z
R
g (� (s; z))� (ds; dz)







p

� Kd1=pt � Kd1=2t : (A.41)

Next, we consider the third term on the right-hand side of (A.39). Let m0 = p0=p and m =

p0=(p0 � p). We have



k(�t;iX 0;�t;iX
00)



p
� K

�
E
���t;iX 0��pm�1=pm �E ���t;iX 00��pm0�1=pm0

� Kd1=2+1=p
0

t ;

where the �rst inequality is due to jk(y; x)j � Kjxjjyj and Hölder�s inequality; the second inequality
holds because Assumption HF holds for k � pp0=(p0 � p) and E j�t;iX 00jp

0
� Kdt. Hence,






ntX
i=1

k(�t;iX
0;�t;iX

00)







p

� Kd1=p
0�1=2

t : (A.42)

The assertion of part (a) readily follows from (A.39)�(A.42). Q:E:D:

A.3 Proofs of technical lemmas

Proof of Lemma A1. Step 1. We outline the proof in this step. For notational simplicity, we

denote Ei� = E[�jF�(t;i)] for some generic random variable �; in particular, Eij�jw is understood as
Ei[j�jw]. Let �i = (�t;iX 0)(�t;iX 0)|� c�(t;i�1)dt;i. We decompose ĉ0�(t;i)� c�(t;i) = �1;i+ �2;i, where

�1;i = k
�1
t

ktX
j=1

(c�(t;i+j�1) � c�(t;i)); �2;i = k
�1
t

ktX
j=1

d�1t;i+j�i+j : (A.43)

In Steps 2 and 3 below, we show



Ei 

�1;i

w

v �
(
Kd

1=2
t in general,

Kd
w=4
t if �t is continuous,

(A.44)



Ei 

�2;i

w

v �
(
Kdt +Kk

�w=2
t in general,

Kd
w=2
t +Kk

�w=2
t if �t is continuous.

(A.45)

The assertion of the lemma then readily follows from condition (ii) and w � 2.
Step 2. We show (A.44) in this step. Let �u = �(t; i + kt � 1) � �(t; i). Since �u = O(d1=2t ), we
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can assume �u � 1 without loss. By Itô�s formula, ct can be represented as

ct = c0 +

Z t

0

�bsds+

Z t

0
��sdWs (A.46)

+

Z t

0

Z
R
2�s�~� (s; z)

| ~� (ds; dz) +

Z t

0

Z
R
~� (s; z) ~� (s; z)| � (ds; dz) ;

for some processes �bs and ��s that, under condition (i), satisfy

Ek�bskwv + Ek��skwv � K: (A.47)

By (A.46),

k�1;ikw � sup
u2[0;�u]

kc�(t;i)+u � c�(t;i)kw � K
4X
l=1

�l;i, (A.48)

where 8>>>>><>>>>>:
�1;i = supu2[0;�u]



 R �(t;i)+u
�(t;i)

�bsds


w;

�2;i = supu2[0;�u]


 R �(t;i)+u

�(t;i) ��sdWs



w;
�3;i = supu2[0;�u]



 R �(t;i)+u
�(t;i)

R
R 2�s�

~� (s; z)| ~� (ds; dz)


w;

�4;i = supu2[0;�u]


 R �(t;i)+u

�(t;i)

R
R
~� (s; z) ~� (s; z)| � (ds; dz)



w:
By (A.47), it is easy to see that kEi[�1;i]kv � k�1;ikv � K�uw. Moreover, kEi[�2;i]kv � k�2;ikv �

K�uw=2, where the second inequality is due to the Burkholder�David�Gundy inequality. By Lemma

2.1.5 in Jacod and Protter (2012) and condition (i),

Ei[�3;i] � KEi

"Z �(t;i)+�u

�(t;i)

Z
R
k�s�kwk~� (s; z) kw� (dz) ds

#

+KEi

24 Z �(t;i)+�u

�(t;i)

Z
R
k�s�k2k~� (s; z) k2� (dz) ds

!w=235
� KEi

"Z �(t;i)+�u

�(t;i)
k�s�kwds

#
+KEi

24 Z �(t;i)+�u

�(t;i)
k�s�k2ds

!w=235 :
Hence, kEi[�3;i]kv � K�u. By Lemma 2.1.7 in Jacod and Protter (2012) and condition (i),

Ei[�4;i] � KEi

"Z �(t;i)+�u

�(t;i)

Z
R
k~� (s; z) k2w� (dz) ds

#

+KEi

" Z �(t;i)+�u

�(t;i)

Z
R
k~� (s; z) k2� (dz) ds

!w#
� K�u:
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Hence, kEi[�4;i]kv � K�u. Combining these estimates with (A.48), we derive (A.44) in the general
case as desired. Furthermore, when �t is continuous, we have �3;i = �4;i = 0 in (A.48). The

assertion of (A.44) in the continuous case readily follows.

Step 3. In this step, we show (A.45). Let �0i = Ei�1[�i] and �00i = �i � �0i. We can then
decompose �2;i = �

0
2;i + �

00
2;i, where �

0
2;i = k

�1
t

Pkt
j=1 d

�1
t;i+j�

0
i+j and �

00
2;i = k

�1
t

Pkt
j=1 d

�1
t;i+j�

00
i+j . By

Itô�s formula, it is easy to see that

k�0i+jk � K






Ei+j�1
"Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds

#





+






Ei+j�1
"Z �(t;i+j)

�(t;i+j�1)
(cs � c�(t;i+j�1))ds

#




 : (A.49)

By Jensen�s inequality and repeated conditioning,

Eik�0i+jkw � KEi







Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds







w

+KEi







Z �(t;i+j)

�(t;i+j�1)
(cs � c�(t;i+j�1))ds







w

: (A.50)

Since conditional expectations are contraction maps, we further have



Eik�0i+jkw

v � K













Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds







w






v

+K






Ei






Z �(t;i+j)

�(t;i+j�1)
(cs � c�(t;i+j�1))ds







w






v

: (A.51)

By standard estimates, the �rst term on the majorant side of (A.51) is bounded by Kd3w=2t;i+j .

Following a similar argument as in Step 2, we can bound the second term on the majorant side of

(A.51) by Kdw+1t;i+j in general and by Kd
3w=2
t;i+j if �t is continuous. Hence, kEik�0i+jkwkv � Kd

w+1
t;i+j ,

and the bound can be improved to be Kd3w=2t;i+j when �t is continuous. By Hölder�s inequality and

the triangle inequality,



Ei 

� 02;i

w

v �
(
Kdt in general,

Kd
w=2
t when �t is continuous.

(A.52)

Now consider � 002;i. Notice that (�
00
i+j)1�j�kt forms a martingale di¤erence sequence. Using the

19



Burkholder�Davis�Gundy inequality and then Hölder�s inequality, we derive

Ei


� 002;i

w � Kk�w=2�1t

ktX
j=1

d�wt;i+jEik�
00
i+jkw:

Moreover, notice that kEik�00i+jkwkv � kk�00i+jkwkv � Kdwt;i+j . Hence, kEik� 002;ikwkv � Kk
�w=2
t .

Combining this estimate with (A.52), we have (A.45). This �nishes the proof. Q:E:D:

Proof of Lemma A2. Step 1. Recall the notation in Step 1 of the proof of Lemma A1. In this

step, we show that 



Ei�1;i

w

v � Kdw=2t : (A.53)

By (A.46), for each j � 1,

Ei
�
c�(t;i+j�1) � c�(t;i)

�
= Ei

"Z �(t;i+j�1)

�(t;i)

�bsds+

Z �(t;i+j�1)

�(t;i)

Z
R
~� (s; z) ~� (s; z)| � (dz) ds

#
: (A.54)

By conditions (i,ii) and Hölder�s inequality, we have





Ei �c�(t;i+j�1) � c�(t;i)�

w

v � K (ktdt)w � Kdw=2t : (A.55)

We then use Hölder�s inequality and Minkowski�s inequality to derive (A.53).

Step 2. Similar to (A.49), we have

kEi [�i+j ]k � K






Ei
"Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds

#





+






Ei
"Z �(t;i+j)

�(t;i+j�1)
(cs � c�(t;i+j�1))ds

#




 :
Notice that 











Ei
"Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds

#





w






v

� K












Z �(t;i+j)

�(t;i+j�1)
(X 0

s �X 0
�(t;i+j�1))(b

0
s)
|ds







w






v

� Kd3w=2t;i+j ;

(A.56)

where the �rst inequality is due to Jensen�s inequality; the second inequality follows from standard

estimates for continuous Itô semimartingales (use Hölder�s inequality and the Burkholder�Davis�

Gundy inequality). Similar to (A.55), we have




Ei �cs � c�(t;i+j�1)�

w

v � Kdwt;i+j for s 2
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[�(t; i+ j � 1); �(t; i+ j)]. We then use Hölder�s inequality to derive










Ei

"Z �(t;i+j)

�(t;i+j�1)
(cs � c�(t;i+j�1))ds

#





w






v

� Kd2wt;i+j : (A.57)

Combining (A.56) and (A.57), we deduce kkEi [�i+j ] kwkv � Kd
3w=2
t;i+j . Hence, by Hölder�s

inequality,




Ei[�2;i]

w

v � Kdw=2t . This estimate, together with (A.53), implies the assertion of

the lemma. Q:E:D:

Proof of Lemma A3. We denote ut;i+j = ��d$t;i+j . We shall use the following elementary

inequality: for all x; y 2 Rd and 0 < u < 1:

k (x+ y) (x+ y)| 1fkx+yk�ug � xx|k
� K(kxk21fkxk>u=2g + kyk2 ^ u2 + kxk(kyk ^ u)):

(A.58)

Applying (A.58) with x = �t;i+jX
0, y = �t;i+jX

00 and u = ut;i+j , we have kĉ�(t;i) � ĉ0�(t;i)k �
K(�1 + �2 + �3), where

�1 = k�1t

ktX
j=1

d�1t;i+jk�t;i+jX
0k21fk�t;i+jX0k>ut;i+j=2g

�2 = k�1t

ktX
j=1

d�1t;i+j(k�t;i+jX
00k ^ ut;i+j)2

�3 = k�1t

ktX
j=1

d�1t;i+jk�t;i+jX
0k(k�t;i+jX 00k ^ ut;i+j):

Since k � 2w, by Markov�s inequality and Ek�t;i+jX 0kk � Kdk=2t;i+j , we have

E
���k�t;i+jX 0k21fk�t;i+jX0k>ut;i+j=2g

���w
� KEk�t;i+jX

0kk

uk�2wt;i+j

� Kdk=2�$(k�2w)t;i+j :

Hence, Ek�1kw � Kd
k=2�$(k�2w)�w
t .

By Corollary 2.1.9(a,c) in Jacod and Protter (2012), we have for any v > 0,

E

" 
k�t;i+jX 00k
d$t;i+j

^ 1
!v#

� Kd(1�$r)minfv=r;1gt;i+j : (A.59)
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Applying (A.59) with v = 2w, we have E[(kd�$t;i+j�t;i+jX 00k^1)2w] � Kd1�$rt;i+j . Therefore, Ek�2kw �
Kd

1�$r+w(2$�1)
t .

We now turn to �3. Let m
0 = k=w and m = k= (k � w). Observe that

E
���k�t;i+jX 0k(ku�1t;i+j�t;i+jX

00k ^ 1)
���w

� K
n
Ek�t;i+jX 0kwm0

o1=m0 n
E
h
(ku�1t;i+j�t;i+jX

00k ^ 1)wm
io1=m

� Kdw=2+(1�$r)minfw=r;(k�w)=kgt;i+j ;

where the �rst inequality is by Hölder�s inequality; the second inequality is obtained by applying

(A.59) with v = wm. Therefore, E k�3kw � Kd
w($�1=2)+(1�$r)minfw=r;(k�w)=kg
t :

Combining the above bounds for Ek�jkw, j = 1; 2 or 3, we readily derive the assertion of the
lemma. Q:E:D:
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Supplemental Appendix B: Extensions: details on stepwise pro-

cedures

B.1 The StepM procedure

In this subsection, we provide details for implementing the StepM procedure of Romano and Wolf

(2005) using proxies, so as to complete the discussion in Section 4.2 of the main text. Recall that

we are interested in testing �k pairs of hypotheses

Multiple SPA

(
Hj;0 : E[f yj;t+� ] � 0 for all t � 1;
Hj;a : lim infT!1 E[ �f yj;T ] > 0;

1 � j � �k: (B.1)

We denote the test statistic for the jth testing problem as 'j;T � 'j(aT �fT ; a0TST ), where 'j(�; �)
is a measurable function. The StepM procedure involves critical values ĉ1;T � ĉ2;T � � � � , where
ĉl;T is the critical value in step l. Given these notations, we can describe Romano and Wolf�s

StepM algorithm as follows.1

Algorithm 1 (StepM): Step 1. Set l = 1 and A0;T = f1; : : : ; �kg.
Step 2. Compute the step-l critical value ĉl;T . Reject the null hypothesis Hj;0 if 'j;T > ĉl;T .

Step 3. If no (further) null hypotheses are rejected or all hypotheses have been rejected,

stop; otherwise, let Al;T be the index set for hypotheses that have yet been rejected, that is,
Al;T = fj : 1 � j � �k, 'j;T � ĉl;T g, set l = l + 1 and then return to Step 2.

To specify the critical value ĉl;T , we make the following assumption. Below, � 2 (0; 1) denotes
the signi�cance level and (�; S) is de�ned in Assumption A1 in the main text.

Assumption S: For any nonempty nonrandom A � f1; : : : ; �kg, the distribution function of
maxj2A 'j(�; S) is continuous at its 1�� quantile c(A; 1��). Moreover, there exists a sequence of
estimators ĉT (A; 1� �) such that ĉT (A; 1� �)

P�! c(A; 1��) and ĉT (A; 1� �) � ĉT (A0; 1� �)
whenever A � A0.

The step-l critical value is then given by ĉl;T = ĉT (Al�1;T ; 1��). Notice that ĉ1;T � ĉ2;T � � � �
in �nite samples by construction. The bootstrap critical values proposed by Romano and Wolf

(2005) verify Assumption S.

The following proposition describes the asymptotic properties of the StepM procedure. We

remind the reader that Assumptions A1, A2, B1 and C1 are given in the main text.

1The presentation here uni�es Algorithms 3.1 (non-studentized StepM) and Algorithm 4.1 (studentized StepM)
in Romano and Wolf (2005).
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Proposition B1: Suppose that Assumptions C1 and S hold and that Assumptions A1, A2

and B1 hold for each 'j(�), 1 � j � �k. Then (a) the null hypothesisHj;0 is rejected with probability
tending to one under the alternative hypothesis Hj;a; (b) Algorithm 1 asymptotically controls the

familywise error rate (FWE) at level �.

Proof. By Assumptions A1 and C1,

(aT ( �fT � E[ �f yT ]); a
0
TST )

d�! (�; S): (B.2)

The proof can then be adapted from that in Romano and Wolf (2005). The details are given below.

First consider part (a), so Hj;a is true for some j. By (B.2) and Assumption B1(b), 'j;T
diverges to +1 in probability. By Assumption S, it is easy to see that ĉl;T forms a tight sequence

for �xed l. Hence, 'j;T > ĉl;T with probability tending to one. From here the assertion in part (a)

follows.

Now turn to part (b). Let I0 = fj : 1 � j � �k, H0;j is trueg and FWET = P(Hj;0 is rejected
for some j 2 I0). If I0 is empty, FWET = 0 and there is nothing to prove. We can thus suppose
that I0 is nonempty without loss of generality. By part (a), all false hypotheses are rejected in the

�rst step with probability approaching one. Since ĉT (I0; 1� �) � ĉ1;T ,

lim sup
T!1

FWET = lim sup
T!1

P
�
'j(aT

�fT ; a
0
TST ) > ĉT (I0; 1� �) for some j 2 I0

�
� lim sup

T!1
P
�
'j(aT (

�fT � E[ �f yT ]); a
0
TST ) > ĉT (I0; 1� �) for some j 2 I0

�
= lim sup

T!1
P
�
max
j2I0

'j(aT (
�fT � E[ �f yT ]); a

0
TST ) > ĉT (I0; 1� �)

�
= P

�
max
j2I0

'j(�; S) > c(I0; 1� �)
�

= �:

This is the assertion of part (b). Q:E:D:

B.2 Model con�dence sets

In this subsection, we provide details for constructing the model con�dence set (MCS) using

proxies. In so doing, we complete the discussion in Section 4.3 of the main text. Below, we denote

the paper of Hansen, Lunde, and Nason (2011) by HLN.

Recall that the set of superior forecasts is de�ned as

My �
n
j 2

�
1; : : : ; �k

	
: E[f yj;t+� ] � E[f

y
l;t+� ] for all 1 � l � �k and t � 1

o
;
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and the set of asymptotically inferior forecasts is given by

My �
n
j 2

�
1; : : : ; �k

	
: lim inf

T!1

�
E[ �f yl;T ]� E[ �f

y
j;T ]
�
> 0

for some (and hence any) l 2My
o
:

The formulation above slightly generalizes HLN�s setting by allowing data heterogeneity. Under

(mean) stationarity,My
coincides with HLN�s de�nition of MCS; in particular, it is nonempty and

complemental toMy. In the heterogeneous setting,My
may be empty and the union ofMy

and

My may be inexhaustive. We avoid these scenarios by imposing

Assumption M1: My
is nonempty andMy [My = f1; : : : ; �kg:

We now describe the MCS algorithm. We �rst need to specify some test statistics. Below, for

any subsetM� f1; : : : ; �kg, we denote its cardinality by jMj. We consider the test statistic

'M;T = 'M(aT �fT ; a
0
TST ); where 'M (�; �) = max

j2M
'j;M (�; �) ;

and, as in HLN (see Section 3.1.2 there), 'j;M(�; �) may take either of the following two forms: for
u 2 R�k and 1 � j � �k,

'j;M(u; s) =

8>><>>:
max
i2M

ui � ujp
sij

; where sij = sji 2 (0;1) for all 1 � i � �k;

jMj�1
P
i2M ui � ujp
sj

; where sj 2 (0;1) :

We also need to specify critical values, for which we need Assumption M2 below. We remind the

reader that the variables (�; S) are de�ned in Assumption A1 in the main text.

Assumption M2: For any nonempty nonrandomM� f1; : : : ; �kg, the distribution of 'M(�; S)
is continuous at its 1 � � quantile c(M; 1 � �). Moreover, there exists a sequence of estimators
ĉT (M; 1� �) such that ĉT (M; 1� �) P�! c(M; 1� �).

With ĉT (M; 1��) given in Assumption M2, we de�ne a test �M;T = 1f'M;T > ĉT (M; 1��)g
and an elimination rule eM = argmaxj2M 'j;M;T , where 'j;M;T � 'j;M(aT �fT ; a0TST ). The MCS
algorithm, when applied with the proxy as the evaluation benchmark, is given as follows.

Algorithm 2 (MCS): Step 1: SetM = f1; : : : ; �kg.
Step 2: if jMj = 1 or �M;T = 0, then stop and set cMT;1�� =M; otherwise continue.

Step 3. SetM =Mn eM and return to Step 2.
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The following proposition summarizes the asymptotic property of cMT;1��. In particular, it

shows that the MCS algorithm is asymptotically valid even though it is applied to the proxy instead

of the true target.

Proposition B2: Suppose Assumptions A1, C1, M1 and M2. Then (4.5) in the main text

holds, that is,

lim inf
T!1

�
My � cMT;1��

�
� 1� �; P

� cMT;1�� \My = ;
�
! 1:

Proof. Under Assumptions A1 and C1, we have (aT ( �fT � E[ �f yT ]); a0TST )
d�! (�; S). For each

M � f1; : : : ; �kg, we consider the null hypothesis H0;M :M �My
and the alternative hypothesis

Ha;M :M\My 6= ;. Under H0;M, 'M;T = 'M(aT �fT ; a
0
TST ) = 'M(aT (

�fT � E[ �f yT ]); a0TST ), and,
thus, by the continuous mapping theorem, 'M;T

d�! 'M(�; S). Therefore, by Assumption M2,

E�M;T ! � underH0;M. On the other hand, underHa;M, 'M;T diverges in probability to +1 and

thus E�M;T ! 1. Moreover, under Ha;M, P(eM 2 My
) ! 0; this is because sup

j2My\M 'j;M;T

is either tight or diverges in probability to �1, but 'M;T diverges to +1 in probability. The

assertions then follow the same argument as in the proof of Theorem 1 in HLN. Q:E:D:
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Supplemental Appendix C: Additional simulation results

C.1 Sensitivity to the choice of truncation lag in long-run variance estimation

In Tables 1�6, we present results on the �nite-sample rejection frequencies of the Giacomini and

White (2006) tests (GW) using the approaches of Newey and West (1987) and Kiefer and Vogelsang

(2005) to conduct inference; we denote these two approaches by NW and KV. In the main text,

we use a truncation lag of 3P 1=3 for NW and 0:5P for KV when computing the long-run variance.

Below we further consider using P 1=3 and 5 (for all P ) for NW, and 0:25P and P for KV.

Overall, we con�rm that feasible tests using proxies have �nite-sample rejection rates similar

to those of the infeasible test using the true target. That is, the negligibility result is likely in

force. More speci�cally, we �nd that the GW�KV approach has good size control across various

settings provided that the sample size is su¢ ciently large (P = 1000 or 2000), although the test is

somewhat conservative in Simulation A. In contrast, the performance of the GW�NW test is less

robust. The GW�NW test has good size control in Simulation B, but has substantial size distortion

in Simulations A and C. These results con�rm insights from the literature on inconsistent long-run

variance estimation; see Kiefer and Vogelsang (2005), Müller (2012) and references therein.

C.2 Disagreement between feasible and infeasible test indicators

In Tables 7�9, we report the disagreement on test decisions (i.e., rejection or non-rejection) between

infeasible tests based on the true target variable and feasible tests based on proxies. In view of the

size distortion of the GW�NW test, we only consider the GW�KV test for brevity. The setting

is the same as that in Section 5 of the main text. In the columns headed �Weak� we report

the �nite-sample rejection frequency of the feasible test minus that for the infeasible test. Under

the theory developed in Section 2, which ensures �weak negligibility,� the di¤erences should be

zero asymptotically.2 In the columns headed �Strong�we report the proportion of times in which

the feasible and infeasible rejection indicators disagreed. If �strong negligibility,� in the sense of

comment (ii) to Theorem 2.1, holds, then this proportion should be zero asymptotically.

As noted in the main text, the weak negligibility result holds well across all three simulation

designs, with the di¤erences reported in these columns generally being close to zero, except for

the lowest frequency proxy. The results for strong negligibility are more mixed: in Simulations A

and C we see evidence in support of strong negligibility, while for Simulation B we observe a large

proportion of disagreement. Indeed, as the nominal level of each test is 0.05, the probability of

disagreement should be bounded by 0.1 asymptotically, so disagreement proportions between 0.03

to 0.07 should be considered sizable.
2Positive (negative) values indicate that the feasible test based on a proxy rejects more (less) often than the

corresponding infeasible test based on the true target variable.
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GW�NW (m = 5) GW�NW (m = P 1=3)
Proxy RV �t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.10 0.22 0.18 0.09 0.18 0.11
� = 5 sec 0.10 0.23 0.18 0.09 0.18 0.11
� = 1 min 0.09 0.23 0.18 0.09 0.17 0.11
� = 5 min 0.10 0.23 0.18 0.09 0.18 0.12
� = 30 min 0.10 0.27 0.22 0.08 0.22 0.16

R = 1000

True Y yt+1 0.28 0.22 0.19 0.24 0.15 0.12
� = 5 sec 0.29 0.22 0.18 0.24 0.15 0.12
� = 1 min 0.29 0.22 0.19 0.24 0.15 0.12
� = 5 min 0.30 0.21 0.19 0.26 0.17 0.12
� = 30 min 0.35 0.26 0.25 0.31 0.20 0.18

Table 1: Giacomini�White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW�KV (m = 0:25P ) GW�KV (m = P )
Proxy RV �t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.00 0.02 0.01 0.01 0.03 0.02
� = 5 sec 0.00 0.02 0.01 0.01 0.02 0.02
� = 1 min 0.01 0.02 0.01 0.01 0.02 0.02
� = 5 min 0.00 0.03 0.02 0.01 0.03 0.02
� = 30 min 0.00 0.04 0.03 0.01 0.04 0.05

R = 1000

True Y yt+1 0.06 0.01 0.02 0.06 0.00 0.02
� = 5 sec 0.06 0.01 0.02 0.06 0.00 0.02
� = 1 min 0.06 0.01 0.02 0.06 0.00 0.02
� = 5 min 0.06 0.01 0.01 0.08 0.01 0.02
� = 30 min 0.10 0.02 0.03 0.08 0.01 0.03

Table 2: Giacomini�White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW�NW (m = 5) GW�NW (m = P 1=3)
Proxy BV �t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.05 0.06 0.06 0.05 0.06 0.06
� = 5 sec 0.06 0.06 0.06 0.06 0.06 0.06
� = 1 min 0.07 0.08 0.07 0.07 0.08 0.07
� = 5 min 0.03 0.05 0.04 0.03 0.05 0.04
� = 30 min 0.03 0.02 0.00 0.03 0.02 0.00

R = 1000

True Y yt+1 0.03 0.04 0.04 0.03 0.04 0.04
� = 5 sec 0.03 0.04 0.04 0.03 0.04 0.04
� = 1 min 0.04 0.05 0.06 0.04 0.05 0.06
� = 5 min 0.03 0.04 0.05 0.03 0.04 0.05
� = 30 min 0.02 0.01 0.01 0.02 0.01 0.01

Table 3: Giacomini�White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW�KV (m = 0:25P ) GW�KV (m = P )
Proxy BV �t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.03 0.03 0.05 0.03 0.04 0.04
� = 5 sec 0.05 0.04 0.05 0.03 0.05 0.05
� = 1 min 0.04 0.06 0.05 0.05 0.05 0.07
� = 5 min 0.02 0.05 0.04 0.03 0.06 0.05
� = 30 min 0.03 0.03 0.01 0.03 0.03 0.01

R = 1000

True Y yt+1 0.02 0.04 0.05 0.02 0.03 0.05
� = 5 sec 0.02 0.04 0.05 0.04 0.04 0.05
� = 1 min 0.03 0.04 0.07 0.03 0.04 0.06
� = 5 min 0.03 0.03 0.05 0.04 0.02 0.05
� = 30 min 0.02 0.01 0.02 0.02 0.02 0.01

Table 4: Giacomini�White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW�NW (m = 5) GW�NW (m = P 1=3)
Proxy RC�t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.28 0.26 0.24 0.27 0.21 0.22
� = 5 sec 0.28 0.26 0.24 0.27 0.21 0.22
� = 1 min 0.28 0.25 0.25 0.27 0.21 0.22
� = 5 min 0.28 0.25 0.25 0.27 0.22 0.22
� = 30 min 0.27 0.24 0.24 0.26 0.21 0.22

R = 1000

True Y yt+1 0.31 0.27 0.28 0.28 0.25 0.24
� = 5 sec 0.31 0.27 0.28 0.28 0.25 0.25
� = 1 min 0.30 0.27 0.28 0.28 0.25 0.24
� = 5 min 0.31 0.28 0.28 0.28 0.26 0.24
� = 30 min 0.31 0.28 0.28 0.30 0.26 0.24

Table 5: Giacomini�White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW�KV (m = 0:25P ) GW�KV (m = P )
Proxy RC�t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y yt+1 0.10 0.05 0.02 0.06 0.05 0.02
� = 5 sec 0.10 0.05 0.02 0.06 0.05 0.02
� = 1 min 0.10 0.05 0.02 0.06 0.05 0.02
� = 5 min 0.09 0.05 0.03 0.07 0.05 0.02
� = 30 min 0.09 0.04 0.03 0.07 0.05 0.02

R = 1000

True Y yt+1 0.16 0.10 0.06 0.14 0.08 0.06
� = 5 sec 0.16 0.10 0.06 0.14 0.08 0.06
� = 1 min 0.16 0.09 0.06 0.15 0.07 0.06
� = 5 min 0.16 0.09 0.06 0.14 0.07 0.06
� = 30 min 0.15 0.08 0.06 0.14 0.07 0.05

Table 6: Giacomini�White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, � is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

30



P = 500 P = 1000 P = 2000
Proxy RV �t+1 Weak Strong Weak Strong Weak Strong

R = 500
� = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
� = 1 min 0.00 0.00 0.00 0.01 0.00 0.01
� = 5 min 0.00 0.00 0.00 0.01 0.01 0.01
� = 30 min 0.00 0.02 0.00 0.03 0.02 0.02

R = 1000
� = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
� = 1 min 0.01 0.02 0.00 0.00 0.00 0.00
� = 5 min 0.00 0.03 0.00 0.00 0.00 0.00
� = 30 min 0.04 0.05 0.01 0.01 0.01 0.02

Table 7: Giacomini�White test rejection indicator disagreement frequencies for Simulation A. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, � is the sampling frequency for the proxy. Columns headed �Weak�report the di¤erence
between the feasible and infeasible tests�rejection frequencies. Columns headed �Strong�report
the proportion of simulations in which the feasible and infeasible tests disagree.

P = 500 P = 1000 P = 2000
Proxy BV �t+1 Weak Strong Weak Strong Weak Strong

R = 500
� = 5 sec 0.01 0.01 0.00 0.00 0.01 0.01
� = 1 min 0.01 0.04 0.01 0.01 0.01 0.03
� = 5 min -0.01 0.04 0.01 0.05 0.00 0.06
� = 30 min -0.01 0.06 -0.02 0.06 -0.03 0.05

R = 1000
� = 5 sec 0.01 0.01 0.01 0.01 0.00 0.00
� = 1 min 0.00 0.04 0.00 0.04 0.02 0.03
� = 5 min 0.01 0.04 0.00 0.04 0.01 0.07
� = 30 min -0.01 0.04 -0.02 0.04 -0.04 0.05

Table 8: Giacomini�White test rejection indicator disagreement frequencies for Simulation B. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, � is the sampling frequency for the proxy. Columns headed �Weak�report the di¤erence
between the feasible and infeasible tests�rejection frequencies. Columns headed �Strong�report
the proportion of simulations in which the feasible and infeasible tests disagree.
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P = 500 P = 1000 P = 2000
Proxy RC�t+1 Weak Strong Weak Strong Weak Strong

R = 500
� = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
� = 1 min 0.00 0.00 0.00 0.00 0.00 0.00
� = 5 min 0.01 0.01 0.00 0.00 -0.01 0.01
� = 30 min 0.00 0.02 0.00 0.00 0.00 0.02

R = 1000
� = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
� = 1 min 0.00 0.00 -0.01 0.01 0.01 0.01
� = 5 min 0.01 0.01 0.00 0.01 0.00 0.00
� = 30 min 0.01 0.02 0.00 0.01 0.00 0.02

Table 9: Giacomini�White test rejection indicator disagreement frequencies for Simulation C. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, � is the sampling frequency for the proxy. Columns headed �Weak�report the di¤erence
between the feasible and infeasible tests�rejection frequencies. Columns headed �Strong�report
the proportion of simulations in which the feasible and infeasible tests disagree.
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