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Supplemental Appendix A: Proofs of main results

In this appendix, we prove the results in the main text. Results in Sections 2 and 3 are proved in
Appendices A.1 and A.2, respectively. Technical lemmas that are used in these proofs are proved
in Appendix A.3. Below, we use K to denote a generic constant, which may change from line to

line but does not depend on the time index ¢.

A.1 Proofs for Section 2

PROOF OF PROPOSITION 2.1. (a) Under Hy, B[f:] = x. By Assumption A1, (ar(fr—x), alpSt) -5
(&,S). By the continuous mapping theorem and Assumption A2, ¢p 4, ¢ (&,5). By Assumption
A3, E¢r — a.

Now consider Hi,, so Assumption B1(b) is in force. Under Hi,, the nonrandom sequence
ar(E| _J*T] — x;) diverges to +oc. Hence, by Assumption Al and Assumption B1(b), ¢p diverges
to 400 in probability. (To see this, one can use the almost sure representation of the weak
convergence in Assumption Al, and then show the pathwise divergence towards +oo by using
Assumption B1(b).) Since the law of (£,.9) is tight, the law of ¢ (&, S) is also tight by Assumption
A2. Therefore, 271 = O, (1). It is then easy to see E¢7 — 1 under Hiq.

The case with Hy, can be proved similarly.

(b) Under Hy, ar(fr—x) < ar(fr —B[f}]). Let ¢ = 1{p (ar(fr — E [f5]), dpST) > 211-0}-
By monotonicity (Assumption Bl(a)), ¢p < ¢p. Following a similar argument as in part (a),
E{bT — «a. Then limsupyr_,., E¢r < «a readily follows. The case under H, follows a similar

argument as in part (a). Q.E.D.

PROOF OF THEOREM 2.1. By Assumptions Al and C1, (ar(fr — E[f}]),a’TST) <, (&,5). With
this convergence replacing that in Assumption Al, we use the same argument as in Proposition
2.1 to prove Theorem 2.1. The details are omitted. Q.E.D.

PrOOF OF LEMMA 2.1. We observe that

ar|[BlfF] Bl < (ar/P) ZEIIft+T A

T
< (ar/P) Y B mas [Vir = ¥l

t=R
< K(aT/P>ZHmHT||p/(,,_1) [¥ier =¥l
< a’T/P Zdt+T



where the first inequality is due to the triangle inequality; the second inequality is by Assumption
C3(a); the third inequality is by Holder’s inequality; the fourth inequality is by Assumptions C2
and C3(a); the convergence follows from Assumption C3(b). Hence, ar(E[f}] — E[ﬁ}]) — 0 as
claimed. Q.E.D.

A.2 Proofs for Section 3

Throughout this section, we denote
¢ t
X! = Xo + / blds + / oudWy, X! =X, XI, (A1)
0 0

where the process b, is defined in Assumption HF(d). Below, for any process Z, we denote the ith

return of Z in day t by A;Z = Z- 15 — Zr(ti—1)-

PROOF OF PROPOSITION 3.1. Denote 3,,; = UT(t7i—1)At,iW/di’/iQ- Observe that for m = 2/p and
m' =2/(2—p),

E ‘Q(At,iX/dtl,éz) —9(Bt4) ‘p
< KB [(1+ 19,077+ 180X/ d210) NAei X2 = 6,1
<K (B |(1+ 187 + ||At,iX/d;§2||qu/)])l/ " (BlAX/ L - B
< Kd?

ti

pm> 1/m

where the first inequality follows the mean-value theorem, the Cauchy-Schwarz inequality and
condition (ii); the second inequality is due to Holder’s inequality; the third inequality holds because
of condition (iii) and B A X/dy* = B,[1* < Kdyi. Hence, [lg(AuiX/dy%) = g(8,0)lly < Kdy,
which further implies

< Kd'*. (A.2)
P

Ti(g) — Zg (Bri) di.i
=1

Below, we write p(-) in place of p(-;g) for the sake of notational simplicity. Let (,; =
9(Byi)—p(cr(t,i—1)). By construction, (; ; forms a martingale difference sequence. By condition (iv),
for all 1, E[(Ct,i)2] < E[p(cT(t,ifl);g2)] < K. Hence, E|} 1", Ctﬂ'dt,z‘\Q = > E[(Cmmdii < Kdy,
yielding

< Kd"’*. (A.3)
2

<

ne
§ Ct,idt,i
=1

nt
E Ct,idt,i
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In view of (A.2) and (A.3), it remains to show

First note that

t it T(t7i)
/t 1 (cs)ds — ZP T(ti—1) dt,z‘ = Z/ (P (cs) —p (CT(t»i—l))) ds.

i—1 JT(ti-1)

< Kd'*. (A.4)
p

t nt
/t . p(cs)ds — Z p (CT(t,i—l)) dy g

=1

We then observe that, for all s € [7(t,i — 1), 7(¢,4)] and with m = 2/p and m' =2/ (2 — p),

HP (cs) = p (erri-) ], 1
K (B (14 e + leri P72) lles = ereanyP])
[

m! m 1/pm/ m\ 1/pm
<K(E (1 losllP™ + lorean P77 ) | ) (Blles = exguamp ™) 7

< Kd,?,

where the first inequality follows from the mean-value theorem, the Cauchy-Schwarz inequality
and condition (ii); the second inequality is due to Holder’s inequality; the third inequality follows
from condition (iii) and the standard estimate Ecs — ¢;¢;—1)[|* < Kdy;. From here (A.4) follows.
This finishes the proof. Q.E.D.

PROOF OF PROPOSITION 3.2. Step 1. For z,y € R, we set

{k(y,w):g(y+w)—g(w)—g(y) (A5)
h(y,z) =g(y+x)—g(x) —gy) — 09 (v)" xlfz<1}-

By Taylor’s theorem and condition (ii),

2
ko)l < K> (Il llall + 2%~ iyl
=1
5 (A.6)
) < 53 (2 el + %yl 191 ] Lgaony)-
j=1
We consider a process (Zs)ge[¢—1,4 that is given by Zs = X — X7, ;1) when s € [7(t,i—1),7(t,1)).
We define Z! similarly but with X’ replacing X; recall that X’ is defined in (A.1). We then set



Z" = Zs— Z'. Under Assumption HF, we have

{ v € [0,K] = Blsub.cir(ei-n,reay 12007 < Kdy A

v € [2,k] = Blsup,ciri1),r i) 125 11 Fri—n)] < Kdy,

where the first line follows from a classical estimate for continuous It6 semimartingales, and the
second line is derived by using Lemmas 2.1.5 and 2.1.7 in Jacod and Protter (2012).

By Ito’s formula, we decompose
Ji(9) = T (9)

t
:/ 89 (Zs_)T byds + - Z/ ) ejisds
t—1

= (A.8)

+/ ds/ Zs—,0(8,2)) A(dz) + / 09 (Zs_ )" osdW;
t—1
+/ /k: Zs—,0(8,2)) fu(ds,dz) .

t—1JR

Below, we study each component in the above decomposition separately.

Let m = 2/p and m’ =2/ (2 — p). Observe that, for all s € [7(t,i — 1), 7(¢,1)],

Step 2. In this step, we show

t
09 (Zs—)" bsds
t—1

< Kd'*. (A.9)
p

9 p\ 1/p
109 (Zs-)Tbsll, < K ZHZs 1% b |

= KZ (E I\Zrll(qj-—l)pm)l/pm (E |\bs||Pm’)1/pm’

j=1

= Ki (E |\Zsfll2(qj—1>)l/2 (E ||bs||Pm’)1/pm

< Kd1/2

tyg 0

!

where the first inequality is due to condition (ii) and the Cauchy-Schwarz inequality; the second
inequality is due to Holder’s inequality; the third inequality follows from our choice of m; the last

inequality follows from (A.7). The claim (A.9) then readily follows.



Step 3. In this step, we show

Z/ Ng —)cjrsds|| < Kd1/2 (A.10)

=1
] P

By a component-wise argument, we can assume that d = 1 without loss of generality and suppress

the component subscripts in our notation below. Let m’ = 2/(2 — p). We observe

2
Han (Zs—) CS”p < KZ (E |:|ZS_|p(qj*2)|cs‘p])1/p
< KZ (B2, o) (B
S Kd1/2

te )

where the first inequality follows from condition (ii); the second inequality is due to Holder’s
inequality and our choice of m’; the last inequality follows from (A.7). The claim (A.10) is then
obvious.

Step 4. In this step, we show

‘/t 1ds/ Zs_, sz)))\(dz)

By (A.6) and |0 (s,2) || <T'(2),

< Kd'"*. (A.11)

2
1(Zo 5 (5, < K (12615727 () 4 T ()5 2o |+ 12197 T () Lrgopony ) -
j=1

Hence, by condition (iii),

/ h(Ze 6 (5,2)) A (d2)] <
R

2
K (126172 4+ 1 Z6- ) + 1Z5-11%7")
j=1



y (A.7), for any s € [7(t,i — 1), 7(¢,1)],

/Rh(Zs_,(S(s 2)) A (dz) 2
< KZ ((E 1Zs— 2))1/2 + (E HZS_HQ)l/Q N (E HZS_HQ(‘“_I)>1/2>

< Kd1/2.

The claim (A.11) then readily follows.
Step 5. In this step, we show

By the Burkholder-Davis—Gundy inequality,

t
< Kd'*. (A.12)
2

09 (Zs_)T osdW,
t—1

t 2

09 (Zs_)T oodW,
t—1

E

t
< KE [ [ 1os <zs>u2\asu2ds]
t_

<xs|[ oy <Z'>H2uasu2ds} (A13)
[ oot @) ool

t,i—1)

7(t,1)
3 N CICAREACAT 07<t,i—1>}}2d81 -

+ KE

+ KE
ti—1

We first consider the first term on the majorant side of (A.13). By Holder’s inequality, we have,
for s € [t(t,i — 1), 7(t,1)],

E [H@g (Zg)“2 HO_SH2:| S KZ (E HZ.;HQ(IJ)(% 1)/q; (EHUSHqu)l/qJ S Kdgl_l,
i=1

where the second inequality is due to (A.7). This estimate implies

t
E [ / log (Z0)]* ||os||2ds] < Kd. (A.14)



Now turn to the second term on the majorant side of (A.13). Observe that

nt 7(t,)
8[S2 tont o @) o]
i=1 YT\t
2 nt 7(t,) __ -
S 9E) o N (Y T N e
j=1 j=1 VT

2 nt 7(t,0) 2(g;—2) ) ) (A15)
<ic3w (55 [ P 2 ol
=1 -

i=1 T(L,2

2 nt 7(t,3)
S OE) o I T B
j=1 i—1 7(t,i—1)

By repeated conditioning and (A.7), we have

2 Nt er(td) ,
ZE [Z/ “Z;I||2(qj_1) Har(t,il)H2d3] < Kd;. (A.16)
j=1 =1 T(tzifl)
Moreover, by Holder’s inequality and (A.7), for s € [r(¢t,i — 1), 7(t,9)],

B[22 28 lorai- ]
< (E HZ;Hqu>(Qj*2)/qj <E HZ;,Hqu)l/qj (E HO’T(t’i_l) Hqu)l/Qj
< Kdi72a .

t,7

Therefore,

nt 7(t,3) __
Z/(t. ) [FA R VA Hffr(t,z'l)H2dS] < Kd. (A.17)
i=1 7Tt

2
Z E
j=1 Li=

Combining (A.15)-(A.17), we have

E

it 7(t,i)
Z/ 109 (Z5) — 89 (22) | HUT(t7i_1)H2ds] < Kd. (A.18)

i=1 7(t,i—1)

We now consider the third term on the majorant side of (A.13). By the mean-value theorem



and condition (ii),

B]109 (2.) - 99 (22) | o2 = o0 ]

2
< KB || 2" (21 |low — orein ]
j=1

2
KB |12 ou — oy ]
j=1

By Holder’s inequality and (A.7),

B[22 o — 0100
< (B2%) " (Bl - orin )
< Kd% Vuq% < Kd,;.

Similarly,

B {[| 2" )12} los — oreimn I
9 /q. 1/q; 1/q;
< (BlZ)) 7 (B 20) " (Bllow - orpiy )"
< K < K,
Combining (A.19)-(A.21), we have

B[99 (22) 9 () los ~ s |] < Kl

Hence,
7(t,8)

ne
. Z/(t i—1) Hag (Z5-) = 99 (Z;)H2 HUS - O’T(t,i—l)H2dS] < Kd,.
=1 Y TL1—

(A.19)

(A.20)

(A.21)

(A.22)

We have shown that each term on the majorant side of (A.13) is bounded by Kd;; see (A.14),

(A.18) and (A.22). The estimate (A.12) is now obvious.
Step 6. We now show

< Kd?.

2

/tjl /R k(Zs—,0 (s, 2)) i (ds, dz)

(A.23)



By Lemma 2.1.5 in Jacod and Protter (2012), (A.6) and Assumption HF,

2

E /til/Rk:(Zs_,é(s,z))ﬂ(ds,dz)

- ! j— 45— 2
SK;Eu_lds/R(IIZ—H% L6 (s, 2) -+ 12118 (s, 21 A(dz>]

2 t
SK;E[/tld%(“Zs‘l“% VT +IZIPT (2207Y) )]

SKdta

which implies (A.23).
Step 7. Combining the estimates in Steps 2—6 with the decomposition (A.8), we derive Hjt(g) —
Tt (9) llp < Kd'? as wanted. Q.E.D.

We now turn to the proof of Proposition 3.3. Recalling (A.1), we set
1 &
oty = ™ Do diit (B X ) (D X)T.
j=1

The proof of Proposition 3.3 relies on the following technical lemmas that are proved in Appendix

A.3.

LEMMA Al: Let w > 2 and v > 1. Suppose (i) Assumption HF holds for some k& > 2wv and
(il) ke < dt_l/2 as t — oo. Then

=]

LEMMA A2: Let w > 1 and v > 1. Suppose (i) Assumption HF holds for some k& > 2wv and

(ii) Ky < d;l/z as t — 0o. Then

: ‘

fﬂ'(t,i)]

" Kd2/2 in general,
Cr(ta) — Cr(ta) » =

4 . . .
K d;”/ if o is continuous.

< Kd"?.

v

Faol|

[

LEMMA A3: Let w > 1. Suppose Assumption HF hold with k& > 2w. We have E||¢,(; ;) —
Lipall” < Kd{®™=7 | where
0 (k,w,w,r)
=min{k/2 — w (k — 2w) — w,
1 —wr+ww-—1),w(w—1/2)+ (1 — wr) min{w/r, (k —w)/k}}.

10



PROOF OF PROPOSITION 3.3. Step 1. Throughout the proof, we denote E[-[F,« ;] by Ei[-].

Consider the decomposition: Z;(g) — Z;(g) = 2?21 R;, where

ng—ky

o= Z (9(6,7(15,@')) = 9(cr(ti)) = 09(crti) T (&) — Cr(m‘)))

=0
ne—ky

Ry = Z 09 (Cr(i) (1.5 — Cr(riy)dui
i=0

ne—ks n

Ry = Z g(CT(t,i))dt,i_/ 19(Cs)d8
i=0 t—
ne—ki

Ry = Y (9(eriiy) = 9(&0)duis
i=0

dy i

)

note that in the first two lines of the above display, we have treated ¢, ., and c.; ;) as their
T(t,1) (t,9)

vectorized versions so as to simplify notations. In this step, we show that

1R, < Kdtl/@p) in general,
Al e di /2 if ¢y is continuous.

By Taylor’s expansion and condition (i),

ny—kt

Rl < K> dii(l+ [l + 100 17D — crea

=0
ne—ki

IN

i=0
Let v = ¢/2 and v' = q/(q — 2). Notice that
B (1 + lerea ") 1815y — er) 1]

< K@+ llerqall=)?
< { Kdg/2 in general,

2 . .
K df / when o} is continuous,

o B sy = e,

(A.24)

(A.25)

K Z dy; ((1 + HcT(t,’L')Hq72)||é;'(t,i) - CT(t,i)”2 + HélT(t,v;) - cT(t,i)Hq) .

where the first inequality follows from repeated conditioning and Holder’s inequality, and the

second inequality is derived by using Lemma Al with w = 2p. Applying Lemma Al again (with

/

w = gp and v = 1), we derive EHéT(t’i) =l < Kd;/2 and, when o, is continuous, the bound

can be improved as Kdg’p/4 < de/Q. The claim (A.24) then follows from (A.25).

11



Step 2. In this step, we show that
|1Rs||, < Kdy/?. (A.26)

Denote ¢; = ag(CT(t,i))T(éfr(t’i)_c’r(t,i))’ C; = E;[¢;] and Cgl = Cz‘—C;- Notice that (; = ag(CT(t,i))TEi [é,r(m-)—

D) Bl )~

Cr(ti)]- By condition (i) and the Cauchy-Schwarz inequality, I < K(1+ ller i) )

cr(t,))ll- Observe that, with v = ¢ and v' = ¢/(q — 1),

B¢

IN

K[|t lewa 0| [[1Bile; ) = ereall?]],
< K&’

where the first inequality is by Holder’s inequality, and the second inequality is derived by using
Lemma A2 (with w = p). Hence,

< Kd'?. (A.27)
p

nt—k:t

Z C'dy
7 t,l

1=0

Next consider ¢7. First notice that

IN

KE ;[
KE [(1+ llenea )20 . — ere ]

K Hl + ||CT(t,z‘)||2(q71)va‘

E¢/[*

IN

IN

Bl ) — erenll?],

IN

Kd'?,

where the first inequality is obvious; the second inequality follows from condition (i) and the
Cauchy—Schwarz inequality; the third inequality is by repeated conditioning and Holder’s inequal-
ity; the fourth inequality is derived by applying Lemma A1l (with w = 2). Further notice that ¢/
and (] are uncorrelated whenever |i — | > k;. By the Cauchy—Schwarz inequality and the above

estimate, as well as condition (ii),

2

ng—ke ng—ky
B| Y (ldii| <Kk Y BI¢/Pd}; < Kd.
=0 i=0

Therefore, || Z?;Bkt Cldyill2 < Kd%ﬂ. This estimate, together with (A.27), implies (A.26).
Step 3. Consider R3 in this step. Let v = 2/p and v = 2/(2 — p). Notice that for s €

12



[T(t,a—1),7(t,9)],

71 _
Elg(cs) — g(crpi-1)lf < KE [(1 + Hc‘r(t,i)Hp(q ) fles|Pam D) lles — ere, F1)Hp}
-1
S R el [}
2
< K&’
Cs) — glCr(ri-1 < . 18 estimate further implies
ti-1)||, < Kd;}?. This estimate further impli
|1Rsll, < Kd,'>. (A.28)
Step 4. By a mean-value expansion and condition (i),
19Grta) — 9@ i)l < KO+ 18,0n ™ eren — & | + Kllenn — &I

By Lemma A3,
k,q,@,r
E”Cr(tz) tz)” < Kd S )

Let m' =k/2(¢ — 1) and m = k/(k — 2(¢ — 1)). By Holder’s inequality and Lemma A3,

B (141117 ren — A'T(”-)u}

< [+ 1 1 H
< Kd@(k m.@.r)/m

N
(t3) = Creay ],

Therefore, we have .
E’R4‘ < Kdmm{@( ,q,w,r)ﬁ(hm,w,r)/m}. (A29)

We now simplify the bound in (A.29). Note that the condition & > (1 —wr)/(1/2—w) implies,
for any w > 1,

{k/2—w(k:—2w)—w21—wr+w(2w—1), (A.30)
ww—-1/2)+ (1 —owr)(k—w)/k>1—wr+w2w—1),
and, recalling m = k/(k —2(¢ — 1)),

(1—wr+mQw—1))/m>1—wr+q2w-1). (A.31)

Using (A.30) and ¢ > 2 > r, we simplify 0 (k,q,,7) = 1 — @r + (2@ — 1); similarly,
0 (k,m,w,r) = min{l — wr + m(2w — 1),m (1/r — 1/2)}. We then use (A.31) to simplify (A.29)

13



as
E|R4’ < Kd;nin{l—wr—l—q(?w—1),1/r—1/2}. (A32)

Combining (A.24), (A.26), (A.28) and (A.32), we readily derive the assertion of the proposition.
Q.E.D.

PROOF OF PROPOSITION 3.4. Define Z; as in the proof of Proposition 3.2. By applying [to’s

formula to (A¢;X)(A;X)T for each i, we have the following decomposition:
t
RV, —QV, = 2/ Zs_blds
+2/ 1ds/ Zs_(5 S Z) 1{“5(32)”>1})\ (dz) (A33)
t

+2/ Zs— (05dWs)T +2/ /Z _0(s,2)T u(ds,dz).
t—1 t—1

Recognizing the similarity between (A.33) and (A.8), we can use a similar (but simpler) argument
as in the proof of Proposition 3.2 to show that the L, norm of each component on the right-hand
side of (A.33) is bounded by K di /2 The assertion of the proposition readily follows. Q.E.D.

PROOF OF PROPOSITION 3.5. Step 1. Recall (A.1). We introduce some notation

BV = ;s 8 S0 d A X |y S A Xy,
1/2
Cri = ldy /At,2X||dt,i+1At,i+1X"|, Co = P A X" 1y 3 A1 X,

Ry = Zizl C1idti, Ro= St Co,idti-

It is easy to see that |BV; — BV/| < K(R;1+ Rz2). By Lemmas 2.1.5 and 2.1.7 in Jacod and Protter
(2012), [\dt_;_%At7i+1X/’|p\.7-“7(m-)] < Kd,ﬁ”/’“)“‘p/z. Moreover, note that

Eld,;* A X|P < KBId, A X'|P + KE|d; | * A X"|P < K.

By repeated conditioning, we deduce ||(; 4[|, < Kalg/l/T)A(l/p)fl/2

Kdgl/r)/\(l/l’)—l/z_

, which further yields |R;]|, <

Now turn to Re. Let m = p'/p and m’ = p'/ (p' — p). Since pm’ < k by assumption, we use

Holder’s inequality and an argument similar to that above to derive

HCQ@‘Hp S (E|d_1/2A X//’pm> 1/pm (E|dt_zl+?At7i+1X/|pm/)1/pm S Kdgl/T)/\(l/p/)_l/Q.

14



Hence, || Ral|, < Kdgl/r)/\(l/p/)flﬂ. Combining these estimates, we deduce
|BV: — BV} || < K |[Rall, + K || Rall,, < Kdg"/" "1, (A.34)

Step 2. In this step, we show

< Kd'*. (A.35)

t
HBVZ —/ csds
t—1 »

) —1/2 —1/2
For j = 0 or 1, we denote /Bt,i,j = UT(M,l)dt’iJ{j Apir;Wand A j = dtm{j At’HjX'—ij. Observe
that

TLt—l
ny

™
BVt, - ny— 1 9 Z |5t,z’,0||5t,i,1|dt,i
i=1
TLt—l !

< K3 (180X s
=1

+ [Asiol |»3t,i,1|> -
Let m =2/p and m’ =2/ (2 — p). By Holder’s inequality and Assumption HF,

Hldlil/QAt,z'XW\/\t,i,ﬂH < (E|d_<1/2At,z’X'|pm/
p

t,1

1/pm/
) ’ (B|Aia [P™)HPm

< Kd'?

where the second inequality follows from E\dt_ Z.l/ 2At,iX 'l < K for each g € [0,k] and E|\;;|*> <
Kdy ;. Similarly, [[[Ai0l 81l < Kd2/2. Combining these estimates, we have

ng—1

ng m
BV;S, - 1 5 Z ‘Bt,i,()
i=1

ng —

< Kd'*. (A.36)

’ﬂt,i,ﬂdt,i

p

Let & = (7/2)|Byi.0l1Bt.i.1l5 (&=E [€i|~7:7'(t,i—1)] and & = &; — &, Under Assumption HF with
k > 4, B|¢]|? < El¢|* < K. Moreover, notice that &/ is F(; ;4+1)-measurable and E[&] | F,(; ;1)) = 0.

Therefore, £/ is uncorrelated with £ whenever |i — | > 2. By the Cauchy-Schwarz inequality,

2

ne—1 ng—1
E|Y" dy| <Kd > EIE/Pdy; < Kd,. (A.37)
i=1 =1

By direct calculation, & = c.(;;—1). By a standard estimate, for any s € [7(t,i — 1),7(t,4)], we
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1/2

have |lcs — ¢;¢,i—1)llp < Kd;’” and, hence,

ne—1

Zgld“ / csds
p

< Kd'*. (A.38)

Combining (A.36)—(A.38), we derive (A.35).

Step 3. We now prove the assertions of the proposition. We prove part (a) by combining (A.34)
and (A.35). In part (b), BV} coincides with BV; because X is continuous. The assertion is simply
(A.35). Q.E.D.

PrOOF OF PROPOSITION 3.6. We only consider EVZF for brevity. To simplify notation, let
g(z) = {z}3, x € R. We also set k(y,z) = g(y + =) — g(y) — g(z). It is elementary to see that
|k(y, )| < Klz||y| for z,y € R. We consider the decomposition

nt Tt ng nt
Z g (AtﬂX) = Z q (Atﬂ'X/) + Z g (At’iX”) + Z k(Atﬂ'X/, At’iX”). (A39)
' ' i=1 i=1
By Proposition 3.1 with Z;(g j; L p(csig)ds = (1/2) j;t_l csds, we deduce
n
S g (AnX') ~Tulg)| < Kd'%. (A.40)
=1 D

Hence, when X is continuous (so X = X'), the assertion of part (b) readily follows.
Now consider the second term on the right-hand side of (A.39). We define a process (Zs)scjt—1,4
as follows: Z, = X! — X”(tl 1y when s € [(t,i — 1),7(t,4)). Since r <1 by assumption, Z is a

finite-variational process. Observe that

Zg (A X") — / / w(ds, dz)
t—1

/tl/ Zs—,0(s,2)) p(ds, dz)
<KE/“/|ZS T (ds. d2)|
< KE [/t 1ds/!Zs PT (2 )p)\(dz)} + KE [(/t 1d3/|Zs 1T (2) A (dz)>p]

Sth

p

=E

where the equality is by 1t6’s formula (Theorem I1.31, Protter (2004)); the first inequality is due
to |k(y, z)| < K|z||y|; the second and the third inequalities are derived by repeatedly using Lemma
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2.1.7 of Jacod and Protter (2012). It then readily follows that

< Kd'" < Kd'*. (A.41)

ne :
;Q(At,iX )—/H/Rg(a (5,2)) u (ds, dz)

p

Next, we consider the third term on the right-hand side of (A.39). Let m’ = p'/p and m =
P /(' —p). We have

Hk(At,in7 At,iX”)Hp < K (E ‘At7in|Pm) 1/pm (E |At7iX”{pm/) 1/pm < Kd2/2+1/pl7

where the first inequality is due to |k(y, )| < K|z||y| and Holder’s inequality; the second inequality
holds because Assumption HF holds for k > pp'/(p’ — p) and E |A,; X" | ' < Kd,. Hence,

ng
ST R(ALX, AuX")|| < KaP TR (A.42)
i=1 »

The assertion of part (a) readily follows from (A.39)-(A.42). Q.E.D.

A.3 Proofs of technical lemmas

PrOOF OF LEMMA A1l. Step 1. We outline the proof in this step. For notational simplicity, we
denote E;§ = E[¢|F, ;)] for some generic random variable &; in particular, E;|{|* is understood as
Ei[|€]"]. Let o = (A X") (A4, X")T = cr(1,i—1)dt,i- We decompose é’T(tﬂ.) —Cr(ti) = C1; + (o, Where
kt kt
Cra= kit ) (Crpingon) = Gei)s o =k ')yt jaisg (A.43)
j=1

=1

In Steps 2 and 3 below, we show

KdY? in general
Ei |w < t ) A.44
H HCMH HU - { Kdi”/4 if o4 is continuous, ( )
" Kd; + Kkt_w/Q in general,
Ei ) S w —w . . . A45
H HCZ, H Hu { Kdt /2 + Kk;t /2 if o4 is continuous. ( )

The assertion of the lemma then readily follows from condition (ii) and w > 2.
Step 2. We show (A.44) in this step. Let w = 7(¢t,9 + k¢t — 1) — 7(¢,4). Since u = O(d;ﬂ), we
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can assume 4 < 1 without loss. By It0’s formula, ¢; can be represented as

t
¢ = ¢o+ bds+/ gsdW (A.46)

//203 (5, 2)7 i (ds, dz) + //582 1 (ds, dz)

for some processes b and &, that, under condition (i), satisfy

E||bs||™" + E||&s|™" < K. (A.47)
By (A.46),
4
< sup ||c7'(t,i)+u - CT(t,i)Hw < KZ&@ (A.48)
u€[0,a] =1
where

T(t 2 +u T

€15 = subuepa || [
2= SUPye[o,a] H f
€3 = SWPucio g | IT“ oy fR 200 5 5,27 s ) I,
Eai = 5Wucoa | S “”” S8 (5,2) 8 (s,2)7 pu (s, dz) ||

By (A.47), it is easy to see that HEz[§1z]Hv < |[&1,4lle < Ku®. Moreover, ||B;[§y;]]lo < 1€2,llv <

K@"/2, where the second inequality is due to the Burkholder-David-Gundy inequality. By Lemma
2.1.5 in Jacod and Protter (2012) and condition (i),

(t,0)+a
Eilés,) < KE; / . / loar 113 (s, 2) " (d2) d ]
7(t,)+a ~ w/2
L KE, / /Has_uzws,z)rm(dz)ds
7(t,i) R
7(t,8)+1 r(ti)+a w/2
< KEi/ los_||Pds| + KE; / los_|2ds
7(t,7) 7(t,3)

Hence, [|E;[£3,]]lo < Ku. By Lemma 2.1.7 in Jacod and Protter (2012) and condition (i),

Biey] < [/() / 15 (5, 2) |22 (d2) d ]
KE; (/ N LCEIEY )]
< Ka.
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Hence, ||E;[¢, ]|y < Ku. Combining these estimates with (A.48), we derive (A.44) in the general
case as desired. Furthermore, when o is continuous, we have {3, = §,; = 0 in (A.48). The
assertion of (A.44) in the continuous case readily follows.

Step 3. In this step, we show (A.45). Let of = Ei 1[0@] and of = a; — af. We can then
decompose (y; = C'QJ- + Cgvz, where CQZ =k, Z “ﬂ HJ and C'Q' =k, E “ﬂ H] By
t0’s formula, it is easy to see that

/ T(t7i+j) / / /
ol = K Bicgea | [ (X K0TS
T 72 ]_
+ || Bij—1 /(t " 1)(Cs — Cr(tirj—1)ds ||| - (A.49)
T 77/ j_
By Jensen’s inequality and repeated conditioning,
, 7(t,i+7) , , , v
Billai 1Y < KB /(t w 1)(XS - T(t,iJrjfl))(bs)TdS
T(t,tT])—
T(ti+5) v
+KE; /(t o 1)(05 = Cr(titj—1))ds (A.50)
T(ti+j—
Since conditional expectations are contraction maps, we further have
/ T(t7i+j) / / / N
[Bllais ], < K (tit) 1)(X8 = Xo(ti+j—1)) (b5)Tds
T 7Z j_ v
7(Li+4) Y
+K Ez / o (CS — CT(t,i+j—l))ds (A51)
T(tvl—i_]_l) v

3w/2
47"

Following a similar argument as in Step 2, we can bound the second term on the majorant side of

(A.51) by df’lfj in general and by Kd; llj if o is continuous. Hence, [|E;laj,;[*[ls < Kdz“:fj,

and the bound can be improved to be K dfq;”_@ when oy is continuous. By Holder’s inequality and

By standard estimates, the first term on the majorant side of (A.51) is bounded by Kd

the triangle inequality,

Kdy in general, (A52)

B o]l < {

w/2 . .
Kd, /2 when o is continuous.

Now consider CQ ;- Notice that (o] +])1<]<kt forms a martingale difference sequence. Using the
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Burkholder-Davis—Gundy inequality and then Holder’s inequality, we derive

kt
B ||¢h][" < Kk PN dp o)1

tit
j=1

. —w/2

Moreover, notice that ||Ei||a’-’+j||w||v < ||||a;’+]||w||v < Kd}fiﬂ. Hence, ||El||C’2’ZHwHU < Kk, w/2,

Combining this estimate with (A.52), we have (A.45). This finishes the proof. Q.E.D.

PrOOF OF LEMMA A2. Step 1. Recall the notation in Step 1 of the proof of Lemma A1l. In this

step, we show that
=iy, < &y, (A.53)

By (A.46), for each j > 1,

T(ti+j—1) 7(t,i+j—1) B B
Ei [ertitj-1) = Cri)] = B / bsds +/ /5(8,Z)5(372)T A(dz)ds| . (A.54)
T T R

(t,2) (t,2)

By conditions (i,ii) and Hélder’s inequality, we have
E: ertuansmsy = ereal 11, < K G < K. (a55)

We then use Holder’s inequality and Minkowski’s inequality to derive (A.53).
Step 2. Similar to (A.49), we have

T(ti+7)
[Bi [ovigs]ll < K ||E; / (X;_qu—(t,i+j—1))(b;).rd5]|
T(ti+j5—1)
7(t,i475)
+ EZ / (CS—CT(t,Z?ijl))dS
T(t,i+j5—1)

Notice that

rtit) / , v
E; / (Xs = XZ(tirj-1)) (05)Tds
7(t,iti—1) A
(ti+j) o (4.56)
<K / (X = XLy o) BTds|| || < K2,

(ti+i—1) .

where the first inequality is due to Jensen’s inequality; the second inequality follows from standard
estimates for continuous It6 semimartingales (use Holder’s inequality and the Burkholder—Davis—

Gundy inequality). Similar to (A.55), we have HHEl [cs —CT(qu_l)]Hva < Kdy;,; for s €
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[T(t,i4+j—1),7(t, i+ j)]. We then use Holder’s inequality to derive

7(t,i+5)
/ (cs = Cr(titj—1))ds

E; < KdY, ;. (A.57)

T(ti+i—1) ;

Combining (A.56) and (A.57), we deduce |[|||E; [a;tj] "] < deqfﬁ Hence, by Holder’s
inequality, HHE [Cas HwH <K dw/ ?. This estimate, together with (A.53), implies the assertion of
the lemma. Q.E.D.

Proor orF LEMMA A3. We denote u;;y; = adf, “i+j- We shall use the following elementary
inequality: for all z,y € R and 0 < u < 1:

(@ +y) (@ +9)" Ljjaty|<uy — 27| (A.58)
< K (|12l Lgaysusoy + 1912 A u? + lzll([yl] A w)).

Applying (A.58) with =z = Ay ; X', y = Ay X" and u = uyirj, we have [|C ;) — (t Z)H <
K(¢y + (3 +(3), where

k¢
g1 -1 52
Goo= kY A X P gy X S 2
j—l

Co = Ky lzdt i+j (1A X" A ting)?

(3 = k't Z Ayt A XN A X7 A i)

Since k > 2w, by Markov’s inequality and E||A;;; X'||¥ < Kdiﬁj, we have

w

E ‘HAt i g X P10 A sy X > uri0s/2}

Bl A g, X" k/2—w(k—2w)
—— < Kd, Zﬂw v
utz+]

<K

Hence, E||¢,[|* <de/2 @ (h—2w)—w

By Corollary 2.1.9(a,c) in Jacod and Protter (2012), we have for any v > 0,

A )i X' —wr) min{v /7
E H t;‘J H <Kd1(£z+] ) {v/ 1} (A59)
dtz—i—j
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Applying (A.59) with v = 2w, we have E[(Hd;ﬁjAt7i+jX”|]/\1)2w] < Kd%;f]'-?". Therefore, B||(,]|Y <

Kdtl—wr+w(2w—1) .

We now turn to (3. Let m' = k/w and m = k/ (k — w). Observe that

B [l 28¢5 X Nzt Ay X" A 1)

‘U}
rjwm’ 1/m! -1 " wm 1/m
< K {B| A, X1 } iE [ty A X7 A1) }
< Kd;ujz/ij—(l—wr) min{w/r,(k—w) kz}’
where the first inequality is by Holder’s inequality; the second inequality is obtained by applying
(A.59) with v = wm. Therefore, E ||(5||" < def(wfl/z)ﬂl*wr) mingw/r,(k=w)/k}

Combining the above bounds for E||(;[|*, j = 1,2 or 3, we readily derive the assertion of the
lemma. Q.E.D.
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Supplemental Appendix B: Extensions: details on stepwise pro-

cedures

B.1 The StepM procedure

In this subsection, we provide details for implementing the StepM procedure of Romano and Wolf
(2005) using proxies, so as to complete the discussion in Section 4.2 of the main text. Recall that

we are interested in testing k pairs of hypotheses

Hjo:Blf], ] <0forallt>1,

1<j<k. B.1
Hj o+ liminfr_o B[f] 7] > 0, (B-1)

Multiple SPA {

We denote the test statistic for the jth testing problem as ¢, 1 = ¢, (ar fr,aSr), where ©i(5)
is a measurable function. The StepM procedure involves critical values ¢; 7 > éar > ---, where
¢, 7 is the critical value in step I. Given these notations, we can describe Romano and Wolf’s

StepM algorithm as follows.!

ALGORITHM 1 (StepM): Step 1. Set I =1 and Agr = {1,...,k}.

Step 2. Compute the step-l critical value ¢; 7. Reject the null hypothesis Hj if ©; 7 > ¢ 7.

Step 3. If no (further) null hypotheses are rejected or all hypotheses have been rejected,
stop; otherwise, let 4; 7 be the index set for hypotheses that have yet been rejected, that is,
Air=1{j:1<j<k, @jr <&}, set I =1+1 and then return to Step 2.

To specify the critical value ¢ 7, we make the following assumption. Below, a € (0,1) denotes

the significance level and (¢, .5) is defined in Assumption Al in the main text.

ASSUMPTION S: For any nonempty nonrandom A C {1,...,k}, the distribution function of
max;e A cpj(f ,,S) is continuous at its 1 —a quantile ¢(A, 1 —«). Moreover, there exists a sequence of
estimators ér (A, 1 — «) such that ép (A, 1 — «) N c(A,1—a)and ér (A, 1 —a) <ér(A,1—a)
whenever 4 C A’.

The step-[ critical value is then given by ¢, 7 = ér(Aj—1,7,1—a). Notice that ¢ > éapr > - -
in finite samples by construction. The bootstrap critical values proposed by Romano and Wolf
(2005) verify Assumption S.

The following proposition describes the asymptotic properties of the StepM procedure. We

remind the reader that Assumptions Al, A2, B1 and C1 are given in the main text.

'The presentation here unifies Algorithms 3.1 (non-studentized StepM) and Algorithm 4.1 (studentized StepM)
in Romano and Wolf (2005).
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ProrosITION Bl: Suppose that Assumptions C1 and S hold and that Assumptions Al, A2
and B1 hold for each ¢;(-), 1 < j < k. Then (a) the null hypothesis H ¢ is rejected with probability
tending to one under the alternative hypothesis H; ,; (b) Algorithm 1 asymptotically controls the

familywise error rate (FWE) at level a.

PrOOF. By Assumptions Al and C1,
(ar(fr — BIf}]), aS1) = (. 9). (B2)

The proof can then be adapted from that in Romano and Wolf (2005). The details are given below.

First consider part (a), so Hj, is true for some j. By (B.2) and Assumption B1(b), ¢;p
diverges to +oo in probability. By Assumption S, it is easy to see that ¢ 7 forms a tight sequence
for fixed [. Hence, ¢; > ¢ 7 with probability tending to one. From here the assertion in part (a)
follows.

Now turn to part (b). Let Iy = {j : 1 < j < k, Ho; is true} and FWEyp = P(H, ¢ is rejected
for some j € Iy). If Iy is empty, FWEr = 0 and there is nothing to prove. We can thus suppose
that Iy is nonempty without loss of generality. By part (a), all false hypotheses are rejected in the
first step with probability approaching one. Since ér(lp, 1 — a) < é17,

limsup FWEr = limsupP (p;(ar fr, apSr) > ér(lo, 1 — ) for some j € Io)

J
T—o00 T—o00

< limsupP (goj(aT(fT - E[f}]), arrSt) > er(ly, 1 — a) for some j € IO)

T—o0

~ tmsup P (s (ar(fr — BIF). 1) > er(n1 - a) )
0

T—o00

= P <max 0;(€,8) > c(Ip, 1 — a)>

Jj€lo
= .

This is the assertion of part (b). Q.E.D.

B.2 Model confidence sets

In this subsection, we provide details for constructing the model confidence set (MCS) using
proxies. In so doing, we complete the discussion in Section 4.3 of the main text. Below, we denote
the paper of Hansen, Lunde, and Nason (2011) by HLN.

Recall that the set of superior forecasts is defined as

M ={je{t, kBl 2Bl forall 1<I<Eand ¢ > 1},
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and the set of asymptotically inferior forecasts is given by

Aﬂz{je@,“ﬁ}:mmm(mﬁﬂ—EMhD>o

T—oo

for some (and hence any) [ € MT}.

The formulation above slightly generalizes HLN’s setting by allowing data heterogeneity. Under
(mean) stationarity, HT coincides with HLN’s definition of MCS; in particular, it is nonempty and
complemental to M. In the heterogeneous setting, HT may be empty and the union of MT and

M/ may be inexhaustive. We avoid these scenarios by imposing
ASSUMPTION M1: MT is nonempty and MT umt = {1,...,k}.

We now describe the MCS algorithm. We first need to specify some test statistics. Below, for
any subset M C {1,...,k}, we denote its cardinality by |M|. We consider the test statistic

PMmT = (PM(CZTJFTa a'TST), where ¢, ()= %%“Pj,/vl ()

and, as in HLN (see Section 3.1.2 there), ¢; r((-, ) may take either of the following two forms: for
weRFand1<j <k,

U; — Uyg

j _ LT
max = where s;; = sj; € (0,00) forall 1 <i <k,
i) = M S s — g

5 ,  where s; € (0,00).
We also need to specify critical values, for which we need Assumption M2 below. We remind the

reader that the variables (¢, S) are defined in Assumption Al in the main text.

ASSUMPTION M2: For any nonempty nonrandom M C {1,...,k}, the distribution of (¢, S)
is continuous at its 1 — o quantile ¢(M,1 — «)). Moreover, there exists a sequence of estimators
ér (M, 1 — a) such that ép (M, 1 — «) =, c(M,1—a).

With ér(M, 1—a) given in Assumption M2, we define a test ¢ = {7 > er(M,1—a)}
and an elimination rule epy = arg maxje m 5 a7, Where 0y 1 = 05 pm (ar fr,aSt). The MCS
algorithm, when applied with the proxy as the evaluation benchmark, is given as follows.

ALGORITHM 2 (MCS): Step 1: Set M = {1,...,k}.

Step 2: if [M| =1 or ¢ = 0, then stop and set ./(/l\:nl_a = M; otherwise continue.

Step 3. Set M = M\ epq and return to Step 2.
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The following proposition summarizes the asymptotic property of /T/I\T,l,a. In particular, it
shows that the MCS algorithm is asymptotically valid even though it is applied to the proxy instead
of the true target.

PRrROPOSITION B2: Suppose Assumptions Al, C1, M1 and M2. Then (4.5) in the main text
holds, that is,

liminf (M' € Mrya) 21-0a, P(Mrianmb=0) -1,

PrOOF. Under Assumptions Al and C1, we have (ar(fr — E[ﬁ]),a%ST) <, (&,S). For each
M C{1,...,k}, we consider the null hypothesis Hopm : M C HT and the alternative hypothesis
Honm e MOMY 0. Under Hom, o1 = opq(ar fr, dipSr) = o qlar(fr — E[f1]), a/St), and,
thus, by the continuous mapping theorem, o, A, o (€, S). Therefore, by Assumption M2,
E¢rqp — aunder Ho pq. On the other hand, under Hy a1, ¢ a4, diverges in probability to +o00 and
thus E¢r — 1. Moreover, under H, aq, Pleap € WT) — 0; this is because SUP; gt g PAMT
is either tight or diverges in probability to —oo, but ¢ diverges to +oo in probability. The

assertions then follow the same argument as in the proof of Theorem 1 in HLN. Q.E.D.
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Supplemental Appendix C: Additional simulation results

C.1 Sensitivity to the choice of truncation lag in long-run variance estimation

In Tables 1-6, we present results on the finite-sample rejection frequencies of the Giacomini and
White (2006) tests (GW) using the approaches of Newey and West (1987) and Kiefer and Vogelsang
(2005) to conduct inference; we denote these two approaches by NW and KV. In the main text,
we use a truncation lag of 3P'/3 for NW and 0.5P for KV when computing the long-run variance.
Below we further consider using P'/3 and 5 (for all P) for NW, and 0.25P and P for KV.
Overall, we confirm that feasible tests using proxies have finite-sample rejection rates similar
to those of the infeasible test using the true target. That is, the negligibility result is likely in
force. More specifically, we find that the GW-KYV approach has good size control across various
settings provided that the sample size is sufficiently large (P = 1000 or 2000), although the test is
somewhat conservative in Simulation A. In contrast, the performance of the GW-NW test is less
robust. The GW-NW test has good size control in Simulation B, but has substantial size distortion
in Simulations A and C. These results confirm insights from the literature on inconsistent long-run

variance estimation; see Kiefer and Vogelsang (2005), Miiller (2012) and references therein.

C.2 Disagreement between feasible and infeasible test indicators

In Tables 7-9, we report the disagreement on test decisions (i.e., rejection or non-rejection) between
infeasible tests based on the true target variable and feasible tests based on proxies. In view of the
size distortion of the GW-NW test, we only consider the GW—KYV test for brevity. The setting
is the same as that in Section 5 of the main text. In the columns headed “Weak” we report
the finite-sample rejection frequency of the feasible test minus that for the infeasible test. Under
the theory developed in Section 2, which ensures “weak negligibility,” the differences should be
zero asymptotically.? In the columns headed “Strong” we report the proportion of times in which
the feasible and infeasible rejection indicators disagreed. If “strong negligibility,” in the sense of
comment (ii) to Theorem 2.1, holds, then this proportion should be zero asymptotically.

As noted in the main text, the weak negligibility result holds well across all three simulation
designs, with the differences reported in these columns generally being close to zero, except for
the lowest frequency proxy. The results for strong negligibility are more mixed: in Simulations A
and C we see evidence in support of strong negligibility, while for Simulation B we observe a large
proportion of disagreement. Indeed, as the nominal level of each test is 0.05, the probability of
disagreement should be bounded by 0.1 asymptotically, so disagreement proportions between 0.03
to 0.07 should be considered sizable.

?Positive (negative) values indicate that the feasible test based on a proxy rejects more (less) often than the
corresponding infeasible test based on the true target variable.
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GW-NW (m = 5) GW-NW (m = PY/3)
Proxy RV, P=500 P=1000 P=2000 P =500 P=1000 P = 2000

R =500
True Y\, 0.10 0.22 0.18 0.09 0.18 0.11
A =5 sec 0.10 0.23 0.18 0.09 0.18 0.11
A =1 min 0.09 0.23 0.18 0.09 0.17 0.11
A =5 min 0.10 0.23 0.18 0.09 0.18 0.12
A = 30 min 0.10 0.27 0.22 0.08 0.22 0.16
R = 1000
True Y\, 0.28 0.22 0.19 0.24 0.15 0.12
A =5 sec 0.29 0.22 0.18 0.24 0.15 0.12
A =1 min 0.29 0.22 0.19 0.24 0.15 0.12
A =5 min 0.30 0.21 0.19 0.26 0.17 0.12
A = 30 min 0.35 0.26 0.25 0.31 0.20 0.18

Table 1: Giacomini-White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW KV (m = 0.25P) GW KV (m = P)
Proxy RVA,  P=500 P=1000 P=2000 P =500 P=1000 P =2000

R =500
True Y}, 0.00 0.02 0.01 0.01 0.03 0.02
A =5 sec 0.00 0.02 0.01 0.01 0.02 0.02
A =1 min 0.01 0.02 0.01 0.01 0.02 0.02
A =5 min 0.00 0.03 0.02 0.01 0.03 0.02
A = 30 min 0.00 0.04 0.03 0.01 0.04 0.05
R = 1000
True Y}, 0.06 0.01 0.02 0.06 0.00 0.02
A =5 sec 0.06 0.01 0.02 0.06 0.00 0.02
A =1 min 0.06 0.01 0.02 0.06 0.00 0.02
A =5 min 0.06 0.01 0.01 0.08 0.01 0.02
A = 30 min 0.10 0.02 0.03 0.08 0.01 0.03

Table 2: Giacomini—White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW-NW (m = 5) GW-NW (m = P1/3)
Proxy BVA, ~ P=500 P=1000 P=2000 P =500 P=1000 P = 2000

R =500
True Y}, 0.05 0.06 0.06 0.05 0.06 0.06
A =5 sec 0.06 0.06 0.06 0.06 0.06 0.06
A =1 min 0.07 0.08 0.07 0.07 0.08 0.07
A =5 min 0.03 0.05 0.04 0.03 0.05 0.04
A = 30 min 0.03 0.02 0.00 0.03 0.02 0.00
R = 1000
True Y}, 0.03 0.04 0.04 0.03 0.04 0.04
A =5 sec 0.03 0.04 0.04 0.03 0.04 0.04
A =1 min 0.04 0.05 0.06 0.04 0.05 0.06
A =5 min 0.03 0.04 0.05 0.03 0.04 0.05
A = 30 min 0.02 0.01 0.01 0.02 0.01 0.01

Table 3: Giacomini—White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW-KV (m = 0.25P) GW-KV (m = P)
Proxy BVA,  P=500 P=1000 P=2000 P =500 P=1000 P = 2000

R =500
True Yt];l 0.03 0.03 0.05 0.03 0.04 0.04
A =5 sec 0.05 0.04 0.05 0.03 0.05 0.05
A =1 min 0.04 0.06 0.05 0.05 0.05 0.07
A =5 min 0.02 0.05 0.04 0.03 0.06 0.05
A = 30 min 0.03 0.03 0.01 0.03 0.03 0.01
R = 1000
True YtJfH 0.02 0.04 0.05 0.02 0.03 0.05
A =5 sec 0.02 0.04 0.05 0.04 0.04 0.05
A =1 min 0.03 0.04 0.07 0.03 0.04 0.06
A =5 min 0.03 0.03 0.05 0.04 0.02 0.05
A = 30 min 0.02 0.01 0.02 0.02 0.02 0.01

Table 4: Giacomini-White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW-NW (m = 5) GW-NW (m = PY/3)
Proxy RCH P=500 P=1000 P=2000 P =500 P=1000 P = 2000

R =500
True Y}, 0.28 0.26 0.24 0.27 0.21 0.22
A =5 sec 0.28 0.26 0.24 0.27 0.21 0.22
A =1 min 0.28 0.25 0.25 0.27 0.21 0.22
A =5 min 0.28 0.25 0.25 0.27 0.22 0.22
A = 30 min 0.27 0.24 0.24 0.26 0.21 0.22
R = 1000
True Y\, 0.31 0.27 0.28 0.28 0.25 0.24
A =5 sec 0.31 0.27 0.28 0.28 0.25 0.25
A =1 min 0.30 0.27 0.28 0.28 0.25 0.24
A =5 min 0.31 0.28 0.28 0.28 0.26 0.24
A = 30 min 0.31 0.28 0.28 0.30 0.26 0.24

Table 5: Giacomini-White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.

GW KV (m = 0.25P) GW KV (m = P)
Proxy RCA,  P=500 P=1000 P=2000 P=500 P=1000 P = 2000

R =500
True Y}, 0.10 0.05 0.02 0.06 0.05 0.02
A =5 sec 0.10 0.05 0.02 0.06 0.05 0.02
A =1 min 0.10 0.05 0.02 0.06 0.05 0.02
A =5 min 0.09 0.05 0.03 0.07 0.05 0.02
A = 30 min 0.09 0.04 0.03 0.07 0.05 0.02
R = 1000
True Y}, 0.16 0.10 0.06 0.14 0.08 0.06
A =5 sec 0.16 0.10 0.06 0.14 0.08 0.06
A =1 min 0.16 0.09 0.06 0.15 0.07 0.06
A =5 min 0.16 0.09 0.06 0.14 0.07 0.06
A = 30 min 0.15 0.08 0.06 0.14 0.07 0.05

Table 6: Giacomini-White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, A is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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P =500 P =1000 P = 2000
Proxy RVtﬁ1 Weak Strong Weak Strong Weak Strong

R =500
A =5 sec 0.00 0.00 0.00 0.00 0.00 0.00
A =1 min 0.00 0.00 0.00 0.01 0.00 0.01
A =5 min 0.00 0.00 0.00 0.01 0.01 0.01
A = 30 min 0.00 0.02 0.00 0.03 0.02 0.02
R =1000
A =5 sec 0.00 0.00 0.00 0.00 0.00 0.00
A =1 min 0.01 0.02 0.00 0.00 0.00 0.00
A =5 min 0.00 0.03 0.00 0.00 0.00 0.00
A = 30 min 0.04 0.05 0.01 0.01 0.01 0.02

Table 7: Giacomini—White test rejection indicator disagreement frequencies for Simulation A. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, A is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.

P =500 P =1000 P = 2000
Proxy B Vﬁ_l Weak Strong Weak Strong Weak Strong

R =500
A =5 sec 0.01 0.01 0.00 0.00 0.01 0.01
A =1 min 0.01 0.04 0.01 0.01 0.01 0.03
A =5 min -0.01 0.04 0.01 0.05 0.00 0.06
A = 30 min -0.01 0.06 -0.02 0.06 -0.03 0.05
R = 1000
A =5 sec 0.01 0.01 0.01 0.01 0.00 0.00
A =1 min 0.00 0.04 0.00 0.04 0.02 0.03
A =5 min 0.01 0.04 0.00 0.04 0.01 0.07
A = 30 min -0.01 0.04 -0.02 0.04 -0.04 0.05

Table 8: Giacomini—White test rejection indicator disagreement frequencies for Simulation B. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, A is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.
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P =500 P =1000 P =2000
Proxy RC’ﬁ1 Weak Strong Weak Strong Weak Strong

R =500
A =5 sec 0.00 0.00 0.00 0.00 0.00 0.00
A =1 min 0.00 0.00 0.00 0.00 0.00 0.00
A =5 min 0.01 0.01 0.00 0.00 -0.01 0.01
A = 30 min 0.00 0.02 0.00 0.00 0.00 0.02
R =1000
A =5 sec 0.00 0.00 0.00 0.00 0.00 0.00
A =1 min 0.00 0.00 -0.01 0.01 0.01 0.01
A =5 min 0.01 0.01 0.00 0.01 0.00 0.00
A = 30 min 0.01 0.02 0.00 0.01 0.00 0.02

Table 9: Giacomini—White test rejection indicator disagreement frequencies for Simulation C. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, A is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.
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