Abstract

This paper provides a general framework that enables many existing inference methods for predictive accuracy to be used in applications that involve forecasts of latent target variables. Such applications include the forecasting of volatility, correlation, beta, quadratic variation, jump variation, and other functionals of an underlying continuous-time process. We provide primitive conditions under which a “negligibility” result holds, and thus the asymptotic size of standard predictive accuracy tests, implemented using a high-frequency proxy for the latent variable, is controlled. An extensive simulation study verifies that the asymptotic results apply in a range of empirically relevant applications, and an empirical application to correlation forecasting is presented.

Keywords: Forecast evaluation, realized variance, volatility, jumps, semimartingale.

JEL Codes: C53, C22, C58, C52, C32.

*We wish to thank Francis Diebold, Dobrislav Dobrev, Ronald Gallant, Silvia Gonçalves, Michael McCracken, Nour Meddahi, Benoit Perron, Dacheng Xiu, conference and seminar participants at the 2013 NBER summer institute, 2013 Symposium on Econometric Theory and Applications (SETA), 2013 Econometric Society Asian Meeting, Cambridge, UCL and University of Pennsylvania for helpful comments and discussions. All errors are ours. Financial support from the NSF under grants SES-1227448 and SES-1326819 (Li) is gratefully acknowledged. Contact address: Department of Economics, Duke University, 213 Social Sciences Building, Box 90097, Durham NC 27708-0097, USA. Email: j1410@duke.edu and andrew.patton@duke.edu.
1 Introduction

A central problem in time series analysis is the forecasting of economic variables. In financial applications, the variables to be forecast are often risk measures, such as volatility, beta, correlation, and jump characteristics (see Andersen, Bollerslev, Christoffersen, and Diebold (2006) for a survey). Since the seminal work of Engle (1982), numerous models have been proposed to forecast risk measures, and these forecasts are of fundamental importance in financial decisions. The problem of evaluating the performance of these forecasts is complicated by the fact that many risk measures, although well-defined in models, are not observable even ex post. A large literature (see West (2006) for a survey) has evolved presenting methods for (pseudo) out-of-sample inference for predictive accuracy, however existing work typically relies on the observability of the forecast target.

The goal of the current paper is to provide a general methodology for extending the applicability of forecast evaluation methods to settings with unobservable forecast target variables.

Inspired by Andersen and Bollerslev (1998), we propose to evaluate competing forecasts with respect to a proxy of the latent target variable, with the proxy computed from high-frequency (intraday) data, in the application of forecast evaluation methods. Prima facie, such inference is not of direct economic interest, in that a good forecast for the proxy may not be a good forecast of the latent target variable. The gap, formally speaking, arises from the fact that hypotheses concerning the proxy (which we label “proxy hypotheses”) are not the same as those concerning the true target variable (i.e., “true hypotheses”). To fill this gap, we consider an asymptotic setting in which the proxy is constructed using data sampled from asymptotically increasing frequencies. Under this setting, the proxy hypotheses can be considered as “local” to the true hypotheses, and we provide both high-level and primitive sufficient conditions under which the moments that specify the proxy hypotheses converge sufficiently fast to their counterparts in the true hypotheses. This convergence leads to an asymptotic negligibility result: forecast evaluation methods using proxies have the same asymptotic size and power properties under the proxy hypotheses as under the true hypotheses.

The strategy of using high-frequency proxies to conduct inference has proven successful in prior work on the estimation of stochastic volatility models. Bollerslev and Zhou (2002) estimate stochastic volatility models treating the realized variance as the unobserved integrated variance. Corradi and Distasio (2006) and Todorov (2009) generalize this approach by considering additional realized measures for the integrated variance using the generalized method of moments (GMM)
of Hansen (1982). These authors provide theoretical justifications for this approach by providing conditions that ensure the asymptotic negligibility of the proxy error in GMM inference for stochastic volatility models. Realized measures for other volatility functionals have also been used for parametric and nonparametric estimation of stochastic volatility models: for example, Todorov, Tauchen, and Grynkiv (2011) use the realized Laplace transform of volatility (Todorov and Tauchen (2012)) for estimating parametric stochastic volatility models; Renò (2006), Kanaya and Kristensen (2010) and Bandi and Renò (2012) consider nonparametric estimation of stochastic volatility models using spot volatility estimates (Foster and Nelson (1996), Comte and Renault (1998), Kristensen (2010)).

Our asymptotic negligibility result shares the same nature as that in the important work of Corradi and Distaso (2006), among others. However, the focus of the current paper is distinct from aforementioned work in two important aspects. First, compared with (in-sample) GMM estimation, the out-of-sample forecast evaluation problem has a more complicated econometric structure. Indeed, even in the case with ex post observable forecast targets, it is well known that forecast evaluation procedures can be drastically different from each other depending on how unknown parameters in a forecast model is estimated and updated, on whether the competing forecast models are nested or nonnested, and on how critical values of tests are computed (e.g., via direct estimation or bootstrap); see, for example, Diebold and Mariano (1995), West (1996), White (2000), McCracken (2000), Hansen (2005), Giacomini and White (2006) and McCracken (2007), as well as the comprehensive review of West (2006). The apparent idiosyncrasies of these methods present a nontrivial challenge for designing a general theoretical framework for solving the latent-target problem for a broad range of evaluation methods. Second, while prior work used proxies of the volatility or its integrated functionals such as the integrated volatility and the volatility Laplace transform for estimating stochastic volatility models, forecasting applications often concern a much broader set of risk factors, such as beta, correlation, total quadratic variation, semivariance and jump variations. The broad practical scope of financial forecasting thus calls for an extensive analysis on a wide spectrum of risk measures and proxies.

The main contribution of the current paper is to address these two issues in a general and compact framework. We achieve generality by using two (sets of) high-level conditions that are designed for bridging two large literatures: forecast evaluation and high-frequency econometrics. The first set of conditions posit an abstract structure on the forecast evaluation methods; we show that these conditions are readily verified for many inference methods proposed in the existing liter-
ature, including all of the evaluation methods cited above, and can be readily extended to stepwise testing procedures such as Romano and Wolf (2005) and Hansen, Lunde, and Nason (2011). The second condition concerns the approximation accuracy of the high-frequency proxy relative to the latent target variable. The main technical contribution of this paper is to verify this condition under primitive conditions for general classes of high-frequency based estimators of volatility and jump risk measures in a general Itô semimartingale model for asset prices. In particular, we allow for realistic features such as leverage effect and (active) price and volatility jumps. Our results cover many existing estimators as special cases, such as realized variation (Andersen, Bollerslev, Diebold, and Labys (2003)), truncated variation (Mancini (2001)), bipower variation (Barndorff-Nielsen and Shephard (2004b)), realized covariation, beta and correlation (Barndorff-Nielsen and Shephard (2004a)), realized Laplace transform (Todorov and Tauchen (2012)), general integrated volatility functionals (Jacod and Protter (2012), Jacod and Rosenbaum (2013)), realized skewness, kurtosis and their extensions (Lepingle (1976), Jacod (2008), Amaya, Christoffersen, Jacobs, and Vasquez (2011)), and realized semivariance (Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) and Patton and Sheppard (2013)). These technical results may be useful for other applications as well (e.g., Corradi and Distaso (2006) and Todorov (2009)).

The existing literature includes some work on forecast evaluation for latent target variables using proxy variables. In their seminal work, Andersen and Bollerslev (1998) advocated using realized variance as a proxy for evaluating volatility forecast models; see also Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen, Bollerslev, and Meddahi (2005). A theoretical justification for this approach was proposed by Hansen and Lunde (2006) and Patton (2011), based on the availability of conditionally unbiased proxies. Their unbiasedness condition must hold in finite samples, which is hard to verify except for certain cases: it may be plausible for realized variance in some applications, but is unlikely to hold for other realized measures (such as jump-robust measures of volatility like bipower variation, or ratios of measures like realized correlation). In contrast, our framework extends the insight of prior work with an asymptotic argument and is applicable for most known high-frequency based estimators.

With the usual caveat of asymptotic approximations in mind, we note that our asymptotic negligibility result reflects a simple and robust intuition: the approximation error in the high-frequency proxy will be negligible when it is relatively small in comparison with the “intrinsic” statistical uncertainty for forecast evaluation that would arise even in situations with observable

1See Section 1.3 of van der Vaart (1998) for an elaboration.
targets. Since the ex post measurement of latent risks is generally much easier than their ex ante prediction, this intuition and, hence, our asymptotic formalization, should be relevant in many empirical settings. To judge the performance of the asymptotic results, we conduct three distinct, and realistically calibrated, Monte Carlo studies. The Monte Carlo evidence is supportive for our theory.

We illustrate the usefulness of our approach in an empirical example for evaluating forecasts of the conditional correlation between stock returns. Correlation forecasting is of substantial importance in practice (Engle (2008)) but existing evaluation methods (see, e.g., Hansen and Lunde (2006), Patton (2011)) are silent on how rigorous forecast evaluation can be conducted. We consider four forecasting methods, starting with the popular dynamic conditional correlation (DCC) model of Engle (2002). We then extend this model to include an asymmetric term, as in Cappiello, Engle, and Sheppard (2006), which allows correlations to rise more following joint negative shocks than other shocks, and to include the lagged realized correlation matrix, which enables the model to exploit higher frequency data, in the spirit of Noureldin, Shephard, and Sheppard (2012). We find evidence, across a range of correlation proxies, that including high frequency information in the forecast model leads to out-of-sample gains in accuracy, while the inclusion of an asymmetric term does not lead to such gains.

This paper is organized as follows. Section 2 presents the statistical setting. In Section 3 we discuss a variety of high-frequency proxies and derive bounds for their approximation accuracy. Section 4 presents the asymptotic properties of generic forecast evaluation methods using proxies, with further extensions discussed in Section 5. Monte Carlo results and an empirical application are in Sections 6 and 7, respectively. All proofs are in the appendix.

All limits below are for $T \to \infty$. We use \xrightarrow{P} to denote convergence in probability and \xrightarrow{d} to denote convergence in distribution. All vectors are column vectors. For any matrix A, we denote its transpose by A^\top and its (i,j) component by A_{ij}. The (i,j) component of a matrix-valued stochastic process A_t is denoted by $A_{ij,t}$. We write (a,b) in place of $(a^\top, b^\top)^\top$. The jth component of a vector x is denoted by x_j. For $x, y \in \mathbb{R}^q$, $q \geq 1$, we write $x \leq y$ if and only if $x_j \leq y_j$ for every $j \in \{1, \ldots, q\}$. For a generic variable X taking values in a finite-dimensional space, we use κ_X to denote its dimensionality; the letter κ is reserved for such use. We use $\|\cdot\|$ to denote the Euclidean norm of a vector, where a matrix is identified as its vectorized version. For each $p \geq 1$, $\|\cdot\|_p$ denotes the L_p norm. We use \circ to denote the Hadamard product between two identically sized matrices, which is computed simply by element-by-element multiplication. The notation \otimes
stands for the Kronecker product. For two sequences of strictly positive real numbers \(a_t\) and \(b_t\), \(t \geq 1\), we write \(a_t \asymp b_t\) if and only if the sequences \(a_t/b_t\) and \(b_t/a_t\) are both bounded.

2 The setting

2.1 True hypotheses and proxy hypotheses

Let \((Y^t_t)_{t \geq 1}\) be the time series to be forecast, which takes values in \(\mathcal{Y} \subseteq \mathbb{R}^k\). We stress at the outset that \(Y^t_t\) is not observable, but a proxy \(Y_t\) is available. At time \(t\), the forecaster uses data \(\mathcal{D}_t \equiv \{D_s : 1 \leq s \leq t\}\) to form a forecast of \(Y^t_{t+\tau}\), where the horizon \(\tau \geq 1\) is fixed throughout the paper. We consider \(k\) competing sequences of forecasts of \(Y^t_{t+\tau}\), collected by \(F_{t+\tau} \equiv (F_{1,t+\tau}, \ldots, F_{k,t+\tau})\). In practice, \(F_{t+\tau}\) is often constructed from forecast models that involve some parameter \(\beta\). We write \(F_{t+\tau}(\beta)\) to emphasize such dependence and refer to the function \(F_{t+\tau}(\cdot) : \beta \mapsto F_{t+\tau}(\beta)\) as the forecast model. Let \(\hat{\beta}_t\) be an estimator constructed using (possibly a subset of) the dataset \(\mathcal{D}_t\) and \(\beta^*\) be its “population” analogue. We do not require the forecast model to be correctly specified, so we treat \(\beta^*\) as a pseudo-true parameter (White (1982)).

Two types of forecasts have been considered in the literature: the actual forecast \(F_{t+\tau} = F_{t+\tau}(\hat{\beta}_t)\) and the population forecast \(F_{t+\tau}(\beta^*)\). This distinction is useful because a researcher may be interested in using the actual forecast \(F_{t+\tau}\) to make inference concerning \(F_{t+\tau}(\beta^*)\), that is, an inference concerning the forecast model (see, e.g., West (1996)). If, on the other hand, the researcher is interested in assessing the performance of the actual forecasts in \(F_{t+\tau}\), he/she can treat the actual forecast as an observable sequence (see, e.g., Diebold and Mariano (1995) and Giacomini and White (2006)) without the need for explicitly analyzing the forecast model \(F_{t+\tau}(\cdot)\) and the discrepancy between \(\hat{\beta}_t\) and \(\beta^*\); in this case, we simply set \(\beta^*\) to be empty. With this convention, we can use the notation \(F_{t+\tau}(\beta^*)\) also in the study of the inference for actual forecasts.

Given the target \(Y^t_{t+\tau}\), the performance of the competing forecasts is measured by \(f^*_{t+\tau} \equiv f_{t+\tau}(Y^t_{t+\tau}, \beta^*)\), where \(f_{t+\tau}(y, \beta) \equiv f(y, F_{t+\tau}(\beta))\) for some known measurable \(\mathbb{R}^k\)-valued function \(f(\cdot)\). The function \(f(\cdot)\) plays the role of an evaluation measure. Typically, \(f(\cdot)\) computes the loss differential between competing forecasts: for example, \(f(y, (F_1, F_2)) = (y - F_1)^2 - (y - F_2)^2\) in the case with quadratic loss. The proxy of \(f^*_{t+\tau}\) is given by \(f^*_{t+\tau} \equiv f_{t+\tau}(Y_{t+\tau}, \beta^*)\), which in turn can be estimated by \(\hat{f}_{t+\tau} \equiv f_{t+\tau}(Y_{t+\tau}, \hat{\beta}_t)\). We then set

\[
\hat{f}^*_{t+\tau} \equiv P^{-1} \sum_{t=R}^T f^*_{t+\tau}, \quad \bar{f}^*_{T} \equiv P^{-1} \sum_{t=R}^T f^*_{t+\tau}, \quad \bar{f}_{T} \equiv P^{-1} \sum_{t=R}^T \hat{f}_{t+\tau}, \quad (2.1)
\]
where \(T \) is the size of the full sample, \(P = T - R + 1 \) is the size of the prediction sample and \(R \) is the size of the estimation sample.\(^2\) In the sequel, we always assume \(P \asymp T \) as \(T \to \infty \) without further mention, while \(R \) may be fixed or diverge to \(\infty \), depending on the application.

We now turn to the hypotheses of interest. We consider two classical testing problems for forecast evaluation: testing for equal predictive ability (one-sided or two-sided) and testing for superior predictive ability. Formally, we consider the following hypotheses: for some user-specified constant \(\chi \in \mathbb{R}^{\kappa_f} \),

\[
\begin{align*}
\text{Equal Predictive Ability (EPA)} & \quad \begin{cases}
H_0^\dagger: & \mathbb{E}[\hat{f}_{T}^{\dagger*}] = \chi, \\
H_{1a}^\dagger: & \liminf_{T \to \infty} \mathbb{E}[\hat{f}_{j,T}^{\dagger*}] > \chi_j \text{ for some } j \in \{1, \ldots, \kappa_f\}, \\
or & H_{2a}^\dagger: \liminf_{T \to \infty} \|\mathbb{E}[\hat{f}_{T}^{\dagger*}] - \chi\| > 0,
\end{cases} \\
\text{Superior Predictive Ability (SPA)} & \quad \begin{cases}
H_0^\dagger: & \mathbb{E}[\hat{f}_{T}^{\dagger*}] \leq \chi, \\
H_{1a}^\dagger: & \liminf_{T \to \infty} \mathbb{E}[\hat{f}_{j,T}^{\dagger*}] > \chi_j \text{ for some } j \in \{1, \ldots, \kappa_f\},
\end{cases}
\end{align*}
\]

where \(H_{1a}^\dagger \) (resp. \(H_{2a}^\dagger \)) in (2.2) is the one-sided (resp. two-sided) alternative. In practice, the constant \(\chi \) is often set to be zero.\(^3\) Note that despite their assigned labels, these hypotheses can also be used to test for forecast encompassing and forecast rationality by setting the function \(f(\cdot) \) properly; see, for example, West (2006).

Since the hypotheses in (2.2) and (2.3) rely on the true forecast target \(Y_t^{\dagger} \), we refer to them as the true hypotheses. These hypotheses allow for data heterogeneity and are cast in the same fashion as in Giacomini and White (2006). Under (mean) stationarity, these hypotheses coincide with those considered by Diebold and Mariano (1995), West (1996) and White (2000), among others. Clearly, if \(Y_t^{\dagger} \) were observable, these existing inference methods could be applied to test the true hypotheses by forming test statistics based on \(f_{t+\tau}(Y_{t+\tau}, \hat{\beta}_t) \). However, the latency of \(Y_t^{\dagger} \) renders these inference methods infeasible.

Feasible versions of these tests can be implemented with \(Y_{t+\tau} \) replaced by \(Y_{t+\tau} \). However, the

\(^2\)The notations \(Pf_T \) and \(Rf_T \) may be used in place of \(P \) and \(R \). We follow the literature and suppress the dependence on \(T \). The estimation and prediction samples are often called the in-sample and (pseudo-) out-of-sample periods.

\(^3\)Allowing \(\chi \) to be nonzero incurs no additional cost in our derivations. This flexibility is particularly useful in the design of Monte Carlo experiment that examines the finite-sample performance of the asymptotic theory below; see Section 6 for details.
hypotheses underlying the feasible inference procedure are then proxy hypotheses given by

\[
\begin{align*}
\text{Proxy Equal Predictive Ability (PEPA)} & \quad \begin{cases}
H_0 : \mathbb{E} [\hat{f}^*_T] = \chi, \\
H_{1a} : \lim \inf_{T \to \infty} \mathbb{E}[\hat{f}^*_j,T] > \chi_j \text{ for some } j \in \{1, \ldots, \kappa_f\}, \\
\text{or } H_{2a} : \lim \inf_{T \to \infty} \|\mathbb{E}[\hat{f}^*_T] - \chi\| > 0,
\end{cases}
\end{align*}
\]

(2.4)

\[
\begin{align*}
\text{Proxy Superior Predictive Ability (PSPA)} & \quad \begin{cases}
H_0 : \mathbb{E} [\hat{f}^*_T] \leq \chi, \\
H_a : \lim \inf_{T \to \infty} \mathbb{E}[\hat{f}^*_j,T] > \chi_j \text{ for some } j \in \{1, \ldots, \kappa_f\}.
\end{cases}
\end{align*}
\]

(2.5)

These hypotheses are not of immediate economic relevance, because economic agents are, by assumption, interested in forecasting the true target \(Y^\dagger_{t+\tau}\), rather than its proxy.\(^4\)

Below, we provide conditions under which the moments that define the proxy hypotheses converge “sufficiently fast” to their equivalents under the true hypotheses, so that tests that are valid under the former are also valid under the latter. The key step in this analysis is to characterize the approximation accuracy of \(Y_t\) with respect to \(Y^\dagger_t\). In this paper, we are mainly interested in cases where \(Y^\dagger_t\) is a latent risk measure that takes form of a functional of the stochastic volatility and/or jumps of continuous-time asset price processes, with \(Y^\dagger_t\) being the corresponding nonparametric estimator formed using discretely sampled data at high frequency. We now turn to the formal probabilistic setting for the high-frequency asset price data.

2.2 The underlying asset price process

In this subsection, we describe the continuous-time model for the underlying (logarithmic) asset price process \(X_t\). Our basic assumption is that \(X_t\) is a \(d\)-dimensional Itô semimartingale defined on a filtered probability space \((\Omega, \mathcal{F}, \mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) with the following form

\[
X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + \int_0^t \delta (s, z) 1_{\{|\delta(s,z)| \leq 1\}} \tilde{\mu} (ds, dz) + \int_0^t \int_\mathbb{R} \delta (s, z) 1_{\{|\delta(s,z)| > 1\}} \mu (ds, dz),
\]

where \(b_t\) is a \(d\)-dimensional càdlàg adapted process, \(W_t\) is a \(d'\)-dimensional standard Brownian motion, \(\sigma_t\) is a \(d \times d'\) stochastic volatility process, \(\delta : \Omega \times \mathbb{R}_+ \times \mathbb{R} \mapsto \mathbb{R}^{d}\) is a predictable function,

\(^4\)A key motivation of our analysis is that while a high-frequency estimator of the latent variable is used by the forecaster for evaluation (and potentially estimation), the estimator is not the variable of interest. If the estimator is taken as the target variable, then no issues about the latency of the target variable arise, and existing predictive ability tests may be applied without modification. It is only in cases where the variable of interest is unobservable that further work is required to justify the use of an estimator of the latent target variable in predictive ability tests.
\(\mu \) is a Poisson random measure on \(\mathbb{R}_+ \times \mathbb{R} \) with compensator \(\nu(ds,dz) = ds \otimes \lambda(dz) \) for some \(\sigma \)-finite measure \(\lambda \), and \(\bar{\mu} \equiv \mu - \nu \). Itô semimartingales are widely used for modeling asset prices in financial economics and econometrics; see, for example, Duffie (2001), Singleton (2006) and Jacod and Protter (2012).

The diffusive risk and the jump risk in \(X_t \) are respectively captured by the spot covariance matrix \(c_t \equiv \sigma_t \sigma_t^\top \) and the jump process \(\Delta X_t \equiv X_t - X_{t-} \), where \(X_{t-} \equiv \lim_{s \uparrow t} X_s \). In practice, these risks are often summarized as various functionals of the processes \(c_t \) and \(\Delta X_t \), which play the role of the latent forecast target \(Y_t^\dagger \) in our analysis.

To simplify the discussion, we normalize the unit of time to be one day. For each day \(t \), the process \(X \) is sampled at deterministic discrete times \(t - 1 = \tau(t,0) < \cdots < \tau(t,n_t) = t \), where \(n_t \) is the number of intraday returns. Moreover, we set \(d_{t,i} = \tau(t,i) - \tau(t,i-1) \) and denote the sampling mesh by \(d_t = \max_{1 \leq i \leq n_t} d_{t,i} \). The basic assumption on the sampling scheme is that \(d_t \) should be “small” in the prediction sample, as formalized below.

Assumption S: \(d_T \to 0 \) and \(d_T = O(n_T^{-1}) \) as \(T \to \infty \).

Assumption S posits that the sampling mesh and the sample span \(T \) respectively go to 0 and \(\infty \) in a joint, rather than a sequential, way. Under this condition, we characterize the rate of convergence of various high-frequency proxies in Section 3. This sampling scheme is essentially the same as the “double asymptotic” setting considered by Corradi and Distaso (2006) and Todorov (2009), among others. Indeed, the latter amounts to setting \(d_{t,i} \) to be a constant \(\Delta \), so that Assumption S posits \(\Delta \to 0 \) and \(T \to \infty \) asymptotically. Allowing for time-varying sampling incurs no additional cost in our derivation, but is conceptually desirable in practice. As the trading activity has grown substantially over the past two decades, later samples have a much larger number of, and less noisy, intradaily observations than those in earlier samples, so it is generally more efficient to sample more frequently in later samples (Aït-Sahalia, Mykland, and Zhang (2005), Zhang, Mykland, and Aït-Sahalia (2005a), Bandi and Russell (2008)). This setting is also aligned naturally with the focal point of our approximation argument: we are interested in using the proxy \(Y_{t+t} \) to approximate the true target \(Y_{t+t}^\dagger \) in the prediction sample (i.e., \(t \in \{R, \ldots, T\} \)) for evaluation, while being agnostic about the regression sample (i.e., \(t < R \)).

We need the following regularity condition for the process \(X_t \).

Assumption HF: Suppose that the following conditions hold for constants \(r \in (0,2], k \geq 2 \) and \(C > 0 \).
(i) The process σ_t is a $d \times d'$ Itô semimartingale with the form
\[
\sigma_t = \sigma_0 + \int_0^t \tilde{b}_s ds + \int_0^t \tilde{\sigma}_s dW_s + \int_0^t \int_\mathbb{R} \tilde{\delta}(s, z) \tilde{\mu}(ds, dz),
\]
where \tilde{b} is a $d \times d'$ càdlàg adapted process, $\tilde{\sigma}$ is a $d \times d' \times d'$ càdlàg adapted process and $\tilde{\delta}(\cdot)$ is a $d \times d'$ predictable function on $\Omega \times \mathbb{R}_+ \times \mathbb{R}$.

(ii) For some nonnegative deterministic functions $\Gamma(\cdot)$ and $\tilde{\Gamma}(\cdot)$ on \mathbb{R}, we have $\|\delta(\omega, s, z)\| \leq \Gamma(z)$ and $\|\tilde{\delta}(\omega, s, z)\| \leq \tilde{\Gamma}(z)$ for all $(\omega, s, z) \in \Omega \times \mathbb{R}_+ \times \mathbb{R}$ and
\[
\begin{align*}
\int_\mathbb{R} (\Gamma(z)^r \wedge 1) \lambda(dz) &+ \int_\mathbb{R} \Gamma(z)^k 1_{\{\Gamma(z) > 1\}} \lambda(dz) < \infty, \\
\int_\mathbb{R} (\tilde{\Gamma}(z)^2 + \tilde{\Gamma}(z)^k) \lambda(dz) &< \infty.
\end{align*}
\]

(iii) Let $b'_s = b_s - \int_\mathbb{R} \delta(s, z) 1_{\{\|\delta(s, z)\| \leq 1\}} \lambda(ds)$ if $r \in (0, 1]$ and $b'_s = b_s$ if $r \in (1, 2]$. We have for all $s \geq 0$,
\[
\mathbb{E}\|b'_s\|^k + \mathbb{E}\|\sigma_s\|^k + \mathbb{E}\|\tilde{b}_s\|^k + \mathbb{E}\|\tilde{\sigma}_s\|^k \leq C.
\]

Assumption HF(i) posits that the stochastic volatility process σ_t is also an Itô semimartingale. Assumption HF(ii) imposes a type of dominance condition on the random jump size for the price and the volatility. The constant r provides an upper bound for the generalized Blumenthal-Getoor index, or “activity,” of jumps in X. The assumption is weaker when r is larger, in which case it is more difficult to separate jumps from the diffusive component of X_t. We do not need to restrict the activity of volatility jumps. The kth-order integrability of $\Gamma(\cdot)$ and $\tilde{\Gamma}(\cdot)$ places restrictions on jump tails and it facilitates the derivation of bounds via sufficiently high moments. Assumption HF(iii) imposes integrability conditions that serve the same purpose.

3 High-frequency proxies and their accuracy

In this section, we introduce proxies Y_t for various risk measures Y_t^\dagger and provide convergence rate results under the L_p norm. Sections 3.1–3.3 consider three general classes of proxies and Section 3.4 considers some additional important examples. We show that $\|Y_t - Y_t^\dagger\|_p \leq Kd_\theta^p$ for constants K and θ, where the rate θ varies across these settings. These results are the main technical contribution of the current paper and are essential for interpreting the regularity conditions and, ultimately, the asymptotic negligibility result in Section 4. We stress that, unlike the existing convergence rate results under the fixed-T setting (see, e.g., Jacod and Protter (2012)), we consider
rate results that are valid in the large-\(T\) setting, which demands different conditions and proofs. Below, for each \(t \geq 1\) and \(i \geq 1\), we denote the \(i\)th return of \(X\) in day \(t\) by \(\Delta_{t,i}X\), that is, \(\Delta_{t,i}X \equiv X_{\tau(t,i)} - X_{\tau(t,i-1)}\). We suppose that the sampling mesh sequence \((d_t)_{t \geq 0}\) satisfies Assumption S throughout this section.

3.1 Generalized realized variations for continuous processes

We start with the basic setting with \(X\) continuous; the continuity condition will be relaxed in later subsections. We consider the following general class of estimators: for any measurable function \(g : \mathbb{R}^d \mapsto \mathbb{R}\), we set

\[
\widehat{I}_t (g) \equiv \sum_{i=1}^{n_t} g(\Delta_{t,i}X/d_{t,i})d_{t,i}.
\]

We also associate \(g\) with the following function: for any \(d \times d\) positive semidefinite matrix \(A\), we set \(\rho (A; g) \equiv \mathbb{E}[g(U)]\) for \(U \sim \mathcal{N} (0, A)\), provided that the expectation is well-defined. Theorem 3.1 below provides a bound for the approximation error between the proxy \(Y_t = \widehat{I}_t (g)\) and the target variable \(Y_t^\dagger = I_t (g) \equiv \int_{t-1}^{t} \rho (c_s; g)\)\(ds\).

In many applications, the function \(\rho (\cdot; g)\) and, hence, \(I_t (g)\) can be expressed in closed form. For example, in the scalar case (i.e., \(d = 1\)), if we take \(g(x) = |x|^a / m_a\) for some \(a \geq 2\), where \(m_a\) is the \(a\)th absolute moment of a standard normal variable, then \(I_t (g) = \int_{t-1}^{t} c_s^{a/2} ds\); the integrated variance is a special case with \(a = 2\). Another univariate example is to take \(g(x) = \cos (\sqrt{2ux})\), \(u > 0\), yielding \(I_t (g) = \int_{t-1}^{t} \exp (-uc_s) ds\). In this case, \(\widehat{I}_t (g)\) is the realized Laplace transform of volatility (Todorov and Tauchen (2012)) and \(I_t (g)\) is the Laplace transform of the volatility occupation density which captures the distributional information of volatility. A simple bivariate example is \(g(x_1, x_2) = x_1 x_2\), which leads to \(I_t (g) = \int_{t-1}^{t} c_{12,s} ds\), that is, the integrated covariance between the two components of \(X_t\); see Barndorff-Nielsen and Shephard (2004a).

Theorem 3.1. Let \(p \in [1, 2]\) and \(C > 0\) be constants. Suppose (i) \(X_t\) is continuous; (ii) \(g(\cdot)\) and \(\rho (\cdot; g)\) are continuously differentiable and, for some \(q \geq 0\), \(\| \partial_x g (x) \| \leq C (1 + \| x \|^q)\) and \(\| \partial_A \rho (A; g) \| \leq C (1 + \| A \|^{q/2})\); (iii) Assumption HF with \(k \geq \max \{ 2q/p , 2, 4 \}\); (iv) \(\mathbb{E}[\rho (c_s; g^2)] \leq C\) for all \(s \geq 0\). Then \(\| \widehat{I}_t (g) - I_t (g) \| \leq K d_t^{1/2}\) for some constant \(K > 0\) and all \(t\).

3.2 Jump-robust proxies for integrated volatility functionals

We now turn to a general setting in which \(X_t\) may have jumps. In this subsection, we consider jump-robust proxies for risk measures with the form \(I_t (g) = \int_{t-1}^{t} g(c_s) ds\), where \(g : \mathbb{R}^{d \times d} \mapsto \mathbb{R}\)
is a twice continuously differentiable function with at most polynomial growth. This class of risk factors is quite general: integrated variance and covariance, integrated quarticity, and volatility Laplace and Fourier transforms are special cases.

In order to construct a jump-robust proxy for \(I^\star_t(g) \), we first nonparametrically recover the spot covariance process by using a spot truncated covariation estimator given by

\[
\hat{c}_{\tau(t,i)} = \frac{1}{k_t} \sum_{j=1}^{k_t} d_t^{-1} \Delta_{t,i+j} X \Delta_{t,i+j} X^T 1\{\|\Delta_{t,i+j} X\| \leq \tilde{\alpha} d_t \varpi\},
\]

where \(\tilde{\alpha} > 0 \) and \(\varpi \in (0, 1/2) \) are constant tuning parameters, and \(k_t \) is an integer that specifies the local window for the spot covariance estimation and may vary across days. We consider the sample analogue of \(I^\star_t(g) \) as its proxy, that is,

\[
\hat{I}^\star_t(g) = \sum_{i=0}^{n_t-k_t} g(\hat{c}_{\tau(t,i)}) d_t,i.
\]

Theorem 3.2. Let \(q \geq 2 \), \(p \in [1, 2) \) and \(C > 0 \) be constants. Suppose (i) \(g \) is twice continuously differentiable and \(\|\partial^j g(x)\| \leq C(1 + \|x\|^{q-j}) \) for \(j \in \{0, 1, 2\} \); (ii) \(k_t \sim d_t^{-1/2} \); (iii) Assumption HF with \(k \geq \max\{4q, 4p(q-1)/(2-p), (1-\varpi r)/(1/2-\varpi)\} \) and \(r \in (0, 2) \). We set \(\theta_1 = 1/(2 p) \) in the general case and \(\theta_1 = 1/2 \) if we further assume that \(\sigma_t \) is continuous. We also set \(\theta_2 = \min\{1-\varpi r + q(2\varpi - 1), 1/r - 1/2\} \). Then \(\|\hat{I}^\star_t(g) - I^\star_t(g)\|_p \leq K d_t^{\theta_1 \wedge \theta_2} \) for some constant \(K \) and all \(t \).

Comments. (i) The rate exponent \(\theta_1 \) is associated with the contribution from the continuous component of \(X_t \). The exponent \(\theta_2 \) captures the approximation error due to the elimination of jumps. If we further impose \(r < 1 \) and \(\varpi \in [(q-1/2)/(2q-r), 1/2) \), then \(\theta_2 \geq 1/2 \geq \theta_1 \). That is, the presence of “inactive” jumps does not affect the rate of convergence, provided that the jumps are properly truncated.

(ii) Jacod and Rosenbaum (2013) characterize the limit distribution of \(\hat{I}^\star_t(g) \) under the in-fill asymptotic setting with a fixed time span, under the assumption that \(g \) is three-times continuously differentiable and \(r < 1 \). Here, we obtain the same rate of convergence under the \(L_1 \) norm, and under the \(L_p \) norm if \(\sigma_t \) is continuous, in a setting with \(d_T \to 0 \) and \(T \to \infty \). Our results also cover the case with active jumps, that is, the setting with \(r \geq 1 \).

\(^5\)Spot variance estimators can be dated back to Foster and Nelson (1996) and Comte and Renault (1998); also see Kristensen (2010) and references therein. The truncation technique was proposed by Mancini (2001) for the estimation of integrated variance. The spot truncated covariation estimator appeared in Chapter 9 of Jacod and Protter (2012), although they have been considered as auxiliary results in other contexts (see, e.g., Aït-Sahalia and Jacod (2009)).
3.3 Functionals of price jumps

In this subsection, we consider jump risk measures. The target variable of interest takes the form $J_t(g) = \sum_{t-1<s\leq t} g(\Delta X_s)$ for some function $g : \mathbb{R}^d \rightarrow \mathbb{R}$. The proxy is the sample analogue estimator $\hat{J}_t(g) = \sum_{i=1}^{n_t} g(\Delta_{t,i}X)$. Basic examples include unnormalized realized skewness ($g(x) = x^3$), kurtosis ($g(x) = x^4$), coskewness ($g(x_1, x_2) = x_1^2 x_2$) and cokurtosis ($g(x_1, x_2) = x_1^2 x_2^2$). See Amaya, Christoffersen, Jacobs, and Vasquez (2011) for applications of these risk factors.

Theorem 3.3. Let $p \in [1,2)$ and $C > 0$ be constants. Suppose (i) g is twice continuously differentiable; (ii) for some $q_2 \geq q_1 \geq 3$, we have $\|\partial^j g(x)\| \leq C(\|x\|^{q_1-j} + \|x\|^{q_2-j})$ for all $x \in \mathbb{R}^d$ and $j \in \{0,1,2\}$; (iii) Assumption HF with $k \geq \max\{2q_2, 4p/(2-p)\}$. Then $\|\hat{J}_t(g) - J_t(g)\|_p \leq Kd_t^{1/2}$ for some constant K and all t.

Comment. The polynomial $\|x\|^{q_i-j}$ in condition (ii) bounds the growth of $g(\cdot)$ and its derivatives near zero. This condition ensures that the contribution of the continuous part of X to the approximation error is dominated by the jump part of X. This condition can be relaxed at the cost of a more complicated expression for the rate. The polynomial $\|x\|^{q_2-j}$ controls the growth of $g(\cdot)$ near infinity so as to tame the effect of big jumps.

3.4 Additional special examples

We now consider a few special examples which are not covered by Theorems 3.1–3.2. In the first example, the true target is the daily quadratic covariation matrix QV_t of the process X, that is, $QV_t = \int_{t-1}^t \sigma_s ds + \sum_{t-1<s\leq t} \Delta X_s \Delta X_s^\top$. The associated proxy is the realized covariation matrix

$$RV_t = \sum_{i=1}^{n_t} \Delta_{t,i}X \Delta_{t,i}X^\top. \quad (3.2)$$

Theorem 3.4. Let $p \in [1,2)$. Suppose Assumption HF with $k \geq \max\{2p/(2-p), 4\}$. Then $\|RV_t - QV_t\|_p \leq Kd_t^{1/2}$ for some K and all t.

Second, we consider the bipower variation of Barndorff-Nielsen and Shephard (2004b) for univariate X that is defined as

$$BV_t = \frac{n_t}{n_t - 1} \frac{\pi}{2} \sum_{i=1}^{n_t-1} d_{t,i}^{-1/2} \Delta_{t,i}X ||d_{t,i+1}^{-1/2} \Delta_{t,i+1}X||. \quad (3.3)$$

This estimator serves as a proxy for the integrated variance $\int_{t-1}^t c_s ds$.

13
Theorem 3.5. Let p and p' be constants such that $1 \leq p < p' \leq 2$. Suppose that Assumption HF holds with $d = 1$ and $k \geq \max\{pp'/(p' - p), 4\}$. We have, for some K and all t, (a) $\|BV_t - \int_{t-1}^t c_s ds\|_p \leq Kd_t^{(1/r)(1/p') - 1/2}$; (b) if, in addition, X is continuous, then $\|BV_t - \int_{t-1}^t c_s ds\|_p \leq Kd_t^{1/2}$.

Comment. Part (b) shows that, when X is continuous, the approximation error of the bipower variation achieves the $\sqrt{n_t}$ rate. Part (a) provides a bound for the rate of convergence in the case with jumps. The rate is slower than that in the continuous case. The constant p' arises as a technical device in our proofs and should be chosen close to p so that the bound in part (a) is sharper. We note that, the rate in part (a) is sharper when r is smaller. In particular, with $r \leq 1$ and p' being close to 1, the bound in the jump case can be made arbitrarily close to $O(d_t^{1/2})$, at the cost of assuming higher-order moments to be finite (i.e., larger k). The slower rate in the jump case is in line with the known fact that the bipower variation estimator does not admit a CLT when X is discontinuous.\footnote{See p. 313 in Jacod and Protter (2012) and Vetter (2010).}

Finally, we consider the realized semivariance estimator proposed by Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) for univariate X. Let $\{x\}_+$ and $\{x\}_-$ denote the positive and the negative parts of $x \in \mathbb{R}$, respectively. The upside ($+$) and the downside ($-$) realized semivariances are defined as $\widehat{SV}_t^\pm = \sum_{i=1}^{n_t} (\Delta t, x)^2_\pm$, which serve as proxies for $SV_t^\pm = \frac{1}{2} \int_{t-1}^t c_s ds + \sum_{t-1<s\leq t} (\Delta X_s)^2_\pm$.

Theorem 3.6. Let p and p' be constants such that $1 \leq p < p' \leq 2$. Suppose that Assumption HF holds with $d = 1$, $r \in (0, 1]$ and $k \geq \max\{pp'/(p' - p), 4\}$. Then for some K and all t, (a) $\|SV_t^\pm - \widehat{SV}_t^\pm\|_p \leq Kd_t^{1/p'-1/2}$; (b) if, in addition, X is continuous, then $\|SV_t^\pm - \widehat{SV}_t^\pm\|_p \leq Kd_t^{1/2}$.

Comment. Part (b) shows that, when X is continuous, the approximation error of the semivariance achieves the $\sqrt{n_t}$ rate, which agrees with the rate shown in Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) under the fixed-span setting. Part (a) provides a bound for the rate of convergence in the case with jumps. The constant p' arises as a technical device in the proof. One should make it small so as to achieve a better rate, subject to the regularity condition $k \geq pp'/(p' - p)$. In particular, the rate can be made close to that in the continuous case when p', hence p too, are close to 1. Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) do not consider rate results in the case with price or volatility jumps.
4 Forecast evaluation methods with high-frequency proxies

This section presents the asymptotic properties of the feasible evaluation methods using proxies. In Section 4.1 we introduce high-level conditions that link many apparently distinct tests of predictive accuracy into a unified framework. In Section 4.2, we discuss regularity conditions for the asymptotic negligibility of the high-frequency proxy errors; these conditions are motivated by the convergence rate results in Section 3. Section 4.3 presents asymptotic properties of the feasible evaluation procedures.

4.1 Conditions on evaluation methods for the proxy hypotheses

In this subsection, we introduce an abstract econometric structure that is common to most forecast evaluation procedures with an observable forecast target, the role of which is played by the proxy Y_t in the setting of the current paper. These conditions speak to the proxy hypotheses PEPA and PSPA, but not the true hypotheses; conditions in Section 4.2 below fill this gap.

We consider a test statistic of the form
\[\varphi_T = \varphi(a_T(\bar{f}_T - \chi), a'_T S_T) \] (4.1)
for some measurable function $\varphi: \mathbb{R}^{k_f} \times S \mapsto \mathbb{R}$, where $a_T \to \infty$ and a'_T are known deterministic sequences, and S_T is a sequence of S-valued estimators that is mainly used for studentization.\(^7\) In almost all cases, $a_T = P^{1/2}$ and $a'_T \equiv 1$; recall that P increases with T. An exception is given by Example 4.4 below. In many applications, S_T plays the role of an estimator of some asymptotic variance, which may or may not be consistent (see Example 4.2 below); S is then the space of positive definite matrices.

Let $\alpha \in (0,1)$ be the significance level of a test. We consider a (nonrandomized) test of the form $\phi_T = 1\{\varphi_T > z_{T,1-\alpha}\}$, that is, we reject the null hypothesis when the test statistic φ_T is greater than some critical value $z_{T,1-\alpha}$. We now introduce some high-level assumptions.

Assumption A1: \((a_T(\bar{f}_T - \mathbb{E}[\bar{f}_T^*]), a'_T S_T) \xrightarrow{d} (\xi, S)\) for some deterministic sequences $a_T \to \infty$ and a'_T, and random variables (ξ, S). Here, (a_T, a'_T) may be chosen differently under the null and the alternative hypotheses, but φ_T is invariant to such choice.

Assumption A1 mainly posits that \bar{f}_T is centered at $\mathbb{E}[\bar{f}_T^*]$ with a well-behaved asymptotic distribution. Since $\mathbb{E}[\bar{f}_T^*]$ characterizes the proxy hypotheses (recall (2.4) and (2.5)), Assumption

\(^7\)The space S changes across applications, but is always implicitly assumed to be a Polish space.
A1 concerns an evaluation problem with the observed proxy instead of the latent true target. This assumption covers many existing methods that involve observable forecast targets, as we now illustrate in detail.

Example 4.1: Giacomini and White (2006) consider tests for equal predictive ability between two sequences of actual forecasts, or “forecast methods” in their terminology, assuming \(R \) fixed. In this case, \(f(Y_t, (F_{1,t}, F_{2,t})) = L(Y_t, F_{1,t}) - L(Y_t, F_{2,t}) \) for some loss function \(L(\cdot, \cdot) \). Moreover, one can set \(\beta^* \) to be empty and treat each actual forecast as an observed sequence, so \(\bar{f}_T = \bar{f}_T^* \). Using a CLT for heterogeneous weakly dependent data, one can take \(a_T = P^{1/2} \) and verify \(a_T(\bar{f}_T - E[\bar{f}_T]) \overset{d}{\rightarrow} \xi \), where \(\xi \) is centered Gaussian with long-run variance denoted by \(\Sigma \). We then set \(S = \Sigma \) and \(a'_T \equiv 1 \), and let \(S_T \) be a heteroskedasticity and autocorrelation consistent (HAC) estimator of \(S \) (Newey and West (1987), Andrews (1991)). Assumption A1 then follows from Slutsky’s lemma. Diebold and Mariano (1995) intentionally treat the actual forecasts as primitives without introducing the forecast model (and hence \(\beta^* \)); their setting is also covered by Assumption A1 by the same reasoning.

Example 4.2: Consider the same setting as in Example 4.1, but let \(S_T \) be an inconsistent long-run variance estimator of \(\Sigma \) as considered by, for example, Kiefer and Vogelsang (2005). Using their theory, we verify \((P^{1/2}(\bar{f}_T - E[\bar{f}_T]), S_T) \overset{d}{\rightarrow} (\xi, S) \), where \(S \) is a (nondegenerate) random matrix and the joint distribution of \(\xi \) and \(S \) is known, up to the unknown parameter \(\Sigma \), but is nonstandard.

Example 4.3: West (1996) considers inference for nonnested forecast models in a setting with \(R \to \infty \). West’s Theorem 4.1 shows that \(P^{1/2}(\bar{f}_T - E[\bar{f}_T^*]) \overset{d}{\rightarrow} \xi \), where \(\xi \) is centered Gaussian with its variance-covariance matrix denoted here by \(S \), which captures both the sampling variability of the forecast error and the discrepancy between \(\hat{\beta}_i \) and \(\beta^* \). We can set \(S_T \) to be the consistent estimator of \(S \) as proposed in West’s comment 6 to Theorem 4.1. Assumption A1 is then verified by using Slutsky’s lemma for \(a_T = P^{1/2} \) and \(a'_T \equiv 1 \). West’s theory relies on the differentiability of the function \(f_{t+\tau}(\cdot) \) with respect to \(\beta \) and concerns \(\hat{\beta}_i \) in the recursive scheme. Similar results allowing for a nondifferentiable \(f_{t+\tau}(\cdot) \) function can be found in McCracken (2000). Giacomini and Rossi (2009) generalize West’s theory to settings without covariance stationarity. Assumption A1 can be verified similarly in these more general settings.

Example 4.4: McCracken (2007) considers inference on nested forecast models allowing for recursive, rolling and fixed estimation schemes, all with \(R \to \infty \). The evaluation measure \(\hat{f}_{t+\tau} \) is
the difference between the quadratic losses of the nesting and the nested models. For his OOS-t test, McCracken proposes using a normalizing factor \(\hat{\Omega}_T = P^{-1} \sum_{t=R}^{T} (\hat{f}_{t+\tau} - \bar{f}_T)^2 \) and consider the test statistic \(\varphi_T \equiv \varphi(P\hat{f}_T, \hat{P}\hat{\Omega}_T), \) where \(\varphi(u, s) = u/\sqrt{s} \). Implicitly in his proof of Theorem 3.1, it is shown that under the null hypothesis of equal predictive ability, \((P(\bar{f}_T - \bar{E}[\bar{f}_T]), \hat{P}\hat{\Omega}_T) \xrightarrow{d} (\xi, S) \), where the joint distribution of \((\xi, S)\) is nonstandard and is specified as a function of a multivariate Brownian motion. Assumption A1 is verified with \(a_T = P, a'_T \equiv P \) and \(S_T = \hat{\Omega}_T \). The nonstandard rate arises as a result of the degeneracy between correctly specified nesting models. Under the alternative hypothesis, it can be shown that Assumption A1 holds for \(a_T = P^{1/2} \) and \(a'_T \equiv 1 \), as in West (1996). Clearly, the OOS-t test statistic is invariant to the change of \((a_T, a'_T)\), that is, \(\varphi_T = \varphi(P^{1/2}\hat{f}_T, \hat{\Omega}_T) \) holds. Assumption A1 can also be verified for various extensions of McCracken (2007); see, for example, Inoue and Kilian (2004), Clark and McCracken (2005) and Hansen and Timmermann (2012).

Example 4.5: White (2000) considers a setting similar to West (1996), with an emphasis on considering a large number of competing forecasts, but uses a test statistic without studentization. Assumption A1 is verified similarly as in Example 4.3, but with \(S_T \) and \(S \) being empty.

Assumption A2: \(\varphi(\cdot, \cdot) \) is continuous almost everywhere under the law of \((\xi, S)\).

Assumption A2 is satisfied by all standard test statistics used in forecast evaluation: for simple pair-wise forecast comparisons, the test statistic usually takes the form of \(t \)-statistic, that is, \(\varphi_{t\text{-stat}}(\xi, S) = \xi/\sqrt{S} \). For joint tests it may take the form of a Wald-type statistic, \(\varphi_{\text{Wald}}(\xi, S) = \xi^\top S^{-1} \xi \), or a maximum over individual (possibly studentized) test statistics \(\varphi_{\text{Max}}(\xi, S) = \max_i \xi_i \) or \(\varphi_{\text{StuMax}}(\xi, S) = \max_i \xi_i / \sqrt{S_i} \).

Assumption A2 imposes continuity on \(\varphi(\cdot, \cdot) \) in order to facilitate the use of the continuous mapping theorem for studying the asymptotics of the test statistic \(\varphi_T \). More specifically, under the null hypothesis of PEPA, which is also the null least favorable to the alternative in PSPA (White (2000), Hansen (2005)), Assumption A1 implies that \((a_T(\hat{f}_T - \chi), a'_T S_T) \xrightarrow{d} (\xi, S) \). By the continuous mapping theorem, Assumption A2 then implies that the asymptotic distribution of \(\varphi_T \) under this null is \(\varphi(\xi, S) \). The critical value of a test at nominal level \(\alpha \) is given by the \(1 - \alpha \) quantile of \(\varphi(\xi, S) \), on which we impose the following condition.

Assumption A3: The distribution function of \(\varphi(\xi, S) \) is continuous at its \(1 - \alpha \) quantile \(z_{1-\alpha} \). Moreover, the sequence \(z_{T,1-\alpha} \) of critical values satisfies \(z_{T,1-\alpha} \xrightarrow{P} z_{1-\alpha} \).

The first condition in Assumption A3 is very mild. Assumption A3 is mainly concerned with
the availability of the consistent estimator of the $1 - \alpha$ quantile $z_{1-\alpha}$. This assumption is slightly stronger than what we actually need. Indeed, we only need the convergence to hold under the null hypothesis, while, under the alternative, we only need the sequence $z_{T,1-\alpha}$ to be tight.

Below, we discuss examples for which Assumption A3 can be verified.

Example 4.6: In many cases, the limit distribution of φ_T under the null of PEPA is standard normal or chi-square with some known number of degrees of freedom. Examples include tests considered by Diebold and Mariano (1995), West (1996) and Giacomini and White (2006). In the setting of Example 4.2 or 4.4, φ_T is a t-statistic or Wald-type statistic, with an asymptotic distribution that is nonstandard but pivotal, with quantiles tabulated in the original papers. Assumption A3 for these examples can be verified by simply taking $z_{T,1-\alpha}$ as the known quantile of the limit distribution.

Example 4.7: White (2000) considers tests for superior predictive ability. Under the null least favorable to the alternative, White’s test statistic is not asymptotically pivotal, as it depends on the unknown covariance matrix of the limit variable ξ. White suggests computing the critical value via either simulation or the stationary bootstrap (Politis and Romano (1994)), corresponding respectively to his “Monte Carlo reality check” and “bootstrap reality check” methods. In particular, under stationarity, White shows that the bootstrap critical value consistently estimates $z_{1-\alpha}$. Hansen (2005) considers test statistics with studentization and shows the validity of a refined bootstrap critical value, under stationarity. The validity of the stationary bootstrap holds in more general settings allowing for moderate heterogeneity (Gonçalves and White (2002), Gonçalves and de Jong (2003)). We hence conjecture that the bootstrap results of White (2000) and Hansen (2005) can be extended to a setting with moderate heterogeneity, although a formal discussion is beyond the scope of the current paper. In these cases, the simulation- or bootstrap-based critical value can be used as $z_{T,1-\alpha}$ in order to verify Assumption A3.

8One caveat is that the OOS-t statistic in McCracken (2007) is asymptotically pivotal only under the somewhat restrictive condition that the forecast errors form a conditionally homoskedastic martingale difference sequence. In the presence of conditional heteroskedasticity or serial correlation in the forecast errors, the null distribution generally depends on a nuisance parameter (Clark and McCracken (2005)). Nevertheless, the critical values can be consistently estimated via a bootstrap (Clark and McCracken (2005)) or plug-in method (Hansen and Timmermann (2012)).

9White (2000) shows the validity of the bootstrap critical value in a setting where the sampling error in $\hat{\beta}_t$ is asymptotically irrelevant (West (1996), West (2006)). Corradi and Swanson (2007) propose a bootstrap critical value in the general setting of West (1996), without imposing asymptotic irrelavance.
Finally, we need two alternative sets of assumptions on the test function $\varphi(\cdot, \cdot)$ for one-sided and two-sided tests, respectively.

Assumption B1: For any $s \in S$, we have (i) $\varphi(u, s) \leq \varphi(u', s)$ whenever $u \leq u'$, where $u, u' \in \mathbb{R}^{\kappa_f}$; (ii) $\varphi(u, \tilde{s}) \to \infty$ whenever $u_j \to \infty$ for some $1 \leq j \leq \kappa_f$ and $\tilde{s} \to s$.

Assumption B2: For any $s \in S$, $\varphi(u, \tilde{s}) \to \infty$ whenever $\|u\| \to \infty$ and $\tilde{s} \to s$.

Assumption B1(i) imposes monotonicity on the test statistic as a function of the evaluation measure, and is used for size control in the PSPA setting. Assumption B1(ii) concerns the consistency of the test against the one-sided alternative and is easily verified for commonly used one-sided test statistics, such as φ_{t-stat}, φ_{Max} and φ_{StuMax} described in the comment following Assumption A2. Assumption B2 serves a similar purpose for two-sided tests, and is also easily verifiable.

4.2 Conditions for the asymptotic negligibility of proxy errors

In this subsection, we discuss the key condition that fills the gap between the proxy hypotheses and the true hypotheses. That is, their difference $E[\bar{f}^*_T] - E[\bar{f}^\dagger_*]$ goes to zero slightly faster than the sampling variability in the feasible test, so that the difference is negligible for asymptotic inference. The formal condition is given by Assumption C below, where a_T is given by Assumption A1.

Assumption C: $a_T(E[\bar{f}^*_T] - E[\bar{f}^\dagger_*]) \to 0$.

Assumption C is closely related to the convergence rate results in Section 3. We have shown that for $p \in [1, 2)$ and $\theta > 0$,

$$\|Y_t - Y^\dagger_t\|_p \leq Kd^\theta_t,$$

(4.2)

for various risk measures and proxies, where θ indicates the approximation accuracy. Given these technical results, Assumption C mainly requires that the sequence $(d_t)_{t \geq 1}$ of sampling meshes goes to zero sufficiently fast relative to $T \to \infty$, provided that the evaluation measure $f(\cdot)$ is smooth in the target variable. We illustrate the verification of Assumption C by examples, where K denotes a constant that may vary from line to line. We also remind the reader that $P \asymp T$ is a maintained assumption and, for the known examples in Section 4.1, $a_T = T^\iota$ for $\iota = 1/2$ or 1.

Example 4.8: Consider a forecast comparison setting with the evaluation measure being the loss differential of two competing forecasts, that is, $f(Y_t, (F_{1t}, F_{2t})) = L(Y_t - F_{1t}) - L(Y_t - F_{2t})$, where $L(\cdot)$ is a loss function. If $L(\cdot)$ is Lipschitz (e.g. Lin-Lin loss), then $|f(Y_t, (F_{1t}, F_{2t})) -$
\[f(Y_t^\dagger, (F_{1,t}, F_{2,t})) \leq K\|Y_t^\dagger - Y_t\|. \] Under (4.2),
\[
|a_T(E[\hat{f}_T^*] - E[F_T^*])| \leq K a_T P^{-1} \sum_{t=R}^T d_t^\theta \leq K T^{\alpha-1} \sum_{t=1}^T d_t^\theta. \tag{4.3}
\]
By Kronecker’s Lemma, the bound in (4.3) goes to zero if \(\sum_{t=1}^T t^{\alpha-1}d_t^\theta < \infty \). This summability condition implicitly restricts the rate at which \(d_T \rightarrow 0 \). It is satisfied if \(d_T = O(T^{-\eta/\theta}(\log T)^{-1/\theta-\eta}) \) for some \(\eta > 0 \) that is arbitrarily small but fixed; see Theorem 2.31 in Davidson (1994). More specifically, if we have \(\iota = 1/2 \) and \(\theta = 1/2 \) as in many basic cases, the sufficient condition for Assumption C amounts to letting the high-frequency mesh go to zero slightly faster than \(T^{-1} \).

Example 4.9: Non-Lipschitz loss functions can also be accommodated. Consider the same setting as in Example 4.8 but with \(L(\cdot) \) being the quadratic loss (i.e., \(L(x) = x^2 \)). We have
\[f(Y_t, (F_{1,t}, F_{2,t})) - f(Y_t^\dagger, (F_{1,t}, F_{2,t})) = 2(Y_t - Y_t^\dagger)(F_{2,t} - F_{1,t}). \]
Suppose \(\sup_{t \geq 1}(\|F_{1,t}\|_q + \|F_{2,t}\|_q) < \infty \) for \(q = p/(p-1) \).\(^{10}\) By (4.2) and Hölder’s inequality, we have (4.3). As in Example 4.8, Assumption C is implied by the same conditions on \((d_t)_{t \geq 1} \) discussed there.

As shown in Examples 4.8 and 4.9, the bound (4.2) facilitates the interpretation of Assumption C as a condition on the relative rates of the high-frequency mesh and the time span. This condition is weaker when \(\theta \) is higher (i.e., more accurate proxies) and when \(a_T \) diverges more slowly (i.e., larger sampling uncertainty in the out-of-sample testing problem). Besides the examples in Section 3, additional results known in the literature can also be invoked for establishing (4.2). For example, Corradi and Distasio (2006) and Corradi, Distasio, and Swanson (2009, 2011) consider various proxies for the integrated variance which are robust to certain types of microstructure noise. These authors show that the two-scale realized variance (Zhang, Mykland, and Aït-Sahalia (2005b)), the multi-scale realized variance (Zhang (2006)) and the realized kernel (Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)) satisfy (4.2) with \(\theta = 1/6, 1/4 \) and \(1/4 \), respectively.\(^{11}\)

Finally, we note that the convergence rate condition (4.2) is stable under Hölder-continuous transforms. Indeed, if \(H(\cdot) \) is a Hölder-continuous function with exponent \(h \in (0, 1] \), then it is easy to see that \(\|H(Y_t) - H(Y_t^\dagger)\|_p \leq K\|Y_t - Y_t^\dagger\|_p^h \|H(\cdot)\|_p^0 \). Hence, applying (4.2) under the \(L_{hp} \)-norm further implies \(\|H(Y_t) - H(Y_t^\dagger)\|_p \leq K d_t^{\theta h} \). Existing convergence rates results such as those derived in

\(^{10}\)Uniform boundedness on moments are commonly used for deriving asymptotic results for heterogeneous data; see, for example, White (2001). This condition is trivially satisfied if the forecasts \(F_{1,t} \) and \(F_{2,t} \) are bounded (e.g., forecasts for correlations).

\(^{11}\)See Propositions 3–6 in Corradi, Distasio, and Swanson (2009) and Lemma 1 in Corradi, Distasio, and Swanson (2011) for more details.
Section 3 can be “mixed and matched” to derive similar results for transformed proxies. A concrete example is given below.

Example 4.10: Consider correlation forecasting for a bivariate asset price process $X_t = (X_{1t}, X_{2t})$. Let $Y^\dagger_t = \int_{t-1}^t c_s ds$ be the integrated covariance matrix and Y_t be a proxy of it (see, e.g., Theorems 3.1 and 3.2). For some (small) constant $c > 0$, we consider a transform $H(\cdot; c)$ given by

$$H(Y_t; c) = \frac{Y_{12}}{\sqrt{(Y_{11} \vee c)(Y_{22} \vee c)}}.$$

We consider $H(Y^\dagger_t; c)$ as a measure for the correlation. Note that the integrated correlation considered by Barndorff-Nielsen and Shephard (2004a) is $H(Y^\dagger_t; 0)$. Our motivation of considering $H(Y^\dagger_t; c)$ for $c > 0$ is that the transform $H(\cdot; c)$ is Lipschitz continuous, so that (4.2) implies $\|H(Y_t; c) - H(Y^\dagger_t; c)\|_p \leq K d^\theta t$ without further assumptions. This slight modification of the integrated correlation is hardly consequential in practical terms. Indeed, if we assume that the spot volatility processes $\sqrt{c_{11}} t$ and $\sqrt{c_{22}} t$ are bounded below by \sqrt{c} (say, 0.1% in annualized terms), then $H(Y^\dagger_t; c) = H(Y^\dagger_t; 0)$ identically.

4.3 Asymptotic properties of the feasible inference procedure

Under the conditions discussed in Sections 4.1 and 4.2, Proposition 4.1 shows that the feasible test ϕ_T is valid under the true hypotheses.

Proposition 4.1. The following statements hold under Assumptions A1–A3 and C.

(a) Under the EPA setting (2.2), $\mathbb{E} \phi_T \rightarrow \alpha$ under H^\dagger_0. If Assumption B1(ii) (resp. B2) holds in addition, we have $\mathbb{E} \phi_T \rightarrow 1$ under H^\dagger_{1a} (resp. H^\dagger_{2a}).

(b) Under the SPA setting (2.3) and Assumption B1, we have $\limsup_{T \rightarrow \infty} \mathbb{E} \phi_T \leq \alpha$ under H^\dagger_0 and $\mathbb{E} \phi_T \rightarrow 1$ under H^\dagger_{1a}.

It can be shown that the test ϕ_T satisfies the same asymptotic level and power properties under the proxy hypotheses, without requiring Assumption C. Assumption C is needed for deriving asymptotic properties of ϕ_T under the true hypotheses. In particular, Proposition 4.1 shows that the level and power properties of the test are the same for the true and the proxy hypotheses. In this sense, the proxy error is negligible for the asymptotic inference about predictive accuracy.

The result established in Proposition 4.1 is a form of weak negligibility for the proxy error, in the sense that it only concerns the rejection probability. An alternative notion of negligibility
can be framed as follows. Let ϕ_T^\dagger be a nonrandomized test that is constructed in the same way as ϕ_T but with $Y_{t+\tau}$ replaced by $Y_{t+\tau}^\dagger$. That is, ϕ_T^\dagger is the infeasible test one would use if one could observe the true forecast target. We may consider the difference between the proxy and the target negligible in a \textit{strong} sense if $P(\phi_T = \phi_T^\dagger) \to 1$.\footnote{Since the tests take values in $\{0, 1\}$, $P(\phi_T = \phi_T^\dagger) \to 1$ is equivalent to $\phi_T - \phi_T^\dagger \overset{p}{\rightarrow} 0$.} It is obvious that strong negligibility implies weak negligibility. While the strong negligibility may seem to be a reasonable result to pursue, we note that the weak negligibility better suits, and is sufficient for, the testing context considered here. Strong negligibility requires the feasible and infeasible test decisions to agree, which may be too much to ask: for example, this would demand ϕ_T to equal ϕ_T^\dagger even if ϕ_T^\dagger commits a false rejection.

Similar to our negligibility result, West (1996) defines cases exhibiting “asymptotic irrelevance” as those in which valid inference about predictive accuracy can be made while ignoring the presence of parameter estimation error $\hat{\beta}_t - \beta^\ast$. Our negligibility result is very distinct from West’s result: here, the unobservable quantity is a latent stochastic process $(Y_{t}^\dagger)_{t \geq 1}$ that grows in T as $T \rightarrow \infty$, while in West’s setting it is a fixed deterministic and finite-dimensional parameter β^\ast. Unlike West’s (1996) case, where a correction can be applied when the asymptotic irrelevance condition (w.r.t. β^\ast) is not satisfied, no such correction (w.r.t. Y_{t}^\dagger) is readily available in our application, nor in that of Corradi and Distaso (2006), among others.

\section{Extensions: additional forecast evaluation methods}

In this section we discuss several extensions of our baseline result (Proposition 4.1). We first consider tests for instrumented conditional moment equalities, as in Giacomini and White (2006). We then consider stepwise evaluation procedures that include the multiple testing method of Romano and Wolf (2005) and the model confidence set of Hansen, Lunde, and Nason (2011). Our purpose is twofold: one is to facilitate the application of these methods in the context of forecasting latent risk measures, the other is to demonstrate the generalizability of the framework presented above through known, but distinct, examples. The stepwise procedures (Romano and Wolf (2005), Hansen, Lunde, and Nason (2011)) each involve some method-specific aspects that are not used elsewhere in the paper; hence, for the sake of readability, we only briefly discuss the results here, and present the details (assumptions, algorithms and formal results) in the Supplement to this paper.
5.1 Tests for instrumented conditional moment equalities

Many interesting forecast evaluation problems can be stated as a test for the conditional moment equality:

\[H_0^t : \mathbb{E}[g(Y_t^{t+\tau}, F_{t+\tau}(\beta^*))|\mathcal{H}_t] = 0, \quad \text{all } t \geq 0, \quad (5.1) \]

where \(\mathcal{H}_t \) is a sub-\(\sigma \)-field that represents the forecast evaluator’s information set at day \(t \), and \(g(\cdot, \cdot) : \mathcal{Y} \times \mathcal{Y}^k \rightarrow \mathbb{R}^{\kappa_g} \) is a measurable function. Specific examples are given below. Let \(h_t \) denote a \(\mathcal{H}_t \)-measurable \(\mathbb{R}^{\kappa_h} \)-valued data sequence that serves as an instrument. The conditional moment equality (5.1) implies the following unconditional moment equality:

\[H_0^{t,h} : \mathbb{E}[g(Y_t^{t+\tau}, F_{t+\tau}(\beta^*)) \otimes h_t] = 0, \quad \text{all } t \geq 0. \quad (5.2) \]

We cast (5.2) in the setting of Section 2 by setting \(f_{t+\tau}(y, \beta) = g(y, F_{t+\tau}(\beta)) \otimes h_t \). Then the theory in Section 4 can be applied without further change. In particular, Proposition 4.1 suggests that the two-sided PEPA test (with \(\chi = 0 \)) using the proxy has a valid asymptotic level under \(H_0^t \) and is consistent against the alternative

\[H_{2a,h}^{t} : \lim_{T \rightarrow \infty} \| \mathbb{E}[g(Y_{t+\tau}^{t+\tau}, F_{t+\tau}(\beta^*)) \otimes h_t] \| > 0. \quad (5.3) \]

Examples include tests for conditional predictive accuracy and tests for conditional forecast rationality. To simplify the discussion, we only consider scalar forecasts, so \(\kappa_Y = 1 \). Below, let \(L(\cdot, \cdot) : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R} \) be a loss function, with its first and second arguments being the target and the forecast, respectively.

Example 5.1: Giacomini and White (2006) consider two-sided tests for conditional equal predictive ability of two sequences of actual forecasts \(F_{t+\tau} = (F_{1,t+\tau}, F_{2,t+\tau}) \). The null hypothesis of interest is (5.1) with \(g(Y_{t+\tau}^{t+\tau}, F_{t+\tau}(\beta^*)) = L(Y_{t+\tau}^{t+\tau}, F_{1,t+\tau}(\beta^*)) - L(Y_{t+\tau}^{t+\tau}, F_{2,t+\tau}(\beta^*)) \). Since Giacomini and White (2006) concern the actual forecasts, we set \(\beta^* \) to be empty and treat \(F_{t+\tau} = (F_{1,t+\tau}, F_{2,t+\tau}) \) as an observable sequence. Primitive conditions for Assumptions A1 and A3 can be found in Giacomini and White (2006), which involve standard regularity conditions for weak convergence and HAC estimation. The test statistic is of Wald-type and readily verifies Assumptions A2 and B2. As noted by Giacomini and White (2006), their test is consistent against the alternative (5.3) and the power generally depends on the choice of \(h_t \).

Example 5.2: The population forecast \(F_{t+\tau}(\beta^*) \), which is also the actual forecast if \(\beta^* \) is empty, is rational with respect to the information set \(\mathcal{H}_t \) if it solves \(\min_{F \in \mathcal{H}_t} \mathbb{E}[L(Y_{t+\tau}^{t+\tau}, F)|\mathcal{H}_t] \)
almost surely. Suppose that \(L(y, F) \) is differentiable in \(F \) for almost every \(y \in \mathcal{Y} \) under the conditional law of \(Y_{t+\tau}^\dagger \) given \(\mathcal{H}_t \), with the partial derivative denoted by \(\partial_F L(\cdot, \cdot) \). As shown in Patton and Timmermann (2010), a test for conditional rationality can be carried out by testing the first-order condition of the minimization problem. That is to test the null hypothesis (5.1) with \(g(Y_{t+\tau}^\dagger, F_{t+\tau}(\beta^*)) = \partial_F L(Y_{t+\tau}^\dagger, F_{t+\tau}(\beta^*)) \). The variable \(g(Y_{t+\tau}^\dagger, F_{t+\tau}(\beta^*)) \) is the generalized forecast error (Granger (1999)). In particular, when \(L(y, F) = (F - y)^2/2 \), that is, the quadratic loss, we have \(g(Y_{t+\tau}^\dagger, F_{t+\tau}(\beta^*)) = F - y \); in this case, the test for conditional rationality is reduced to a test for conditional unbiasedness. Tests for unconditional rationality and unbiasedness are special cases of their conditional counterparts, with \(\mathcal{H}_t \) being the degenerate information set.

5.2 Stepwise multiple testing procedure for superior predictive accuracy

In the context of forecast evaluation, the multiple testing problem of Romano and Wolf (2005) consists of \(\bar{k} \) individual testing problems of pairwise comparison for superior predictive accuracy. Let \(F_{0,t+\tau}(\cdot) \) be the benchmark forecast model and let \(f_{j,t+\tau}^\dagger = L(Y_{t+\tau}^\dagger, F_{0,t+\tau}(\beta^*)) - L(Y_{t+\tau}^\dagger, F_{j,t+\tau}(\beta^*)), 1 \leq j \leq \bar{k} \), be the relative performance of forecast \(j \) relative to the benchmark. As before, \(f_{j,t+\tau}^\dagger \) is defined using the true target variable \(Y_{t+\tau}^\dagger \). We consider \(\bar{k} \) pairs of hypotheses

\[
\text{Multiple SPA} \left\{ \begin{array}{l}
H_{j,0}^\dagger \colon \mathbb{E}[f_{j,t+\tau}^\dagger] \leq 0 \text{ for all } t \geq 1, \\
H_{j,\alpha}^\dagger \colon \liminf_{T \to \infty} \mathbb{E}[f_{j,T}^\dagger] > 0, \end{array} \right. 1 \leq j \leq \bar{k}. \tag{5.4}
\]

These hypotheses concern the true target variable and are stated in a way that allows for data heterogeneity.

Romano and Wolf (2005) propose a stepwise multiple (StepM) testing procedure that conducts decisions for individual testing problems while asymptotically control the familywise error rate (FWE), that is, the probability of any null hypothesis being falsely rejected. The StepM procedure relies on the observability of the forecast target. By imposing the condition on proxy accuracy (Assumption C), we can show that the StepM procedure, when applied to the proxy, asymptotically controls the FWE for the hypotheses (5.4) that concern the latent target. The details are in Supplemental Appendix B.1.

5.3 Model confidence sets

The model confidence set (MCS) proposed by Hansen, Lunde, and Nason (2011), henceforth HLN, can be specialized in the forecast evaluation context to construct confidence sets for superior
forecasts. To fix ideas, let $f_{j,t+\tau}^{\ast}$ denote the performance (e.g., the negative loss) of forecast j with respect to the true target variable. The set of superior forecasts is defined as

$$\mathcal{M}^{\dagger} \equiv \left\{ j \in \{1, \ldots, \bar{k}\} : \mathbb{E}[f_{j,t+\tau}^{\ast}] \geq \mathbb{E}[f_{l,t+\tau}^{\ast}] \text{ for all } 1 \leq l \leq \bar{k} \text{ and } t \geq 1 \right\}.$$

That is, \mathcal{M}^{\dagger} collects the forecasts that are superior to others when evaluated using the true target variable. Similarly, the set of asymptotically inferior forecasts is defined as

$$\mathcal{M}^{\ddagger} \equiv \left\{ j \in \{1, \ldots, \bar{k}\} : \liminf_{T \to \infty} \left(\mathbb{E}[f_{l,t+\tau}^{\ast}] - \mathbb{E}[f_{j,t+\tau}^{\ast}] \right) > 0 \right\}.$$

We are interested in constructing a sequence $\widehat{\mathcal{M}}_{T,1-\alpha}$ of $1-\alpha$ nominal level MCS's for \mathcal{M}^{\dagger} so that

$$\liminf_{T \to \infty} \left(\mathcal{M}^{\dagger} \subseteq \widehat{\mathcal{M}}_{T,1-\alpha} \right) \geq 1 - \alpha, \quad \mathbb{P}\left(\widehat{\mathcal{M}}_{T,1-\alpha} \cap \mathcal{M}^{\dagger} = \emptyset \right) \to 1. \quad (5.5)$$

That is, $\widehat{\mathcal{M}}_{T,1-\alpha}$ has valid (pointwise) asymptotic coverage and has asymptotic power one against fixed alternatives.

HLN’s theory for the MCS is not directly applicable due to the latency of the forecast target. Following the prevailing strategy of the current paper, we propose a feasible version of HLN’s algorithm that uses the proxy in place of the associated latent target. Under Assumption C, we can show that this feasible version achieves (5.5). The details are in Supplemental Appendix B.2.

6 Monte Carlo analysis

6.1 Simulation designs

We consider three simulation designs which are intended to cover some of the most common and important applications of high-frequency data in forecasting: (A) forecasting univariate volatility in the absence of price jumps; (B) forecasting univariate volatility in the presence of price jumps; and (C) forecasting correlation. In each design, we consider the EPA hypotheses, equation (2.2), under the quadratic loss for two competing one-day-ahead forecasts using the method of Giacomini and White (2006).

Each forecast is formed using a rolling scheme with window size $R \in \{250, 500, 1000\}$ days. The prediction sample contains $P \in \{500, 1000, 2000\}$ days. The high-frequency data are simulated using the Euler scheme at every second, and proxies are computed using sampling interval $\Delta = 5$ seconds, 1 minute, 5 minutes, or 30 minutes. As on the New York stock exchange, each day is
assumed to contain 6.5 trading hours. There are 1000 Monte Carlo trials in each experiment and all tests are at the 5% nominal level.

We now describe the simulation designs. Simulation A concerns forecasting the logarithm of the quadratic variation of a continuous price process. Following one of the simulation designs in Andersen, Bollerslev, and Meddahi (2005), we simulate the logarithmic price X_t and the spot variance process σ_t^2 according to the following stochastic differential equations:

$$
\begin{aligned}
&dX_t = 0.0314dt + \sigma_t(-0.5760dW_{1,t} + \sqrt{1 - 0.5760^2}dW_{2,t}) + dJ_t,
&d\log \sigma_t^2 = -0.0136(0.8382 + \log \sigma_t^2)dt + 0.1148dW_{1,t},
\end{aligned}
$$

(6.1)

where W_1 and W_2 are independent Brownian motions and the jump process J is set to be identically zero. The target variable to be forecast is $\log IV_t \equiv \log \int_t^{t+1} \sigma_s^2 ds$ and the proxy is $\log RV_{5\text{min}}^\Delta$, where $RV_{5\text{min}}^\Delta$ is defined by (3.2) for data sampled at $\Delta = 5$ seconds, 1 minute, 5 minutes, or 30 minutes.

The first forecast model in Simulation A is a GARCH(1,1) model (Bollerslev (1986)) estimated using quasi maximum likelihood on daily returns:

$$
\begin{aligned}
&r_t = X_t - X_{t-1} = \sigma_t \varepsilon_t, \quad \varepsilon_t | \mathcal{F}_{t-1} \sim \mathcal{N}(0, 1),
&\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha r_{t-1}^2.
\end{aligned}
$$

(6.2)

The second model is a heterogeneous autoregressive (HAR) model (Corsi (2009)) for $RV_{5\text{min}}^\Delta$ estimated via ordinary least squares:

$$
\begin{aligned}
&RV_{5\text{min}}^\Delta = \beta_0 + \beta_1 RV_{5\text{min}}^{\Delta t-1} + \beta_2 \sum_{k=1}^5 RV_{5\text{min}}^{\Delta t-k} + \beta_3 \sum_{k=1}^{22} RV_{5\text{min}}^{\Delta t-k} + \varepsilon_t.
\end{aligned}
$$

(6.3)

The logarithm of the one-day-ahead forecast for σ_{t+1}^2 (resp. $RV_{5\text{min}}^{\Delta t+1}$) from the GARCH (resp. HAR) model is taken as a forecast for $\log IV_{t+1}$.

In Simulation B, we also set the forecast target to be $\log IV_t$, but consider a more complicated setting with price jumps. We simulate X_t and σ_t^2 according to (6.1) and, following Huang and Tauchen (2005), we specify J_t as a compound Poisson process with intensity $\lambda = 0.05$ per day and with jump size distribution $\mathcal{N}(0.2, 1.4^2)$. The proxy for IV_t is the bipower variation $BV_{5\text{min}}^\Delta$, where $BV_{5\text{min}}^\Delta$ is defined by (3.3) for data sampled with observation mesh Δ.

The competing forecast sequences in Simulation B are as follows. The first forecast is based on a simple random walk model, applied to the 5-minute bipower variation $BV_{5\text{min}}^\Delta$:

$$
\text{Model B1: } BV_{5\text{min}}^{\Delta t+1} = BV_{5\text{min}}^{\Delta t} + \varepsilon_t, \quad \text{where } \mathbb{E}[\varepsilon_t | \mathcal{F}_{t-1}] = 0.
$$

(6.4)
The second model is a HAR model for $BV_{t}^{1\text{min}}$

Model B2:

$$
BV_{t}^{1\text{min}} = \beta_0 + \beta_1 BV_{t-1}^{1\text{min}} + \beta_2 \sum_{k=1}^{5} BV_{t-k}^{1\text{min}} + \beta_3 \sum_{k=1}^{22} BV_{t-k}^{1\text{min}} + \epsilon_t.
$$

(6.5)

The logarithm of the one-day-ahead forecast for $BV_{t+1}^{5\text{min}}$ (resp. $BV_{t+1}^{1\text{min}}$) from the random walk (resp. HAR) model is taken as a forecast for log IV_{t+1}.

Finally, we consider correlation forecasting in Simulation C. This simulation exercise is of particular interest as our empirical application in Section 7 concerns a similar forecasting problem. We adopt the bivariate stochastic volatility model used in the simulation study of Barndorff-Nielsen and Shephard (2004a). Let $W_t = (W_{1,t}, W_{2,t})$. The bivariate logarithmic price process X_t is given by

$$
dX_t = \sigma_t dW_t, \quad \sigma_t \sigma_t^\top = \begin{pmatrix} \sigma_{1,t}^2 & \rho_{1,t} \sigma_{1,t} \sigma_{2,t} \\ \rho_{1,t} \sigma_{1,t} \sigma_{2,t} & \sigma_{2,t}^2 \end{pmatrix}.
$$

Let $B_{j,t}$, $j = 1, \ldots, 4$, be Brownian motions that are independent of each other and of W_t. The process $\sigma_{1,t}^2$ follows a two-factor stochastic volatility model: $\sigma_{1,t}^2 = \nu_t + \tilde{\nu}_t$, where

$$
\begin{aligned}
d\nu_t &= -0.0429(\nu_t - 0.1110) dt + 0.2788\sqrt{\nu_t} dB_{1,t}, \\
d\tilde{\nu}_t &= -3.7400(\tilde{\nu}_t - 0.3980) dt + 2.6028\sqrt{\tilde{\nu}_t} dB_{2,t}.
\end{aligned}
$$

(6.6)

The process $\sigma_{2,t}^2$ is specified as a GARCH diffusion:

$$
d\sigma_{2,t}^2 = -0.0350(\sigma_{2,t}^2 - 0.6360) dt + 0.2360\sigma_{2,t}^2 dB_{3,t}.
$$

(6.7)

The specification for the correlation process ρ_t is a GARCH diffusion for the inverse Fisher transformation of the correlation:

$$
\begin{aligned}
\rho_t &= (e^{2y_t} - 1)/(e^{2y_t} + 1), \\
dy_t &= -0.0300 (y_t - 0.6400) dt + 0.1180 y_t dB_{4,t}.
\end{aligned}
$$

(6.8)

In this simulation design we take the target variable to be the daily integrated correlation, which is defined as

$$
IC_t \equiv \frac{QV_{12,t}}{\sqrt{QV_{11,t}QV_{22,t}}}.
$$

(6.9)

The proxy is given by the realized correlation computed using returns sampled at frequency Δ:

$$
RC_{t}^{\Delta} \equiv \frac{RV_{12,t}^{\Delta}}{\sqrt{RV_{11,t}^{\Delta}RV_{22,t}^{\Delta}}}.
$$

(6.10)
The first forecasting model is a GARCH(1,1)–DCC(1,1) model (Engle (2002)) applied to daily returns \(r_t = X_t - X_{t-1} \):

\[
\begin{align*}
Model C1: \\
\begin{cases}
r_{j,t} = \sigma_{j,t} \varepsilon_{j,t}, & \sigma_{j,t}^2 = \omega_j + \beta_j \sigma_{j,t-1}^2 + \alpha_j r_{j,t-1}^2, \text{ for } j = 1, 2, \\
\rho_t^\varepsilon \equiv \mathbb{E}[\varepsilon_{1,t} \varepsilon_{2,t} | \mathcal{F}_{t-1}] = \frac{Q_{12,t}}{\sqrt{Q_{11,t} Q_{22,t}}}, & Q_t = \begin{pmatrix} Q_{11,t} & Q_{12,t} \\ \bullet & Q_{22,t} \end{pmatrix}, \\
Q_t = \overline{Q} (1 - a - b) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top, & \varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t}).
\end{cases}
\end{align*}
\]

The forecast for \(IC_{t+1} \) is the one-day-ahead forecast of \(\hat{\rho}_{t+1}^\varepsilon \). The second forecasting model extends Model C1 by adding the lagged 30-minute realized correlation to the evolution of \(Q_t \):

\[
\begin{align*}
Model C2: \quad Q_t = \overline{Q} (1 - a - b) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top + g RC_{30min}^{30min}.
\end{align*}
\]

In each simulation, we set the evaluation function \(f(\cdot) \) to be the loss of Model 1 less that of Model 2 and conduct the one-sided EPA test (see equation (2.2)). We note that the competing forecasts are not engineered to have the same mean-squared error (MSE). Therefore, for the purpose of examining size properties of the tests, the hypotheses to be imposed are those in (2.2) with \(\chi \) being the population MSE of Model 1 less that of Model 2. We remind the reader that the population MSE is computed using the true latent target variable, whereas the feasible tests are conducted using proxies. The goal of this simulation study is to determine whether our feasible tests have finite-sample rejection rates similar to those of the infeasible tests (i.e., tests based on true target variables), and, moreover, whether these tests have satisfactory size properties under the true null hypothesis.\(^\text{13}\)

\section*{6.2 Results}

The results for Simulations A, B and C are presented in Tables 1, 2 and 3, respectively. In the top row of each panel are the results for the infeasible tests that are implemented with the true target variable, and in the other rows are the results for feasible tests based on proxies. We consider two implementations of the Giacomini–White (GW) test: the first is based on a Newey–West estimate

\(^{13}\text{Due to the complexity from the data generating processes and volatility models we consider, computing the population MSE analytically for each forecast sequence is difficult. We instead compute the population MSE by simulation, using a Monte Carlo sample of 500,000 days. Similarly, it is difficult to construct data generating processes under which two forecast sequences have identical population MSE, which motivates our considering a nonzero \(\chi \) in the null hypothesis, equation (2.2), of our simulation design. Doing so enables us to use realistic data generating processes and reasonably sophisticated forecasting models which mimic those used in prior empirical work.}
Table 1: Giacomini–White test rejection frequencies for Simulation A. The nominal size is 0.05. R is the length of the estimation sample, P is the length of the prediction sample, Δ is the sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b” asymptotics.

<table>
<thead>
<tr>
<th>Proxy RV_{t+1}^{Δ}</th>
<th>$P = 500$</th>
<th>$P = 1000$</th>
<th>$P = 2000$</th>
<th>$P = 500$</th>
<th>$P = 1000$</th>
<th>$P = 2000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = 250$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Y_{t+1}^+</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$R = 500$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Y_{t+1}^+</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>$R = 1000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Y_{t+1}^+</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Overall, we find that the rejection rates of the feasible tests based on proxies are generally very close to the rejection rates of the infeasible tests using the true forecast target, and thus of the long-run variance and critical values from the standard normal distribution. The second is based on the “fixed-b” asymptotics of Kiefer and Vogelsang (2005), using the Bartlett kernel. We denote these two implementations as NW and KV, respectively. The KV method is of interest here because of the well-known size distortion problem for inference procedures based on the standard HAC estimation theory; see Müller (2012) and references therein. We set the truncation lag to be $3P^{1/3}$ for NW and to be $0.5P$ for KV.14

14In the KV case, the one-sided critical value for the t-statistic is 2.774 at 5% level when the truncation lag is 0.5P; see Table 1 in Kiefer and Vogelsang (2005).
that our negligibility result holds well in a range of realistic simulation scenarios. The standard GW-NW method has reasonable size control in Simulations A and B, but has nontrivial size distortion for Simulation C.15 This size distortion occurs even when the true target variable is used, and is not exacerbated by the use of proxies. The GW-KV method has better size control in these simulation scenarios, being somewhat conservative in Simulations A and B, and having good rejection rates in Simulation C for $P = 1000$ and $P = 2000$. Supplemental Appendix S.C presents the reason for the large size distortion of the NW method in Simulation C appears to be the relatively high persistence in the quadratic loss differentials. In Simulations A and B, the autocorrelations of the loss differential sequence essentially vanish at about the 50th and the 30th lag, respectively, whereas in Simulation C they remain non-negligible even at the 100th lag.

\begin{table}[h]
\centering
\begin{tabular}{lcccccc}
\hline
\hline
Proxy & BV_{t+1}^{Δ} & \multicolumn{3}{c}{GW–NW} & \multicolumn{3}{c}{GW–KV} \\
\hline
True Y_{t+1}^{\dagger} & 0.08 & 0.09 & 0.07 & 0.02 & 0.01 & 0.01 \\
$\Delta = 5$ sec & 0.08 & 0.09 & 0.07 & 0.02 & 0.01 & 0.01 \\
$\Delta = 1$ min & 0.07 & 0.07 & 0.06 & 0.02 & 0.01 & 0.01 \\
$\Delta = 5$ min & 0.07 & 0.07 & 0.06 & 0.02 & 0.01 & 0.01 \\
$\Delta = 30$ min & 0.04 & 0.04 & 0.04 & 0.01 & 0.01 & 0.01 \\
\hline
\end{tabular}
\caption{Giacomini–White test rejection frequencies for Simulation B. The nominal size is 0.05, R is the length of the estimation sample, P is the length of the prediction sample, Δ is the sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b” asymptotics.}
\end{table}
<table>
<thead>
<tr>
<th>Proxy RC$^{\Delta}_{t+1}$</th>
<th>$P = 500$</th>
<th>$P = 1000$</th>
<th>$P = 2000$</th>
<th>$P = 500$</th>
<th>$P = 1000$</th>
<th>$P = 2000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Y_{t+1}</td>
<td>0.25</td>
<td>0.22</td>
<td>0.21</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.25</td>
<td>0.22</td>
<td>0.21</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.24</td>
<td>0.23</td>
<td>0.20</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.24</td>
<td>0.21</td>
<td>0.19</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>$R = 250$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Y_{t+1}</td>
<td>0.29</td>
<td>0.27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.29</td>
<td>0.27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.29</td>
<td>0.27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.29</td>
<td>0.28</td>
<td>0.24</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.30</td>
<td>0.26</td>
<td>0.23</td>
<td>0.12</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>$R = 500$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Y_{t+1}</td>
<td>0.27</td>
<td>0.23</td>
<td>0.20</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>$\Delta = 5$ sec</td>
<td>0.27</td>
<td>0.23</td>
<td>0.20</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>$\Delta = 1$ min</td>
<td>0.27</td>
<td>0.23</td>
<td>0.20</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>0.27</td>
<td>0.23</td>
<td>0.19</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>0.27</td>
<td>0.23</td>
<td>0.19</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>$R = 1000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Giacomini–White test rejection frequencies for Simulation C. The nominal size is 0.05, R is the length of the estimation sample, P is the length of the prediction sample, Δ is the sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b” asymptotics.

results that confirm that these findings are robust with respect to the choice of the truncation lag in the estimation of the long-run variance, along with some additional results on the disagreement between the feasible and the infeasible tests.

7 Application: Comparing correlation forecasts

7.1 Data and model description

We now illustrate the use of our method with an empirical application on forecasting the integrated correlation between two assets. Correlation forecasts are critical in financial decisions such as
portfolio construction and risk management; see Engle (2008) for example. Standard forecast evaluation methods do not directly apply here due to the latency of the target variable, and methods that rely on an unbiased proxy for the target variable (e.g., Hansen and Lunde (2006) and Patton (2011)) cannot be used either, due to the absence of any such proxy.\footnote{When based on relatively sparse sampling frequencies it may be considered plausible that the realized covariance matrix is finite-sample unbiased for the true quadratic covariation matrix, however as the correlation involves a ratio of the elements of this matrix, this property is lost.} This is thus an ideal example to illustrate the usefulness of the method proposed in the current paper.

Our sample consists two pairs of stocks: (i) Procter and Gamble (NYSE: PG) and General Electric (NYSE: GE) and (ii) Microsoft (NYSE: MSFT) and Apple (NASDAQ: AAPL). The sample period ranges from January 2000 to December 2010, consisting of 2,733 trading days, and we obtain our data from the TAQ database. As in Simulation C from the previous section, we take the proxy to be the realized correlation RC_t^Δ formed using returns with sampling interval Δ.\footnote{For all sampling intervals we use the “subsample-and-average” estimator of Zhang, Mykland, and Aït-Sahalia (2005b), with five subsamples when $\Delta = 5$ seconds, and with ten equally-spaced subsamples for the other choices of sampling frequency.} We consider Δ ranging from 1 minute to 130 minutes, which covers sampling intervals typically employed in empirical work.

We compare four forecasting models, all of which have the following specification for the conditional mean and variance: for stock i, $i = 1$ or 2, its daily logarithmic return r_{it} follows

$$
\begin{align*}
 r_{it} &= \mu_i + \sigma_i \varepsilon_{it}, \\
 \sigma_{it}^2 &= \omega_i + \beta_i \sigma_{i,t-1}^2 + \alpha_i \sigma_{i,t-1}^2 \varepsilon_{i,t-1}^2 + \delta_i \sigma_{i,t-1}^2 \varepsilon_{i,t-1}^2 1\{\varepsilon_{i,t-1} \leq 0\} + \gamma_i R_{i,t-1}^{1\text{min}}.
\end{align*}
$$
\end{equation}

That is, we assume a constant conditional mean, and a GJR-GARCH (Glosten et al. (1993)) volatility model augmented with lagged one-minute RV.

The baseline correlation model is Engle’s (2002) DCC model as considered in Simulation C; see equation (6.11). The other three models are extensions of the baseline model. The first extension is the asymmetric DCC (A-DCC) model of Cappiello, Engle, and Sheppard (2006), which is designed to capture asymmetric reactions in correlation to the sign of past shocks:

$$
Q_t = \mathbb{Q} \left(1 - a - b - d \right) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^T + d \eta_{t-1} \eta_{t-1}^T, \quad \text{where } \eta_t \equiv \varepsilon_t \circ 1\{\varepsilon_t \leq 0\}.
$$
\end{equation}

The second extension (R-DCC) augments the DCC model with the 65-minute realized correlation.
This extension is in the same spirit as Noureldin, Shephard, and Sheppard (2012), and is designed to exploit high-frequency information about current correlation:

\[Q_t = \bar{Q} \left(1 - a - b - g\right) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top + g R C_{t-1}^{65 \text{min}}. \]

(7.3)

The third extension (AR-DCC) encompasses both A-DCC and R-DCC with the specification

\[Q_t = \bar{Q} \left(1 - a - b - d - g\right) + b Q_{t-1} + a \varepsilon_{t-1} \varepsilon_{t-1}^\top + d \eta_{t-1} \eta_{t-1}^\top + g R C_{t-1}^{65 \text{min}}. \]

(7.4)

We conduct pairwise comparisons of forecasts based on these four models, which include both nested and nonnested cases. We use the framework of Giacomini and White (2006), so that nested and nonnested models can be treated in a unified manner. Each one-day-ahead forecast is constructed in a rolling scheme with fixed estimation sample size \(R = 1500 \) and prediction sample size \(P = 1233 \). We use the quadratic loss function as in Simulation C.

7.2 Results

Table 4 presents results for comparisons of each of the three generalized models and the baseline DCC model, using both the GW–NW and the GW–KV tests. The results in the first and fourth columns indicate that the A-DCC model does not improve predictive accuracy relative to the baseline DCC model. The GW–KV tests reveal that the loss of the A-DCC forecast is not statistically different from that of DCC. The GW–NW tests, on the other hand, report statistically significant outperformance of the A-DCC model relative to the DCC for some proxies, however this finding should be interpreted with care, as the GW–NW test was found to over-reject in finite samples in Simulation C of the previous section. Interestingly, for the MSFT–AAPL pair, the more general A-DCC model actually underperforms the baseline model, though the difference is not significant. The next columns reveal that the R-DCC model outperforms the DCC model, particularly for the MSFT–AAPL pair, where the finding is highly significant and robust to the choice of proxy. Finally, we find that the AR-DCC model outperforms the DCC model, however the statistical significance of the outperformance of AR-DCC depends on the testing method. In view of the over-rejection problem of the GW–NW test, we conclude conservatively that the AR-DCC is not significantly better than the baseline DCC model.

Table 5 presents results from pairwise comparisons among the generalized models. Consistent with the results in Table 4, we find that the A-DCC forecast underperforms those of R-DCC and
Table 4: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV, in the right panel). Test statistics that are greater than the critical value are marked with an asterisk.

AR-DCC, and significantly so for MSFT–AAPL. The comparison between R-DCC and AR-DCC yields mixed, but statistically insignificant, findings across the two pairs of stocks.

Overall, we find that augmenting the DCC model with lagged realized correlation significantly improves its predictive ability, while adding an asymmetric term to the DCC model generally does not improve, and sometimes hurts, its forecasting performance. These findings are robust to the choice of proxy.

8 Concluding remarks

This paper proposes a simple but general framework for the problem of testing predictive ability when the target variable is unobservable. We consider an array of popular forecast evaluation methods, including, for example, Diebold and Mariano (1995), West (1996), White (2000), Giacomini and White (2006) and McCracken (2007), in cases where the latent target variable is replaced
by a proxy computed using high-frequency (intraday) data. We derive convergence rate results for general classes of high-frequency based estimators of volatility and jump functionals, which cover a majority of existing estimators as special cases, such as realized (co)variance, truncated (co)variation, bipower variation, realized correlation, realized beta, jump power variation, realized semivariance, realized Laplace transform, realized skewness and kurtosis. Based on these results, we provide conditions under which the moments that define the proxy hypotheses converge sufficiently quickly to their counterparts under the true hypotheses, so that the feasible tests based on proxies are valid under not only the former, but also the latter. In so doing, we bridge the vast literature on forecast evaluation and the burgeoning literature on high-frequency time series. The theoretical framework is structured in a way to facilitate further extensions in both directions.

We verify that the asymptotic results perform well in three distinct, and realistically calibrated, Monte Carlo studies. Our empirical application uses these results to reveal the out-of-sample

<table>
<thead>
<tr>
<th>Proxy RC^Δ_{t+1}</th>
<th>GW–NW</th>
<th>GW–KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta = 1$ min</td>
<td>A-DCC vs R-DCC</td>
<td>A-DCC vs R-DCC</td>
</tr>
<tr>
<td>$\Delta = 5$ min</td>
<td>A-DCC vs AR-DCC</td>
<td>A-DCC vs AR-DCC</td>
</tr>
<tr>
<td>$\Delta = 15$ min</td>
<td>A-DCC vs AR-DCC</td>
<td>A-DCC vs AR-DCC</td>
</tr>
<tr>
<td>$\Delta = 30$ min</td>
<td>AR-DCC</td>
<td>AR-DCC</td>
</tr>
<tr>
<td>$\Delta = 65$ min</td>
<td>AR-DCC</td>
<td>AR-DCC</td>
</tr>
<tr>
<td>$\Delta = 130$ min</td>
<td>AR-DCC</td>
<td>AR-DCC</td>
</tr>
</tbody>
</table>

Panel A. PG–GE Correlation

$\Delta = 1$ min	2.231*	2.718*	0.542
$\Delta = 5$ min	2.122*	2.430*	0.355
$\Delta = 15$ min	1.564	1.969*	0.888
$\Delta = 30$ min	0.936	1.561	1.282
$\Delta = 65$ min	-0.110	0.391	1.039
$\Delta = 130$ min	0.503	0.474	-0.024

Panel B. MSFT–AAPL Correlation

$\Delta = 1$ min	3.110*	3.365*	-1.239
$\Delta = 5$ min	4.005*	4.453*	-1.554
$\Delta = 15$ min	3.616*	4.053*	-1.307
$\Delta = 30$ min	3.345*	3.770*	-0.834
$\Delta = 65$ min	2.999*	3.215*	-0.542
$\Delta = 130$ min	2.223*	2.357*	-1.039

Table 5: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV, in the right panel). Test statistics that are greater than the critical value are marked with an asterisk.
predictive gains from augmenting the widely-used DCC model (Engle (2002)) with high-frequency estimates of correlation.

References

