
Asymptotic Inference about Predictive Accuracy

using High Frequency Data∗

Jia Li

Department of Economics

Duke University

Andrew J. Patton

Department of Economics

Duke University

This Version: May 13, 2015

Abstract

This paper provides a general framework that enables many existing inference methods for

predictive accuracy to be used in applications that involve forecasts of latent target variables.

Such applications include the forecasting of volatility, correlation, beta, quadratic variation,

jump variation, and other functionals of an underlying continuous-time process. We provide

primitive conditions under which a “negligibility” result holds, and thus the asymptotic size

of standard predictive accuracy tests, implemented using a high-frequency proxy for the latent

variable, is controlled. An extensive simulation study verifies that the asymptotic results apply

in a range of empirically relevant applications, and an empirical application to correlation

forecasting is presented.
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1 Introduction

A central problem in times series analysis is the forecasting of economic variables. In financial ap-

plications, the variables to be forecast are often risk measures, such as volatility, beta, correlation,

and jump characteristics (see Andersen, Bollerslev, Christoffersen, and Diebold (2006) for a sur-

vey). Since the seminal work of Engle (1982), numerous models have been proposed to forecast risk

measures, and these forecasts are of fundamental importance in financial decisions. The problem of

evaluating the performance of these forecasts is complicated by the fact that many risk measures,

although well-defined in models, are not observable even ex post. A large literature (see West

(2006) for a survey) has evolved presenting methods for (pseudo) out-of-sample inference for pre-

dictive accuracy, however existing work typically relies on the observability of the forecast target.

The goal of the current paper is to provide a general methodology for extending the applicability

of forecast evaluation methods to settings with unobservable forecast target variables.

Inspired by Andersen and Bollerslev (1998), we propose to evaluate competing forecasts with

respect to a proxy of the latent target variable, with the proxy computed from high-frequency

(intraday) data, in the application of forecast evaluation methods. Prima facie, such inference is

not of direct economic interest, in that a good forecast for the proxy may not be a good forecast

of the latent target variable. The gap, formally speaking, arises from the fact that hypotheses

concerning the proxy (which we label “proxy hypotheses”) are not the same as those concerning

the true target variable (i.e., “true hypotheses”). To fill this gap, we consider an asymptotic setting

in which the proxy is constructed using data sampled from asymptotically increasing frequencies.

Under this setting, the proxy hypotheses can be considered as “local” to the true hypotheses, and

we provide both high-level and primitive sufficient conditions under which the moments that specify

the proxy hypotheses converge sufficiently fast to their counterparts in the true hypotheses. This

convergence leads to an asymptotic negligibility result: forecast evaluation methods using proxies

have the same asymptotic size and power properties under the proxy hypotheses as under the true

hypotheses. We show in three realistic Monte Carlo designs that this result works quite well in

finite samples.

The strategy of using high-frequency proxies to conduct inference has proven successful in

prior work on the estimation of stochastic volatility models. Bollerslev and Zhou (2002) estimate

stochastic volatility models treating the realized variance as the unobserved integrated variance.

Corradi and Distaso (2006) and Todorov (2009) generalize this approach by considering additional
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realized measures for the integrated variance using the generalized method of moments (GMM)

of Hansen (1982). These authors provide theoretical justifications for this approach by provid-

ing conditions that ensure the asymptotic negligibility of the proxy error in GMM inference for

stochastic volatility models. Realized measures for other volatility functionals have also been

used for parametric and nonparametric estimation of stochastic volatility models: for example,

Todorov, Tauchen, and Grynkiv (2011) use the realized Laplace transform of volatility (Todorov

and Tauchen (2012)) for estimating parametric stochastic volatility models; Renò (2006), Kanaya

and Kristensen (2010) and Bandi and Renò (2012) consider nonparametric estimation of stochastic

volatility models using spot volatility estimates (Foster and Nelson (1996), Comte and Renault

(1998), Kristensen (2010)).

Our asymptotic negligibility result shares the same nature as that in the important work of

Corradi and Distaso (2006), among others. However, the focus of the current paper is distinct

from aforementioned work in two important aspects. First, compared with (in-sample) GMM

estimation, the out-of-sample forecast evaluation problem has a more complicated econometric

structure. Indeed, even in the case with ex post observable forecast targets, it is well known

that forecast evaluation procedures can be drastically different from each other depending on how

unknown parameters in a forecast model is estimated and updated, on whether the competing

forecast models are nested or nonnested, and on how critical values of tests are computed (e.g., via

direct estimation or bootstrap); see, for example, Diebold and Mariano (1995), West (1996), White

(2000), McCracken (2000), Hansen (2005), Giacomini and White (2006) and McCracken (2007),

as well as the comprehensive review of West (2006). The apparent idiosyncrasies of these methods

present a nontrivial challenge for designing a general theoretical framework for solving the latent-

target problem for a broad range of evaluation methods. Second, while prior work used proxies of

the volatility or its integrated functionals such as the integrated volatility and the volatility Laplace

transform for estimating stochastic volatility models, forecasting applications often concern a much

broader set of risk factors, such as beta, correlation, total quadratic variation, semivariance and

jump variations. The broad practical scope of financial forecasting thus calls for an extensive

analysis on a wide spectrum of risk measures and proxies.

The main contribution of the current paper is to address these two issues in a general and

compact framework. We achieve generality by using two (sets of) high-level conditions that are

designed for bridging two large literatures: forecast evaluation and high-frequency econometrics.

The first set of conditions posit an abstract structure on the forecast evaluation methods; we show
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that these conditions are readily verified for many inference methods proposed in the existing liter-

ature, including all of the evaluation methods cited above, and can be readily extended to stepwise

testing procedures such as Romano and Wolf (2005) and Hansen, Lunde, and Nason (2011). The

second condition concerns the approximation accuracy of the high-frequency proxy relative to the

latent target variable. The main technical contribution of this paper is to verify this condition

under primitive conditions for general classes of high-frequency based estimators of volatility and

jump risk measures in a general Itô semimartingale model for asset prices. In particular, we allow

for realistic features such as leverage effect and (active) price and volatility jumps. Our results

cover many existing estimators as special cases, such as realized variation (Andersen, Bollerslev,

Diebold, and Labys (2003)), truncated variation (Mancini (2001)), bipower variation (Barndorff-

Nielsen and Shephard (2004b)), realized covariation, beta and correlation (Barndorff-Nielsen and

Shephard (2004a)), realized Laplace transform (Todorov and Tauchen (2012)), general integrated

volatility functionals (Jacod and Protter (2012), Jacod and Rosenbaum (2013)), realized skewness,

kurtosis and their extensions (Lepingle (1976), Jacod (2008), Amaya, Christoffersen, Jacobs, and

Vasquez (2011)), and realized semivariance (Barndorff-Nielsen, Kinnebrouck, and Shephard (2010)

and Patton and Sheppard (2013)). These technical results may be useful for other applications as

well (e.g., Corradi and Distaso (2006) and Todorov (2009)).

The existing literature includes some work on forecast evaluation for latent target variables

using proxy variables. In their seminal work, Andersen and Bollerslev (1998) advocated using

realized variance as a proxy for evaluating volatility forecast models; see also Andersen, Bollerslev,

Diebold, and Labys (2003) and Andersen, Bollerslev, and Meddahi (2005). A theoretical justi-

fication for this approach was proposed by Hansen and Lunde (2006) and Patton (2011), based

on the availability of conditionally unbiased proxies. The unbiasedness condition considered in

those papers must hold in finite samples, which is hard to verify except for certain cases: it may

be plausible for realized variance in some applications, but is unlikely to hold for other realized

measures (such as jump-robust measures of volatility like bipower variation, or ratios of measures

like realized correlation). In contrast, our framework extends the insight of prior work with an

asymptotic argument and is applicable for most known high-frequency based estimators.

With the usual caveat of asymptotic approximations in mind,1 we note that our asymptotic

negligibility result reflects a simple and robust intuition: the approximation error in the high-

frequency proxy will be negligible when it is relatively small in comparison with the “intrinsic”

1See Section 1.3 of van der Vaart (1998) for an elaboration.
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statistical uncertainty for forecast evaluation that would arise even in situations with observable

targets. Since the ex post measurement of latent risks is generally much easier than their ex ante

prediction, this intuition and, hence, our asymptotic formalization, should be relevant in many

empirical settings. To judge the performance of the asymptotic results, we conduct three distinct,

and realistically calibrated, Monte Carlo studies. The Monte Carlo evidence is supportive of our

theory, and we discuss this further in Section 6.

We illustrate the usefulness of our approach in an empirical example for evaluating forecasts

of the conditional correlation between stock returns. Correlation forecasting is of substantial

importance in practice (Engle (2008)) but existing evaluation methods (see, e.g., Hansen and

Lunde (2006), Patton (2011)) are silent on how rigorous forecast evaluation can be conducted.

We consider four forecasting methods, starting with the popular dynamic conditional correlation

(DCC) model of Engle (2002). We then extend this model to include an asymmetric term, as

in Cappiello, Engle, and Sheppard (2006), which allows correlations to rise more following joint

negative shocks than other shocks, and to include the lagged realized correlation matrix, which

enables the model to exploit higher frequency data, in the spirit of Noureldin, Shephard, and

Sheppard (2012). We find evidence, across a range of correlation proxies, that including high

frequency information in the forecast model leads to out-of-sample gains in accuracy, while the

inclusion of an asymmetric term does not lead to such gains.

This paper is organized as follows. Section 2 presents the statistical setting. In Section 3 we

discuss a variety of high-frequency proxies and derive bounds for their approximation accuracy.

Section 4 presents the asymptotic properties of generic forecast evaluation methods using proxies,

with further extensions discussed in Section 5. Monte Carlo results and an empirical application

are in Sections 6 and 7, respectively. All proofs are in the appendix.

All limits below are for T →∞. We use
P−→ to denote convergence in probability and

d−→ to

denote convergence in distribution. All vectors are column vectors. For any matrix A, we denote

its transpose by Aᵀ and its (i, j) component by Aij . The (i, j) component of a matrix-valued

stochastic process At is denoted by Aij,t. We write (a, b) in place of (aᵀ, bᵀ)ᵀ. The jth component

of a vector x is denoted by xj . For x, y ∈ Rq, q ≥ 1, we write x ≤ y if and only if xj ≤ yj for

every j ∈ {1, . . . , q}. For a generic variable X taking values in a finite-dimensional space, we use

κX to denote its dimensionality; the letter κ is reserved for such use. We use ‖·‖ to denote the

Euclidean norm of a vector, where a matrix is identified as its vectorized version. For each p ≥ 1,

‖·‖p denotes the Lp norm. We use ◦ to denote the Hadamard product between two identically
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sized matrices, which is computed simply by element-by-element multiplication. The notation ⊗

stands for the Kronecker product. For two sequences of strictly positive real numbers at and bt,

t ≥ 1, we write at � bt if and only if the sequences at/bt and bt/at are both bounded.

2 The setting

2.1 True hypotheses and proxy hypotheses

Let (Y †t )t≥1 be the time series to be forecast, which takes values in Y ⊆ RκY . We stress at

the outset that Y †t is not observable, but a proxy Yt is available. At time t, the forecaster uses

data Dt ≡ {Ds : 1 ≤ s ≤ t} to form a forecast of Y †t+τ , where the forecast horizon τ ≥ 1 is

fixed throughout the paper. We consider k̄ competing sequences of forecasts of Y †t+τ , collected

by Ft+τ ≡ (F1,t+τ , . . . , Fk̄,t+τ ). In practice, Ft+τ is often constructed from forecast models that

involve some parameter β. We write Ft+τ (β) to emphasize such dependence and refer to the

function Ft+τ (·) : β 7→ Ft+τ (β) as the forecast model. Let β̂t be an estimator constructed using

(possibly a subset of) the dataset Dt and β∗ be its “population” analogue. We do not require the

forecast model to be correctly specified, so we treat β∗ as a pseudo-true parameter (White (1982)).

Two types of forecasts have been considered in the literature: the actual forecast Ft+τ =

Ft+τ (β̂t) and the population forecast Ft+τ (β∗). This distinction is useful because a researcher

may be interested in using the actual forecast Ft+τ to make inference concerning Ft+τ (β∗), that

is, an inference concerning the forecast model (see, e.g., West (1996)). If, on the other hand, the

researcher is interested in assessing the performance of the actual forecasts in Ft+τ , he/she can

treat the actual forecast as an observable sequence (see, e.g., Diebold and Mariano (1995) and

Giacomini and White (2006)) without the need for explicitly analyzing the forecast model Ft+τ (·)

and the discrepancy between β̂t and β∗; in this case, we simply set β∗ to be empty. With this

convention, we can use the notation Ft+τ (β∗) also in the study of the inference for actual forecasts.

Given the target Y †t+τ , the performance of the competing forecasts is measured by f †∗t+τ ≡

ft+τ (Y †t+τ , β
∗), where ft+τ (y, β) ≡ f(y, Ft+τ (β)) for some known measurable Rκf -valued function

f(·). The function f(·) plays the role of an evaluation measure. Typically, f(·) computes the loss

differential between competing forecasts: for example, f(y, (F1, F2)) = (y−F1)2− (y−F2)2 in the

case with quadratic loss. The proxy of f †∗t+τ is given by f∗t+τ ≡ ft+τ (Yt+τ , β
∗), which in turn can
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be estimated by f̂t+τ ≡ ft+τ (Yt+τ , β̂t). We then set

f̄ †∗T ≡ P
−1

T∑
t=R

f †∗t+τ , f̄∗T ≡ P−1
T∑
t=R

f∗t+τ , f̄T ≡ P−1
T∑
t=R

f̂t+τ , (2.1)

where T + τ is the size of the full sample, P = T −R+ 1 is the size of the prediction sample and R

is the size of the estimation sample.2 In the sequel, we always assume P � T as T →∞ without

further mention, while R may be fixed or diverge to ∞, depending on the application.

We now turn to the hypotheses of interest. We consider two classical testing problems for

forecast evaluation: testing for equal predictive ability (one-sided or two-sided) and testing for

superior predictive ability. Formally, we consider the following hypotheses: for some user-specified

constant χ ∈ Rκf ,

Equal

Predictive Ability

(EPA)


H†0 : E[f̄ †∗T ] = χ,

vs. H†1a : lim infT→∞ E[f̄ †∗j,T ] > χj for some j ∈ {1, . . . , κf} ,

or H†2a : lim infT→∞ ‖E[f̄ †∗T ]− χ‖ > 0,

(2.2)

Superior

Predictive Ability

(SPA)

 H†0 : E[f̄ †∗T ] ≤ χ,

vs. H†a : lim infT→∞ E[f̄ †∗j,T ] > χj for some j ∈ {1, . . . , κf} ,
(2.3)

where H†1a (resp. H†2a) in (2.2) is the one-sided (resp. two-sided) alternative. In practice, the

constant χ is often set to be zero.3 Note that despite their assigned labels, these hypotheses can

also be used to test for forecast encompassing and forecast rationality by setting the function f(·)

properly; see, for example, West (2006).

Since the hypotheses in (2.2) and (2.3) rely on the true forecast target Y †t , we refer to them

as the true hypotheses. These hypotheses allow for data heterogeneity and are cast in the same

fashion as in Giacomini and White (2006). Under (mean) stationarity, these hypotheses coincide

with those considered by Diebold and Mariano (1995), West (1996) and White (2000), among

others. Clearly, if Y †t were observable, these existing inference methods could be applied to test

the true hypotheses by forming test statistics based on ft+τ (Y †t+τ , β̂t). However, the latency of Y †t

renders these inference methods infeasible.
2The notations PT and RT may be used in place of P and R. We follow the literature and suppress the dependence

on T . The estimation and prediction samples are often called the in-sample and (pseudo-) out-of-sample periods.
3Allowing χ to be nonzero incurs no additional cost in our derivations. This flexibility is particularly useful in

the design of Monte Carlo experiment that examines the finite-sample performance of the asymptotic theory below;

see Section 6 for details.
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Feasible versions of these tests can be implemented with Y †t+τ replaced by Yt+τ . However, the

hypotheses underlying the feasible inference procedure are then proxy hypotheses given by

Proxy Equal

Predictive Ability

(PEPA)


H0 : E

[
f̄∗T
]

= χ,

vs. H1a : lim infT→∞ E[f̄∗j,T ] > χj for some j ∈ {1, . . . , κf} ,

or H2a : lim infT→∞ ‖E[f̄∗T ]− χ‖ > 0,

(2.4)

Proxy Superior

Predictive Ability

(PSPA)

 H0 : E[f̄∗T ] ≤ χ,

vs. Ha : lim infT→∞ E[f̄∗j,T ] > χj for some j ∈ {1, . . . , κf} .
(2.5)

These hypotheses are not of immediate economic relevance, because economic agents are, by as-

sumption, interested in forecasting the true target Y †t+τ , rather than its proxy.4

Below, we provide conditions under which the moments that define the proxy hypotheses con-

verge “sufficiently fast” to their equivalents under the true hypotheses, so that tests that are valid

under the former are also valid under the latter. The key step in this analysis is to characterize the

approximation accuracy of Yt with respect to Y †t . In this paper, we are mainly interested in cases

where Y †t is a latent risk measure that takes form of a functional of the stochastic volatility and/or

jumps of continuous-time asset price processes, with Y †t being the corresponding nonparametric

estimator formed using discretely sampled data at high frequency. We now turn to the formal

probabilistic setting for the high-frequency asset price data.

2.2 The underlying asset price process

In this subsection, we describe the continuous-time model for the underlying (logarithmic) asset

price process Xt. Our basic assumption is that Xt is a d-dimensional Itô semimartingale defined

on a filtered probability space (Ω,F , (Ft)t≥0,P) with the following form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

+

∫ t

0

∫
R
δ (s, z) 1{‖δ(s,z)‖≤1}µ̃ (ds, dz) +

∫ t

0

∫
R
δ (s, z) 1{‖δ(s,z)‖>1}µ (ds, dz) ,

(2.6)

4A key motivation of our analysis is that while a high-frequency estimator of the latent variable is used by the

forecaster for evaluation (and potentially estimation), the estimator is not the variable of interest. If the estimator

is taken as the target variable, then no issues about the latency of the target variable arise, and existing predictive

ability tests may be applied without modification. It is only in cases where the variable of interest is unobservable

that further work is required to justify the use of an estimator of the latent target variable in predictive ability tests.
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where bt is a d-dimensional càdlàg adapted process, Wt is a d′-dimensional standard Brownian

motion, σt is a d× d′ stochastic volatility process, δ : Ω×R+ ×R 7→ Rd is a predictable function,

µ is a Poisson random measure on R+ × R with compensator ν (ds, dz) = ds ⊗ λ (dz) for some

σ-finite measure λ, and µ̃ ≡ µ−ν. Itô semimartingales are widely used for modeling asset prices in

financial economics and econometrics; see, for example, Duffie (2001), Singleton (2006) and Jacod

and Protter (2012).

The diffusive risk and the jump risk in Xt are respectively captured by the spot covariance

matrix ct ≡ σtσ
ᵀ
t and the jump process ∆Xt ≡ Xt − Xt−, where Xt− ≡ lims↑tXs. In practice,

these risks are often summarized as various functionals of the processes ct and ∆Xt, which play

the role of the latent forecast target Y †t in our analysis.

To simplify the discussion, we normalize the unit of time to be one day. For each day t, the

process X is sampled at deterministic discrete times t − 1 = τ(t, 0) < · · · < τ (t, nt) = t, where

nt is the number of intraday returns. Moreover, we set dt,i = τ(t, i) − τ(t, i − 1) and denote the

sampling mesh by dt = max1≤i≤nt dt,i. The basic assumption on the sampling scheme is that dt

should be “small” in the prediction sample, as formalized below.

Assumption S: dT → 0 and dT = O(n−1
T ) as T →∞.

Assumption S posits that the sampling mesh and the sample span T respectively go to 0 and

∞ in a joint, rather than a sequential, way. Under this condition, we characterize the rate of

convergence of various high-frequency proxies in Section 3. This sampling scheme is essentially the

same as the “double asymptotic” setting considered by Corradi and Distaso (2006) and Todorov

(2009), among others. Indeed, the latter amounts to setting dt,i to be a constant ∆, so that

Assumption S posits ∆ → 0 and T → ∞ asymptotically. Allowing for time-varying sampling

incurs no additional cost in our derivation, but is conceptually desirable in practice. As the

trading activity has grown substantially over the past two decades, later samples have a much larger

number of, and less noisy, intradaily observations than those in earlier samples, so it is generally

more efficient to sample more frequently in later samples (Aı̈t-Sahalia, Mykland, and Zhang (2005),

Zhang, Mykland, and Aı̈t-Sahalia (2005a), Bandi and Russell (2008)). This setting is also aligned

naturally with the focal point of our approximation argument: we are interested in using the

proxy Yt+τ to approximate the true target Y †t+τ in the prediction sample (i.e., t ∈ {R, . . . , T}) for

evaluation, while being agnostic about the regression sample (i.e., t < R).

We need the following regularity condition for the process Xt.
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Assumption HF: Suppose that the following conditions hold for constants r ∈ (0, 2], k ≥ 2

and C > 0.

(i) The process σt is a d× d′ Itô semimartingale with the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0

∫
R
δ̃ (s, z) µ̃ (ds, dz) , (2.7)

where b̃ is a d× d′ càdlàg adapted process, σ̃ is a d× d′ × d′ càdlàg adapted process and δ̃ (·) is a

d× d′ predictable function on Ω× R+ × R.

(ii) For some nonnegative deterministic functions Γ (·) and Γ̃(·) on R, we have ‖δ (ω, s, z) ‖ ≤

Γ (z) and ‖δ̃(ω, s, z)‖ ≤ Γ̃(z) for all (ω, s, z) ∈ Ω× R+ × R and∫
R

(Γ (z)r ∧ 1)λ (dz) +

∫
R

Γ (z)k 1{Γ(z)>1}λ (dz) <∞,∫
R

(Γ̃ (z)2 + Γ̃ (z)k)λ (dz) <∞.
(2.8)

(iii) Let b′s = bs −
∫
R δ (s, z) 1{‖δ(s,z)‖≤1}λ (ds) if r ∈ (0, 1] and b′s = bs if r ∈ (1, 2]. We have for

all s ≥ 0,

E‖b′s‖k + E‖σs‖k + E‖b̃s‖k + E‖σ̃s‖k ≤ C. (2.9)

Assumption HF(i) posits that the stochastic volatility process σt is also an Itô semimartingale.

Assumption HF(ii) imposes a type of dominance condition on the random jump size for the price

and the volatility. The constant r provides an upper bound for the generalized Blumenthal-Getoor

index, or “activity,” of jumps in X. The assumption is weaker when r is larger, in which case it is

more difficult to separate jumps from the diffusive component of Xt. We do not need to restrict

the activity of volatility jumps. The kth-order integrability of Γ(·) and Γ̃ (·) places restrictions on

jump tails and it facilitates the derivation of bounds via sufficiently high moments. Assumption

HF(iii) imposes integrability conditions that serve the same purpose.5

3 High-frequency proxies and their accuracy

In this section, we introduce proxies Yt for various risk measures Y †t and provide convergence rate

results under the Lp norm. Sections 3.1–3.3 consider three general classes of proxies and Section

3.4 considers some additional important examples. We show that ‖Yt − Y †t ‖p ≤ Kdθt for constants

5Technically speaking, this condition could be further relaxed so that the moments may be moderately explosive

(see, e.g., Kanaya and Kristensen (2010)).
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K and θ, where the rate θ varies across these settings. These results are the main technical

contribution of the current paper and are essential for interpreting the regularity conditions and,

ultimately, the asymptotic negligibility result in Section 4. We stress that, unlike the existing

convergence rate results under the fixed-T setting (see, e.g., Jacod and Protter (2012)), we consider

rate results that are valid in the large-T setting, which demands different conditions and proofs.

Below, for each t ≥ 1 and i ≥ 1, we denote the ith return of X in day t by ∆t,iX, that is, ∆t,iX ≡

Xτ(t,i) − Xτ(t,i−1). We suppose that the sampling mesh sequence (dt)t≥0 satisfies Assumption S

throughout this section.

3.1 Generalized realized variations for continuous processes

We start with the basic setting with X continuous; the continuity condition will be relaxed in later

subsections. We consider the following general class of estimators: for any measurable function

g : Rd 7→ R, we set

Ît (g) ≡
nt∑
i=1

g(∆t,iX/d
1/2
t,i )dt,i.

We also associate g with the following function: for any d × d positive semidefinite matrix A, we

set ρ (A; g) ≡ E [g (U)] for U ∼ N (0, A), provided that the expectation is well-defined. Theorem

3.1 below provides a bound for the approximation error between the proxy Yt = Ît(g) and the

target variable Y †t = It(g) ≡
∫ t
t−1 ρ (cs; g) ds.

In many applications, the function ρ ( · ; g) and, hence, It(g) can be expressed in closed form.

For example, in the scalar case (i.e., d = 1), if we take g (x) = |x|a /ma for some a ≥ 2, where ma

is the ath absolute moment of a standard normal variable, then It(g) =
∫ t
t−1 c

a/2
s ds; the integrated

variance is a special case with a = 2. Another univariate example is to take g(x) = cos(
√

2ux),

u > 0, yielding It(g) =
∫ t
t−1 exp(−ucs)ds. In this case, Ît(g) is the realized Laplace transform

of volatility (Todorov and Tauchen (2012)) and It(g) is the Laplace transform of the volatility

occupation density which captures the distributional information of volatility. A simple bivariate

example is g(x1, x2) = x1x2, which leads to It(g) =
∫ t
t−1 c12,sds, that is, the integrated covariance

between the two components of Xt; see Barndorff-Nielsen and Shephard (2004a).

Theorem 3.1. Let p ∈ [1, 2) and C > 0 be constants. Suppose (i) Xt is continuous; (ii)

g(·) and ρ ( · ; g) are continuously differentiable and, for some q ≥ 0, ‖∂xg (x) ‖ ≤ C(1 + ‖x‖q)

and ‖∂Aρ (A; g) ‖ ≤ C(1 + ‖A‖q/2); (iii) Assumption HF with k ≥ max {2qp/ (2− p) , 4}; (iv)

E[ρ(cs; g
2)] ≤ C for all s ≥ 0. Then ‖Ît(g)− It(g)‖p ≤ Kd1/2

t for some constant K > 0 and all t.
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3.2 Jump-robust proxies for integrated volatility functionals

We now turn to a general setting in which Xt may have jumps. In this subsection, we consider

jump-robust proxies for risk measures with the form I?t (g) =
∫ t
t−1 g(cs)ds, where g : Rd×d 7→ R

is a twice continuously differentiable function with at most polynomial growth. This class of risk

factors is quite general: integrated variance and covariance, integrated quarticity, and volatility

Laplace and Fourier transforms are special cases.6

In order to construct a jump-robust proxy for I?t (g), we first nonparametrically recover the

spot covariance process by using a spot truncated covariation estimator given by7

ĉτ(t,i) =
1

kt

kt∑
j=1

d−1
t,i+j∆t,i+jX∆t,i+jX

ᵀ1{‖∆t,i+jX‖≤ᾱd$t,i+j}, (3.1)

where ᾱ > 0 and $ ∈ (0, 1/2) are constant tuning parameters, and kt is an integer that specifies

the local window for the spot covariance estimation and may vary across days. We consider the

sample analogue of I?t (g) as its proxy, that is, Î?t (g) =
∑nt−kt

i=0 g(ĉτ(t,i))dt,i.

Theorem 3.2. Let q ≥ 2, p ∈ [1, 2) and C > 0 be constants. Suppose (i) g is twice continuously

differentiable and ‖∂jxg(x)‖ ≤ C(1 + ‖x‖q−j) for j ∈ {0, 1, 2}; (ii) kt � d
−1/2
t ; (iii) Assumption

HF with k ≥ max{4q, 4p(q − 1)/(2 − p), (1 −$r)/(1/2 −$)} and r ∈ (0, 2). We set θ1 = 1/(2p)

in the general case and θ1 = 1/2 if we further assume that σt is continuous. We also set θ2 =

min{1−$r+ q(2$− 1), 1/r− 1/2}. Then ‖Î?t (g)− I?t (g)‖p ≤ Kdθ1∧θ2t for some constant K and

all t.

Comments. (i) The rate exponent θ1 is associated with the contribution from the continuous

component of Xt. The exponent θ2 captures the approximation error due to the elimination of

jumps. If we further impose r < 1 and $ ∈ [(q− 1/2)/(2q− r), 1/2), then θ2 ≥ 1/2 ≥ θ1. That is,

the presence of “inactive” jumps does not affect the rate of convergence, provided that the jumps

are properly truncated.

6Jump-robust estimators for the integrated volatility, such as the bipower and the tripower variations, were

studied by Corradi and Distaso (2006) and Todorov (2009).
7Spot variance estimators can be dated back to Foster and Nelson (1996) and Comte and Renault (1998); also

see Kristensen (2010) and references therein. The truncation technique was proposed by Mancini (2001) for the

estimation of integrated variance. The spot truncated covariation estimator appeared in Chapter 9 of Jacod and

Protter (2012), although they have been considered as auxiliary results in other contexts (see, e.g., Aı̈t-Sahalia and

Jacod (2009)).
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(ii) Jacod and Rosenbaum (2013) characterize the limit distribution of Î?t (g) under the in-fill

asymptotic setting with a fixed time span, under the assumption that g is three-times continuously

differentiable and r < 1. Here, we obtain the same rate of convergence under the L1 norm, and

under the Lp norm if σt is continuous, in a setting with dT → 0 and T → ∞. Our results also

cover the case with active jumps, that is, the setting with r ≥ 1.

3.3 Functionals of price jumps

In this subsection, we consider jump risk measures. The target variable of interest takes the

form Jt(g) ≡
∑

t−1<s≤t g (∆Xs) for some function g : Rd 7→ R. The proxy is the sample analogue

estimator Ĵt (g) ≡
∑nt

i=1 g (∆t,iX) . Basic examples include unnormalized realized skewness (g(x) =

x3), kurtosis (g(x) = x4), coskewness (g(x1, x2) = x2
1x2) and cokurtosis (g(x1, x2) = x2

1x
2
2). See

Amaya, Christoffersen, Jacobs, and Vasquez (2011) for applications of these risk factors.

Theorem 3.3. Let p ∈ [1, 2) and C > 0 be constants. Suppose (i) g is twice continuously differ-

entiable; (ii) for some q2 ≥ q1 ≥ 3, we have ‖∂jxg(x)‖ ≤ C(‖x‖q1−j + ‖x‖q2−j) for all x ∈ Rd and

j ∈ {0, 1, 2}; (iii) Assumption HF with k ≥ max{2q2, 4p/(2−p)}. Then ‖Ĵt (g)−Jt(g)‖p ≤ Kd1/2
t

for some constant K and all t.

Comment. The polynomial ‖x‖q1−j in condition (ii) bounds the growth of g(·) and its deriva-

tives near zero. This condition ensures that the contribution of the continuous part of X to the

approximation error is dominated by the jump part of X. This condition can be relaxed at the

cost of a more complicated expression for the rate. The polynomial ‖x‖q2−j controls the growth

of g(·) near infinity so as to tame the effect of big jumps.

3.4 Additional special examples

We now consider a few special examples which are not covered by Theorems 3.1–3.2. In the first

example, the true target is the daily quadratic covariation matrix QVt of the process X, that is,

QVt ≡
∫ t
t−1 csds+

∑
t−1<s≤t ∆Xs∆X

ᵀ
s . The associated proxy is the realized covariation matrix

RVt ≡
nt∑
i=1

∆t,iX∆t,iX
ᵀ. (3.2)

Theorem 3.4. Let p ∈ [1, 2). Suppose Assumption HF with k ≥ max{2p/(2 − p), 4}. Then

‖RVt −QVt‖p ≤ Kd1/2
t for some K and all t.
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Second, we consider the bipower variation of Barndorff-Nielsen and Shephard (2004b) for uni-

variate X that is defined as

BVt =
nt

nt − 1

π

2

nt−1∑
i=1

|d−1/2
t,i ∆t,iX||d−1/2

t,i+1∆t,i+1X|dt,i. (3.3)

This estimator serves as a proxy for the integrated variance
∫ t
t−1 csds.

Theorem 3.5. Let p and p′ be constants such that 1 ≤ p < p′ ≤ 2. Suppose that Assumption

HF holds with d = 1 and k ≥ max{pp′/(p′ − p), 4}. We have, for some K and all t, (a) ‖BVt −∫ t
t−1 csds‖p ≤ Kd

(1/r)∧(1/p′)−1/2
t ; (b) if, in addition, X is continuous, then ‖BVt −

∫ t
t−1 csds‖p ≤

Kd
1/2
t .

Comment. Part (b) shows that, when X is continuous, the approximation error of the bipower

variation achieves the
√
nt rate. Part (a) provides a bound for the rate of convergence in the case

with jumps. The rate is slower than that in the continuous case. The constant p′ arises as a

technical device in our proofs and should be chosen close to p so that the bound in part (a) is

sharper. We note that, the rate in part (a) is sharper when r is smaller. In particular, with r ≤ 1

and p′ being close to 1, the bound in the jump case can be made arbitrarily close to O(d
1/2
t ), at

the cost of assuming higher-order moments to be finite (i.e., larger k). The slower rate in the jump

case is in line with the known fact that the bipower variation estimator does not admit a CLT

when X is discontinuous.8

Finally, we consider the realized semivariance estimator proposed by Barndorff-Nielsen, Kin-

nebrouck, and Shephard (2010) for univariate X. Let {x}+ and {x}− denote the positive and

the negative parts of x ∈ R, respectively. The upside (+) and the downside (−) realized semi-

variances are defined as ŜV
±
t =

∑nt
i=1{∆t,iX}2±, which serve as proxies for SV ±t = 1

2

∫ t
t−1 csds +∑

t−1<s≤t{∆Xs}2±.

Theorem 3.6. Let p and p′ be constants such that 1 ≤ p < p′ ≤ 2. Suppose that Assumption

HF holds with d = 1, r ∈ (0, 1] and k ≥ max{pp′/(p′ − p), 4}. Then for some K and all t, (a)

‖ŜV
±
t −SV ±t ‖p ≤ Kd

1/p′−1/2
t ; (b) if, in addition, X is continuous, then ‖ŜV

±
t −SV ±t ‖p ≤ Kd

1/2
t .

Comment. Part (b) shows that, whenX is continuous, the approximation error of the semivari-

ance achieves the
√
nt rate, which agrees with the rate shown in Barndorff-Nielsen, Kinnebrouck,

8See p. 313 in Jacod and Protter (2012) and Vetter (2010).
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and Shephard (2010) under the fixed-span setting. Part (a) provides a bound for the rate of conver-

gence in the case with jumps. The constant p′ arises as a technical device in the proof. One should

make it small so as to achieve a better rate, subject to the regularity condition k ≥ pp′/(p′ − p).

In particular, the rate can be made close to that in the continuous case when p′, hence p too, are

close to 1. Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) do not consider rate results in

the case with price or volatility jumps.

4 Forecast evaluation methods with high-frequency proxies

This section presents the asymptotic properties of the feasible evaluation methods using proxies.

In Section 4.1 we introduce high-level conditions that link many apparently distinct tests of pre-

dictive accuracy into a unified framework. In Section 4.2, we discuss regularity conditions for the

asymptotic negligibility of the high-frequency proxy errors; these conditions are motivated by the

convergence rate results in Section 3. Section 4.3 presents asymptotic properties of the feasible

evaluation procedures.

4.1 Conditions on evaluation methods for the proxy hypotheses

In this subsection, we introduce an abstract econometric structure that is common to most forecast

evaluation procedures with an observable forecast target, the role of which is played by the proxy

Yt in the setting of the current paper. These conditions speak to the proxy hypotheses PEPA and

PSPA, but not the true hypotheses; conditions in Section 4.2 below fill this gap.

We consider a test statistic of the form

ϕT ≡ ϕ(aT (f̄T − χ), a′TST ) (4.1)

for some measurable function ϕ : Rκf × S 7→ R, where aT → ∞ and a′T are known deterministic

sequences, and ST is a sequence of S-valued estimators that is mainly used for studentization.9 In

almost all cases, aT = P 1/2 and a′T ≡ 1; recall that P increases with T . An exception is given by

Example 4.4 below. In many applications, ST plays the role of an estimator of some asymptotic

variance, which may or may not be consistent (see Example 4.2 below); S is then the space of

positive definite matrices.

9The space S changes across applications, but is always implicitly assumed to be a Polish space.
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Let α ∈ (0, 1) be the significance level of a test. We consider a (nonrandomized) test of the

form φT = 1{ϕT > zT,1−α}, that is, we reject the null hypothesis when the test statistic ϕT is

greater than some critical value zT,1−α. We now introduce some high-level assumptions.

Assumption A1: (aT (f̄T−E[f̄∗T ]), a′TST )
d−→ (ξ, S) for some deterministic sequences aT →∞

and a′T , and random variables (ξ, S). Here, (aT , a
′
T ) may be chosen differently under the null and

the alternative hypotheses, but ϕT is invariant to such choice.

Assumption A1 mainly posits that f̄T is centered at E[f̄∗T ] with a well-behaved asymptotic

distribution. Since E[f̄∗T ] characterizes the proxy hypotheses (recall (2.4) and (2.5)), Assumption

A1 concerns an evaluation problem with the observed proxy instead of the latent true target.

This assumption covers many existing methods that involve observable forecast targets, as we now

illustrate in detail.

Example 4.1: Giacomini and White (2006) consider tests for equal predictive ability between

two sequences of actual forecasts, or “forecast methods” in their terminology, assuming R fixed. In

this case, f(Yt+τ , (F1,t+τ , F2,t+τ )) = L(Yt+τ , F1,t+τ )−L(Yt+τ , F2,t+τ ) for some loss function L(·, ·).

Moreover, one can set β∗ to be empty and treat each actual forecast as an observed sequence, so

f̄T = f̄∗T . Using a CLT for heterogeneous weakly dependent data, one can take aT = P 1/2 and

verify aT (f̄T − E[f̄T ])
d−→ ξ, where ξ is centered Gaussian with long-run variance denoted by Σ.

We then set S = Σ and a′T ≡ 1, and let ST be a heteroskedasticity and autocorrelation consistent

(HAC) estimator of S (Newey and West (1987), Andrews (1991)). Assumption A1 then follows

from Slutsky’s lemma. Diebold and Mariano (1995) intentionally treat the actual forecasts as

primitives without introducing the forecast model (and hence β∗); their setting is also covered by

Assumption A1 by the same reasoning.

Example 4.2: Consider the same setting as in Example 4.1, but let ST be an inconsistent

long-run variance estimator of Σ as considered by, for example, Kiefer and Vogelsang (2005). Using

their theory, we verify (P 1/2(f̄T − E[f̄T ]), ST )
d−→ (ξ, S), where S is a (nondegenerate) random

matrix and the joint distribution of ξ and S is known, up to the unknown parameter Σ, but is

nonstandard.

Example 4.3: West (1996) considers inference for nonnested forecast models in a setting with

R→∞. West’s Theorem 4.1 shows that P 1/2(f̄T−E[f̄∗T ])
d−→ ξ, where ξ is centered Gaussian with

its variance-covariance matrix denoted here by S, which captures both the sampling variability of

the forecast error and the discrepancy between β̂t and β∗. We can set ST to be the consistent
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estimator of S as proposed in West’s comment 6 to Theorem 4.1. Assumption A1 is then verified

by using Slutsky’s lemma for aT = P 1/2and a′T ≡ 1. West’s theory relies on the differentiability

of the function ft+τ (·) with respect to β and concerns β̂t in the recursive scheme. Similar results

allowing for a nondifferentiable ft+τ (·) function can be found in McCracken (2000). Giacomini and

Rossi (2009) generalize West’s theory to settings without covariance stationarity. Assumption A1

can be verified similarly in these more general settings.

Example 4.4: McCracken (2007) considers inference on nested forecast models allowing for

recursive, rolling and fixed estimation schemes, all with R → ∞. The evaluation measure f̂t+τ is

the difference between the quadratic losses of the nesting and the nested models. For his OOS-t

test, McCracken proposes using a normalizing factor Ω̂T = P−1
∑T

t=R(f̂t+τ− f̄T )2 and consider the

test statistic ϕT ≡ ϕ(P f̄T , P Ω̂T ), where ϕ(u, s) = u/
√
s. Implicitly in his proof of Theorem 3.1, it

is shown that under the null hypothesis of equal predictive ability, (P (f̄T−E[f̄∗T ]), P Ω̂T )
d−→ (ξ, S),

where the joint distribution of (ξ, S) is nonstandard and is specified as a function of a multivariate

Brownian motion. Assumption A1 is verified with aT = P , a′T ≡ P and ST = Ω̂T . The nonstandard

rate arises as a result of the degeneracy between correctly specified nesting models. Under the

alternative hypothesis, it can be shown that Assumption A1 holds for aT = P 1/2 and a′T ≡ 1,

as in West (1996). Clearly, the OOS-t test statistic is invariant to the change of (aT , a
′
T ), that

is, ϕT = ϕ(P 1/2f̄T , Ω̂T ) holds. Assumption A1 can also be verified for various extensions of

McCracken (2007); see, for example, Inoue and Kilian (2004), Clark and McCracken (2005) and

Hansen and Timmermann (2012).

Example 4.5: White (2000) considers a setting similar to West (1996), with an emphasis on

considering a large number of competing forecasts, but uses a test statistic without studentization.

Assumption A1 is verified similarly as in Example 4.3, but with ST and S being empty.

Assumption A2: ϕ (·, ·) is continuous almost everywhere under the law of (ξ, S).

Assumption A2 is satisfied by all standard test statistics used in forecast evaluation: for simple

pair-wise forecast comparisons, the test statistic usually takes the form of t-statistic, that is,

ϕt-stat(ξ, S) = ξ/
√
S. For joint tests it may take the form of a Wald-type statistic, ϕWald(ξ, S) =

ξᵀS−1ξ, or a maximum over individual (possibly studentized) test statistics ϕMax(ξ, S) = maxi ξi

or ϕStuMax(ξ, S) = maxi ξi/
√
Si.

Assumption A2 imposes continuity on ϕ (·, ·) in order to facilitate the use of the continuous

mapping theorem for studying the asymptotics of the test statistic ϕT . More specifically, under
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the null hypothesis of PEPA, which is also the null least favorable to the alternative in PSPA

(White (2000), Hansen (2005)), Assumption A1 implies that (aT (f̄T − χ), a′TST )
d−→ (ξ, S). By

the continuous mapping theorem, Assumption A2 then implies that the asymptotic distribution of

ϕT under this null is ϕ(ξ, S). The critical value of a test at nominal level α is given by the 1− α

quantile of ϕ(ξ, S), on which we impose the following condition.

Assumption A3: The distribution function of ϕ (ξ, S) is continuous at its 1 − α quantile

z1−α. Moreover, the sequence zT,1−α of critical values satisfies zT,1−α
P−→ z1−α.

The first condition in Assumption A3 is very mild. Assumption A3 is mainly concerned with

the availability of the consistent estimator of the 1− α quantile z1−α. This assumption is slightly

stronger than what we actually need. Indeed, we only need the convergence to hold under the null

hypothesis, while, under the alternative, we only need the sequence zT,1−α to be tight.

Below, we discuss examples for which Assumption A3 can be verified.

Example 4.6: In many cases, the limit distribution of ϕT under the null of PEPA is standard

normal or chi-square with some known number of degrees of freedom. Examples include tests

considered by Diebold and Mariano (1995), West (1996) and Giacomini and White (2006). In

the setting of Example 4.2 or 4.4, ϕT is a t-statistic or Wald-type statistic, with an asymptotic

distribution that is nonstandard but pivotal, with quantiles tabulated in the original papers.10

Assumption A3 for these examples can be verified by simply taking zT,1−α as the known quantile

of the limit distribution.

Example 4.7: White (2000) considers tests for superior predictive ability. Under the null

least favorable to the alternative, White’s test statistic is not asymptotically pivotal, as it depends

on the unknown covariance matrix of the limit variable ξ. White suggests computing the critical

value via either simulation or the stationary bootstrap (Politis and Romano (1994)), correspond-

ing respectively to his “Monte Carlo reality check” and “bootstrap reality check” methods. In

particular, under stationarity, White shows that the bootstrap critical value consistently estimates

10One caveat is that the OOS-t statistic in McCracken (2007) is asymptotically pivotal only under the somewhat

restrictive condition that the forecast errors form a conditionally homoskedastic martingale difference sequence.

In the presence of conditional heteroskedasticity or serial correlation in the forecast errors, the null distribution

generally depends on a nuisance parameter (Clark and McCracken (2005)). Nevertheless, the critical values can be

consistently estimated via a bootstrap (Clark and McCracken (2005)) or plug-in method (Hansen and Timmermann

(2012)).

18



z1−α.11 Hansen (2005) considers test statistics with studentization and shows the validity of a re-

fined bootstrap critical value, under stationarity. The validity of the stationary bootstrap holds in

more general settings allowing for moderate heterogeneity (Gonçalves and White (2002), Gonçalves

and de Jong (2003)). We hence conjecture that the bootstrap results of White (2000) and Hansen

(2005) can be extended to a setting with moderate heterogeneity, although a formal discussion is

beyond the scope of the current paper. In these cases, the simulation- or bootstrap-based critical

value can be used as zT,1−α in order to verify Assumption A3.

Finally, we need two alternative sets of assumptions on the test function ϕ (·, ·) for one-sided

and two-sided tests, respectively.

Assumption B1: For any s ∈ S, we have (i) ϕ(u, s) ≤ ϕ(u′, s) whenever u ≤ u′, where

u, u′ ∈ Rκf ; (ii) ϕ(u, s̃)→∞ whenever uj →∞ for some 1 ≤ j ≤ κf and s̃→ s.

Assumption B2: For any s ∈ S, ϕ(u, s̃)→∞ whenever ‖u‖ → ∞ and s̃→ s.

Assumption B1(i) imposes monotonicity on the test statistic as a function of the evaluation

measure, and is used for size control in the PSPA setting. Assumption B1(ii) concerns the consis-

tency of the test against the one-sided alternative and is easily verified for commonly used one-sided

test statistics, such as ϕt-stat, ϕMax and ϕStuMax described in the comment following Assumption

A2. Assumption B2 serves a similar purpose for two-sided tests, and is also easily verifiable.

4.2 Conditions for the asymptotic negligibility of proxy errors

In this subsection, we discuss the key condition that fills the gap between the proxy hypotheses

and the true hypotheses. That is, their difference E[f̄∗T ]−E[f̄ †∗T ] goes to zero slightly faster than the

sampling variability in the feasible test, so that the difference is negligible for asymptotic inference.

The formal condition is given by Assumption C below, where aT is given by Assumption A1.

Assumption C: aT (E[f̄∗T ]− E[f̄ †∗T ])→ 0.

Assumption C is closely related to the convergence rate results in Section 3. We have shown

that for p ∈ [1, 2) and θ > 0,

‖Yt − Y †t ‖p ≤ Kdθt , (4.2)

11White (2000) shows the validity of the bootstrap critical value in a setting where the sampling error in β̂t is

asymptotically irrelevant (West (1996), West (2006)). Corradi and Swanson (2007) propose a bootstrap critical value

in the general setting of West (1996), without imposing asymptotic irrelavance.
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for various risk measures and proxies, where θ indicates the approximation accuracy. Given these

technical results, Assumption C mainly requires that the sequence (dt)t≥1 of sampling meshes goes

to zero sufficiently fast relative to T →∞, provided that the evaluation measure f(·) is smooth in

the target variable. We illustrate the verification of Assumption C by examples, where K denotes

a constant that may vary from line to line. We also remind the reader that P � T is a maintained

assumption and, for the known examples in Section 4.1, aT = T ι for ι = 1/2 or 1.

Example 4.8: Consider a forecast comparison setting with the evaluation measure being the

loss differential of two competing forecasts, that is, f(Yt+τ , (F1,t+τ , F2,t+τ )) = L(Yt+τ − F1,t+τ ) −

L(Yt+τ − F2,t+τ ), where L(·) is a loss function. If L(·) is Lipschitz (e.g. Lin-Lin loss), then

|f(Yt+τ , (F1,t+τ , F2,t+τ ))− f(Y †t+τ , (F1,t+τ , F2,t+τ ))| ≤ K‖Y †t+τ − Yt+τ‖. Under (4.2),

|aT (E[f̄∗T ]− E[f̄ †∗T ])| ≤ KaTP−1
T∑
t=R

dθt ≤ KT ι−1
T∑
t=1

dθt . (4.3)

By Kronecker’s Lemma, the bound in (4.3) goes to zero if
∑T

t=1 t
ι−1dθt < ∞. This summability

condition implicitly restricts the rate at which dT → 0. It is satisfied if dT = O(T−ι/θ(log T )−1/θ−η)

for some η > 0 that is arbitrarily small but fixed; see Theorem 2.31 in Davidson (1994). More

specifically, if we have ι = 1/2 and θ = 1/2 as in many basic cases, the sufficient condition for

Assumption C amounts to letting the high-frequency mesh go to zero slighly faster than T−1.

Example 4.9: Non-Lipschitz loss functions can also be accommodated. Consider the same

setting as in Example 4.8 but with L(·) being the quadratic loss (i.e., L(x) = x2). We have

f(Yt+τ , (F1,t+τ , F2,t+τ )) − f(Y †t+τ , (F1,t+τ , F2,t+τ )) = 2(Yt+τ − Y †t+τ )(F2,t+τ − F1,t+τ ). Suppose

supt≥1(‖F1,t+τ‖q + ‖F2,t+τ‖q) < ∞ for q = p/(p − 1).12 By (4.2) and Hölder’s inequality, we

have (4.3). As in Example 4.8, Assumption C is implied by the same conditions on (dt)t≥1 dis-

cussed there.

As shown in Examples 4.8 and 4.9, the bound (4.2) facilitates the interpretation of Assumption

C as a condition on the relative rates of the high-frequency mesh and the time span. This condition

is weaker when θ is higher (i.e., more accurate proxies) and when aT diverges more slowly (i.e.,

larger sampling uncertainty in the out-of-sample testing problem). Besides the examples in Section

3, additional results known in the literature can also be invoked for establishing (4.2). For example,

12Uniform boundedness on moments are commonly used for deriving asymptotic results for heterogeneous data;

see, for example, White (2001). This condition is trivially satisfied if the forecasts F1,t and F2,t are bounded (e.g.

forecasts for correlations).
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Corradi and Distaso (2006) and Corradi, Distaso, and Swanson (2009, 2011) consider various

proxies for the integrated variance which are robust to certain types of microstructure noise. These

authors show that the two-scale realized variance (Zhang, Mykland, and Aı̈t-Sahalia (2005b)), the

multi-scale realized variance (Zhang (2006)) and the realized kernel (Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008)) satisfy (4.2) with θ = 1/6, 1/4 and 1/4, respectively.13

Finally, we note that the convergence rate condition (4.2) is stable under Hölder-continuous

transforms. Indeed, if H(·) is a Hölder-continuous function with exponent ~ ∈ (0, 1], then it is easy

to see that ‖H(Yt)−H(Y †t )‖p ≤ K‖Yt−Y †t ‖~~p. Hence, applying (4.2) under the L~p-norm further

implies ‖H(Yt) − H(Y †t )‖p ≤ Kd~θt . Existing convergence rates results such as those derived in

Section 3 can be “mixed and matched” to derive similar results for transformed proxies. A concrete

example is given below.

Example 4.10: Consider correlation forecasting for a bivariate asset price process Xt =

(X1t, X2t). Let Y †t =
∫ t
t−1 csds be the integrated covariance matrix and Yt be a proxy of it (see,

e.g., Theorems 3.1 and 3.2). For some (small) constant c > 0, we consider a transform H(·; c)

given by

H(Y ; c) =
Y12√

(Y11 ∨ c) (Y22 ∨ c)
.

We consider H(Y †t ; c) as a measure for the correlation. Note that the integrated correlation con-

sidered by Barndorff-Nielsen and Shephard (2004a) is H(Y †t ; 0). Our motivation of considering

H(Y †t ; c) for c > 0 is that the transform H(·; c) is Lipschitz continuous, so that (4.2) implies

‖H(Yt; c) −H(Y †t ; c)‖p ≤ Kdθt without further assumptions. This slight modification of the inte-

grated correlation is hardly consequential in practical terms. Indeed, if we assume that the spot

volatility processes
√
c11,t and

√
c22,t are bounded below by

√
c (say, 0.1% in annualized terms),

then H(Y †t ; c) = H(Y †t ; 0) identically.

4.3 Asymptotic properties of the feasible inference procedure

Under the conditions discussed in Sections 4.1 and 4.2, Proposition 4.1 shows that the feasible test

φT is valid under the true hypotheses.

Proposition 4.1. The following statements hold under Assumptions A1–A3 and C.

13See Propositions 3–6 in Corradi, Distaso, and Swanson (2009) and Lemma 1 in Corradi, Distaso, and Swanson

(2011) for more details.
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(a) Under the EPA setting (2.2), EφT → α under H†0. If Assumption B1(ii) (resp. B2) holds

in addition, we have EφT → 1 under H†1a (resp. H†2a).

(b) Under the SPA setting (2.3) and Assumption B1, we have lim supT→∞ EφT ≤ α under H†0

and EφT → 1 under H†a.

It can be shown that the test φT satisfies the same asymptotic level and power properties

under the proxy hypotheses, without requiring Assumption C. Assumption C is needed for deriving

asymptotic properties of φT under the true hypotheses. In particular, Proposition 4.1 shows that

the level and power properties of the test are the same for the true and the proxy hypotheses. In

this sense, the proxy error is negligible for the asymptotic inference about preditive accuracy.

The result established in Proposition 4.1 is a form of weak negligibility for the proxy error,

in the sense that it only concerns the rejection probability. An alternative notion of negligibility

can be framed as follows. Let φ†T be a nonrandomized test that is constructed in the same way as

φT but with Yt+τ replaced by Y †t+τ . That is, φ†T is the infeasible test one would use if one could

observe the true forecast target. We may consider the difference between the proxy and the target

negligible in a strong sense if P(φT = φ†T ) → 1.14 It is obvious that strong negligibility implies

weak negligibility. While the strong negligibility may seem to be a reasonable result to pursue, we

note that the weak negligibility better suits, and is sufficient for, the testing context considered

here. Strong negligibility requires the feasible and infeasible test decisions to agree, which may

be too much to ask: for example, this would demand φT to equal φ†T even if φ†T commits a false

rejection.

Similar to our negligibility result, West (1996) defines cases exhibiting “asymptotic irrelevance”

as those in which valid inference about predictive accuracy can be made while ignoring the presence

of parameter estimation error β̂t − β∗. Our negligibility result is very distinct from West’s result:

here, the unobservable quantity is a latent stochastic process (Y †t )t≥1 that grows in T as T →∞,

while in West’s setting it is a fixed deterministic and finite-dimensional parameter β∗. Unlike

West’s (1996) case, where a correction can be applied when the asymptotic irrelevance condition

(w.r.t. β∗) is not satisfied, no such correction (w.r.t. Y †t ) is readily available in our application, nor

in that of Corradi and Distaso (2006), among others. In Section 6, we show that this negligibility

result provides excellent finite-sample approximation in three realistic Monte Carlo designs.

14Since the tests take values in {0, 1}, P(φT = φ†T )→ 1 is equivalent to φT − φ
†
T

P−→ 0.
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5 Extensions: additional forecast evaluation methods

In this section we discuss several extensions of our baseline result (Proposition 4.1). We first

consider tests for instrumented conditional moment equalities, as in Giacomini and White (2006).

We then consider stepwise evaluation procedures that include the multiple testing method of

Romano and Wolf (2005) and the model confidence set of Hansen, Lunde, and Nason (2011). Our

purpose is twofold: one is to facilitate the application of these methods in the context of forecasting

latent risk measures, the other is to demonstrate the generalizability of the framework presented

above through known, but distinct, examples. The stepwise procedures (Romano and Wolf (2005),

Hansen, Lunde, and Nason (2011)) each involve some method-specific aspects that are not used

elsewhere in the paper; hence, for the sake of readability, we only briefly discuss the results here,

and present the details (assumptions, algorithms and formal results) in the Supplement to this

paper.

5.1 Tests for instrumented conditional moment equalities

Many interesting forecast evaluation problems can be stated as a test for the conditional moment

equality:

H†0 : E[g(Y †t+τ , Ft+τ (β∗))|Ht] = 0, all t ≥ 0, (5.1)

where Ht is a sub-σ-field that represents the forecast evaluator’s information set at day t, and

g(·, ·) : Y × Y k̄ 7→ Rκg is a measurable function. Specific examples are given below. Let ht denote

a Ht-measurable Rκh-valued data sequence that serves as an instrument. The conditional moment

equality (5.1) implies the following unconditional moment equality:

H†0,h : E[g(Y †t+τ , Ft+τ (β∗))⊗ ht] = 0, all t ≥ 0. (5.2)

We cast (5.2) in the setting of Section 2 by setting ft+τ (y, β) ≡ g(y, Ft+τ (β))⊗ht. Then the theory

in Section 4 can be applied without further change. In particular, Proposition 4.1 suggests that

the two-sided PEPA test (with χ = 0) using the proxy has a valid asymptotic level under H†0 and

is consistent against the alternative

H†2a,h : lim inf
T→∞

‖E[g(Y †t+τ , Ft+τ (β∗))⊗ ht]‖ > 0. (5.3)

Examples include tests for conditional predictive accuracy and tests for conditional forecast

rationality. To simplify the discussion, we only consider scalar forecasts, so κY = 1. Below, let
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L(·, ·) : Y × Y 7→ R be a loss function, with its first and second arguments being the target and

the forecast, respectively.

Example 5.1: Giacomini and White (2006) consider two-sided tests for conditional equal

predictive ability of two sequences of actual forecasts Ft+τ = (F1,t+τ , F2,t+τ ). The null hy-

pothesis of interest is (5.1) with g(Y †t+τ , Ft+τ (β∗)) = L(Y †t+τ , F1,t+τ (β∗)) − L(Y †t+τ , F2,t+τ (β∗)).

Since Giacomini and White (2006) concern the actual forecasts, we set β∗ to be empty and treat

Ft+τ = (F1,t+τ , F2,t+τ ) as an observable sequence. Primitive conditions for Assumptions A1 and

A3 can be found in Giacomini and White (2006), which involve standard regularity conditions

for weak convergence and HAC estimation. The test statistic is of Wald-type and readily verifies

Assumptions A2 and B2. As noted by Giacomini and White (2006), their test is consistent against

the alternative (5.3) and the power generally depends on the choice of ht.

Example 5.2: The population forecast Ft+τ (β∗), which is also the actual forecast if β∗ is

empty, is rational with respect to the information set Ht if it solves minF∈Ht E[L(Y †t+τ , F )|Ht]

almost surely. Suppose that L(y, F ) is differentiable in F for almost every y ∈ Y under the

conditional law of Y †t+τ given Ht, with the partial derivative denoted by ∂FL(·, ·). As shown in

Patton and Timmermann (2010), a test for conditional rationality can be carried out by testing

the first-order condition of the minimization problem. That is to test the null hypothesis (5.1)

with g(Y †t+τ , Ft+τ (β∗)) = ∂FL(Y †t+τ , Ft+τ (β∗)). The variable g(Y †t+τ , Ft+τ (β∗)) is the generalized

forecast error (Granger (1999)). In particular, when L(y, F ) = (F − y)2/2, that is, the quadratic

loss, we have g(Y †t+τ , Ft+τ (β∗)) = F − y; in this case, the test for conditional rationality is reduced

to a test for conditional unbiasedness. Tests for unconditional rationality and unbiasedness are

special cases of their conditional counterparts, with Ht being the degenerate information set.

5.2 Stepwise multiple testing procedure for superior predictive accuracy

In the context of forecast evaluation, the multiple testing problem of Romano and Wolf (2005)

consists of k̄ individual testing problems of pairwise comparison for superior predictive accu-

racy. Let F0,t+τ (·) be the benchmark forecast model and let f †∗j,t+τ = L(Y †t+τ , F0,t+τ (β∗)) −

L(Y †t+τ , Fj,t+τ (β∗)), 1 ≤ j ≤ k̄, be the relative performance of forecast j relative to the benchmark.

As before, f †∗j,t+τ is defined using the true target variable Y †t+τ . We consider k̄ pairs of hypotheses

Multiple SPA

 H†j,0 : E[f †∗j,t+τ ] ≤ 0 for all t ≥ 1,

H†j,a : lim infT→∞ E[f̄ †∗j,T ] > 0,
1 ≤ j ≤ k̄. (5.4)
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These hypotheses concern the true target variable and are stated in a way that allows for data

heterogeneity.

Romano and Wolf (2005) propose a stepwise multiple (StepM) testing procedure that conducts

decisions for individual testing problems while asymptotically control the familywise error rate

(FWE), that is, the probability of any null hypothesis being falsely rejected. The StepM procedure

relies on the observability of the forecast target. By imposing the condition on proxy accuracy

(Assumption C), we can show that the StepM procedure, when applied to the proxy, asymptotically

controls the FWE for the hypotheses (5.4) that concern the latent target. The details are in

Supplemental Appendix B.1.

5.3 Model confidence sets

The model confidence set (MCS) proposed by Hansen, Lunde, and Nason (2011), henceforth HLN,

can be specialized in the forecast evaluation context to construct confidence sets for superior

forecasts. To fix ideas, let f †∗j,t+τ denote the performance (e.g., the negative loss) of forecast j with

respect to the true target variable. The set of superior forecasts is defined as

M† ≡
{
j ∈

{
1, . . . , k̄

}
: E[f †∗j,t+τ ] ≥ E[f †∗l,t+τ ] for all 1 ≤ l ≤ k̄ and t ≥ 1

}
.

That is,M† collects the forecasts that are superior to others when evaluated using the true target

variable. Similarly, the set of asymptotically inferior forecasts is defined as

M† ≡
{
j ∈

{
1, . . . , k̄

}
: lim inf

T→∞

(
E[f †∗l,t+τ ]− E[f †∗j,t+τ ]

)
> 0

for some (and hence any) l ∈M†
}
.

We are interested in constructing a sequence M̂T,1−α of 1−α nominal level MCS’s forM† so that

lim inf
T→∞

(
M† ⊆ M̂T,1−α

)
≥ 1− α, P

(
M̂T,1−α ∩M† = ∅

)
→ 1. (5.5)

That is, M̂T,1−α has valid (pointwise) asymptotic coverage and has asymptotic power one against

fixed alternatives.

HLN’s theory for the MCS is not directly applicable due to the latency of the forecast target.

Following the prevailing strategy of the current paper, we propose a feasible version of HLN’s

algorithm that uses the proxy in place of the associated latent target. Under Assumption C, we

can show that this feasible version achieves (5.5). The details are in Supplemental Appendix B.2.
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6 Monte Carlo analysis

6.1 Simulation designs

We consider three simulation designs which are intended to cover some of the most common and

important applications of high-frequency data in forecasting: (A) forecasting univariate volatility

in the absence of price jumps; (B) forecasting univariate volatility in the presence of price jumps;

and (C) forecasting correlation. In each design, we consider the EPA hypotheses, equation (2.2),

under the quadratic loss for two competing one-day-ahead forecasts using the method of Giacomini

and White (2006).

Each forecast is formed using a rolling scheme with window size R ∈ {250, 500, 1000} days.

The prediction sample contains P ∈ {500, 1000, 2000} days. The high-frequency data are simulated

using the Euler scheme at every second, and proxies are computed using sampling interval ∆ =

5 seconds, 1 minute, 5 minutes, or 30 minutes. As on the New York stock exchange, each day is

assumed to contain 6.5 trading hours. There are 1000 Monte Carlo trials in each experiment and

all tests are at the 5% nominal level.

We now describe the simulation designs. Simulation A concerns forecasting the logarithm of

the quadratic variation of a continuous price process. Following one of the simulation designs

in Andersen, Bollerslev, and Meddahi (2005), we simulate the logarithmic price Xt and the spot

variance process σ2
t according to the following stochastic differential equations: dXt = 0.0314dt+ σt(−0.5760dW1,t +

√
1− 0.57602dW2,t) + dJt,

d log σ2
t = −0.0136(0.8382 + log σ2

t )dt+ 0.1148dW1,t,
(6.1)

where W1 and W2 are independent Brownian motions and the jump process J is set to be identically

zero. The target variable to be forecast is log IVt ≡ log
∫ t
t−1 σ

2
sds and the proxy is logRV ∆

t , where

RV ∆
t is defined by (3.2) for data sampled at ∆ = 5 seconds, 1 minute, 5 minutes, or 30 minutes.

The first forecast model in Simulation A is a GARCH(1,1) model (Bollerslev (1986)) estimated

using quasi maximum likelihood on daily returns:

Model A1:

 rt = Xt −Xt−1 = σtεt, εt|Ft−1 ∼ N (0, 1) ,

σ2
t = ω + βσ2

t−1 + αr2
t−1.

(6.2)

The second model is a heterogeneous autoregressive (HAR) model (Corsi (2009)) for RV 5min
t
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estimated via ordinary least squares:

Model A2:

 RV 5min
t = β0 + β1RV

5min
t−1 + β2

∑5
k=1RV

5min
t−k

+β3

∑22
k=1RV

5min
t−k + et.

(6.3)

The logarithm of the one-day-ahead forecast for σ2
t+1 (resp. RV 5min

t+1 ) from the GARCH (resp.

HAR) model is taken as a forecast for log IVt+1.

In Simulation B, we also set the forecast target to be log IVt, but consider a more complicated

setting with price jumps. We simulate Xt and σ2
t according to (6.1) and, following Huang and

Tauchen (2005), we specify Jt as a compound Poisson process with intensity λ = 0.05 per day and

with jump size distribution N (0.2, 1.42). The proxy for IVt is the bipower variation BV ∆
t , where

BV ∆
t is defined by (3.3) for data sampled with observation mesh ∆.

The competing forecast sequences in Simulation B are as follows. The first forecast is based

on a simple random walk model, applied to the 5-minute bipower variation BV 5min
t :

Model B1: BV 5min
t = BV 5min

t−1 + εt, where E [εt|Ft−1] = 0. (6.4)

The second model is a HAR model for BV 1min
t

Model B2:

 BV 1min
t = β0 + β1BV

1min
t−1 + β2

∑5
k=1BV

1min
t−k

+β3

∑22
k=1BV

1min
t−k + et.

(6.5)

The logarithm of the one-day-ahead forecast for BV 5 min
t+1 (resp. BV 1 min

t+1 ) from the random walk

(resp. HAR) model is taken as a forecast for log IVt+1.

Finally, we consider correlation forecasting in Simulation C. This simulation exercise is of

particular interest as our empirical application in Section 7 concerns a similar forecasting problem.

We adopt the bivariate stochastic volatility model used in the simulation study of Barndorff-Nielsen

and Shephard (2004a). Let Wt = (W1,t,W2,t). The bivariate logarithmic price process Xt is given

by

dXt = σtdWt, σtσ
ᵀ
t =

 σ2
1,t ρtσ1,tσ2,t

• σ2
2,t

 .

Let Bj,t, j = 1, . . . , 4, be Brownian motions that are independent of each other and of Wt. The

process σ2
1,t follows a two-factor stochastic volatility model: σ2

1,t = vt + ṽt, where dvt = −0.0429(vt − 0.1110)dt+ 0.2788
√
vtdB1,t,

dṽt = −3.7400(ṽt − 0.3980)dt+ 2.6028
√
ṽtdB2,t.

(6.6)
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The process σ2
2,t is specified as a GARCH diffusion:

dσ2
2,t = −0.0350(σ2

2,t − 0.6360)dt+ 0.2360σ2
2,tdB3,t. (6.7)

The specification for the correlation process ρt is a GARCH diffusion for the inverse Fisher trans-

formation of the correlation: ρt = (e2yt − 1)/(e2yt + 1),

dyt = −0.0300 (yt − 0.6400) dt+ 0.1180ytdB4,t.
(6.8)

In this simulation design we take the target variable to be the daily integrated correlation, which

is defined as

ICt ≡
QV12,t√

QV11,t

√
QV22,t

. (6.9)

The proxy is given by the realized correlation computed using returns sampled at frequency ∆:

RC∆
t ≡

RV ∆
12,t√

RV ∆
11,t

√
RV ∆

22,t

. (6.10)

The first forecasting model is a GARCH(1,1)–DCC(1,1) model (Engle (2002)) applied to daily

returns rt = Xt −Xt−1:

Model C1:



rj,t = σj,tεj,t, σ2
j,t = ωj + βjσ

2
j,t−1 + αjr

2
j,t−1, for j = 1, 2,

ρεt ≡ E[ε1,tε2,t|Ft−1] =
Q12,t√
Q11,tQ22,t

, Qt =

 Q11,t Q12,t

• Q22,t

 ,

Qt = Q (1− a− b) + bQt−1 + a εt−1ε
ᵀ
t−1, εt = (ε1,t, ε2,t).

(6.11)

The forecast for ICt+1 is the one-day-ahead forecast of ρεt+1. The second forecasting model extends

Model C1 by adding the lagged 30-minute realized correlation to the evolution of Qt:

Model C2: Qt = Q (1− a− b− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + g RC30min

t−1 . (6.12)

In each simulation, we set the evaluation function f(·) to be the loss of Model 1 less that of

Model 2 and conduct the one-sided EPA test (see equation (2.2)). We note that the competing

forecasts are not engineered to have the same mean-squared error (MSE). Therefore, for the purpose

of examining size properties of the tests, the hypotheses to be imposed are those in (2.2) with χ

being the population MSE of Model 1 less that of Model 2. We remind the reader that the

population MSE is computed using the true latent target variable, whereas the feasible tests are

conducted using proxies. The goal of this simulation study is to determine whether our feasible
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GW–NW GW–KV
Proxy RV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.08 0.07 0.07 0.01 0.01 0.01
∆ = 5 sec 0.08 0.07 0.07 0.01 0.01 0.01
∆ = 1 min 0.08 0.07 0.07 0.01 0.01 0.01
∆ = 5 min 0.07 0.07 0.06 0.01 0.01 0.01
∆ = 30 min 0.07 0.06 0.06 0.01 0.01 0.01

R = 500

True Y †t+1 0.07 0.08 0.06 0.01 0.02 0.01
∆ = 5 sec 0.08 0.08 0.06 0.01 0.02 0.01
∆ = 1 min 0.07 0.08 0.06 0.01 0.02 0.01
∆ = 5 min 0.07 0.08 0.06 0.01 0.02 0.01
∆ = 30 min 0.06 0.07 0.05 0.01 0.02 0.01

R = 1000

True Y †t+1 0.09 0.07 0.06 0.02 0.01 0.01
∆ = 5 sec 0.09 0.07 0.06 0.02 0.01 0.01
∆ = 1 min 0.09 0.07 0.06 0.02 0.01 0.01
∆ = 5 min 0.08 0.07 0.06 0.03 0.01 0.01
∆ = 30 min 0.07 0.06 0.05 0.02 0.01 0.01

Table 1: Giacomini–White test rejection frequencies for Simulation A. The nominal size is 0.05,
R is the length of the estimation sample, P is the length of the prediction sample, ∆ is the
sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate
of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b”
asymptotics.

tests have finite-sample rejection rates similar to those of the infeasible tests (i.e., tests based on

true target variables), and, moreover, whether these tests have satisfactory size properties under

the true null hypothesis.15
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GW–NW GW–KV
Proxy BV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.08 0.09 0.07 0.02 0.01 0.01
∆ = 5 sec 0.08 0.09 0.07 0.02 0.01 0.01
∆ = 1 min 0.08 0.09 0.06 0.02 0.01 0.01
∆ = 5 min 0.07 0.07 0.06 0.02 0.01 0.01
∆ = 30 min 0.04 0.04 0.04 0.01 0.01 0.01

R = 500

True Y †t+1 0.09 0.08 0.07 0.01 0.01 0.01
∆ = 5 sec 0.09 0.08 0.07 0.01 0.01 0.01
∆ = 1 min 0.08 0.07 0.07 0.01 0.01 0.01
∆ = 5 min 0.08 0.07 0.05 0.01 0.02 0.02
∆ = 30 min 0.04 0.03 0.03 0.01 0.01 0.01

R = 1000

True Y †t+1 0.09 0.08 0.07 0.01 0.01 0.01
∆ = 5 sec 0.09 0.08 0.07 0.01 0.01 0.01
∆ = 1 min 0.08 0.07 0.07 0.01 0.01 0.01
∆ = 5 min 0.06 0.07 0.07 0.02 0.01 0.01
∆ = 30 min 0.03 0.03 0.04 0.01 0.01 0.01

Table 2: Giacomini–White test rejection frequencies for Simulation B. The nominal size is 0.05,
R is the length of the estimation sample, P is the length of the prediction sample, ∆ is the
sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate
of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b”
asymptotics.

6.2 Results

The results for Simulations A, B and C are presented in Tables 1, 2 and 3, respectively. In the top

row of each panel are the results for the infeasible tests that are implemented with the true target

variable, and in the other rows are the results for feasible tests based on proxies. We consider two

15Due to the complexity from the data generating processes and volatility models we consider, computing the

population MSE analytically for each forecast sequence is difficult. We instead compute the population MSE by

simulation, using a Monte Carlo sample of 500,000 days. Similarly, it is difficult to construct data generating processes

under which two forecast sequences have identical population MSE, which motivates our considering a nonzero χ in

the null hypothesis, equation (2.2), of our simulation design. Doing so enables us to use realistic data generating

processes and reasonably sophisticated forecasting models which mimic those used in prior empirical work.
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GW–NW GW–KV
Proxy RC∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.25 0.22 0.21 0.07 0.04 0.04
∆ = 5 sec 0.25 0.22 0.21 0.07 0.04 0.04
∆ = 1 min 0.25 0.23 0.20 0.07 0.04 0.04
∆ = 5 min 0.24 0.23 0.20 0.06 0.05 0.04
∆ = 30 min 0.24 0.21 0.19 0.07 0.05 0.04

R = 500

True Y †t+1 0.29 0.27 0.24 0.12 0.06 0.05
∆ = 5 sec 0.29 0.27 0.24 0.12 0.06 0.05
∆ = 1 min 0.29 0.27 0.24 0.12 0.06 0.05
∆ = 5 min 0.29 0.28 0.24 0.12 0.06 0.05
∆ = 30 min 0.30 0.26 0.23 0.12 0.07 0.05

R = 1000

True Y †t+1 0.27 0.23 0.20 0.14 0.07 0.06
∆ = 5 sec 0.27 0.23 0.20 0.14 0.07 0.06
∆ = 1 min 0.27 0.23 0.20 0.14 0.07 0.06
∆ = 5 min 0.27 0.23 0.19 0.14 0.07 0.06
∆ = 30 min 0.27 0.23 0.19 0.14 0.07 0.06

Table 3: Giacomini–White test rejection frequencies for Simulation C. The nominal size is 0.05,
R is the length of the estimation sample, P is the length of the prediction sample, ∆ is the
sampling frequency for the proxy. The left panel shows results based on a Newey–West estimate
of the long-run variance, the right panel shows results based on Kiefer and Vogelsang’s “fixed-b”
asymptotics.

implementations of the Giacomini–White (GW) test: the first is based on a Newey–West estimate

of the long-run variance and critical values from the standard normal distribution. The second is

based on the “fixed-b” asymptotics of Kiefer and Vogelsang (2005), using the Bartlett kernel. We

denote these two implementations as NW and KV, respectively. The KV method is of interest here

because of the well-known size distortion problem for inference procedures based on the standard

HAC estimation theory; see Müller (2012) and references therein. We set the truncation lag to be

3P 1/3 for NW and to be 0.5P for KV.16

Overall, we find that the rejection rates of the feasible tests based on proxies are generally

16In the KV case, the one-sided critical value for the t-statistic is 2.774 at 5% level when the truncation lag is

0.5P ; see Table 1 in Kiefer and Vogelsang (2005).
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very close to the rejection rates of the infeasible tests using the true forecast target, and thus

that our negligibility result holds well in a range of realistic simulation scenarios. The standard

GW-NW method has reasonable size control in Simulations A and B, but has nontrivial size

distortion for Simulation C.17 This size distortion occurs even when the true target variable is

used, and is not exacerbated by the use of proxies. The GW-KV method has better size control in

these simulation scenarios, being somewhat conservative in Simulations A and B, and having good

rejection rates in Simulation C for P = 1000 and P = 2000. Supplemental Appendix S.C presents

results that confirm that these findings are robust with respect to the choice of the truncation lag

in the estimation of the long-run variance, along with some additional results on the disagreement

between the feasible and the infeasible tests.

It is perhaps surprising that our negligibility argument performs well in the simulations even

when the sampling frequency for the realized measure is as low as 30 minutes, given that proxies

formed using relatively low frequency returns are often imprecise. To see why this is the case,

we emphasize that the negligibility result does not require the proxy be precise on every day

of the sample (although that would of course be sufficient). Rather, it requires a much weaker

condition (Assumption C), namely that the expectation of the proxy evaluation measure is precise

in the evaluation sample. In our testing context, the precision of the expectation of the proxy

evaluation measure is implicitly compared with the sampling variability of the sample mean of the

evaluation function, f̄T . In applications commonly encountered in practice, the target variable is

difficult to predict and persistent, forecast errors are occasionally quite large, and the length of

evaluation samples are limited by the availability of high frequency data. All of these features lead

to relatively large sampling variation in f̄T , and the simulation results in this section indicate that

this sampling uncertainty dominates the difference in the expectation of the evaluation measure

using the proxy rather than the true target variable.

17The reason for the large size distortion of the NW method in Simulation C appears to be the relatively high

persistence in the quadratic loss differentials. In Simulations A and B, the autocorrelations of the loss differential

sequence essentially vanish at about the 50th and the 30th lag, respectively, whereas in Simulation C they remain

non-negligible even at the 100th lag.
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7 Application: Comparing correlation forecasts

7.1 Data and model description

We now illustrate the use of our method with an empirical application on forecasting the integrated

correlation between two assets. Correlation forecasts are critical in financial decisions such as

portfolio construction and risk management; see Engle (2008) for example. Standard forecast

evaluation methods do not directly apply here due to the latency of the target variable, and

methods that rely on an unbiased proxy for the target variable (e.g., Patton (2011)) cannot be

used either, due to the absence of any such proxy.18 This is thus an ideal example to illustrate the

usefulness of the method proposed in the current paper.

Our sample consists two pairs of stocks: (i) Procter and Gamble (NYSE: PG) and General

Electric (NYSE: GE) and (ii) Microsoft (NYSE: MSFT) and Apple (NASDAQ: AAPL). The

sample period ranges from January 2000 to December 2010, consisting of 2,733 trading days, and

we obtain our data from the TAQ database. As in Simulation C from the previous section, we take

the proxy to be the realized correlation RC∆
t formed using returns with sampling interval ∆.19

We consider ∆ ranging from 1 minute to 130 minutes, which covers sampling intervals typically

employed in empirical work.

We compare four forecasting models, all of which have the following specification for the con-

ditional mean and variance: for stock i, i = 1 or 2, its daily logarithmic return rit follows rit = µi + σitεit,

σ2
it = ωi + βiσ

2
i,t−1 + αiσ

2
i,t−1ε

2
i,t−1 + δiσ

2
i,t−1ε

2
i,t−11{εi,t−1≤0} + γiRV

1 min
i,t−1 .

(7.1)

That is, we assume a constant conditional mean, and a GJR-GARCH (Glosten et al. (1993))

volatility model augmented with lagged one-minute RV.

The baseline correlation model is Engle’s (2002) DCC model as considered in Simulation C; see

equation (6.11). The other three models are extensions of the baseline model. The first extension is

18When based on relatively sparse sampling frequencies it may be considered plausible that the realized covariance

matrix is finite-sample unbiased for the true quadratic covariation matrix, however as the correlation involves a ratio

of the elements of this matrix, this property is lost.
19For all sampling intervals we use the “subsample-and-average” estimator of Zhang, Mykland, and Aı̈t-Sahalia

(2005b), with five subsamples when ∆ = 5 seconds, and with ten equally-spaced subsamples for the other choices of

sampling frequency.
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the asymmetric DCC (A-DCC) model of Cappiello, Engle, and Sheppard (2006), which is designed

to capture asymmetric reactions in correlation to the sign of past shocks:

Qt = Q (1− a− b− d) + bQt−1 + a εt−1ε
ᵀ
t−1 + d ηt−1η

ᵀ
t−1, where ηt ≡ εt ◦ 1{εt≤0}. (7.2)

The second extension (R-DCC) augments the DCC model with the 65-minute realized correlation.

This extension is in the same spirit as Noureldin, Shephard, and Sheppard (2012), and is designed

to exploit high-frequency information about current correlation:

Qt = Q (1− a− b− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + g RC65 min

t−1 . (7.3)

The third extension (AR-DCC) encompasses both A-DCC and R-DCC with the specification

Qt = Q (1− a− b− d− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + d ηt−1η

ᵀ
t−1 + g RC65 min

t−1 . (7.4)

We conduct pairwise comparisons of forecasts based on these four models, which include both

nested and nonnested cases. We use the framework of Giacomini and White (2006), so that

nested and nonnested models can be treated in a unified manner. Each one-day-ahead forecast is

constructed in a rolling scheme with fixed estimation sample size R = 1500 and prediction sample

size P = 1233. We use the quadratic loss function as in Simulation C.

7.2 Results

Table 4 presents results for comparisons of each of the three generalized models and the baseline

DCC model, using both the GW–NW and the GW–KV tests. The results in the first and fourth

columns indicate that the A-DCC model does not improve predictive accuracy relative to the base-

line DCC model. The GW–KV tests reveal that the loss of the A-DCC forecast is not statistically

different from that of DCC. The GW–NW tests, on the other hand, report statistically significant

outperformance of the A-DCC model relative to the DCC for some proxies, however this finding

should be interpreted with care, as the GW–NW test was found to over-reject in finite samples in

Simulation C of the previous section. Interestingly, for the MSFT–AAPL pair, the more general

A-DCC model actually underperforms the baseline model, though the difference is not significant.

The next columns reveal that the R-DCC model outperforms the DCC model, particularly for

the MSFT–AAPL pair, where the finding is highly significant and robust to the choice of proxy.
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GW–NW GW–KV
DCC vs DCC vs DCC vs DCC vs DCC vs DCC vs

Proxy RC∆
t+1 A-DCC R-DCC AR-DCC A-DCC R-DCC AR-DCC

Panel A. PG–GE Correlation

∆ = 1 min 1.603 3.130∗ 2.929∗ 1.947 1.626 1.745
∆ = 5 min 1.570 2.932∗ 2.724∗ 1.845 2.040 2.099
∆ = 15 min 1.892∗ 2.389∗ 2.373∗ 2.047 1.945 1.962
∆ = 30 min 2.177∗ 1.990∗ 2.206∗ 2.246 1.529 1.679
∆ = 65 min 1.927∗ 0.838 1.089 1.642 0.828 0.947
∆ = 130 min 0.805 0.835 0.688 0.850 0.830 0.655

Panel B. MSFT–AAPL Correlation

∆ = 1 min -0.916 2.647∗ 1.968∗ -1.024 4.405∗ 3.712∗

∆ = 5 min -1.394 3.566∗ 2.310∗ -1.156 4.357∗ 2.234
∆ = 15 min -1.391 3.069∗ 1.927∗ -1.195 4.279∗ 2.116
∆ = 30 min -1.177 3.011∗ 2.229∗ -1.055 3.948∗ 2.289
∆ = 65 min -1.169 2.634∗ 2.071∗ -1.168 3.506∗ 2.222
∆ = 130 min -1.068 1.825∗ 1.280 -1.243 3.342∗ 1.847

Table 4: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In
the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical
values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV,
in the right panel). Test statistics that are greater than the critical value are marked with an
asterisk.

Finally, we find that the AR-DCC model outperforms the DCC model, however the statistical

significance of the outperformance of AR-DCC depends on the testing method. In view of the

over-rejection problem of the GW–NW test, we conclude conservatively that the AR-DCC is not

significantly better than the baseline DCC model.

Table 5 presents results from pairwise comparisons among the generalized models. Consistent

with the results in Table 4, we find that the A-DCC forecast underperforms those of R-DCC and

AR-DCC, and significantly so for MSFT–AAPL. The comparison between R-DCC and AR-DCC

yields mixed, but statistically insignificant, findings across the two pairs of stocks.

Overall, we find that augmenting the DCC model with lagged realized correlation significantly

improves its predictive ability, while adding an asymmetric term to the DCC model generally does

not improve, and sometimes hurts, its forecasting performance. These findings are robust to the

choice of proxy.
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GW–NW GW–KV
A-DCC vs A-DCC vs R-DCC vs A-DCC vs A-DCC vs R-DCC vs

Proxy RC∆
t+1 R-DCC AR-DCC AR-DCC R-DCC AR-DCC AR-DCC

Panel A. PG–GE Correlation

∆ = 1 min 2.231∗ 2.718∗ 0.542 1.231 1.426 0.762
∆ = 5 min 2.122∗ 2.430∗ 0.355 1.627 1.819 0.517
∆ = 15 min 1.564 1.969∗ 0.888 1.470 1.703 1.000
∆ = 30 min 0.936 1.561 1.282 0.881 1.271 0.486
∆ = 65 min -0.110 0.391 1.039 -0.153 0.413 0.973
∆ = 130 min 0.503 0.474 -0.024 0.688 0.516 -0.031

Panel B. MSFT–AAPL Correlation

∆ = 1 min 3.110∗ 3.365∗ -1.239 3.134∗ 3.657∗ -1.580
∆ = 5 min 4.005∗ 4.453∗ -1.554 4.506∗ 6.323∗ -1.586
∆ = 15 min 3.616∗ 4.053∗ -1.307 4.044∗ 5.449∗ -1.441
∆ = 30 min 3.345∗ 3.770∗ -0.834 4.635∗ 7.284∗ -0.882
∆ = 65 min 2.999∗ 3.215∗ -0.542 6.059∗ 7.868∗ -0.635
∆ = 130 min 2.223∗ 2.357∗ -1.039 3.392∗ 5.061∗ -1.582

Table 5: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In
the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical
values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV,
in the right panel). Test statistics that are greater than the critical value are marked with an
asterisk.

8 Concluding remarks

This paper proposes a simple but general framework for the problem of testing predictive ability

when the target variable is unobservable. We consider an array of popular forecast evaluation

methods, including, for example, Diebold and Mariano (1995), West (1996), White (2000), Giaco-

mini and White (2006) and McCracken (2007), in cases where the latent target variable is replaced

by a proxy computed using high-frequency (intraday) data. We derive convergence rate results

for general classes of high-frequency based estimators of volatility and jump functionals, which

cover a majority of existing estimators as special cases, such as realized (co)variance, truncated

(co)variation, bipower variation, realized correlation, realized beta, jump power variation, realized

semivariance, realized Laplace transform, realized skewness and kurtosis. Based on these results,

we provide conditions under which the moments that define the proxy hypotheses converge suffi-

ciently quickly to their counterparts under the true hypotheses, so that the feasible tests based on
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proxies are valid under not only the former, but also the latter. In so doing, we bridge the vast

literature on forecast evaluation and the burgeoning literature on high-frequency time series. The

theoretical framework is structured in a way to facilitate further extensions in both directions.

We verify that the asymptotic results perform well in three distinct, and realistically calibrated,

Monte Carlo studies. Our empirical application uses these results to reveal the out-of-sample

predictive gains from augmenting the widely-used DCC model (Engle (2002)) with high-frequency

estimates of correlation.
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