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ABSTRACT
This article provides results on the validity of bootstrap inference methods for two-stage quasi-maximum
likelihood estimation involving time series data, such as those used for multivariate volatility models or
copula-based models. Existing approaches require the researcher to compute and combine many first- and
second-order derivatives, which can be difficult to do and is susceptible to error. Bootstrap methods are
simpler to apply, allowing the substitution of capital (CPU cycles) for labor (keeping track of derivatives).
We show the consistency of the bootstrap distribution and consistency of bootstrap variance estimators,
thereby justifying the use of bootstrap percentile intervals and bootstrap standard errors.
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1. Introduction

Many econometric models are estimated in stages in order
to make them more computationally tractable. For exam-
ple, copula-based models often have the marginal distribution
parameters estimated in the first N stages, and then the copula
parameters estimated in a final stage (see, e.g., Joe 1995; Patton
2006). Similarly, the famous Dynamic Conditional Correlation
(DCC) GARCH model of Engle (2002) first estimates univariate
GARCH models for each variable, and then the correlation
matrix component is estimated. In empirical finance, the ubiq-
uitous Fama-MacBeth (1973) procedure involves estimating
assets’ exposures to risk factors in a first stage, before estimating
risk premia associated with those factors in a second stage. In
all cases, valid inference on parameters in the final stage must
account for estimation error accumulated in earlier stages.

Standard methods to account for estimation error from
earlier estimation stages requires computing many first- and
second-order derivatives of the overall objective function.1 In
most cases, it is difficult or tedious to obtain these analytically,
and many authors instead rely on numerical derivatives. Both
of these approaches are susceptible to error: human, in the first
case; numerical, in the second. Inference based on the bootstrap
is an attractive alternative, allowing the substitution of capital
(CPU cycles) for labor (keeping track of derivatives). See, for
example, Cochrane (2001, chap. 15.2) for bootstrap inference in
two-pass regressions and Patton (2012) for bootstrap inference
in copula-based models.

1For a textbook discussion of inference in multi-stage estimation see White
(1994) and Newey and MacFadden (1994).
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Some related results are available in the literature. For exam-
ple, Chen, Linton, and van Keilegom (2003) and Armstrong,
Bertanha, and Hong (2014) consider the bootstrap for two-
step nonlinear parameteric and semiparameteric models, and
Cattaneo, Jansson, and Ma (2019) considers bootstrap infer-
ence for two-step GMM estimators, but all of these articles
consider only iid data. Bootstrap methods for one-step quasi-
maximum likelihood estimators (QMLE) have been consid-
ered (e.g., Gonçalves and White 2004) for both iid and time
series data, but no general results are available for multistep
QMLE. We address this gap and show bootstrap validity for such
applications under very general time series dependence and
heterogeneity.

We consider two approaches for bootstrap inference. The
first jointly resamples the contributions to the quasi log-
likelihood functions in the various stages of estimation. Since
model misspecification at any stage can induce time series
dependence in the scores of each model, we rely on the moving
blocks bootstrap (MBB) of Künsch (1989) and Liu and Singh
(1992). This approach involves re-estimating the model on
each bootstrapped objective function, and this “fully optimized”
approach is thus computationally demanding.

The second approach is a fast resampling method that avoids
any optimization problem in the bootstrap world. In particu-
lar, our proposal is to resample the score function underlying
the asymptotic linear representation of the final-step QMLE,
evaluated at the parameters estimated in the real data. This
is related to the resampling method proposed in Armstrong,
Bertanha, and Hong (2014), however, in their approach the first-
stage model is re-estimated on each bootstrap sample (which has
advantages in the semiparameteric settings considered in that

© 2022 American Statistical Association
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article) while our proposed method requires no estimation in
the bootstrap world.2

We prove two sets of results for both bootstrap methods.
For simplicity, we provide formal results only for the two-
step QMLE.3 First, we show the consistency of the bootstrap
distribution of the final-stage parameter estimator for the usual
limit distribution of that parameter, justifying the construc-
tion of bootstrap percentile intervals. We consider regularity
conditions that allow for time series dependence and hetero-
geneity of unknown form, extending the work of Gonçalves
and White (2004) who show the asymptotic validity of the
MBB for inference on one-step QMLE. Second, we prove the
consistency of bootstrap standard errors. Although these are
very popular in applied work, their consistency does not auto-
matically follow from the consistency of the bootstrap dis-
tribution. This was recently emphasized by Hahn and Liao
(2020), who proved that bootstrap standard errors for smooth
functions of iid data may lead to conservative inference. Here,
we show that the bootstrap variance estimator of the two-step
QMLE is consistent by verifying a certain uniform integra-
bility condition. We follow the approach of Kato (2011) and
Cheng (2015) and rely on empirical process theory to prove
our results. The results of those two articles apply to one-
step M-estimators with iid data and do not cover time series
applications. They also do not cover two-step QMLE, even for
the iid data. Similarly, although the results of Gonçalves and
White (2005) allow for time series dependence, they are specific
to the one-step least squares estimator. Thus, no results appear
to be available regarding the consistency of bootstrap variance
estimators of one or multi-stage QMLE with general time series
dependence.

We present Monte Carlo simulations to illustrate the use-
fulness of our results. We consider the estimation of a bivari-
ate copula model, where estimation is done in stages and the
parameter of interest is the copula parameter, which is esti-
mated in the final (third) stage. In addition to the standard
confidence interval that relies on analytical standard errors, we
consider two types of bootstrap-based intervals: intervals that
rely on bootstrap standard errors, but use the normal critical
value, and bootstrap percentile intervals. We find that all meth-
ods provide similarly good coverage probabilities, even for the
smaller sample sizes. This is in agreement with the theory of
the bootstrap since none of the methods promises asymptotic
refinements. However, we find that the competing inference
methods differ in their confidence interval lengths. In particular,
the intervals based on the fully optimized bootstrap method
tend to be narrower than the intervals based on either the fast
resampling method or the usual asymptotic approach using ana-
lytical standard errors. We show that this is due to the fully opti-
mized bootstrap standard error having a smaller mean squared
error than the competing methods. Thus, although more com-
putationally intensive than the fast resampling method, the

2Other artcles that have proposed fast resampling methods include David-
son and MacKinnon (1999), Andrews (2002), Gonçalves and White (2004),
Hong and Scaillet (2004), and La Vecchia, Moor and Scaillet (2020), among
others. However, all these articles consider one-step M or GMM estimators.

3These results can easily be generalized to multistage QMLE. In our Monte
Carlo simulations, we estimate a copula model involving a three-stage
QMLE.

fully optimized bootstrap intervals have better finite sample
properties.

The rest of the article is organized as follows. In Section 2,
we present the framework and provide an example of a two-step
QMLE based on the bivariate copula model. In Section 3, we
describe our two bootstrap methods and prove their consistency
in Section 4. Section 5 contains the simulation results and Sec-
tion 6 concludes. Assumptions are collected in Appendix A. The
supplementary materials contains the proofs of the bootstrap
distribution consistency and the proof of the bootstrap variance
consistency results. This supplementary materials also contains
two general bootstrap consistency theorems for two-step M and
GMM bootstrap estimators, which could be of independent
interest as their high level conditions can be verified for any
bootstrap scheme. Our focus on the two-stage QMLE estimator
based on the moving blocks bootstrap in the main text is justi-
fied by the fact that this covers the main applications in finance
we have in mind.

2. Framework

2.1. Two-Stage Quasi Maximum Likelihood Estimation

Suppose
{

Xt : � → R
l, t ∈ N

}
denotes a sequence ofRl-valued

random vectors defined on some probability space (�,F , P).
Let � = A × B, where A and B are compact subsets of finite
dimensional Euclidean spaces. Given data {Xt : t = 1, . . . , n},
our goal is to estimate a parameter vector β0 ∈ B ⊂ R

p by a two-
stage quasi-maximum likelihood (2QMLE) estimator. We focus
on two-stage QMLE for ease of presentation, but our results
generalize directly to multi-stage QMLEs. (e.g., our simulation
study considers a three-stage QMLE problem.)

In the first step, we estimate α0 ∈ A ⊂ R
k with

α̂n = arg max
α∈A

Q1n (α) ,

where Q1n (α) ≡ n−1 ∑n
t=1 log f1t

(
Xt , α

)
, with Xt ≡

(X1, . . . , Xt−1, Xt), for some quasi-likelihood function
f1t

(
Xt , α

)
: R

lt × A →R
+. To simplify the notation, we

sometimes write f1t (α) ≡ f1t
(
Xt , α

)
. A similar notation is used

for any other function of Xt throughout.
In the second step, we estimate β with

β̂n = arg max
β∈B

Q2n
(
α̂n, β

)
,

where Q2n (α, β) ≡ n−1 ∑n
t=1 log f2t

(
Xt , α, β

)
, for a condi-

tional quasi-likelihood function f2t (α, β) ≡ f2t
(
Xt , α, β

)
:

R
lt × A × B →R

+. We allow for time heterogeneity in f1t (α)

and f2t (α, β) (i.e., the functional forms may depend on t) and
we also allow for the possibility that these functions depend on
the past information up to time t (i.e., Xt is a vector of possibly
growing dimension).

2.2. An Example: Copula Models

An example of time series models that are often estimated in
multiple stages are copula-based multivariate models. These
models combine separately estimated marginal distributions
via a copula function to form a joint distribution. When the

https://doi.org/10.1080/07350015.2022.2058949
https://doi.org/10.1080/07350015.2022.2058949
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parameters that characterize the marginal distributions are dif-
ferent from those that characterize the copula density function,
estimation and inference can be done in stages. Our results can
be useful in this context.

To illustrate, let Xt ≡ (X1t , X2t)
′ denote a random vector

whose joint conditional density we would like to model. By the
usual decomposition, we can write

log g (X1, . . . , Xn, θ) =
n∑

t=1
log gt

(
Xt|F t−1, θ

)
,

where gt
(
Xt|F t−1, θ

)
is the conditional density function of Xt

given F t−1. Suppose Xit|F t−1 ∼ Git (αi) , some distribution
function parameterized by a set of parameters αi with density
function git (αi). The joint (conditional) pdf of Xt is then given
by

gt
(
Xt|F t−1, θ

) = g1t (X1t , α1) g2t (X2t , α2) ct
(

G1t (X1t , α1) ,

G2t (X2t , α2) , β
)

,

where ct (·, ·, β) is a copula density function parameterized by β ,
and θ = (α1, α2, β)′ denotes the full set of parameters. It follows
that the joint log-likelihood function can be written as

log g (X1, . . . , Xn, θ)

=
n∑

t=1
log g1t

(
X1t|F t−1, α1

) +
n∑

t=1
log g2t

(
X2t|F t−1, α2

)
+

n∑
t=1

log ct
(
G1t (X1t , α1) , G2t (X2t , α2) |F t−1, β

)
.

When the parameters characterizing the marginals and the
copula function are separable (i.e., the parameters that enter one
marginal do not enter another marginal nor the copula function
and there are no cross equation restrictions), these parameters
can be estimated in stages. In particular, first estimate αi by
QMLE:

α̂in = arg max
αi∈A

n∑
t=1

log git
(
Xit|F t−1, αi

)
, for i = 1, 2,

and then estimate the copula parameters β in a second stage by

β̂n = arg max
β∈B

n∑
t=1

log ct
(
G1t

(
X1t , α̂1n

)
, G2t

(
X2t , α̂2n

) |F t−1, β
)

.

Thus, in our previous notation,

Q2n
(
α̂n, β

) =
n∑

t=1
log f2t

(
Xt , α̂n, β

)
, where

α̂n = (
α̂1n, α̂2n

)′ ,

and

f2t
(
Xt , α̂n, β

) ≡ ct
(
G1t

(
X1t , α̂1n

)
, G2t

(
X2t , α̂2n

) |F t−1, β
)

.

The contributions to this quasi-log-likelihood function depend
on the sample of Xt = (X1t , X2t)

′ up to time t through the
integral probability transforms Git

(
Xit , α̂in

)
.

2.3. Asymptotic Properties of Two-Stage QMLE

We now briefly review the asymptotic properties of the two-
stage QMLE to assist in later explaining the properties that
the bootstrap needs to have in order to be asymptotically
valid. These properties are well known in the literature, see,
for example, White (1994), Newey and McFadden (1994), and
Wooldridge (1994).

Let α0 be the unique maximizer of Q̄1 (α) ≡
limn→∞ E (Q1n (α)) on A and let β0 be the unique maximizer
of Q̄2 (α0, β) ≡ limn→∞ E (Q2n (α0, β)) on B.4 Then, under
Assumption A in Appendix A, we can show that β̂n

P−→ β0 and
√

n
(
β̂n − β0

) d−→ N (0, C0) ,

where the asymptotic covariance matrix C0 ≡ H−1
0 J0H−1

0 , with

H0 ≡ lim
n→∞ E

(
n−1

n∑
t=1

∂

∂β ′ s2t (α0, β0)

)
, such that

s2t (α0, β0) ≡ ∂

∂β
log f2t (α0, β0) ,

and

J0 ≡ lim
n→∞ var

(
n− 1

2

n∑
t=1

(
s2t (α0, β0) − F0A−1

0 s1t (α0)
))

,

where

s1t (α0) ≡ ∂

∂α
log f1t (α0) ,

A0 ≡ lim
n→∞ E

(
n−1

n∑
t=1

∂

∂α′ s1t (α0)

)
,

and

F0 ≡ lim
n→∞ E

(
n−1

n∑
t=1

∂

∂α′ s2t (α0, β0)

)
.

As this result shows, the impact of the first stage estimation
of α0 is not negligible asymptotically except when F0 = 0.
This implies that we need to adjust the standard errors of β̂n
for the added estimation uncertainty of α̂n. Although a con-
sistent estimator of J0 can be obtained by applying a HAC
(heteroscedasticity and autocorrelation covariance) estimator to{

s2t
(
α̂n, β̂n

)
− F̂nÂ−1

n s1t
(
α̂n

)}
(where F̂n and Ân are consis-

tent estimators of F0 and A0) in practice the bootstrap is often
used. Our goal is to provide a set of conditions that justify this
practice in time series applications.

4Under general heterogeneity and time series dependence, α0 and β0 could
depend on n. We omit the index n to simplify the notation.
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3. Bootstrap Methods

The asymptotic validity of the bootstrap depends on its abil-
ity to mimic the asymptotic variance-covariance matrix of β̂n.
The form of J0 suggests that the bootstrap should replicate the
time series dependence and the heterogeneity properties of the
score vector

{
st (α0, β0) ≡ s2t (α0, β0) − F0A−1

0 s1t (α0)
}

. Model
misspecification at any stage can induce time series dependence
and our approach is to use a block bootstrap. In particular, we
rely on the moving blocks bootstrap (MBB) of Künsch (1989)
and Liu and Singh (1992). See also Gonçalves and White (2002,
2004, 2005) for the validity of the MBB under general time
series dependence and heterogeneity. Although we focus on
the MBB, other bootstrap methods which are robust to serial
dependence could be used. Examples include the tapered block
bootstrap of Paparoditis and Politis (2002) and the kernel block
bootstrap of Parente and Smith (2021). The validity of these
alternative bootstrap schemes could be established by verifying
the high level conditions given in Theorems S4.3 and S4.4 in the
supplementary materials.

We consider two different methods. One is based on resam-
pling the contributions to the likelihood functions

{
f1t (α)

}
(which yields a bootstrap QMLE α̂∗

n ) and
{

f2t
(
α̂∗

n , β
)}

(which
is optimized over β to yield β̂∗

n ). The same bootstrap indices
obtained with the MBB are used across the two stages, ensuring
that this method mimics the time series dependence of the
extended score. Because it requires two (or multiple) sets of
maximization, this method may be computationally intensive.
For this reason, we also propose another bootstrap method
which resamples directly the estimated score st

(
α̂n, β̂n

)
≡

s2t
(
α̂n, β̂n

)
− F̂nÂ−1

n s1t
(
α̂n

)
. Our simulations show that this

method yields wider confidence intervals than the fully opti-
mized bootstrap method. In particular, the fast resampling
standard errors have larger mean squared errors compared to
the fully optimized standard errors, especially for the smaller
sample sizes. This translates into wider confidence intervals for
the parameter of interest.

Both methods involve resampling certain functions of
the data using the MBB to obtain new indices, which
can be described as follows. For a generic time series
{Zt : t = 1, . . . , n}, let � = �n ∈ N (1 ≤ � < n) be a block
length. Define Bt,� = {Zt , Zt+1, . . . , Zt+�−1} as the block of
� consecutive observations starting at Zt (� = 1 corresponds
to the standard iid bootstrap). For simplicity take n = k�.
The MBB draws k = n/� blocks randomly with replacement
from the set of overlapping blocks

{
B1,�, . . . , Bn−�+1,�

}
. Let-

ting I1, . . . , Ik be iid random variables distributed uniformly
on {0, . . . , n − �}, we have

{
Z∗

t = Zτt , t = 1, . . . , n
}

, where τt is
defined as {τt} ≡ {I1 + 1, . . . , I1 + �, . . . , Ik + 1, . . . , Ik + �}.

3.1. The Fully Optimized Bootstrap Method

The first method we consider requires resampling the contribu-
tions to the two (or more) likelihood functions f1t and f2t and
then computing α̂∗

n and β̂∗
n using these resampled likelihood

functions. More specifically, the bootstrap analogue of α̂n is

given by

α̂∗
n = arg max

α∈A
Q∗

1n (α) ,

where Q∗
1n (α) ≡ n−1 ∑n

t=1 log f ∗
1t (α), and f ∗

1t (α) = f1,τt (α) ≡
f1,τt (Xτt , α) is a resampled version of f1t (α) ≡ f1t

(
Xt , α

)
, where

the indices τt are chosen by the bootstrap. Thus, we resample the
functions f1t (α) rather than the data directly. However, when
f1t (α) = f1 (Zt , α) where the function f1t does not depend on t
and is a function of Zt ≡ (

Xt , Xt−1, . . . , Xt−k
)′ for some finite

k ≥ 0, resampling f1t (α) is equivalent to resampling the vector
Zt , that is, f ∗

1t (α) ≡ f ∗
1t

(
X∗t , α

) = f1
(
Z∗

t , α
) = f1

(
Zτt , α

)
.

The second-step bootstrap estimator β̂∗
n is obtained as

β̂∗
n = arg max

β∈B
Q∗

2n
(
α̂∗

n , β
)

,

where Q∗
2n

(
α̂∗

n , β
) ≡ n−1 ∑n

t=1 log f ∗
2t

(
α̂∗

n , β
)
, with

f ∗
2t

(
α̂∗

n , β
) = f2,τt

(
α̂∗

n , β
) ≡ f2,τt

(
Xτt , α̂∗

n , β
)

. Thus, we
resample the functions f2t (α, β) ≡ f2t

(
Xt , α, β

)
evaluated

at α = α̂∗
n using the same indices τt used in computing α̂∗

n .
Resampling both functions f1t and f2t with the same set of
indices is important because this will preserve the form of
dependence between the two functions. In particular, this will
guarantee that the bootstrap is able to mimic the dependence
in the score vector st

(
α̂n, β̂n

)
. If instead we used two different

sets of indices, say τ1t and τ2t , generated independently of each
other, this would induce an independence between f ∗

1t and f ∗
2t

which would not necessarily exist for the original functions.

3.2. A Fast Resampling Method

Bootstrapping multi-stage extremum estimators can be compu-
tationally intensive as this may require solving multiple opti-
mization problems for each resample. For this reason, we also
consider a fast resampling method for bootstrapping two-step
QMLE which has a closed form expression and avoids any
numerical optimization. To describe this estimator, let

Ĥn = n−1
n∑

t=1

∂

∂β ′ s2t
(
α̂n, β̂n

)
,

Ân = n−1
n∑

t=1

∂

∂α′ s1t
(
α̂n

)
, and

F̂n = n−1
n∑

t=1

∂

∂α′ s2t
(
α̂n, β̂n

)
.

The fast resample two-step QMLE is given by

β̂∗
1,n = β̂n − Ĥ−1

n n−1
n∑

t=1
s∗t

(
α̂n, β̂n

)
,

where s∗t
(
α̂n, β̂n

)
is a resampled version of

st
(
α̂n, β̂n

)
≡ s2t

(
α̂n, β̂n

)
− F̂nÂ−1

n s1t
(
α̂n

)
,

that is, s∗t
(
α̂n, β̂n

)
= sτt

(
α̂n, β̂n

)
≡ s2τt

(
α̂n, β̂n

)
−

F̂nÂ−1
n s1τt

(
α̂n

)
. Thus, β̂∗

1,n is a one-step bootstrap QMLE which

https://doi.org/10.1080/07350015.2022.2058949


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 687

updates β̂n using the estimated Hessian Ĥn and the bootstrap
scores s∗t

(
α̂n, β̂n

)
, evaluated at α̂n and β̂n.

A special case of β̂∗
1,n is a version of the one-step bootstrap

QMLE considered in Gonçalves and White (2004) (henceforth
GW(2004)) in the context of one-stage QMLE. In that article,
β̂n does not depend on a first stage estimator α̂n, implying
that s2t

(
α̂n, β̂n

)
= s2t

(
β̂n

)
and st

(
α̂n, β̂n

)
= s2t

(
β̂n

)
.

The only difference with respect to GW(2004) in this case is
that our proposal only resamples the estimated scores and does
not involve resampling the contributions to the Hessian Ĥn
(instead, their one-step bootstrap QMLE involves resampling
both; see also Davidson and MacKinnon (1999) and Andrews
(2002) who proposed k-step bootstrap methods that resample
the contributions to the Hessian and the score vector at each
iteration, starting from the original estimators).

β̂∗
1,n is also related to a fast resampling approach proposed

by Armstrong, Bertanha, and Hong (2014) in the context of a
two-step GMM estimator with iid data, where the first step is
a potentially nonparameteric estimator (see also Chen, Linton,
and van Keilegom 2003; Chen and Liao 2015). In our context, it
amounts to

β̃∗
1,n = β̂n − Ĥ−1

n n−1
n∑

t=1
s∗2t

(
α̂∗

n , β̂n
)

.

There are two main differences between β̂∗
1,n and β̃∗

1,n. First,
β̃∗

1,n requires computing α̂∗
n whereas β̂∗

1,n does not. Hence, β̃∗
1,n

only avoids the computational burden of the second step and
not of the first step. Instead, our method avoids computing
α̂∗

n for each resample and therefore is computationally more
attractive. Second, β̃∗

1,n resamples the scores of the second-stage
model (evaluated at

(
α̂∗

n , β̂n
)

), whereas our method involves

resampling st
(
α̂n, β̂n

)
= s2t

(
α̂n, β̂n

)
− F̂nÂ−1

n s1t
(
α̂n

)
. We can

think of this vector as an “extended” version of the scores for the
second-stage, extended by the term −F̂nÂ−1

n s1t
(
α̂n

)
. This term

corrects for the added uncertainty due to the first step. We note
that it would not be valid to resample s2t

(
α̂n, β̂n

)
unless F̂n = 0.

4. Bootstrap Theory

We discuss two uses of the bootstrap for inference on β using
β̂n. In Section 4.1 we consider using the bootstrap distribu-
tion of

√
n

(
β̂∗

n − β̂n
)

(or
√

n
(
β̂∗

1,n − β̂n
)

) to approximate the

quantiles of the distribution of
√

n
(
β̂n − β0

)
. This approach

underlies the construction of percentile bootstrap intervals for
β . Even though it does not promise asymptotic refinements, it is
empirically attractive as it does not require computing standard
errors for β̂n. An alternative is to use the bootstrap to estimate
standard errors, which we consider in Section 4.2.

4.1. Bootstrap Distribution Consistency for
Nonstudentized Statistics

The first order asymptotic validity of the MBB based on the fully
optimized bootstrap two-step QMLE β̂∗

n follows by showing

that the bootstrap distribution of
√

n
(
β̂∗

n − β̂n
)

is consistent

for the distribution of
√

n
(
β̂n − β0

)
.This result requires we

strengthen Assumption A as follows.

Assumption B. For some r > 2 and some δ > 0,

B.1: i. {s1t (α0)} is r + δ-dominated on A uniformly in t.
ii. {s2t (α0, β0)} is r + δ-dominated on A×B uniformly in

t.
B.2: {Vt} is an α-mixing sequence of size − (2+δ)(r+δ)

r−2 .
B.3: i. The elements of {s1t (α)} are L2+δ-NED on {Vt} of size

−1, uniformly on (A, ρ) .
ii. The elements of {s2t (α, β)} are L2+δ-NED on {Vt} of

size −1, uniformly on (A × B, ρ) .
B.4: i. n−1 ∑n

t=1 E (s1t (α0)) E (s1t (α0))
′ = o

(
�−1

n
)

, where
�n = o (n) and �n → ∞.

ii. n−1 ∑n
t=1 E (s2t (α0, β0)) E (s2t (α0, β0))

′ = o
(
�−1

n
)

,
where �n = o (n) and �n → ∞.

These assumptions are weaker than those used by GW (2004)
(see their Assumption 2.1) and are sufficient to show that a boot-
strap CLT applies to

{
s∗2t (α0, β0) − F0A−1

0 s∗1t (α0)
}

, as shown by
Gonçalves and de Jong (2003). Assumption B.4 is a restatement
of Assumption 2.2 of Gonçalves and White (2002) and is satis-
fied when the models are correctly specified or when the scores{

s1t
(
Xt , α0

)}
and

{
s2t

(
Xt , α0, β0

)}
are stationary (this follows

if {Xt} is a strictly stationary process, the likelihood functions{
f1t (α)

}
and

{
f2t (α, β)

}
depend only on a finite number of lags

of Xt and there is no time heterogeneity on
{

f1t
}

and
{

f2t
}

).
Under this assumption, the bootstrap covariance matrix of the
scaled average of

{
s∗2t (α0, β0) − F0A−1

0 s∗1t (α0)
}

converges to J0,
the correct asymptotic covariance matrix of

√
n

(
β̂n − β0

)
.

In the following theorem, and throughout, we let E∗, var∗ and
P∗ denote the bootstrap expectation, variance and probability
measure induced by the resampling, conditional on the original
sample.

Theorem 4.1. Let Assumption A as strengthened by Assump-
tion B hold. If �n → ∞ and �n = o

(
n1/2), then

sup
x∈Rp

∣∣∣P∗ (√
n

(
β̂∗

n − β̂n
)

≤ x
)

− P
(√

n
(
β̂n − β0

)
≤ x

)∣∣∣ = oP (1) .

(1)

To prove Theorem 4.1, we verify the conditions of Theo-
rem S2.4 in the supplementary materials. This result shows the
consistency of the bootstrap distribution of a general two-step
M-estimator β̂∗

n (based on an asymptotically linear first-step
estimator α̂∗

n) under a set of bootstrap high level conditions
(Assumption B∗). We show that Assumption A strengthened by
Assumption B verifies Assumption B∗.

The first-order asymptotic validity of the fast resampling
method is given in the next result. Its proof is a by-product of
the proof of Theorem 4.1 and is omitted.

Theorem 4.2. Under the same assumptions as in Theorem 4.1,

sup
x∈Rp

∣∣∣P∗(√
n

(
β̂∗

1,n − β̂n
)

≤ x
)

− P
(√

n
(
β̂n − β0

)
≤ x

)∣∣∣ = oP (1) .
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4.2. Bootstrap Distribution Consistency for Studentized
Statistics

Here, we focus on testing hypotheses about β0 based on Wald
statistics.5 Let r : B → R

q, where B ⊂ R
p, q ≤ p, be

a continuously differentiable function on B such that R0 ≡
∂

∂β ′ r (β0) has full row rank q. The Wald statistic for testing H0 :
r (β0) = 0 is

Wn = nr̂′
n

(
R̂nĈnR̂′

n

)−1
r̂n,

where r̂n = r
(
β̂n

)
, R̂n = ∂

∂β ′ r
(
β̂n

)
and Ĉn =

Ĥ−1
n ĴnĤ−1

n is consistent for C0. In particular, Ĥn ≡
n−1 ∑n

t=1
∂2

∂β ′∂β log f2t
(
α̂n, β̂n

)
is a consistent estimator of

H0, and Ĵn is such that Ĵn − J0 = oP (1) . We define the bootstrap
Wald statistic as follows

W∗
n = n

(
r̂∗

n − r̂n
)′ (R̂∗

nĈ∗
nR̂∗′

n

)−1 (
r̂∗

n − r̂n
)

.

For the fully optimized bootstrap method, we set r̂∗
n =

r
(
β̂∗

n

)
, R̂∗

n = ∂
∂β ′ r

(
β̂∗

n

)
and

Ĉ∗
n = Ĥ∗−1

n Ĵ∗
nĤ∗−1

n , with (2)

Ĥ∗
n = n−1

n∑
t=1

∂2

∂β ′∂β
log f2,τt

(
Xτt , α̂∗

n , β̂∗
n

)
, and

Ĵ∗
n = k−1

k∑
i=1

(
�−1/2

�∑
t=1

sIi+t

(
α̂∗

n , β̂∗
n

))
(

�−1/2
�∑

t=1
sIi+t

(
α̂∗

n , β̂∗
n

))′
,

such that sτt

(
α̂∗

n , β̂∗
n

)
= s2τt

(
α̂∗

n , β̂∗
n

)
− F̂∗

nÂ∗−1
n s1τt

(
α̂∗

n
)

,

where Â∗
n = n−1 ∑n

t=1
∂

∂α′ s1τt

(
α̂∗

n
)

and F̂∗
n =

n−1 ∑n
t=1

∂
∂α′ s2τt

(
α̂∗

n , β̂∗
n

)
.

For the fast resampling method, we set r̂∗
n = r

(
β̂∗

1,n

)
, R̂∗

n =
∂

∂β ′ r
(
β̂∗

1,n

)
and

Ĉ∗
n = Ĥ−1

n Ĵ∗
1,nĤ−1

n , (3)

with Ĵ∗
1,n = k−1 ∑k

i=1

(
�−1/2 ∑�

t=1 sIi+t

(
α̂n, β̂n

))
(
�−1/2 ∑�

t=1 sIi+t

(
α̂n, β̂n

))′
, such that sτt

(
α̂n, β̂n

)
=

s2τt

(
α̂n, β̂n

)
− F̂nÂ−1

n s1τt

(
α̂n

)
.

For the fast resampling approach proposed by Armstrong,
Bertanha, and Hong (2014), we set r̂∗

n = r
(
β̃∗

1,n

)
, R̂∗

n =
∂

∂β ′ r
(
β̃∗

1,n

)
and

Ĉ∗
n = Ĥ−1

n J̃∗
1,nĤ−1

n , (4)

5The validity of the bootstrap for LM statistics follows from similar arguments.
To conserve space and because Wald tests are more popular than LM tests,
we only report results for Wald statistics.

where J̃∗
1,n = k−1 ∑k

i=1

(
�−1/2 ∑�

t=1 sIi+t

(
α̂∗

n , β̂n
))

(
�−1/2 ∑�

t=1 sIi+t

(
α̂∗

n , β̂n
))′

, such that sτt

(
α̂∗

n , β̂n
)

=
s2τt

(
α̂∗

n , β̂n
)

− F̂nÂ−1
n s1τt

(
α̂∗

n
)
.

Next we show that the sampling distribution of Wn is well
approximated by the bootstrap distribution of W∗

n . For this, we
strengthen Assumption B4 as follows.

Assumption B.4′. E (s1t (α0)) = 0 and E (s2t (α0, β0)) = 0 for
all t = 1, . . . , n.

This is a mild strengthening of Assumption B.4, which is
satisfied whenever the score functions are not heterogeneous
and/or the data {Xt} are stationary.

Theorem 4.3. Let the assumptions of Theorem 4.1 as strength-
ened by Assumption B.4′ hold. Suppose further that Wn uses
a consistent estimator of J0. Then, under H0, if �n → ∞ and
�n = o

(
n1/2) ,

sup
x∈R

∣∣P∗ (
W∗

n ≤ x
) − P (Wn ≤ x)

∣∣ = oP (1) .

The proof of Theorem 4.3 is in the supplementary materials;
it builds upon results in Gonçalves and White (2004, see, Theo-
rem 3.1).

4.3. Bootstrap Variance Consistency

Bootstrap standard errors are often used in applied work as they
are easy to compute, avoiding the need to look up complicated
formulas. This is especially true in multistage estimation, where
these formulas become quickly involved due to the need to
keep track of the added uncertainty caused by each estimation
stage. Instead, bootstrap standard errors are easily computed by
Monte Carlo simulation. For instance, we can approximate the
bootstrap variance estimator of the parameter β̂∗

n,j , var∗
(
β̂∗

n,j

)
,

with the sample variance obtained across B replications of β̂∗
n,j,

1
B

B∑
k=1

(
β̂

∗(k)
n,j − β̂

∗(k)
n,j

)2
, where β̂

∗(k)
n,j = 1

B

B∑
k=1

β̂
∗(k)
n,j .

The corresponding bootstrap standard error is the square root
of this expression.

The previous results (Theorems 4.1 and 4.2) do not justify by
themselves the consistency of bootstrap standard errors based
on β̂∗

n or β̂∗
1,n. The reason is that convergence in distribution of

a random sequence does not imply convergence of moments.
For instance, Ghosh et al. (1984) and Shao (1992) give exam-
ples of the inconsistency of bootstrap variance estimators for
the sample median and smooth functions of sample means,
respectively, in the iid context. Despite this, applied researchers
routinely apply the bootstrap when computing standard errors.
For a recent article emphasizing this point, see Hahn and Liao
(2020), who show that bootstrap standard errors can lead to
conservative inference.

The main goal of this section is to provide a theoretical
justification for computing bootstrap standard errors in the
context of two-step QMLE with time series data. The current
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bootstrap literature does not cover this case as it has either
assumed iid data (as in Kato (2011) and Cheng (2015), who
prove the consistency of bootstrap variance estimators for one-
step M-estimators) or has considered time series least squares
estimators, as in Gonçalves and White (2005). No results appear
to be available for multistage QMLE, even for iid data.

Given our previous bootstrap distribution consistency
results, a sufficient condition for showing the consistency
of the corresponding bootstrap standard errors is to show
that a uniform integrability condition holds. In particular, to
show that var∗

(√
nβ̂∗

n

)
is consistent, it suffices to show that

E∗
∣∣∣√n

(
β̂∗

n − β̂n
)∣∣∣2+δ = OP (1) for some small δ > 0. Because

β̂∗
1,n has a closed form expression, it is substantially easier to

verify this condition for the fast resampling method than for the
fully optimized bootstrap two-stage QMLE. For this reason, we
focus on this estimator first.

We impose a smoothness condition on the vector of scores
{s1t} and {s2t} which we did not need for bootstrap distribution
consistency.

Assumption B.5.

i. {s1t (α)} is Lipschitz continuous on A, a.s.-P with
Lipschitz functions {L1t} that satisfy the condition
n−1 ∑n

t=1 E (L1t)
2+δ = O (1) .

ii. {s2t (α, β)} is Lipschitz continuous on A × B, a.s.-P
with Lipschitz functions {L2t} satisfying the condition
n−1 ∑n

t=1 E (L2t)
2+δ = O (1) .

Theorem 4.4. Under Assumptions A and B strengthened by B.4′

and B.5, var∗
(√

nβ̂∗
1,n

) P−→ C0.

Next, we consider the fully optimized bootstrap estimator
β̂∗

n . Similarly to Theorem 4.4 , we prove the consistency of
var∗

(√
nβ̂∗

n

)
by relying on Theorem 4.1 and showing that

E∗
∣∣∣√n

(
β̂∗

n − β̂n
)∣∣∣2+δ = OP (1) for some small δ > 0. Because

β̂∗
n does not have a closed form expression, this condition is

much harder to verify than for β̂∗
1,n and requires a different

method of proof and a different set of assumptions.
Our proof and regularity conditions are inspired by 2011

and Cheng (2015). Kato (2011) shows the consistency of boot-
strap moment estimators for M-estimators of parameteric mod-
els, whereas Cheng (2015) allows for semiparameteric models,
where the parameter of interest is a finite dimensional param-
eter, but the model also contains a nuisance parameter that
is potentially infinite dimensional. Both articles focus on one-
step M-estimators and give sufficient conditions for bootstrap
variance consistency that only cover iid data. Our contribution
is to extend those results to two-stage M-estimation with time
series data.

To present our regularity conditions, we need to introduce
more notation. First, because our proof is based on showing that

the unconditional moment of
∣∣∣√n

(
β̂∗

n − β̂n
)∣∣∣2+δ

is finite, we
need to introduce the joint probability measure P = P × P∗
that accounts for the two sources of randomness in β̂∗

n : the

randomness that comes from the original data (and which is
described by P) and the randomness that comes from the resam-
pling, conditional on the original sample (described by P∗). In
the following, we write E to denote expected value with respect

to P. Second, to prove that E
∣∣∣√n

(
β̂∗

n − β̂n
)∣∣∣2+δ

< ∞, we
assume the uniform square integrability of the original two-step

QMLE estimator (i.e., we assume that E
∣∣∣√n

(
β̂n − β0

)∣∣∣2+δ

<

∞) and provide regularity conditions that allows us to show

that E
∣∣∣√n

(
β̂∗

n − β0
)∣∣∣2+δ

< ∞. We follow Kato (2011) and
Cheng (2015) and use an argument that entails bounding the tail
probability P

(∣∣∣√n
(
β̂∗

n − β0
)∣∣∣ > u

)
for large u. This requires

empirical process theory and maximal inequalities. In particu-
lar, we impose bounds on the Lp-moments (with p > 2 + δ) of
the supremum of certain empirical processes which we describe
next.

For any class of functions F = {
ft
}

, define the empirical
process Gnf = n−1/2 ∑n

t=1
(
ft − Eft

)
and let its norm be given

by ‖Gn‖F = supf ∈F
∣∣Gnf

∣∣.
Our assumptions are as follows.

Assumption B.6.

i. For any (α, β) ∈ A × B, the log-likelihood
function log f2 (·, α, β) and its expectation Q̄2 (α, β) ≡
E

(
log f2

(
Xt , α, β

))
are time invariant.

ii. There exists a positive constant K independent of β for
which for all β ∈ B, Q̄2 (α0, β) − Q̄2 (α0, β0) ≤
−K ‖β − β0‖2 .

iii. Given η > 0, define the class of functions

Nη = {
log f2 (α, β) − log f2 (α, β0) : ‖β − β0‖
≤ η, (α, β) ∈ A × B} .

Then, for some p > 2 + δ, and every η > 0, there exists a
positive constant K such that[

E
(
‖Gn‖p

Nη

)]1/p ≤ Kη. (5)

iv. The functions
{

log f2 (α, β)
}

,
{

∂
∂α′ log f2 (α, β)

}
and{

∂
∂α∂α′ log f2 (α, β)

}
satisfy a Lipschitz continuity condition

on A × B, a.s.-P with Lipschitz functions {Lt}, {L1t} and
{L2t} such that E |Lt|p < ∞, E

(
|L1t| ε

ε−1 p
)

< ∞ and

E
(
|L2t| ε

ε−1 p
)

< ∞, respectively, for p > 2 + δ as in (iii)
and for some ε > 1.

v. The first-step estimator α̂n and its bootstrap analog α̂∗
n are

such that

E
∣∣√n

(
α̂n − α0

)∣∣3εp = O (1) and

E
∣∣√n

(
α̂∗

n − α̂n
)∣∣3εp = O (1) , (6)

where ε > 1 and p > 2 + δ are as defined in (iv).

vi. sup
n

E
∣∣∣√n

(
β̂n − β0

)∣∣∣2+δ

< ∞.

Assumption B.6 (i) assumes that the log-likelihood func-
tions f2t and the population criterion function Q̄2 (α, β) ≡
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E
(
log f2

(
Xt , α, β

))
are time invariant (the latter will follow from

the first under stationarity of {Xt}).
To understand Assumptions B.6(ii)–(iv), suppose that β is a

scalar and consider for example the generated regressor prob-
lem. In particular, suppose the following regression model yt =
βqt + et , where the regressor qt = wtα is latent because we do
not observe α . If xt = wtα + ηt , where xt and wt are observed,
we can obtain a consistent estimator of α by running an OLS
regression of xt on wt . This yields a generated regressor q̂t =
wtα̂, which we can then use to obtain a consistent estimator of
β . In terms of our notations, and letting et|wt , xt ∼ iid N

(
0, σ 2),

the log-likelihood function underlying the second step is given
by log f2t (α, β) = − log

(
2πσ 2) − 1

2σ 2
(
yt − wtαβ

)2 and
Q̄2 (α0, β) = − log

(
2πσ 2) − 1

2σ 2 E
(
yt − wtα0β

)2. This ver-
ifies condition B.6(i). To verify Condition B.6(ii), note that
by a second-order Taylor expansion of Q̄2 (α0, β) around β0,
we get Q̄2 (α0, β) = Q̄2 (α0, β0) + ∂

∂β
Q̄2 (α0, β0) (β − β0) +

1
2

∂2

∂β2 Q̄2
(
α0, β̈

)
(β − β0)

2 , where β̈ lies between β and β0. Since
(α0, β0) maximizes Q̄2 (α, β) , ∂

∂β
Q̄2 (α0, β0) = 0, implying

that Q̄2 (α0, β) = Q̄2 (α0, β0) + 1
2

∂2

∂β2 Q̄2
(
α0, β̈

)
(β − β0)

2 . So,

the condition will be satisfied if we can bound ∂2

∂β2 Q̄2 (α0, β)

by a negative constant −K, for any value of β . This is true
if Q̄2 (α0, β) is a quadratic function of β , as in the generated
regressor problem. This is a strong condition since it imposes
a global restriction on Q̄2 (α0, β), but it is crucial for controlling
the tail probability P

(∣∣∣√n
(
β̂∗

n − β0
)∣∣∣ > u

)
, as Kato (2011)

and Cheng (2015) note. A similar condition is also used by
Nishiyama (2010) to prove the moment convergence of the
original M-estimator.

Assumption B.6(iii) (see, Equation (5)) is a high level con-
dition on the empirical process Gn Cheng (2015) relies on a
similar assumption to show the consistency of bootstrap one-
step moment estimators of any order p ≥ 1 for iid data.
This so-called Lp -maximal inequality condition can be verified
under more primitive conditions involving the structure of the
function class Nη, for example, Cheng (2015) shows that (for
one-step M-estimators with iid data) condition (5) is implied
by a finite uniform entropy integral condition, which is veri-
fied when the functions in Nη are Lipschitz continuous. Our
Assumption B.6(iii) adapts Cheng (2015)’s high level condition
to the two-step QMLE context, where we use the function class
Nη.

To verify Condition B.6(iii) in the context of the
generated regressor problem, note that log f2t (α, β) −
log f2t (α, β0) = (wtα (β − β0))

(
2yt − wtα (β + β0)

)
.

Given that β and β0 ∈ B, a compact subset of
R, it follows that

∣∣log f2t (α, β) − log f2t (α, β0)
∣∣ ≤

C
∣∣|wt|

(∣∣yt
∣∣ + |wt|

)∣∣ |β − β0|, for some sufficiently large
constant C. Hence, the condition follows by Remark 2.3
of Kato (2011) (relying for instance on Lemma 2.14.1
of van der Vaart and Wellner (1996) provided that
E

∣∣|wt|
(∣∣yt

∣∣ + |wt|
)∣∣p

< ∞ < ∞, for some p > 2 + δ.
Assumptions B.6(iv) and (v) are new to the two-step estima-

tors we treat here. Part (iv) imposes a Lipschitz continuity con-
dition on the score and the Hessian of log f2t (α, β) with respect
to α. Note that in the example of OLS with generated regressor,

condition (iv) follows provided that E
(∣∣w2

t + y2
t
∣∣ ε

ε−1 p
)

< ∞,
for p > 2 + δ as in Assumption B.6(iii) and for some ε > 1.

Part (v) imposes uniform integrability conditions on the first-
step estimator α̂n and its bootstrap analog α̂∗

n . Similarly, part (vi)
assumes the uniform integrability condition on β̂n. These high
level conditions could be derived from more primitive condi-
tions such as the ones used by Cheng (2015) or Kato (2011), but
we prefer to state them as high level conditions since our focus
is on the second-step bootstrap estimator β̂∗

n . It is nevertheless
interesting to note that stronger than usual uniform square inte-
grability conditions on the first-step estimators are imposed in
order to verify the uniform square integrability condition on the
second stage bootstrap estimator β̂∗

n . In particular, we require
the existence of a bit more than six moments for

√
n

(
α̂n − α0

)
and its bootstrap analogue. This is three times more than the
number of moments for the second-step estimators β̂n and β̂∗

n .
When the log-likelihood function log f2t is quadratic in α and β ,
Assumption B.6 (v) can be weakened to E

∣∣√n
(
α̂n − α0

)∣∣2εp =
O (1) and E

∣∣√n
(
α̂∗

n − α̂n
)∣∣2εp = O (1). Under these assump-

tions, we can prove the following theorem.

Theorem 4.5. Suppose Assumptions A and B strengthened
by Assumption B.6 holds. Then, for some δ > 0,

sup
n
E

∣∣∣√n
(
β̂∗

n − β̂n
)∣∣∣2+δ

< ∞, implying that

var∗
(√

nβ̂∗
n

) P−→ C0.

5. Monte Carlo Simulations

We here assess the properties of the bootstrap approximation
proposed in Sections 3 and 4. We do so via detailed and realistic
Monte Carlo simulations and we start by describing the design
of the study. We consider a bivariate copula-based model. Each
variable’s marginal distribution is an AR(1)-GARCH(1,1) with
standardized Student’s t errors:

Xit = φ0,i + φ1,iXi,t−1 + εit , where εit = σitηit ,
σ 2

it = ω̃i + α̃iε
2
i,t−1 + β̃iσ

2
i,t−1 and ηit ∼ iid t (0, 1, νi) .

We examine the case where the amount of dependence between
the two variables X1 and X2 is related to the Clayton copula,
with parameter β = 1, which roughly implies linear correlation
of 0.5 (see Nelsen 1999) for more on this copula). We use
parameters similar to those found in applied work (see, e.g.,
Oh and Patton 2013): for i = 1, 2,

[
φ0,i, φ1,i

] = [0, 0.4],[
ω̃i, α̃i, β̃i

] = [0.05, 0.05, 0.9], and ν1 = ν2 = ν, such that
ν ∈ {6, 10} .

Thus, we have two DGPs, which differ only in the value of
the Student’s t parameter ν, which control the thickness of the
tail of the distributions. Note that when ν → ∞, this implies
that η ∼ N (0, 1). We generate repeated trials of length n ∈
{200, 500, 2500} from these processes and conduct inference
based on a misspecified model that assumes φ1,i = 0 (i.e.,
we estimate a constant mean-GARCH(1,1)-Student’s t-Clayton
copula model for each trial).

It is easy to see that our bivariate density models constructed
using copulas can be partitioned into elements relating only to
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a marginal distribution and elements that relate only to the cop-
ula. As pointed out by Joe (1995) and Patton (2006), when such a
partition is not possible, the familiar one-stage maximum like-
lihood estimator is the natural estimator to employ. However,
when this partitioning is possible as in our simulation setting,
great computational savings may be achieved by employing a
multi-stage estimator. Therefore, in the following we consider
the multi-stage maximum likelihood estimator (MSMLE).

Our estimation steps are:

1. Estimate the conditional mean of Xi, i = 1, 2, using the
sample mean n−1 ∑n

t=1 Xit . Obtain the estimated residuals
ε̂it = Xit − n−1 ∑n

t=1 Xit .
2. Estimate the conditional variance parameter using QML

(with normal log-likelihood) and the residuals from step 1,
conditioning on the realizations for t = 1. Obtain the
estimated standardized residuals η̂it .

3. Estimate ν using ML and the standardized residuals from
step 2. Obtain the estimated probability integral transforms
(PITs) Ĝit .

4. Estimate β using ML and the estimated PITs from step 3.

More generally in a multivariate d-dimensional application
(with d ≥ 2 ) there are a total of 3d + 1 estimation steps:
three steps for each marginal distribution, and 1 step for the
copula. With misspecification as in our context, the scores
are generally correlated, hence, justifying the use of blockwise
bootstrap methods. Furthermore, for misspecified models, the
QMLE is generally inconsistent for the copula true parameter β ,
instead confidence intervals for the copula pseudo-true param-
eter β0 are obtained. We evaluate by simulation, the pseudo-true
parameter using 1 million observations.

To generate the bootstrap data, we use the MBB. The number
of Monte Carlo trials is 1000 with B = 999 bootstrap replica-
tions each. We implement three resampling methods: the fully
optimized bootstrap procedure B1, the fast resampling approach
B2 and the fast resampling approach proposed by Armstrong,
Bertanha, and Hong (2014) B3. To select the block size, we
rely on the asymptotic equivalence between the MBB and the
Bartlett kernel variance estimators, and choose � equal to the
bandwidth chosen by Andrews’s automatic procedure for the
Bartlett kernel.

We consider three types of confidence intervals for the cop-
ula pseudo-true parameter β0: asymptotic normal theory-based
confidence intervals, computed by using the quantile of the
standard normal distribution, bootstrap percentile confidence
intervals, and bootstrap percentile-t confidence intervals, which
use the bootstrap methods (B1, B2, and B3) to compute critical
values for the nonstudentized and studentized statistics based
on β̂n, respectively. The asymptotic normal theory-based con-
fidence interval for β0 is given by β̂n ± 1.96 · ŜE

(
β̂n

)
, where

ŜE
(
β̂n

)
is a consistent estimator of SE

(
β̂n

)
=

√
var

(
β̂n

)
.

Four choices are used to compute ŜE
(
β̂n

)
. For our first

choice of ŜE
(
β̂n

)
, we use the multi-stage maximum likelihood

(MSML) standard errors estimator as described in detail in
Section 3.1.1 in Patton (2012) (see Equation (41)). Then, we
construct a MSMLE variance, asymptotic normal theory-based

confidence interval for β0 by using ŜE
(
β̂n

)
= ŜEMSML

(
β̂n

)
,

where ŜEMSML
(
β̂n

)
is the estimated MSML standard error of

β̂n (which has a sandwich form).
In our second, third and fourth choices of ŜE

(
β̂n

)
, we

use the bootstrap approaches B1, B2, and B3. In particular, a
fully optimized bootstrap procedure variance, asymptotic nor-
mal theory-based confidence interval for β0 can be obtained
with ŜE

(
β̂n

)
= ŜEB1

(
β̂n

)
, where ŜEB1

(
β̂n

)
is the esti-

mated standard error of β̂n based on B1. Similarly, fast resam-
pling procedure variance, asymptotic normal theory-based con-
fidence intervals for β are obtained by using ŜE

(
β̂n

)
=

ŜEB2
(
β̂n

)
and ŜE

(
β̂n

)
= ŜEB3

(
β̂n

)
, where ŜEB2

(
β̂n

)
and

ŜEB3
(
β̂n

)
are the estimated standard error of β̂n based on B2

and B3, respectively. Note that, the standard errors ŜEB1
(
β̂n

)
,

ŜEB2
(
β̂n

)
and ŜEB3

(
β̂n

)
are obtained by computing the statis-

tics
√

1
B

∑B
i=1

(
β̂

∗(i)
n − β̂∗

n

)2
with β̂∗

n = 1
B

∑B
j=1 β̂

∗(j)
n , where B

is the number of bootstrap replications.
The second set of intervals we consider are bootstrap per-

centile confidence intervals, which are very simple to compute
since they avoid the need to explicitly compute standard errors.
For each resampling approach (B1, B2, and B3), a symmetric
bootstrap percentile confidence intervals for β0 is given by β̂n ±
p∗

95, where p∗
95 is the 95% quantile of the bootstrap distribution

of |β̂∗
n − β̂n|.

Finally, we also consider bootstrap percentile-t confidence
intervals. For each resampling approach, a symmetric boot-
strap percentile-t confidence intervals for β0 is given by β̂n ±
q∗

95ŜEMSML
(
β̂n

)
, where q∗

95 is the 95% quantile of the bootstrap

distribution of
√

n|β̂∗
n −β̂n|/

√
Ĉ∗

n, with Ĉ∗
n as in (2), (3), and (4),

for B1, B2, and B3, respectively.
Table 1 reports the coverage rates and lengths of 95% confi-

dence intervals of the copula pseudo-true parameter β0 for the
two DGPs, respectively. Results in Table 1 are not too sensitive
to the value of the Student’s t parameter ν. For a given sample
size, all intervals have approximately the same coverage rate,
with only small differences among them. Both fast resampling
procedures B2 and B3, and the MSML approach perform well
even for the small sample size n = 200. Indeed, the evidence
of presence of serial correlation in the scores is confirmed by
the average value of the block sizes chosen by Andrews (1991)
method, which is equal to 3.90 in our simulations. However,
as Table 1 suggests, there are notable differences among the
different methods when considering their confidence interval
lengths. This table clearly shows that for all DGP’s, the inter-
vals based on B1 (either using the CLT-based or the bootstrap
percentile and/or percentile-t approach) tend to display shorter
intervals for the smaller sample sizes compared to CLT-MSML,
B2 and the B3 intervals.

Note that all three asymptotic normal theory-based con-
fidence intervals differ only by the way that the estimated
standard errors of β̂n have been computed. In order to gain
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Table 1. Coverage rates and length confidence intervals of nominal 95% intervals for β0.

CLT Percentile Percentile-t

CLT-MSML CLT-B1 CLT-B2 CLT-B3 B1 B2 B3 B1 B2 B3

Coverage rates

ν = 6
n = 200 90.70 91.40 90.60 90.70 90.80 90.00 90.30 91.70 91.80 91.90
n = 500 92.50 92.70 92.40 92.90 92.50 92.80 92.80 93.60 93.00 93.40
n = 2500 93.90 94.20 94.00 94.00 94.40 94.20 94.10 94.90 94.40 94.80

ν = 10
n = 200 89.50 89.30 90.10 90.20 89.60 89.50 89.40 90.20 90.30 90.40
n = 500 92.20 92.60 92.50 92.70 92.30 92.70 92.50 93.00 93.00 93.10
n = 2500 94.20 94.90 94.50 94.20 94.60 94.70 94.80 95.50 94.70 95.60

Length confidence intervals
ν = 6

n = 200 0.66 0.61 0.65 0.63 0.61 0.68 0.64 0.60 0.68 0.64
n = 500 0.42 0.42 0.41 0.41 0.42 0.43 0.42 0.41 0.44 0.49
n = 2500 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
ν = 10
n = 200 0.70 0.61 0.70 0.66 0.62 0.73 0.63 0.61 0.73 0.68
n = 500 0.43 0.41 0.43 0.43 0.42 0.45 0.42 0.42 0.45 0.44
n = 2500 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.20

NOTE: CLT-MSML, CLT-B1, CLT-B2, and CLT-B3 -intervals based on the normal using estimated standard error based on the MSML, the B1, the B2, and the B3, respectively;
B1 bootstrap intervals based on the fully optimized procedure, B2 bootstrap intervals based on the fast resampling procedure, B3 bootstrap intervals based on the fast
resampling approach proposed by Armstrong, Bertanha, and Hong (2014). 1000 Monte Carlo trials with 999 bootstrap replications each. Pseudo-true parameters were
calculated using one million observations. For ν = 6, β0 = 0.99, and β0 = 1.07 when ν = 10.

Table 2. Comparison of standard errors estimation of β̂n .

n = 200 n = 500 n = 2500

MSML B1 B2 B3 MSML B1 B2 B3 MSML B1 B2 B3

ν = 6
(MSE of estimated SE)·103 1.31 0.82 1.26 0.93 0.28 0.16 0.28 0.15 0.05 0.01 0.05 0.02
Ratio of SE over the true value 1.12 1.01 1.14 0.99 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.01

ν = 10
(MSE of estimated SE)·103 7.03 0.96 6.31 3.28 0.42 0.16 0.31 0.19 0.17 0.02 0.15 0.03
Ratio of SE over the true value 1.11 1.01 1.12 1.02 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

NOTE: This table provides the MSE of estimated standard errors and the ratio of estimated standard errors over the true value (simulation based) of standard errors. We

compute the ratio of standard error of an estimator θ̂ over the true value as: S−1 ∑S
i=1

ŜE
j
i

(
θ̂
)

SE
(
θ̂
) , where S is the number of Monte Carlo replications, i = 1, . . . , S, j =

MSML, B1, B2, B3 thus, ŜE
j
i

(
θ̂
)

is the estimated value of the standard error of an estimator θ̂ on the ith Monte Carlo replication obtained by using the method j. SE
(
θ̂
)

is

defined as SE
(
θ̂
)

=
√

S−1 ∑S
i=1

(
θ̂i − S−1 ∑S

s=1 θ̂s
)2

, with θ̂i the estimated value of the parameter θ on the ith Monte Carlo replication. Similarly, we compute the

MSE as S−1 ∑S
i=1

(
ŜE

j
i

(
θ̂
)

− SE
(
θ̂
))2

. Simulations where done with 1000 Monte Carlo trials with 999 bootstrap replications each.

further insight into the “relatively” good performance of these
asymptotic normal theory-based confidence intervals in finite
samples, we compute the ratio of the estimated standard error
over the true value and the mean-square error (MSE) of the
estimated standard errors. The results are presented in Table 2.
For small sample sizes, on average MSML and B2 overestimate
the standard errors, with the ratio of estimated standard error
over the true value above 1. For instance, when n = 200 and
ν = 6, the ratio of estimated standard error over the true
value based on MSML and B2 are 1.12 and 1.14 for MSML and
B2, respectively, whereas this ratio is 1.01 for B1 and 0.99 for
B3. Consequently, the length of confidence intervals based on
estimated standard error from MSML and B2 are larger than the
one based on B1 and/or B3.

The gains associated with the bootstrap methods can be quite
substantial when the main goal of the researcher and/or practi-
tioner is to estimate the standard errors. The results in Table 2

are in favor of the bootstrap particularly for small sample sizes.
More specifically, the full resampling method B1 is better than
using MSML and/or B2 standard errors. For small samples, the
bootstrap method B1 estimates the standard error of the copulas
parameter estimator β̂n more precisely than the MSML, B2 and
B3 approaches. For large sample sizes, we have approximately
the same performance for all three methods. For instance, when
n = 200 and ν = 10, the MSE of the estimated standard
errors of β̂n based on MSML, B1, B2, and B3 are 7.03 · 10−3,
0.96 · 10−3, 6.31 · 10−3 , and 3.28 · 10−3, respectively. Whereas,
for n = 2, 500 and ν = 10, the MSE become 0.17 · 10−3,
0.02 · 10−3, 0.15 · 10−3 , and 0.03 · 10−3, respectively. Thus we
see that although all four methods MSML, B1, B2, and B3 are
asymptotically equivalent, and the full resampling method B1
may be computationally much more demanding, in small sam-
ples, the improved estimates of the standard errors based on B1
may outweigh its computational cost. Overall, the performance
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of B2 is comparable to that of MSML, B3 outperforms B2,
whereas B1 outperforms B2, B3 and MSML and provides more
accurate estimators of the standard errors, especially when the
sample size is small.

6. Conclusion

This article proposes and theoretically justifies bootstrap meth-
ods for inference on nonlinear dynamic models that are esti-
mated in two (or more) stages of quasi-maximum likelihood
estimation (QMLE). In particular, we show the consistency
of the bootstrap distribution of the two-step QML estimator
using dependence and heterogeneity conditions similar to those
used by Gonçalves and White (2004) for the one-step case. In
addition, we also prove the consistency of bootstrap standard
errors for two-step QMLE, a result that does not seem to be
available even for iid data. This justifies the standard practice
of computing bootstrap standard errors instead of computing
analytical standard errors, which quickly becomes cumbersome
in the multistage QMLE context. Our simulation results show
that intervals based on bootstrap standard errors or bootstrap
percentile intervals obtained with the fully optimized method
that resamples the log-likelihood functions jointly are shorter on
average than intervals based only on asymptotic theory or on the
fast resampling method we propose. Thus, although more com-
putationally demanding, the fully optimized bootstrap method
has better finite sample properties than the other methods we
consider.

Appendix A

In this appendix, we provide a set of primitive assumptions under
which the asymptotic theory of the two-step QMLE (consistency
and asymptotic distribution) follows. These assumptions extends the
assumptions of GW (2004) to the two-step QMLE context and are used
to prove our bootstrap results.

Assumption A.

A.1: Let (�,F , P) be a complete probability space. The observed data
are a realization of a stochastic process

{
Xt : � → R

l, t ∈ N

}
,

with

Xt (ω) = Wt (. . . , Vt−1 (ω) , Vt (ω) , Vt+1 (ω) , . . .) ,

Vt : � → R
v, and Wt : ×∞

τ=−∞R
v → R

l is such that Xt is
measurable for t.

A.2: i. The functions
{

f1t
(
Xt , α

)}
are such that f1t (·, α) is measur-

able for each α ∈ A, where A is a compact subset of Rk,
f1t

(
Xt , ·) is continuous on A, a.s.-P, and f1t

(
Xt , ·) is twice

continuously differentiable on int (A), a.s-P.
ii. The functions

{
f2t

(
Xt , α, β

)}
are such that f2t (·, α, β) is mea-

surable for each (α, β) ∈ A × B, where B is a compact subset
of Rp, f2t

(
Xt , ·, ·) is continuous on � = A × B, a.s.-P, and

f2t
(
Xt , ·, ·) is twice continuously differentiable on int (�) , a.s-

P.
A.3: i. α0 is the unique maximizer of Q̄1 (α) ≡ limn→∞ E (Q1n (α))

on A.
ii. β0 is the unique maximizer of Q̄2 (α0, β) ≡

limn→∞ E (Q2n (α0, β)) on B.
iii. θ0 = (α0, β0) is interior to � = A × B.

A.4: i. The functions
{

log f1t
(
Xt , α

)}
and

{
∂

∂α′ s1t
(
Xt , α

)}
are

Lipschitz continuous on A, a.s.-P, where s1t
(
Xt , α

) ≡
∂
∂α

log f1t
(
Xt , α

)
.

ii. The functions
{

log f2t
(
Xt , α, β

)}
,

{
∂

∂β ′ s2t
(
Xt , α, β

)}
and{

∂
∂α′ s2t

(
Xt , α, β

)}
are Lipschitz continuous onA×B, a.s.-P,

where s2t
(
Xt , α, β

) ≡ ∂
∂β

log f2t
(
Xt , α, β

)
.

A.5: For some r > 2,

i. The functions
{

log f1t
(
Xt , α

)}
,

{
s1t

(
Xt , α

)}
and{

∂
∂α′ s1t

(
Xt , α

)}
are r-dominated on A uniformly in t.

ii. The functions
{

log f2t
(
Xt , α, β

)}
,

{
s2t

(
Xt , α, β

)}
,{

∂
∂β ′ s2t

(
Xt , α, β

)}
and

{
∂

∂α′ s2t
(
Xt , α, β

)}
are r -dominated

on � = A × B uniformly in t.

A.6: {Vt} is an α-mixing sequence of size − 2r
r−2 , with r > 2.

A.7: The elements of

i.
{

log f1t
(
Xt , α

)}
and

{
∂

∂α′ s1t
(
Xt , α

)}
are L2-NED on {Vt} of

size − 1
2 , and those of

{
s1t

(
Xt , α

)}
are L2-NED on {Vt} of size

−1, uniformly on (A, ρ), where ρ is a metric on R
k;

ii.
{

log f2t
(
Xt , α, β

)}
,

{
∂

∂β ′ s2t
(
Xt , α, β

)}
and{

∂
∂α′ s2t

(
Xt , α, β

)}
are L2 -NED on {Vt} of size − 1

2 , and
those of

{
s2t

(
Xt , α, β

)}
are L2-NED on {Vt} of size −1,

uniformly on (A × B, ρ), where ρ is a metric on R
k × R

p.

A.8: i. A0 ≡ limn→∞ E
(

n−1 ∑n
t=1

∂
∂α′ s1t

(
Xt , α0

))
is nonsingular

and B0 ≡ limn→∞ var
(

n− 1
2

∑n
t=1 s1t

(
Xt , α0

))
is positive

definite.
ii. H0 ≡ limn→∞ E

(
n−1 ∑n

t=1
∂

∂β ′ s2t
(
Xt , α0, β0

))
is nonsin-

gular,

J0 ≡ lim
n→∞ var

(
n− 1

2

n∑
t=1

(
s2t

(
Xt , α0, β0

) − F0A−1
0 s1t

(
Xt , α0

)))

is positive definite, and F0 ≡
limn→∞ E

(
n−1 ∑n

t=1
∂

∂α′ s2t
(
Xt , α0, β0

))
< ∞.

Supplementary Materials

The supplemental appendix contains all proofs.
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