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This paper proposes a new class of dynamic copulamodels for daily asset returns that exploits in-
formation from high frequency (intra-daily) data. We augment the generalized autoregressive
score (GAS)model of Creal et al. (2013)with high frequencymeasures such as realized correlation
to obtain a “GRAS”model. We find that the inclusion of realized measures significantly improves
the in-sample fit of dynamic copula models across a range of U.S. equity returns. Moreover, we
find that out-of-sample density forecasts from our GRAS models are superior to those from sim-
pler models. Finally, we consider a simple portfolio choice problem to illustrate the economic
gains from exploiting high frequency data for modeling dynamic dependence.
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1. Introduction

This paper proposes a class of models to incorporate high frequency (intra-daily) information into models of the dynamic depen-
dence between lower frequency (e.g., daily) asset returns, modeled using a copula-based approach. Our approach is based on a com-
bination of recent work on general time-varying distributions (Creal et al., 2013), on the incorporation of high frequency data into
models for lower frequency conditional second moments (Shephard and Sheppard, 2010; Noureldin et al., 2012; Hansen et al.,
2011, 2014), and on dynamic copula models for economic time series (see Patton (2013) for a review).

Unlike variances and covariances, the copula of low frequency returns is not generally a known function of the copula of
corresponding high frequency returns. Thus the elegant link between high frequency volatility measures (e.g., realized variance
and covariance) and their lower frequency counterparts cannot generally be exploited when considering dependence via the copula
function.1 However, it is still likely that high frequency measures such as realized correlation contain information that is useful for
modeling dynamic dependence through a copula model, to the extent that the copula model has parameters that are related to
correlation. As Andersen et al. (2003) note, “[t]he essence of forecasting is quantification of the mapping from the past and present
into the future. Hence, quite generally, superior estimates of present conditions translate into superior forecasts of the future.” It is
this intuition that we seek to exploit in this paper.
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Similar to the class of “GARCH-X”models, we propose augmenting a generalized autoregressive score model (GAS) of Creal et al.
(2013) with realized measures such as realized correlation. We call such models “GRAS” models.2 In addition to a baseline GRAS
model using realized correlation, we also consider models that incorporate realized volatilities, measures of co-jumps, and market
volatility. We apply these models to stock returns over the period 2000 to 2010, a total of 2773 trading days, and we consider
three pairs of stocks, exhibiting low, medium and high levels of correlation.

We compare our proposed GRAS copula models with models that do not exploit high frequency data, both in-sample and out-of-
sample. In sample, we find that including a measure of realized correlation significantly improves the performance of themodel. This
finding is robust across all three pairs of assets, across the particular choice of realized measure, and across the “shape” of the copula
that we assume. (We consider the Normal, rotated Gumbel and the Student's t copulas.) We also find evidence that other high
frequency measures, such as continuous and jump realized correlations and realized volatilities, contain useful information.

We compare the out-of-sample performance of the competing models in two ways. Firstly, we use the density forecast accuracy
test for copulas proposed by Diks et al. (2012). We compare the dynamic copula models both in terms of their fit across the entire
support, and in particular on the joint tails of the distribution.Whenwe look at the joint tails of the support, theGRASmodel uniform-
ly out-performs the constant parameter copula model and the GAS model, and in a majority of comparisons the difference is statisti-
cally significant. Second, we consider a simple portfolio decision problem, where a risk averse investor uses one of the competing
copula-based density forecasts to compute her optimal portfolio weights, as in Patton (2004) and Jondeau and Rockinger (2012).
We evaluate the out-of-sample utility of these portfolios, and find that investors are generally willing to pay a positive management
fee to switch from the constant copula model and GAS model to the GRAS model.

This paper is related to work over the past decade on specifications for time-varying conditional copulas. We build on Patton
(2006a), Jondeau and Rockinger (2006) and Creal et al. (2013), who consider models of time-varying copulas where a parametric
functional form is assumed, and the parameter is allowed to vary through time as a function of lagged information, similar to the
ARCH model for volatility, see Engle (1982).3 We attempt to bridge the gap between the existing time-varying copula models,
which have almost exclusively used lower frequency data, and models from the volatility and correlation forecasting literature,
which have successfully used high frequency data, see Shephard and Sheppard (2010), Noureldin et al. (2012), and Hansen et al.
(2011, 2014) for example. In a recent related paper, Fengler and Okhrin (2012) use amethod-of-moments approach tomatch the co-
variance structure implied by a copula-basedmultivariatemodel with that estimated using high frequency data. This approach suffers
from the fact that it cannot be usedwith copulas that havemore than one free parameter (e.g., the Student's t copula), and the authors'
simulation study suggests that it can lead to biased estimators when the level of dependence is high. Our proposed approach over-
comes these limitations by using the GAS structure, described in the next section, to link high frequency information to low frequency
dependence measures.

The remainder paper is organized as follows. Section 2 provides the general formulation of our GRAS models and outlines the es-
timation procedure. Section 3 presents our in-sample results, and Section 4 presents the out-of-sample forecasting results, for density
forecasting and a portfolio choice problem. Section 5 concludes. An online supplemental appendix contains additional details and
results.

2. Dynamic copula models and high frequency data

The models used in this paper are based on Sklar's (1959) theorem, extended to apply to conditional distributions in Patton
(2006a). This theorem allows the researcher to decompose a (conditional) joint distribution intomarginal distributions and a copula.
If Yt = [Y1t, Y2t]' has a conditional joint distribution Ft and conditional marginal distributions F1t and F2t, then we can write:
2 The
3 Alte

Manner
Yt jF t−1∼Ft ¼ Ct F1t ; F2tð Þ ð1Þ
where Ct is the conditional copula of Yt and F t−1 is some information set, usually taken as σ(Yt − 1, Yt − 2,…). The copula contains all
information about the dependence between Y1t and Y2t, and is sometimes called the “dependence function.” From a modeling
perspective, the usefulness of Sklar's theorem arises from the fact that we can construct a joint distribution Ft by linking together
any two marginal distributions, F1t and F2t, with any copula; there is no need for these functions to belong to the same family. Thus
it provides a great deal of flexibility in modeling joint distributions. In Section 2.3 we describe the models that we use for the condi-
tional marginal distributions in our empirical work, and belowwe describe various models for the conditional copula. The discussion
below exploits the fact that the conditional copula of Yt can be interpreted as the conditional joint distribution of the probability
integral transforms of these variables:
Let Uit ≡ Fit Yitð Þ ; i ¼ 1;2
then Ut jF t−1 ∼ Ct

ð2Þ
name “GAS-X” is already taken for a line of medications. (We thank Drew Creal and Kevin Sheppard for pointing this out to us.)
rnative dynamic specifications include regime switching models, see Rodriguez (2007) and Okimoto (2008), and “stochastic copula” models, see Hafner and
(2012).
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2.1. The GAS model

As noted above, we build on ARCH-type models for the dynamic copula, and in particular the class of GAS models proposed by
Creal et al. (2013). The GAS specification addresses the problem of the choice of “forcing variable” to use in the equation governing
the dynamics of the time-varying parameter. For models of the conditional variance, an immediate choice for this variable is the
lagged squared residual, as in the ARCH model, but for models with parameters that lack an obvious interpretation the choice is
less clear. Creal et al. (2013) propose using the lagged score of the density model (copula model, in our application) as the forcing
variable.4 Specifically, for a copula with time-varying parameter δt we have:
4 Har
“DCS,” m
Let Ut jF t−1 ∼ C δtð Þ
then δt ¼ ω þ βδt−1 þ αst−1

where st−1 ¼ St−1∇t−1

∇t−1 ¼ ∂logc ut−1; δt−1ð Þ
∂δt−1

ð3Þ
and St is a scaling matrix (e.g., the inverse Hessian or its square root). While this specification for the evolution of a time-varying
parameter is somewhat arbitrary, Creal et al. (2013) motivate it by showing that it nests a variety of popular and successful existing
models: GARCH (Bollerslev, 1986) for conditional variance; ACD (Engle and Russell, 1998) formodels of trade durations (the time be-
tween consecutive high frequency observations); Davis et al.'s (2003)model for Poisson counts. Harvey (2013) furthermotivates this
specification as an approximation to a filter for a model driven by a stochastic latent parameter, or an “unobserved components”
model.

2.2. The “GRAS” model

Building on the GAS specification in Eq. (3), we propose augmenting the evolution equation with information based on high
frequency data, making this a “realized GAS” model, which, continuing the recent tradition of liberal acronym formation, we call
the GRAS model. Consider a GRAS model based on a generic realized measure, denoted RM:
δt ¼ ω þ βδt−1 þ αst−1 þ γRMt−1 ð4Þ
To the extent that the realized measure provides useful information about the current dependence parameter, δt, beyond that
contained in the score of the copula likelihood, this model will out-perform the underlying GASmodel. One can imagine that the use-
fulness of realizedmeasures for copula parameterswill dependon the type of dependence the copula parameter governs, and the type
of dependence captured by the realized measure. For example, a copula parameter that primarily captures rank correlation might be
well explained by realized (linear) correlation, while a copula parameter that primarily captures asymmetry between joint upper-tail
and joint lower tail dependence might have little to do with realized correlation.

It is worth noting here that by augmenting the GAS model with a realized measure, we are formally outside the “generalized
autoregressive score” framework, and the process in Eq. (4) no longer has the interpretation as an approximate filter for an unobserv-
able components model. Instead, it is interpreted as a parsimoniousway of capturing dynamics in the conditional copula, with a forc-
ing variable guided by the shape of the copula. Like the many extensions of the original ARCH model of Engle (1982), see Bollerslev
(2009) for a glossary, the model proposed here is somewhat arbitrary, and must be judged on its empirical performance. Sections 3
and 4 are devoted to answering that question in detail.

Most parametric copulas have parameters that are constrained to lie in a particular range of values (e.g., a correlation parameter
forced to take values only inside (−1, 1)). To ensure that this is satisfied, Creal et al. (2013) suggest applying a strictly increasing
transformation, h, (e.g., log, logistic, arc tan, etc.) to the parameter,
φt ¼ h δtð Þ⇔ δt ¼ h−1 φtð Þ ð5Þ
and to model the unconstrained transformed parameter, denoted φt. This approach extends directly to GRAS models and we employ
this in our analysis below:
φt ¼ ω þ βφt−1 þ αst−1 þ γRMt−1 ð6Þ
where st − 1 = St − 1∇t − 1 and∇t − 1 = ∂logc(ut − 1; δt − 1)/∂δt − 1 as above. In all of our GAS and GRAS specifications, we use the
(Cholesky) square root of the inverse Hessian matrix as our scale matrix, that is, St = It

−1/2.
vey (2013) and Harvey and Sucarrat (2014) propose a similar method for modeling time-varying parameters, which they call a “dynamic conditional score,” or
odel.
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2.3. Estimation and inference

We consider marginal distribution models of the following form:
5 Infe
see Patt
some re
models
which i
have th

6 It is
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“realize

8 The
1999; F
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13, 200
Yit ¼ μ i Zt−1; θið Þ þ σ i Zt−1; θið Þεit; i ¼ 1;2; Zt−1∈F t−1

where εit jF t−1 ∼ Fi 0;1; θið Þ ∀t
ð7Þ
That is, we allow for general time-varying conditional means and variances of the individual asset returns, and we assume
that the standardized residuals, εit, are iid from some parametric distribution with zero mean and unit variance.5,6 In our
empirical work below, we use ARMA models for the conditional mean and GJR-GARCH models (see Glosten et al. (1993))
for the conditional variance, with the number of lags chosen using the BIC.7 We use the skewed t distribution of Hansen
(1994) for the distribution of the standardized residuals, and we verify its goodness-of-fit using standard tests described in
Section 3.1 below.

When combined with parametric models for the conditional marginal distributions, the GRAS model for the conditional copula
defines a dynamic parametric model for the joint distribution. The joint likelihood is then
L θð Þ≡
XT
t¼1

log ft Yt ; θð Þ ¼
XT
t¼1

log f 1t Y1t ; θ1ð Þ

þ
XT
t¼1

log f 2t Y2t ; θ2ð Þ þ
XT
t¼1

logct F1t Y1t ; θ1ð Þ; F2t Y2t ; θ2ð Þ; θcð Þ
ð8Þ
By the structure of the model above, this model can be estimated in stages, first estimating the marginal distributions and then
estimating the copula model conditioning on the estimatedmarginal distribution parameters. This entails, in general, some loss of ef-
ficiency relative to estimating the entire joint distribution model in one step, however it greatly simplifies the computational burden,
and Joe (2005) and Patton (2006b) find the loss of efficiency to generally be low.

While estimation of the entire parameter vector θ is simplified by doing it in stages, inference on the resulting copula parameter
estimates ismore difficult than usual, as the estimation error from themarginal distribution stagesmust be taken into account.White
(1994) and Patton (2006b) provide methods for doing so based on a modified “Hessian” matrix. An alternative method is to use a
block bootstrap, applied to the returns, see Gonçalves and White (2004) and Gonçalves et al. (2013) for technical details. Unlike
some applications of the bootstrap, its use here does not lead to any asymptotic refinements, rather it merely enables one to avoid
having to compute large and complicated Hessian matrices. We employ the stationary bootstrap of Politis and Romano (1994),
using 100 replications and an average block length of 60, for inference in this paper.

3. Empirical analysis of U.S. equity returns

3.1. Data description and marginal distribution estimation

We use high frequency transaction data over the period January 2000 to December 2010, a total of 2773 trading days, taken from
the NYSE's TAQ database. We follow the cleaning rules outlined in Barndorff-Nielsen et al. (2009), see Li (2013) for details. All of our
“realized measures” are constructed using five-minute returns from within the trade day, with the overnight returns omitted. Our
daily returns are computed as the log-difference of the close prices from the high frequency data base, and are adjusted for stock splits
using information from CRSP.8
rencemethods formodelswith dynamic conditional copulas and nonparametric or semiparametricmarginal distributions are not yet available in the literature,
on (2013), and so we are constrained to consider fully parametric marginal distributions. Also, we note here that the literature on GAS models is growing and
sults on the asymptotic properties of MLE for univariate GAS models are available (see Blasques, et al. (2012)), but no formal results are yet available for GAS
applied to copulas, and similarly nothing that could be directly used for GRAS models. Han (2015) provides some results on univariate GARCH-X processes,
s related to the extension from GAS to GRAS models, but is not directly applicable. We simply assume that ML estimation of GAS and GRASmodels for copulas
e usual asymptotic properties.
possible to allow the conditional distribution of the standardized residuals to vary through time (e.g., to have time-varying higher-ordermoments), but for sim-
e do not consider this here.
entioned in the Introduction, recent work in volatility modeling has found that including high frequency variancemeasures in a GARCH-type equation to im-

oodness-of-fit, see Shephard and Sheppard (2010) and Hansen, et al. (2011) and for example. In the supplemental appendix we also present results when the
d GARCH” model of Hansen, et al. (2011) is used in place of the GJR-GARCH model.
dates and the corresponding ratio of the splits for each stock are: (i) 2-for-1 for Microsoft on May 23, 1994; December 9, 1996; February 23, 1998; March 29,
ebruary 18, 2003. (ii) 2-for-1 for Apple on June 21, 2000; February 28, 2005. (iii) 2-for-1 for Exxon on April 14, 1997; July 19, 2001. (iv) 2-for-1 for Chevron on
, 1994; September 13, 2004. (v) 2-for-1 for Celgene on October 25, 2004; February 27, 2006; 3-for-1 on April 17, 2000. (vi) 2-for-1 for J&J on June 12, 1996; June
1.



Table 1
Summary statistics and marginal distribution estimates.

Microsoft Apple Exxon Chevron Celgene J&J

Panel A: Summary statistics
Mean −0.027 0.119 0.022 0.028 0.085 0.010
Std dev 2.209 2.958 1.745 1.770 3.618 1.374
Skewness −0.083 −0.138 0.178 0.158 −0.140 −0.788
Kurtosis 11.221 6.390 14.374 14.230 8.714 18.733
Correl (linear/rank) 0.437/0.478 0.851/0.803 0.163/0.218

Panel B: Conditional mean
Constant −0.027 0.119 0.026 0.034 0.085 0.010
AR(1) −0.138 −0.118
AR(2) −0.079

Panel C: Conditional variance
Constant 0.079 0.106 0.057 0.068 0.059 0.020
ARCH 0.041 0.026 0.029 0.025 0.014 0.031
Asym ARCH 0.074 0.050 0.076 0.088 0.032 0.110
GARCH 0.906 0.937 0.907 0.900 0.964 0.905

Panel D: Skew t density
DoF 4.498 5.977 9.464 18.768 5.027 5.881
Skew −0.008 0.031 −0.125 −0.109 0.017 −0.020

Panel E: GoF tests
KS p-value 0.708 0.088 0.066 0.380 0.543 0.785
CvM p-value 0.507 0.059 0.109 0.315 0.588 0.842

Notes: The top panel of this table presents summary statistics on the daily returns for six U.S. firms, listed in the column headings. The second panel presents the
parameter estimates for AR(p) models of the conditional means of these returns, and the third panel presents parameter estimates for GJR-GARCH(1,1) models of
the conditional variance. The fourth panel presents parameter estimates for Hansen's (1994) skew t density for the standardized residuals. The bottom panel presents
simulation-based p-values from Kolmogorov–Smirnov and Cramer–von Mises tests of the goodness-of-fit of the density specification.
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We consider three pairs of stocks for this analysis: Microsoft and Apple, Exxon and Chevron, Celgene and Johnson & Johnson.9

These pairs cover a range of (average) levels of dependence, with sample linear correlations of 0.44, 0.85 and 0.16 respectively, to
allow us to see whether the gains from using high frequency data are greater or lesser depending on the level of dependence. The
top panel of Table 1 presents some summary statistics for the daily returns used in our analysis, and Fig. 1 presents a scatter plot of
the daily returns on these assets. (See Figs. 2 and 3.)

As noted in Section 2.3, we use ARMA–GJR-GARCHmodels to capture themarginal distribution dynamics, with lag lengths chosen
using the BIC.10 The second and third panels of Table 1 present the parameter estimates for the conditionalmean and variancemodels.
The estimated parameters are similar to other studies of daily equity returns: generally small AR coefficients, strongly persistent vol-
atility,with the asymmetric ARCHcoefficient being two to four times larger than the standardARCH coefficient, indicating asymmetric
volatility dynamics.

We useHansen's (1994) skewed t for the distribution of the standardized residuals, and the estimated parameters are presented in
the fourth panel of Table 1. The estimated degrees of freedom parameters, which controls the degree of kurtosis, range from 4.5 to
18.8, indicating excess kurtosis. The skewness parameter, which lies in the interval [−1, 1] for this distribution, is generally small, in-
dicating evidence of onlymild skewness. The bottompanel of Table 1 presents the Kolmogorov–Smirnov and Cramer–vonMises tests
of the specification of the marginal distribution. We use a simulation-based approach to obtain critical values that are correct in the
presence of estimated parameters, see Patton (2013) for details. All of the series pass both of these tests at the 0.05 level, although
there is some mild evidence of misspecification for Apple, and potentially for Exxon. We proceed with this specification and move
on to the estimation of the dynamic copula models.
3.2. High frequency data and dynamic copula models

In Table 2we present our first empirical contribution. This table reports the parameter estimates from three different GRAS copula
models. The first is based on a Normal copula, and we model the arc tan of this parameter evolving according to Eq. (6). This copula
rules out tail dependence and asymmetric dependence, and is presented as a benchmark model, similar to the DCC model of Engle
(2002). The second is based on a rotated (or survival) Gumbel copula, which allows for lower tail dependence and asymmetry. The
Gumbel copula parametermust lie in [1,∞) andwe impose this bymodelingφ= log(δ− 1). The thirdmodel uses a Student's t copula,
9 Moving from bivariate to higher dimension analyses significantly reduces the number of existing copulamodels that can be applied, and significantly increases the
complexity of the problem (see Christoffersen, et al. (2012) andOh and Patton (2013) for recent work in this area). Addressing these issues in a satisfactorywaywould
take us beyond the scope of the current paper, and we leave this extension for future work.
10 We consider ARMA (p, q) models up to order (5,5). For four of the six stocks the BIC-optimal model is an AR(0), i.e., just a constant, while for Exxon the optimal
model is an AR(1) and for Chevron an AR(2) is selected. We consider volatility models in the set ARCH(1), ARCH(2), GARCH(1,1), GARCH(2,2), GJR-GARCH(1,1) and
GJR-GARCH(2,2). For all six stocks the BIC-optimal model is a GJR-GARCH(1,1) specification.
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Fig. 1. This figure shows a scatter plot of daily returns on three pairs of stocks. We use data over the period January 2000 to December 2010.
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which allows for dependence in both tails, but imposes symmetry. The Student's t copula has two parameters, ρ and ν−1, and for sim-
plicitywe only allow the correlation parameterρ to vary through time. Like theNormal copula,wemodel the arc tan of this parameter.
In all threemodels, the GRAS dynamics are obtained using Eq. (6), with the realized measure being realized correlation, computed in
the usual way:
w

11 In t
The resu
microst
RCorrt ¼ RV 1;2ð Þ
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RV 1;1ð Þ
t RV 2;2ð Þ

t

q

here RV i; jð Þ
t ¼

Xm
k¼1

r ið Þ
t;kr

jð Þ
t;k

ð9Þ
and m = 78 is the number of five-minute returns in a trade day. Our daily returns are whole day (“close to close”), but we use only
open-to-close realized measures in the GRAS models, as this is the only period of the day in which high frequency data is available.11
he supplemental appendix we present tables corresponding to Table 2 but using 1-minute, 10-minute and 15-minute sampling to obtain realized correlations.
lts using 10- and 15-minute samples are similar to those using 5-minute sampling, butworsewhenusing 1-minute sampling, perhaps reflecting greatermarket
ructure effects at that frequency.
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The coefficient on lagged realized correlation in the GRAS model is denoted γRC, and is reported in the last row of the parameter
estimates. Bootstrap standard errors, which take into account estimation error from themarginal distribution parameters, are presented
in parentheses below the estimatedparameters.We see from this table that the coefficient on realized correlation is significantly different
from zero for all three models across all three pairs of assets. In seven out of the nine models it is significant at the 1% level, and for the
other two it is significant at the 5% level. This is strong statistical evidence of the usefulness of high frequency data formodeling dynamics
in the conditional copula of lower frequency returns, confirming the general intuition of Andersen et al. (2003) for this application.12,13

Fig. 2 presents the estimated time series of the linear correlation14 from the Student's t copula model using the GAS and GRAS
specifications. (The Student's t GRASmodel beats the Normal and rotated Gumbel specifications for all three pairs of assets, discussed
12 In the online supplemental appendix we present a corresponding table of parameter estimates when γRC is imposed to be zero, leading to the GAS specification of
Creal et al. (2013). Comparing the values of the log-likelihoods from that model with those in Table 2 confirms the gains from including realized correlation in this
specification.
13 In the supplemental appendix we consider all 15 possible pairs out of these six assets, and we present a table of the p-values from tests comparing the proposed
GRAS model to the GAS model. We find that 10 out of these 15 pairs have significant p-values, indicating gains from using the GRAS model. Interestingly, all of the
non-significant pairs involve Apple or Microsoft, perhaps indicating that these technology stocks have different dynamics than the other stocks under consideration.
14 The linear correlation implied by a copula-based multivariate model is generally not a closed-form function of the parameters of themodel, even when the copula
has a “correlation” parameter, see Patton (2013). We use simple numerical integration to obtain the model-implied linear correlation.
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Table 2
GRAS with realized correlation.

Microsoft and Apple Exxon and Chevron Celgene and J&J

Normal R. Gumbel Student's t Normal R. Gumbel Student's t Normal R. Gumbel Student's t

ω 0.099 −0.491 0.094 0.517 −0.188 0.439 0.010 −0.864 0.008
(0.097) (0.171) (0.069) (0.238) (0.071) (0.205) (0.018) (0.271) (0.018)

α 0.054 0.083 0.084 0.141 0.153 0.166 0.025 0.030 0.028
(0.031) (0.050) (0.033) (0.034) (0.045) (0.040) (0.020) (0.073) (0.023)

β 0.655 0.737 0.688 0.587 0.604 0.610 0.853 0.663 0.879
(0.158) (0.124) (0.116) (0.145) (0.150) (0.133) (0.097) (0.121) (0.097)

ν−1 0.111 0.129 0.035
(0.023) (0.021) (0.022)

γRC 0.614∗ ∗ ∗ 0.659∗ ∗ ∗ 0.585∗ ∗ ∗ 0.717∗ ∗ ∗ 0.562∗ ∗ ∗ 0.779∗ ∗ ∗ 0.392∗ ∗ 1.457∗ ∗ ∗ 0.329∗ ∗

(0.179) (0.188) (0.145) (0.201) (0.175) (0.212) (0.160) (0.421) (0.159)
log L 326.570 331.570 353.320 1506.80 1488.70 1550.80 120.600 113.393 122.400
p ‐ valGAS 0.001 0.000 0.000 0.000 0.001 0.000 0.014 0.001 0.039

Notes: This table presents the estimated parameters from the GRAS model presented in Eq. (6), for the copula of three pairs of assets. The coefficient on realized
correlation is denoted γRC. Estimates of γRC that are significant at the 1%, 5%, and 10% levels are denoted with 3, 2 and 1 asterisks respectively. The bottom row of
this table presents the p-value from a test that the realized measure is equal to zero, and thus that the GRAS model simplifies to a GAS model.
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Table 3
GRAS with realized correlation and realized variance.

Microsoft and Apple Exxon and Chevron Celgene and J&J

Normal R. Gumbel Student's t Normal R. Gumbel Student's t Normal R. Gumbel Student's t

ω 0.085 −0.812 0.121 0.483 −0.364 0.395 −0.540 −3.254 −0.507
(0.161) (0.477) (0.164) (0.364) (0.496) (0.374) (0.405) (0.960) (0.426)

α 0.053 0.080 0.078 0.148 0.156 0.171 −0.018 −0.046 −0.010
(0.036) (0.066) (0.037) (0.032) (0.041) (0.041) (0.033) (0.097) (0.035)

β 0.657 0.671 0.688 0.549 0.570 0.589 0.177 0.257 0.191
(0.200) (0.130) (0.114) (0.167) (0.157) (0.150) (0.185) (0.137) (0.175)

ν−1 0.109 0.130 0.025
(0.020) (0.020) (0.023)

γRC 0.528∗ ∗ 0.746∗ ∗ ∗ 0.500∗ ∗ ∗ 0.851∗ ∗ ∗ 0.641∗ ∗ ∗ 0.869∗ ∗ ∗ 0.945∗ ∗ ∗ 1.810∗ ∗ ∗ 0.924∗ ∗ ∗

(0.221) (0.256) (0.180) (0.278) (0.216) (0.267) (0.181) (0.347) (0.188)
γRV1 0.055∗ 0.055∗ 0.053∗ ∗ 0.122∗ ∗ 0.038 0.070∗ −0.247∗ ∗ ∗ −0.467∗ ∗ ∗ −0.245∗ ∗ ∗

(0.031) (0.033) (0.025) (0.055) (0.058) (0.039) (0.066) (0.101) (0.057)
γRV2 −0.066∗ −0.091∗ ∗ −0.059∗ ∗ −0.127∗ −0.054 −0.075 0.107∗ ∗ 0.199∗ ∗ 0.110∗ ∗

(0.039) (0.042) (0.027) (0.067) (0.071) (0.061) (0.050) (0.090) (0.047)
log L 330.565 336.124 355.494 1509.90 1489.30 1551.70 131.080 126.280 132.020
p ‐ valGAS 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p ‐ valGRAS 0.050 0.020 0.000 0.050 0.500 0.220 0.000 0.000 0.000

Notes: This table presents the estimated parameters from the GRAS model presented in Eq. (6), for the copula of three pairs of assets. The coefficient on realized cor-
relation is denoted γRC. Estimates of γRC, γRV1, orγRV2 that are significant at the 1%, 5%, and 10% levels are denotedwith 3, 2 and 1 asterisks respectively. The penultimate
row of this table presents the p-value from a test that all coefficients on realized measures are equal to zero. The bottom row presents the p-value from a test that all
coefficients on realized measures except for that on the lagged realized correlation are equal to zero.
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further in Section 3.4 below.) The bottom panel of this figure, showing the results for Celgene–Johnson & Johnson is perhaps the eas-
iest to interpret.We see from this figure that the GRASmodel is above to capture lower and higher values of dependence than theGAS
model, which is based only on daily information. As expected, a model based on higher frequency information is able to adjust to
changes in dependence faster than a model based only on daily information. The same inference can be made from the other two
plots in this figure, although the parameter dynamics in those models are such that it is harder to observe.

3.3. Extensions of the baseline GRAS model

We next consider extensions of the GRAS model presented in Eq. (6), where we augment that specification with additional
realized measures.

Firstly, we consider an extension motivated by Engle (2002) and Andersen et al. (2006), who find that conditional correlation is
affected by the past level of volatility. We augment our GRAS specification from above to include not only realized correlation, but
also the log realized variance of each asset. Thus the evolution equation becomes:
φtþ1 ¼ ω þ βφt þ αst þ γRCRCorrt þ γRV1log RV 1;1ð Þ
t

� �
þ γRV2log RV 2;2ð Þ

t

� �
ð10Þ
The results for this model are presented in Table 3.We again see that the coefficient on lagged realized correlation is highly signif-
icant across all models. Further, the coefficients on lagged realized volatility are significant for two out of three pairs of assets. The last
two rows of this table present joint tests for the significance of the coefficients on realized measures. The penultimate row tests the
restriction that all realized measures have coefficients equal to zero, which simplifies this model to a GAS model, and this is strongly
rejected. The bottom row tests that only realized correlation has a non-zero coefficient, and this is strongly rejected for theMicrosoft–
Apple and Celgene–J&J pair, but is not rejected for the Exxon–Chevron pair. Thus this table presents evidence that other measures
computed from high frequency data may be helpful in capturing the dynamics of dependence between asset returns.

Next we consider a “heterogeneous autoregressive” (HAR) version of our baseline model, to see whether longer-run dependence
in realized measures is useful for modeling the dynamics of daily copulas, see Corsi (2009) and Müller et al. (1997) for details on the
HAR model, and Corsi, Pirino and Reno (2012) and Sokolinskiy and van Dijk (2011) for the usefulness of HAR models for forecasting
volatility. Consider the following specification:
φtþ1 ¼ ω þ βφt þ αst þ γRCRCorrt þ γW
1
5

X5
i¼1

RCorrtþ1−i þ γM
1
22

X22
i¼1

RCorrtþ1−i ð11Þ
The results for this model are presented in Table 4. We see that the coefficient on lagged realized correlation is again statistically
significant across all nine specifications. The coefficients on the past 5-day and 22-day average realized correlation are generally not
significant, indicating that these additional lags of realized correlation do not much improve the fit of the model (perhaps due to the
persistence that theGAS part of themodel already captures). The penultimate row tests the restriction that all realizedmeasures have
coefficients equal to zero, andwe are unable to reject this in any specification, indicating that high frequency information is not useful.



Table 4
GRAS with HAR realized correlations.

Microsoft and Apple Exxon and Chevron Celgene and J&J

Normal R. Gumbel Student's t Normal R. Gumbel Student's t Normal R. Gumbel Student's t

ω 0.037 −0.748 0.054 0.535 −0.249 0.475 0.002 −0.026 0.002
(0.089) (0.417) (0.079) (0.250) (0.153) (0.214) (0.048) (0.947) (0.046)

α 0.059 0.097 0.089 0.153 0.168 0.183 0.023 0.046 0.023
(0.038) (0.068) (0.036) (0.030) (0.037) (0.040) (0.033) (0.097) (0.032)

β 0.570 0.628 0.643 0.553 0.538 0.540 0.968 0.990 0.970
(0.234) (0.211) (0.175) (0.182) (0.235) (0.179) (0.322) (0.366) (0.319)

ν−1 0.110 0.127 0.036
(0.021) (0.019) (0.021)

γRC 0.569∗ ∗ 0.646∗ 0.582∗ ∗ ∗ 0.536∗ ∗ 0.361∗ 0.524∗ ∗ ∗ 0.463∗ ∗ ∗ 0.821∗ 0.440∗ ∗

(0.254) (0.357) (0.214) (0.268) (0.217) (0.225) (0.181) (0.485) (0.189)
γW −0.313 −0.112 −0.268 −0.517 −0.227 −0.366 −0.410 −0.724 −0.386

(0.550) (0.589) (0.463) (0.571) (0.523) (0.500) (0.547) (0.829) (0.519)
γM 0.734 0.533 0.507 0.805 ∗ 0.572 0.836∗ 0.035 −0.047 0.030

(0.644) (0.696) (0.555) (0.448) (0.494) (0.463) (0.659) (1.270) (0.709)
log L 329.189 332.347 354.534 1510.10 1491.20 1553.20 121.710 117.400 123.470
p ‐ valGAS 0.270 0.480 0.360 0.260 0.370 0.230 0.840 0.670 0.860
p ‐ valGRAS 0.310 0.580 0.410 0.280 0.410 0.240 0.870 0.770 0.860

Notes: This table presents the estimated parameters from the GRAS model presented in Eq. (6), for the copula of three pairs of assets. The coefficient on realized cor-
relation is denoted γRC. Estimates of γRC, γW, or γM that are significant at the 1%, 5%, and 10% levels are denoted with 3, 2 and 1 asterisks respectively. The penultimate
row of this table presents the p-value from a test that all coefficients on realized measures are equal to zero. The bottom row presents the p-value from a test that all
coefficients on realized measures except for that on the lagged realized correlation are equal to zero.
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This contradicts our findings in the previous section, where high frequency data was found to be strongly significant, and is explained
by the last row of Table 4, where we test the restriction that the coefficients on the weekly and monthly realized correlation lags are
zero.We fail to reject this null in all cases, andwe conclude that by includingweekly andmonthly, aswell as daily, realized correlation,
we “dilute” its significance. Overall, it appears that just the one-day lag of realized correlation is useful for modeling the dynamic
copula.

Finally, we consider a specification that decomposes realized correlation into a “continuous” and a “jump” component, as in
Bollerslev et al. (2013). These labels come from an assumption that the continuous time diffusion generating the observed returns
is subject to occasional jumps.15 We construct these measures using the procedure in Bollerslev et al. (2013), described in detail in
the supplemental appendix. In brief, five-minute returns are categorized as “jump” or “non-jump” using standard methods, and
any five-minute window where at least one of the two assets had a “jump” is excluded from the computation of a “ continuous
realized correlation.” The difference between the usual realized correlation and the continuous component is defined as the jump
realized correlation. This leads us to the specification:
15 In th
combin
φtþ1 ¼ ω þ φ f t þ αst þ γCTSRCorr
CTSð Þ
t þ γJumpRCorr

Jumpð Þ
t ð12Þ
This model nests the baseline GRAS model when γCTS = γJump, and a test of that restriction is presented in the bottom row of
Table 5 (denoted "p − valGRAS"). We see that for the Microsoft–Apple pair that this restriction is rejected for all three copula specifi-
cations. For Exxon–Chevron it is rejected for just the Student's t copula, and for the Celgene–J&J pair it is not rejected in any case. Thus
the additional explanatory power of jump versus continuous correlations is mixed across these assets.

As general conclusions, for all three asset pairs and for all copula specifications, we find that exploiting information from realized
correlation significantly improves the fit of themodel. Some additional explanatory power can be gained for certain assets by also in-
cluding realized volatilities, or the continuous and jump components of realized correlations separately, however our baseline GRAS
model, which includes just the one-day lag of realized correlation, generally performs very well across these assets. In the remainder
of the paper we focus on this baseline GRAS specification.

3.4. The choice of copula functional form

Up to this stage of the analysis, we have focused attention on the specification of the dynamics of the model for the conditional
copula (constant, GAS, or GRAS), and paid little attention to the choice of shape. The estimation results presented above also enable
us to shed light on the best-fitting copula shape across these three pairs of asset returns, and we discuss these results here.

In Table 6 we compare different specifications of the shape of the copula model, holding the model for the dynamics fixed. The
comparison of the rotated Gumbel with the Normal or the Student's t involves testing non-nested models, and we use the test of
Rivers and Vuong (2002), see Patton (2013) for a discussion of its implementation for comparing copula models. Given the models
e presence of jumps, the above analyses based on realized correlation can be interpreted as the correlation implied by the quadratic covariation matrix, which
es both the continuous and jump components.



Table 5
GRAS with continuous and jump realized correlations.

Microsoft and Apple Exxon and Chevron Celgene and J&J

Normal R. Gumbel Student's t Normal R. Gumbel Student's t Normal R. Gumbel Student's t

ω 0.066 −0.441 0.083 0.504 −0.192 0.441 0.010 −0.447 0.005
(0.060) (0.236) (0.080) (0.265) (0.082) (0.220) (0.019) (0.372) (0.020)

α 0.043 0.076 0.079 0.146 0.150 0.173 0.025 0.044 0.030
(0.027) (0.055) (0.033) (0.036) (0.046) (0.035) (0.024) (0.086) (0.023)

β 0.758 0.765 0.728 0.586 0.608 0.601 0.855 0.825 0.930
(0.102) (0.145) (0.121) (0.162) (0.165) (0.131) (0.067) (0.156) (0.073)

ν−1 0.110 0.128 0.038
(0.019) (0.022) (0.022)

γCTS 0.405∗ ∗ ∗ 0.577∗ 0.495∗ ∗ ∗ 0.796∗ ∗ ∗ 0.593∗ ∗ ∗ 0.858∗ ∗ ∗ 0.390∗ ∗ 0.718 0.201
(0.158) (0.345) (0.201) (0.260) (0.189) (0.208) (0.171) (0.592) (0.156)

γJump 0.798∗ ∗ ∗ 0.766∗ ∗ ∗ 0.716∗ ∗ ∗ 0.418 0.375 0.499∗ 0.381 1.136 0.147
(0.282) (0.283) (0.250) (0.331) (0.237) (0.288) (0.301) (0.947) (0.386)

log L 327.421 331.661 353.130 1508.10 1489.30 1552.00 120.600 114.250 122.270
p ‐ valGAS 0.010 0.070 0.020 0.000 0.000 0.000 0.330 0.310 0.780
p ‐ valGRAS 0.010 0.030 0.020 0.250 0.150 0.080 0.390 0.390 0.820

Notes: This table presents the estimated parameters from the GRAS model presented in Eq. (6), for the copula of three pairs of assets. The coefficients on realized
correlation is denoted γCTS and γJump. Estimates of γCTS or γJump that are significant at the 1%, 5%, and 10% levels are denoted with 3, 2 and 1 asterisks respectively.
The penultimate row of this table presents the p-value from a test that all coefficients on realized measures are equal to zero. The bottom row presents the p-value
from a test that γCTS = γJump, in which case the model simplifies to the baseline GRAS model.
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are non-nested, we use a two-sided test for this comparison. The Student's t copula nests the Normal copula, and we compare these
models via a simple (one-sided) Wald test on the estimated degrees of freedom parameter.16

The top panel of Table 6 reveals that the rotated Gumbel model generally out-performs the Normal model, across all three asset
pairs and all three models for dynamics, revealed through the positive t-statistics, however in no case is the difference significant.
The lower two panels of this table reveal the improved fit provided by the Student's t copula: it significantly beats the Normal copula
in eight out of nine comparisons, and significantly beats the rotated Gumbel in six out of nine comparisons. This finding confirms the
importance of allowing for joint fat tails in multivariate models of asset returns. It is apparent evidence against the importance of
allowing for asymmetric dependence (e.g., for dependence being higher during market downturns than market upturns), given
that the (symmetric) Student's t copula out-performs the (asymmetric) rotated Gumbel copula, however this interpretation is
muddied by the additional flexibility the Student's t copula attains from it having two free parameters compared with just one for
the Gumbel copula.

4. Out-of-sample forecast comparisons

The previous section showed that high frequency data significantly improves the fit of dynamic copula models for daily asset
returns. However, there remains the concern that improved in-sample fit does not guarantee an improvement in out-of-sample
forecast performance. In this section we investigate whether high frequency information also leads to gains in out-of-sample forecast
performance. We do so using two applications. Firstly, we consider a density forecasting application, and evaluate performance using
ametric related to the Kullback–Leibler information criterion (KLIC). Secondly, we consider an illustrative portfolio decision problem,
and evaluate the competing models using the realized utility from a portfolio optimized using the predictive density.

4.1. Multivariate density forecasting

We use the approach of Diks et al. (2012), which provides a means of comparing density forecasts over the entire support, as well
as in particular regions of the support. Motivated by its connection with the Kullback–Leibler information criterion (KLIC), both of
these approaches are based on the out-of-sample log-likelihood of the density forecast. Note that since all of our multivariate models
use the same marginal distribution models (means, variances, and standardized residual densities), comparing the full multivariate
density forecasts from two models reduces to simply comparing the copula density forecasts.

We use the period from January 2000 to December 2005 as the in-sample period, and January 2006 to December 2010 as our out-
of-sample period. Given the computational complexity of the models estimated here, we use a standard rolling window estimation
scheme for the marginal distribution parameters, but a fixed window estimation scheme for the copula parameters.17 In all cases,
16 Specifically,we test that the estimated inverse degree of freedomparameter is equal to zero. This is on the boundary of theparameter space,whichmeans that the t-
statistic will not be standard Normally distributed, however the right-tail critical values, which are the ones we require, remain applicable.
17 The asymptotic testing framework of Giacomini andWhite (2006),which is usedbyDiks et al. (2012) to implement their test, can handle both of these schemes and
so this raises no theoretical issues. The out-of-sample fit of the copulamodels is presumably worse using a fixedwindow scheme than using a rolling window scheme,
but should not affect our main conclusions on relative performance.



Table 6
Comparison of copula functional forms.

Microsoft Exxon Celgene

and Apple and Chevron and J&J

Constant 0.698 0.545 0.591

Normal vs. R. Gumbel GAS 0.557 0.166 0.248
GRAS 0.350 −0.469 −1.478
Constant 4.928 7.216 2.249

Normal vs. Student's t GAS 5.981 5.565 1.682
GRAS 4.489 5.690 1.143
Constant 1.732 3.260 0.312

R. Gumbel vs. Student's t GAS 2.174 3.388 0.553
GRAS 2.311 3.767 2.023

Notes: This table presents t-statistics for the comparison of models of copula functional form, for a given choice of model for the copula dynamics (constant, GAS or
GRAS). The top and bottom comparisons involve non-nested copula models, and we employ a two-sided Rivers and Vuong (2002) test. The middle panel involves a
nested comparison, and we use a standard, one-sided, Wald test, based on the bootstrap standard errors presented in Table 2. In all cases a positive t-statistic indicates
that the second model listed in the panel label is preferred to the first model.

131I. De Lira Salvatierra, A.J. Patton / Journal of Empirical Finance 30 (2015) 120–135
the density forecast for day t is based only on information up until day t− 1. Diks et al. (2012) propose a conditional likelihood test to
compare density forecasts, where the performance of model A in the region [0, q] × [0, q] is based on:
v

18 Dik
discusse
SA
t utð Þ ¼ logcA

t utð Þ−logCA
t qð Þ

� �
1 ut ≤qf g ð13Þ
where q=[q, q]' andut=[u1t, u2t]'. Note thatwhen q=1 this expression simplifies to the log copula density, logctA(ut), and for q b 1 it
can be interpreted as the log-likelihood of themodel conditional on the observation lying in the region [0, q] × [0, q]. The null hypoth-
esis of equal predictive accuracy of models A and B in the region [0, q] × [0, q] is:
H0 : E SA
t utð Þ−SB

t utð Þ
h i

¼ 0

s: H1 : E SAt utð Þ−SBt utð Þ
h i

≠0
ð14Þ
Diks et al. (2012) propose testing this hypothesis based on a test on the average difference in the conditional likelihoods. Let:
dt ¼ SAt utð Þ−SBt utð Þ ð15Þ
then a test that E[dt] = 0 can be used to test the null hypothesis above. This seriesmay be serially correlated and heteroskedastic, and
so robust standard errors are required.18

We consider five regions for analysis of the copula density forecasts: the joint 1%, 5% 10% and 25% lower tails, as well as the entire
support. The results of these tests are presented in Table 7. The right-most column of this table presents the results for the entire
support, and shows that across all three pairs of assets, and across three copula models (Normal, rotated Gumbel, and Student's t)
our proposed GRAS model significantly beats the constant copula model in all but one case. This shows that the dynamics captured
by our copula model based on high frequency data are useful out-of-sample: the predictive copula densities from the GRAS model
provide a better out-of-sample fit than those from simple, constant parameter copula models. This conclusion holds true across all
joint lower tail regions but one, providing strong support for our model.

A tougher hurdle for our GRASmodel is to significantly out-perform the GASmodel. The GASmodel provides a parsimonious way
of capturing dynamics in the conditional copula, and our proposed GRAS model will only out-perform it if the high frequency infor-
mationwe exploit (realized correlation) has additional explanatory power out-of-sample.When looking at the entire support we find
that the GRAS beats the GAS model (the t-statistics are positive in 8 out of 9 comparisons), but the out-performance is generally not
statistically significant.Whenweuse themethod ofDiks et al. (2012) to zoom in on the joint tails of the support, wefind that theGRAS
model uniformly out-performs the GAS model, and in a majority of comparisons the difference is statistically significant. Thus it
appears that high frequency information is particularly useful for dynamic copula models when interest is focused on the tails of
the distribution.
s et al. (2012) also propose a “censored likelihood” test as an alternative to the conditional likelihood test. The results from that test are very similar to those
d here, and are presented in the supplemental appendix.



Table 7
Out-of-sample comparison of density forecasts.

Lower tail region probability

0.01 0.05 0.10 0.25 1.00

Microsoft and Apple
GRAS vs. Const Normal 1.338∗ 2.126∗ ∗ 3.232∗ ∗ ∗ 3.142∗ ∗ ∗ 1.536∗

R. Gumbel 1.291∗ 1.799∗ ∗ 2.974∗ ∗ ∗ 3.279∗ ∗ ∗ 2.000∗ ∗

Student's t 1.724∗ ∗ 1.923∗ ∗ 3.242∗ ∗ ∗ 3.149∗ ∗ ∗ 2.014∗ ∗

GRAS vs. GAS Normal 1.100 1.471∗ 2.790∗ ∗ ∗ 3.164∗ ∗ ∗ 1.192
R. Gumbel 0.855 0.980 2.086∗ ∗ 2.472∗ ∗ ∗ 0.997
Student's t 1.703∗ ∗ 0.948 2.303∗ ∗ 2.601∗ ∗ ∗ 0.932

Exxon and Chevron
GRAS vs. Const Normal 2.649∗ ∗ ∗ 6.363∗ ∗ ∗ 7.845∗ ∗ ∗ 8.857∗ ∗ ∗ 2.770∗ ∗ ∗

R. Gumbel 0.871 3.819∗ ∗ ∗ 3.523∗ ∗ ∗ 3.678∗ ∗ ∗ 3.530∗ ∗ ∗

Student's t 2.598∗ ∗ ∗ 6.174∗ ∗ ∗ 7.387∗ ∗ ∗ 8.934∗ ∗ ∗ 3.236∗ ∗ ∗

GRAS vs. GAS Normal 2.624∗ ∗ ∗ 6.120∗ ∗ ∗ 7.312∗ ∗ ∗ 7.725∗ ∗ ∗ 1.081
R. Gumbel 0.132 2.546∗ ∗ ∗ 1.538∗ 1.143 1.475∗

Student's t 2.297∗ ∗ 5.562∗ ∗ ∗ 6.240∗ ∗ ∗ 7.033∗ ∗ ∗ 1.618∗

Celgene and J&J
GRAS vs. Const Normal 1.328∗ 3.130∗ ∗ ∗ 4.520∗ ∗ ∗ 8.260∗ ∗ ∗ 3.100∗ ∗ ∗

R. Gumbel 1.287∗ 2.982∗ ∗ ∗ 4.191∗ ∗ ∗ 7.302∗ ∗ ∗ 1.240
Student's t 1.300∗ 3.123∗ ∗ ∗ 4.524∗ ∗ ∗ 8.308∗ ∗ ∗ 2.586∗ ∗ ∗

GRAS vs. GAS Normal 1.384∗ 2.894∗ ∗ ∗ 3.999∗ ∗ ∗ 7.153∗ ∗ ∗ 0.623
R. Gumbel 1.397∗ 2.912∗ ∗ ∗ 4.107∗ ∗ ∗ 6.584∗ ∗ ∗ −0.375
Student's t 1.405∗ 2.912∗ ∗ ∗ 4.084∗ ∗ ∗ 7.203∗ ∗ ∗ 0.138

Notes: This table presents t-statistics from pair-wise comparisons of the out-of-sample likelihoods of competing density forecasts. We consider five regions of support
over which to compare the competing density forecasts: the joint lower 0.01, 0.05, 0.10 and 0.25 tails, as well as the entire support. For a given copula specification
(Normal, rotated Gumbel and Student's t) we compare specifications of the dynamics: Constant versus GRAS and GAS versus GRAS. Test statistics that are significant
at the 1%, 5%, and 10% levels are denoted with 3, 2 and 1 asterisks respectively.
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4.2. A portfolio decision problem

Previouswork has documented evidence of two types of asymmetries in the joint distribution of stock returns, namely skewness in
the distribution of individual returns, and asymmetry in the dependence between asset returns.19With thismotivation,we use a port-
folio application to gain insights into the economic significance of using high frequency data in dynamic copula models.We approach
the portfolio allocation problem following the methodology proposed in Patton (2004) and Jondeau and Rockinger (2012). The latter
paper proposes approximating a CRRA utility function using a fourth-order polynomial for tractability:
19 See
20 The
wealth
21 Tha
Et U Wtþ1
� �� � ¼ φ0 þ φ1m

1ð Þ
tþ1 þ φ2m

2ð Þ
tþ1 þ φ3m

3ð Þ
tþ1 þ φ4m

4ð Þ
tþ1 ð16Þ
with φk = (k !)−1∂kU(W)/dWk|W = 1, which are known functions of k and the degree of risk aversion, andmt + 1
( j) = Et[Wt + 1

j ] is the
uncentered jthmoment, withWt + 1 the value of the portfolio at time t+1.20We consider five different levels of relative risk aversion,
RRA= 1, 3, 7, 10 and 20, similar to the range considered in Campbell and Viceira (1999) and At-Sahalia and Brandt (2001). Optimal
portfolio weights are found by maximizing the expected utility under the predictive density:
ω�
tþ1 ¼ argmax

ω∈ϒ
Et U 1þω

0
Ytþ1

� �h i

¼ argmax
ω∈ϒ

Z Z
U 1þω1y1 þω2y2ð Þ f̂ 1;tþ1 y1ð Þ f̂ 2;tþ1 y2ð Þĉtþ1 F̂1;tþ1 y1ð Þ; F̂2;tþ1 y2ð Þ

� �
dy1dy2

ð17Þ
where ϒ is a compact subset of ℝ2 for the unconstrained investor, and the two-dimensional unit simplex21 for the short-sales
constrained investor. For simplicity we take the return on the risk-free asset to be zero. The time series of estimated optimal weights
for the intermediate level of risk aversion are presented in Figure 3.

We use the same in-sample and out-of-sample periods as in the previous section, but in this section we evaluate the competing
models using the average utility of the portfolio returns formed using weights optimized according to the model. To make the
units used in this performance study interpretable, we convert the average utility into a “management fee,”which is thefixed amount,
Erb et al. (1994), Longin and Solnik (2001), Ang and Chen (2002), and Patton (2004) for example.
optimal portfolioweights under a CRRAutility function do not depend on the level of initial wealth, and sowe set the initial wealth to 1. Thus the end-of-period
is equal to the gross return on the portfolio.
t is, for short-sales constrained investors, ϒ = {(ω1, ω2) ∈ [0, 1]2 : ω1 + ω2 ≤ 1}.



Table 8
Management fees and realized portfolio return performance.

Relative risk aversion

1 3 7 10 20

Microsoft and Apple
GRAS vs. Const Normal −1.195 −0.235 −0.486 −0.305 −0.193

R. Gumbel −5.868 −0.010 −0.061 0.021 0.122
Student's t 43.003∗ 10.286∗ ∗ 3.984∗ ∗ 2.781∗ ∗ 1.327∗ ∗

GRAS vs. GAS Normal −8.879 −2.402 −1.434 −1.039 −0.547
R. Gumbel −16.682∗ −4.594 −1.700 −1.156 −0.465
Student's t −11.907 −6.609∗ ∗ −3.206∗ ∗ ∗ −2.295∗ ∗ ∗ −1.207∗ ∗ ∗

Exxon and Chevron
GRAS vs. Const Normal −3.291 −0.451 −0.325 −0.178 −0.118

R. Gumbel 6.752 0.688 0.350 0.279 0.109
Student's t 8.969 1.910 0.776 0.505 0.205

GRAS vs. GAS Normal −1.936 0.118 −0.368 −0.179 −0.081
R. Gumbel 1.472 −1.176 −0.057 −0.057 0.010
Student's t 17.922 4.923 1.732 1.237 0.552

Celgene and J&J
GRAS vs. Const Normal 0.626 1.395 0.385 0.187 0.113

R. Gumbel −9.207 −3.549 −1.477 −1.109 −0.534
Student's t 26.663∗ ∗ ∗ 8.015∗ ∗ ∗ 3.362∗ ∗ ∗ 2.316∗ ∗ ∗ 1.178∗ ∗ ∗

GRAS vs. GAS Normal 1.008 0.962 0.271 0.169 0.100
R. Gumbel 0.710 −0.237 −0.049 −0.077 −0.030
Student's t 12.026∗ 3.907∗ 1.496∗ 1.123∗ 0.549∗

Notes: This table presents the “management fee,” in annualized percent returns, that an investor with risk aversion given in the column titles would bewilling to pay to
switch from the Constant or GASmodel to the GRASmodel. A block bootstrap is used to ascertain the significance of these fees, and estimates that are significant at the
1%, 5%, and 10% levels are denoted with 3, 2 and 1 asterisks respectively.
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ϑ, that could be charged (or paid, if needed) each period to an investor to switch from model A to model B. Alternatively, it can be
interpreted as the amount that could be deducted from the daily return on portfolio B over the out-of-sample period and leave the
investor indifferent between portfolio A and portfolio B. The management fee is the solution to the following equation:
22 The
clusions
tativem
optimiz
23 We
bootstra
24 In a
vestors
1
P

XRþP

t¼Rþ1

U 1þω
�0
A;tþ1Ytþ1

� �
¼ 1

P

XRþP

t¼Rþ1

U 1þω
�0
B;tþ1Ytþ1−ϑ

� �
ð18Þ
where R is the length of the in-sample period and P is the length of the out-of-sample period.
Table 8 presents themanagement fees estimates, and for all comparisonswe consider switching froma smallermodel (Constant or

GAS) to the largermodel (GRAS).22,23 Consider first the comparison of the constant copulamodel and theGRASmodel. Across all asset
pairs, copula shape specifications, and levels of risk aversion,we see that the GRASmodel is generally preferred: themanagement fees
are positive in a majority of cases, and are significantly positive for two of the asset pairs (Microsoft–Apple and Celgene–J&J) when
combined with the Student's t copula. For example, for the Microsoft–Apple pair, the annualized management fees that could be
charged to switch from a constant t copula to a GRAS t copula range from 43.0% (RRA = 1) to 1.3% (RRA = 20), and is 4.0% for the
intermediate level of risk aversion.24 In no case is the management fee negative and significant. This is strong out-of-sample support
for our GRAS model, at least against the simple benchmark of a constant copula.

As in the previous section, a tougher benchmark for the GRAS model is the GAS specification. In this case the results are more
mixed: for Celgene–J&J we find that the GRAS copula is preferred to the GAS copula, particularly when combined with the Student's
t shape specification. For Exxon–Chevron, the GRAS model is generally preferred, with the performance fees ranging from −1.9% to
+17.9%, but these are not statistically significant in any case, indicating that the GAS and GRAS models are equally good out-of-
sample, according to this metric. For the Microsoft–Apple pair the GRAS model is beaten by the GAS model, with the performance
fees being negative and often significant. Thus the out-of-sample gains from a GRAS model relative to a GAS model from a portfolio
decision perspective are somewhat sensitive to the choice of assets and the copula shape specification: in some cases positive and
significant, in others negative and significant, and in yet others not different from zero. Further work on the determinants of this
variability is clearly desirable, as is a more comprehensive and higher-dimension portfolio decision application.
supplemental appendix presents some summary statistics on the portfolio returns, as well as results for the short-sales constrained investor, which yields con-
that are consistent with those for the unconstrained investor. The supplemental appendix also presents plots the optimal portfolio weights for some represen-
odels. For lower levels of risk aversion, these plots reveal substantial portfolio turnover, and in practice itmay be desirable to impose turnover constraints on the
ation problem. We do not attempt this here.
use a stationary bootstrap with average block length of 60 days to determine the significance of the “management fees.” Note that the quantities being
pped here are asset returns, not cumulative wealth, and so issues of non-stationarity or integrated processes do not arise.
lmost all cases, we find that the absolute value of the management fee decreases with the level of risk aversion. This reflects the fact that more risk averse in-
shrink their weights on risky assets towards zero, making the differences in portfolio weights from different models smaller.
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5. Conclusion

This paper proposes a new class of dynamic copula models for daily asset returns that exploits information from high frequency
(intra-daily) data. This class of models bridges the gap between the existing time-varying copula models, which have almost exclu-
sively used lower frequency data, and models from the volatility and correlation forecasting literature, which have successfully
used high frequency data. We accomplish this by augmenting the generalized autoregressive score (GAS) model of Creal et al.
(2013) with high frequency measures, such as realized correlation, to obtain a “realized GAS,”(GRAS) model. While measures of de-
pendence based in high frequency data cannot generally be interpreted as unbiased or consistent estimators of dependence and lower
frequencies, our approach builds on the intuition that by bettermeasuring the current degree of dependence, broadly defined,we can
build better forecasts of dependence in the future.

We employ equity return data on six U.S. firms over the period 2000 to 2010, and show that including high frequency information
in a dynamic model of daily equity return dependence leads to improvements in both goodness-of-fit and out-of-sample forecasts. In
sample, we find that the information in realized correlation leads to significant improvements across all assets and copula specifica-
tions considered, and we find some evidence that realized volatility, and a measure of correlation that is related to “co-jumps,”
improves our baselineGRASmodel evenmore for certain assets. Out of sample, we find that density forecasts based on ourGRAS spec-
ification out-perform forecasts based on models that ignore high frequency information, and this out-performance is strongly signif-
icant when attention is focused on the tail of the joint distribution. We also find some gains in out-of-sample portfolio construction
based on these density forecasts, though the gains vary across the assets under consideration.

While this paper provides some initial light on the value of high frequency information for lower frequency copulamodeling, some
important questions remain open. Firstly, it would be interesting to extend the analysis in this paper to high dimension copulamodels,
along the lines of Christoffersen et al. (2012) and Oh and Patton (2013) for example. Estimates of large-dimension realized covariance
matrices have recently attracted attention, see Hautsch et al. (2012) for example, and these could prove useful in an extension of GRAS
models to high dimensions. Furthermore, extending and elaborating the portfolio decision application presented abovewould enable
a better understanding of the economic value of high frequency information for dynamic copula modeling. We leave these important
extensions for future research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jempfin.2014.11.008.
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