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This appendix contains additional details, discussion, and results. It is structured as follows: Section S.1

contains proofs of theorems in the main paper that are not included in the paper’s appendix. Sections S.2

and S.3 discuss the impact of the choice of kernel and bandwidth on the results for mode forecast rationality

testing in Section 2.3 of the main paper. Section S.4 presents a result showing that a convex combination

of functionals is generally not elicitable, as stated in Remark 3.1 of the main paper. Section S.5 presents

simulation results supplementing those presented in Section 4 of the main paper. Section S.6 presents tests of

rationality using a cluster covariance estimator. Section S.7 presents the results of tests of rationality in the

framework of Elliott et al. (2005) for the full set of stratifications considered in Section 5 of the main paper.

Section S.8 presents two additional empirical analyses, the first to the “Greenbook” forecasts produced by

the Board of Governors of the Federal Reserve, and the second to random walk forecasts of exchange rates.

S.1 Additional Proofs

Proof of Theorem 2.7. Let λ ∈ Rk, ||λ||2 = 1 be a fixed and deterministic vector. Then,
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We start by showing that the last line in (S.1.1) is oP (1). It holds that
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as ft(δTu) → ft(0) ≤ c a.s., and by applying a law of large numbers for mixing data as E
[
||ht||2r+δ

]
<∞.
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We further show that the penultimate line in (S.1.1) converges to zero in Lp (p-th mean) for some p > 1

small enough. By applying the von Bahr and Esseen (1965) inequality for MDA, we get
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For the first term, we get that
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above, and
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|K ′(u)|2du < ∞ by assumption. The second term converges by a similar argument as further

detailed in (S.1.28) in the proof of Lemma S.1.3. As Lp convergence for any p > 1 implies convergence in

probability, the result of the theorem follows.
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We show convergence in probability for the individual matrix components for the first term,
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Convergence of the remaining terms follows analogously by considering the terms component-wisely and by

applying similar arguments as in Lemma S.1.6.

Lemma S.1.1. Given Assumption 2.5 and the null hypothesis in (2.8), it holds that
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As lime→±∞K(e) = 0 and ft is bounded from above, the latter term is zero a.s. for all t ≤ T . By transfor-

mation of variables, it further holds that

get,T = T−1/2δ
1/2
T ht

∫
K

(
e

δT

)
f ′t(e) de = T−1/2δ

3/2
T ht

∫
K (u) f ′t(δTu) du. (S.1.12)

A Taylor expansion of f ′t(δTu) around zero is given by
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for some ζ ∈ [0, 1] and f ′t(0) = 0 holds under the null hypothesis specified in (2.8). Consequently,
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As
∫
uK (u) du = 0 by assumption (A6), the first term is zero for all T ∈ N. As supx f

′′′
t (x) ≤ c by

Assumption (A5) and
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1

2
T−1/2δ

7/2
T

T∑
t=1

ht

∫
u2K (u) f ′′′t (ζδTu) du ≤ 1

2
c2
(
Tδ7T

)1/2 1
T

T∑
t=1

ht
P→ 0, (S.1.16)

as Tδ7T → 0 for T → ∞ by Assumption (A7) and 1
T

∑T
t=1 ht

P→ E[ht] by a law of large numbers for α-mixing

sequences (White, 2001, Corollary 3.48). The result of the lemma follows.

Lemma S.1.2. Given Assumption 2.5, it holds that
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As δT → 0 when T → ∞ and as ΩT,Mode → ΩMode from Assumption (A4), we get
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For the second term in (S.1.17), inserting the equality in (S.1.12) yields
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as δ3T → 0 as T → ∞. The result of the lemma follows by combining (S.1.21) and (S.1.22).
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Proof. We define

h1,T :=

T∑
t=1

(
z2t,T − Et

[
z2t,T

])
and h2,T :=

T∑
t=1

Et

[
z2t,T

]
− ω2, (S.1.23)
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Applying a transformation of variables yields
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by Markov’s inequality. Employing the same steps as in the proof of Lemma S.1.3 following Equation (S.1.26)

and replacing the exponent “2p” by “2+δ” yields that
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The remaining first, second and fourth terms in (S.1.35) appear equivalently in σ2
T , which concludes the proof

of this lemma.

Lemma S.1.6. Given Assumption 2.5 and Assumption 3.2, for all λ ∈ Rk such that ||λ||2 = 1, it holds that
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T
P→ 0.

Proof. We apply the same factorization as in (S.1.35) (however without the expectation operator). By

applying a law of large numbers for mixing sequences (Corollary 3.48 in White (2001)), we obtain that

1

T

T∑
t=1

(
θ10

(
h⊤
t wMeanλ

)
εt

)2
− 1

T

T∑
t=1

E
[(
θ10

(
h⊤
t wMeanλ

)
εt

)2] P→ 0,

1

T

T∑
t=1

(
θ20

(
h⊤
t wMedλ

) (
1{εt>0} − 1{εt<0}

))2
− 1

T

T∑
t=1

E
[(
θ20

(
h⊤
t wMedλ

) (
1{εt>0} − 1{εt<0}

))2] P→ 0,

2

T

T∑
t=1

(
θ10θ20

(
h⊤
t wMeanλ

)(
h⊤
t wMedλ

)
εt
(
1{εt>0} − 1{εt<0}

))2
− 2

T

T∑
t=1

E
[(
θ10θ20

(
h⊤
t wMeanλ

)(
h⊤
t wMedλ

)
εt
(
1{εt>0} − 1{εt<0}

))2] P→ 0.

Furthermore, a slight modification of Lemma S.1.3 (multiplying with θ230
(
h⊤
t wModeλ

)2
instead of

(
h⊤
t λ
)2
)

yields that

1

T

T∑
t=1

θ230

(
h⊤
t wModeλ

)2
δ−1
T K ′

(
−εt
δT

)2

− 1

T

T∑
t=1

E
[
θ230

(
h⊤
t wModeλ

)2
ft(0)

∫
K ′ (u)

2
du

]
P→ 0. (S.1.38)

We now show that the remaining four terms vanish asymptotically (in probability). For the mixed

mean/mode term, we apply a similar addition of a zero (adding and subtracting Et[. . . ]) as in the proof of

Lemma S.1.3. For this, we first note that

2

T

T∑
t=1

θ10θ30

(
h⊤
t wMeanλ

)(
h⊤
t wModeλ

)
δ
−1/2
T Et

[
εtK

′
(
−εt
δT

)]
(S.1.39)

= − 2

T

T∑
t=1

θ10θ30

(
h⊤
t wMeanλ

)(
h⊤
t wModeλ

)
δ
3/2
T

∫
uK ′ (u) ft(δTu)du

P→ 0, (S.1.40)

as δ
3/2
T → 0. In the following, we further show that

2

T

T∑
t=1

θ10θ30

(
h⊤
t wMeanλ

)(
h⊤
t wModeλ

)
δ
−1/2
T

{
εtK

′
(
−εt
δT

)
− Et

[
εtK

′
(
−εt
δT

)]}
Lp−→ 0,

for any p ∈ (1, 2) small enough. As in the proof of Lemma S.1.3, we apply the von Bahr and Esseen (1965)
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inequality and Minkowski’s inequality in order to conclude that

E

[∣∣∣∣∣ 2T
T∑

t=1

θ10θ30

(
h⊤
t wMeanλ

)(
h⊤
t wModeλ

)
δ
−1/2
T

{
εtK

′
(
εt
δT

)
− Et

[
εtK

′
(
εt
δT

)]}∣∣∣∣∣
p]

≤ 2p+2

T p

T∑
t=1

{
E
[∣∣∣∣θ10θ30 (h⊤

t wMeanλ
)(

h⊤
t wModeλ

)
δ
−1/2
T εtK

′
(
εt
δT

)∣∣∣∣p]
+ E

[∣∣∣∣θ10θ30 (h⊤
t wMeanλ

)(
h⊤
t wModeλ

)
δ
−1/2
T Et

[
εtK

′
(
εt
δT

)]∣∣∣∣p]} ,
where the first term is bounded from above by

2p+2

T p

T∑
t=1

E
[∣∣∣θ10θ30 (h⊤

t wMeanλ
)(

h⊤
t wModeλ

)∣∣∣p δ−p/2
T

∫ ∣∣∣∣eK ′
(
e

δT

)∣∣∣∣p ft(e)de]

=2p+2δ
1+p/2
T T 1−p 1

T

T∑
t=1

E
[∣∣∣θ10θ30 (h⊤

t wMeanλ
)(

h⊤
t wModeλ

)∣∣∣p ∫ |uK ′ (u)|p ft(δTu)du
]
→ 0,

as δ
1+p/2
T → 0, T 1−p → 0 for any p > 1 and as the respective moments are bounded by assumption. Similar

arguments also yield that the second term converges to zero (compare to (S.1.28)). Applying the same line

of reasoning for the mixed median/mode terms shows that

2

T

T∑
t=1

θ20θ30

(
h⊤
t wMedλ

)(
h⊤
t wModeλ

)
δ
−1/2
T Et

[(
1{εt>0} − 1{εt<0}

)
K ′
(
−εt
δT

)]
P→ 0. (S.1.41)

For the fourth and last term, T−1
∑T

t=1

(
ut,T (θ0)

⊤λ
)2 P→ 0 and T−1

∑T
t=1

(
ut,T (θ0)

⊤λ
)(
ϕt,T (θ0)

⊤λ
) P→ 0 by

Assumption 3.2 (D), which concludes this proof.

Lemma S.1.7. Given Assumption 2.5 and Assumption 3.2, for all λ ∈ Rk such that ||λ||2 = 1, it holds that

max1≤t≤T

∣∣σ−1
T T−1/2ϕ∗t,T (θ0)

⊤λ
∣∣ P→ 0.

Proof. Let ζ > 0 and δ > 0 (sufficiently small such that E
[
||ht||2+δ

]
<∞ holds). Then, as in (S.1.34) in the

proof of Lemma S.1.4, we get that

P
(

max
1≤t≤T

∣∣σ−1
T T−1/2ϕ∗t,T (θ0)

⊤λ
∣∣ > ζ

)
≤ ζ−2−δσ−2−δ

T

T∑
t=1

E
[∣∣T−1/2ϕ∗t,T (θ0)

⊤λ
∣∣2+δ

]
, (S.1.42)

by Markov’s inequality. Furthermore, we get that

4−2−δ
T∑

t=1

E
[∣∣T−1/2ϕ∗t,T (θ0)

⊤λ
∣∣2+δ

]
≤

T∑
t=1

E
[∣∣∣T−1/2ut,T (θ0)

⊤λ
∣∣∣2+δ

]
(S.1.43)
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+ θ2+δ
10 T− δ

2
1

T

T∑
t=1

E
[∣∣∣h⊤

t wMeanλ
∣∣∣2+δ

|εt|2+δ

]
(S.1.44)

+ θ2+δ
20 T− δ

2
1

T

T∑
t=1

E
[∣∣∣h⊤

t wMedλ
∣∣∣2+δ ∣∣1{εt>0} − 1{εt<0}

∣∣2+δ
]

(S.1.45)

+ θ2+δ
30 T− δ

2
1

T

T∑
t=1

E

[∣∣∣h⊤
t wModeλ

∣∣∣2+δ

δ
− 2+δ

2

T

∣∣∣∣K ′
(
−εt
δT

)∣∣∣∣2+δ
]
. (S.1.46)

The first term converges to zero by Assumption 3.2. The second and third term converge to zero as T− δ
2 → 0

and the respective moments are bounded by assumption. For the last term, we obtain convergence equiva-

lently to the proof of Lemma S.1.4,

θ2+δ
30 T− δ

2
1

T

T∑
t=1

E

[∣∣∣h⊤
t wModeλ

∣∣∣2+δ

δ
− 2+δ

2

T

∣∣∣∣K ′
(
−εt
δT

)∣∣∣∣2+δ
]

(S.1.47)

≤ θ2+δ
30 (TδT )

− δ
2
1

T

T∑
t=1

E
[∣∣∣h⊤

t wModeλ
∣∣∣2+δ

∫
|K ′ (u)|2+δ

ft(δTu)du

]
, (S.1.48)

that converges to zero as (TδT )
− δ

2 → 0 and the respective moments are bounded by assumption.

Lemma S.1.8. If Xt is the mode of Ft for all t ∈ N, the choice of ut,T (θ0) in (3.6) satisfies Assump-

tion 3.2 (D).

Proof. If Xt is the mode of Ft, we set θ0 = (0, 0, 1) and thus, ϕt,T (θ0) = −ωModeδ
−1/2
T K ′(εt/δT )ht and we

get ϕt,T (θ0) = ϕ∗t,T (θ0) + ut,T (θ0) by setting

T−1/2ϕ∗t,T (θ0) = ωMode g
∗
t,T and T−1/2ut,T (θ0) = ωMode g

e
t,T ,

as in the proof of Theorem 2.6. Thus, T−1/2ϕ∗t,T (θ0) = ωMode g
∗
t,T is a MDA satisfying condition (a).

For the remaining conditions (b) and (c) of Assumption 3.2 (D), as in the proof of Lemma S.1.1, we get

get,T =
1

2
T−1/2δ

7/2
T ht

∫
u2K (u) f ′′′t (ζδTu) du.

As δT → 0 and
∫
u2K (u) f ′′′t (ζδTu) is bounded as argued in the proof of Lemma S.1.1, we get

T−1
T∑

t=1

||ut,T (θ0)||2 =

T∑
t=1

||ωMode g
e
t,T ||2 = δ7T

ω2
Mode

4

1

T

T∑
t=1

∣∣∣∣∣∣∣∣ht

∫
u2K (u) f ′′′t (ζδTu) du

∣∣∣∣∣∣∣∣2 P→ 0.
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Furthermore, by using similar arguments as above, we get that

T−1
T∑

t=1

ut,T (θ0)ϕt,T (θ0)
⊤ = −ω2

Mode

T∑
t=1

get,T · (TδT )−1/2K ′(εt/δT )h
⊤
t

= −ω2
Mode

T∑
t=1

(
1

2
T−1/2δ

7/2
T ht

∫
u2K (u) f ′′′t (ζδTu) du

)
(TδT )

−1/2K ′(εt/δT )h
⊤
t

= δ3T
ω2
Mode

2

1

T

T∑
t=1

K ′(εt/δT )

∫
u2K (u) f ′′′t (ζδTu) du hth

⊤
t

P→ 0.

The condition T−1
∑T

t=1 E
[
ut,T (θ0)ϕt,T (θ0)

⊤] → 0 follows by exactly the same arguments, but working

under expectation. Eventually, we get that

T∑
t=1

E
[
||T−1/2ut,T (θ0)||2+δ

]
= T−δ/2δ

(14+7δ)/2
T

ω2+δ
Mode

22+δ

1

T

T∑
t=1

E

[∣∣∣∣∣∣∣∣ht

∫
u2K (u) f ′′′t (ζδTu) du

∣∣∣∣∣∣∣∣2+δ
]
→ 0,

as T−δ/2δ
(14+7δ)/2
T → 0 and the remaining term is bounded, which concludes the proof.

S.2 Kernel Choice

The asymptotic results presented in Section 2.3 rely on the chosen kernel K satisfying Assumption (A6).

Besides the normalization
∫
K(u)du = 1 and boundedness assumptions, we impose the first-order kernel

condition
∫
uK(u)du = 0 (and

∫
u2K(u)du > 0 follows from the non-negativity of K). As discussed in

Li and Racine (2006), higher-order kernels allow one to apply a Taylor expansion of higher order and can

thereby obtain a faster rate of convergence, which could in theory be made arbitrarily close to
√
T , at the

cost of stronger smoothness assumptions on the underlying density function. However, in our application of

kernel functions to the generalized modal midpoint in Definition 2.3, we need to ensure that the limit of this

quantity is well-defined and unique, and that the identification is strict. For this, we assume in Theorem 2.4

that the kernel function is log-concave which is automatically violated for higher-order kernels. Consequently,

we do not consider higher-order kernels in this work.

It is also well-known in the literature on nonparametric statistics that kernels with bounded support

can be more efficient (Li and Racine, 2006). However, note that the kernel choice enters the asymptotic

variance of nonparametric density estimation through the quantity
∫
K(u)2du, while the covariance ΩMode

in Theorem 2.6 depends upon
∫
K ′(u)2du, revealing that the efficiency of our mode rationality tests depends

upon a different quantity. Figure S.1 illustrates that the test power does not increase by employing a biweight

kernel, which has bounded support, and is usually found to be relatively efficient in nonparametric estimation.
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Strict identifiability of the generalized modal midpoint—and hence, asymptotic identifiability of the mode—

only holds for kernel functions with unbounded support, which is satisfied by the Gaussian kernel, but not

so for the biweight kernel.

S.3 Bandwidth Choice

We follow the rule-of-thumb proposed by Kemp and Silva (2012) and Kemp et al. (2020) in setting the

bandwidth parameter, with one modification to deal with skewness. Specifically, as discussed in Section 2.3,

in order to obtain an optimal convergence for our nonparametric test (for first-order kernels), we choose

δT ≈ T−1/7. Following Kemp and Silva (2012), we choose δT proportional to T−0.143, which is almost T−1/7:

δT = k1 · k2 · T−0.143. (S.3.1)

As in Kemp and Silva (2012) and Kemp et al. (2020), we choose k1 proportional to the median absolute

deviation of the forecast error, a robust measure for the variation in the data,

k1 = 2.4× M̂edt
(∣∣(Xt − Yt+1)− M̂eds(Xs − Ys+1)

∣∣). (S.3.2)

The choice of the bandwidth parameter should be proportional to the scale of the underlying data such

that test results are robust to linear re-scaling. Using preliminary simulations, we found better finite-sample

results when this measure is scaled by 2.4.

Following early simulation analyses, we introduce a second constant, k2, to adjust the bandwidth for the

skewness of the forecast error, measured by the absolute value of Pearson’s second skewness coefficient, γ̂.

k2 = exp(−3 |γ̂|), where γ̂ =
3
(
1
T

∑
t(Xt − Yt+1)− M̂edt[Xt − Yt+1]

)
σ̂(Xt − Yt+1)

. (S.3.3)

For symmetric distributions, k2 = 1 and this term vanishes from the bandwidth formula. For such

distributions, and assuming a symmetric kernel as in our empirical work, the generalized modal midpoint

equals the mode and employing a larger bandwidth increases efficiency. As skewness increases in magnitude

the distance between the mode and the generalized modal midpoint increases for a fixed bandwidth, and

to ensure satisfactory finite-sample properties a smaller bandwidth is needed. Our simple expression for k2

achieves this.

S.12



S.4 Convex combination of functional values

Here, we illustrate that a convex combination of functionals is generally neither elicitable nor identifiable.

This result shows that—as stated in Remark 3.1—testing forecast rationality directly for convex functional

combinations is impossible. For this, we adapt the simplified notation of Section 2.2.

Proposition S.4.1. Let P be a convex class of distributions and let Γβ(P ) = βΓl(P )+(1−β)Γn(P ), β ∈ [0, 1]

be the convex combination of a linear functional Γl : P → R and a non-linear functional Γn : P → R, which

are both continuous (in the distribution P ) and translation equivariant, i.e., if P ∈ P, then for c ∈ R the

shifted P + c ∈ P and Γl(P + c) = Γl(P ) + c and Γn(P + c) = Γn(P ) + c. Then, the functional Γβ is neither

elicitable nor identifiable.

Proof of Proposition S.4.1. Theorem 6 of Gneiting (2011) and Proposition 3.11 of Fissler and Hoga (2023)

show that convex level sets, i.e.,

for P1, P2 ∈ P with Γβ(P1) = Γβ(P2) =⇒ Γβ(αP1 + (1− α)P2) = Γβ(P1), (S.4.1)

for α ∈ (0, 1) are a necessary condition for elicitability and identifiability of a functional. We show that the

functional Γβ does not have convex level sets.

As Γn is not linear, there exists α ∈ (0, 1), and P1, P2 ∈ P such that

Γn(αP1 + (1− α)P2) ̸= αΓn(P1) + (1− α)Γn(P2).

Define P ′
2 = P2 − Γβ(P2) + Γβ(P1) such that Γβ(P

′
2) = Γβ(P1) and

Γn(αP1 + (1− α)P ′
2) ̸= αΓn(P1) + (1− α)Γn(P ′

2)

as Γn(P + c) = Γn(P ) + c. It follows that

Γβ(αP1 + (1− α)P ′
2) = βΓl(αP1 + (1− α)P ′

2) + (1− β)Γn(αP1 + (1− α)P ′
2)

̸= βαΓl(P1) + β(1− α)Γl(P ′
2) + (1− β)αΓn(P1) + (1− β)(1− α)Γn(P ′

2)

= αΓβ(P1) + (1− α)Γβ(P
′
2)

= Γβ(P1)

and hence Γβ does not have convex level sets.
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As functionals are linear if and only if they are expectations (Abernethy and Frongillo, 2012), the mean is

linear and the median is non-linear for classes P sufficiently rich enough such that it contains distributions for

which the median does not equal the mean (i.e., asymmetric distributions). Hence, Proposition S.4.1 shows

that a convex combination of the mean and median is generally neither elicitable nor identifiable. Eliciting a

convex combination that may further include the mode (which is itself only asymptotically elicitable) is only

possible in the unusual case where a convex (sub-)combination of the nonlinear median and mode functionals

becomes linear, an outcome that does not generally hold.

Fortunately, testing rationality for functionals elicited through a convex combination of loss functions is

feasible and its interpretability is supported by the following result that convexity of the combination weights

is preserved when moving from a functional elicited by a convex combination of loss (identification) functions

to a convex combination of functional values.

The loss functions LMean, LMed and LMode,δ = δ3/2LK
δ are defined just before equation (3.1) and the

identification functions VMean, VMed and VMode,δ = δ3/2V K
δ at equations (2.2), (2.4) and (2.7). We use the

scaling by δ3/2 for the asymptotic mode loss and identification functions to be consistent with Section 3.

Proposition S.4.2. Let P be some class of distributions such that the mean, µ, the median, m, and the

generalized modal midpoint with parameter δ, ΓK
δ , exist and are elicited by their loss functions LMean, LMed,

and LMode,δ. Let x be the functional defined by

x(P ) = argmin
x̃∈R

EY∼P

[
θ⊤0

(
LMean(x̃, Y ), LMed(x̃, Y ), LMode,δ(x̃, Y )

)⊤]
(S.4.2)

for some θ0 ∈ Θ. Then, for every P ∈ P there exists some β0 ∈ Θ, such that x(P ) = β⊤
0

(
µ(P ),m(P ),ΓK

δ (P )
)⊤

.

Proof of Proposition S.4.2. Let P ∈ P, where we assume without loss of generality that the three functionals

are not all equal. For notational convenience we drop P when denoting functional values, e.g., we write µ

instead of µ(P ). For the elicited forecast x, it holds that

V (x) := θ⊤0

(
V Mean(x, P ), V Med(x, P ), V Mode,δ(x, P )

)⊤
= 0. (S.4.3)

We define L := min(µ,m,ΓK
δ ) and U := max(µ,m,ΓK

δ ) as the lower and upper functional values where

it holds that L < U . Further let V̄L(x, P ) and V̄U (x, P ) denote the corresponding expected identification

functions for the distribution P . Suppose that x < L. Then, it must hold that V (x) > 0 as all three

expected identification functions have the same sign as they are oriented in the sense of Steinwart et al.

(2014). Similarly, if x > U , it must hold that V (x) < 0. Hence, we can conclude that x ∈ [L,U ], which
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implies that there exists ζ ∈ [0, 1] such that x = ζL + (1 − ζ)U . Thus, x can be constructed as a convex

combination of the functional values, i.e., there exists a β0 ∈ Θ such that x = β⊤
0

(
µ,m,ΓK

δ

)⊤
.

S.5 Additional Plots and Tables

Table S.1: Empirical size of the mode rationality test: 1% significance level

Instrument set 1 Instrument set 2 Instrument set 3

Skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5 0 0.1 0.25 0.5

Sample size
Panel A: Homoskedastic iid data

100 0.9 1.1 1.2 2.4 1.0 1.2 1.3 1.9 1.2 1.2 1.2 1.8
500 1.0 1.2 2.0 2.8 1.0 1.2 1.6 2.2 1.0 1.2 1.7 1.8
2000 1.2 1.5 2.2 1.9 1.0 1.3 1.6 1.5 0.9 1.2 1.6 1.3
5000 0.9 1.6 1.8 1.4 1.0 1.2 1.7 1.3 1.1 1.0 1.5 1.2

Panel B: Heteroskedastic data

100 1.0 1.1 1.5 2.6 1.2 1.0 1.4 2.3 1.3 1.1 1.2 2.0
500 1.4 1.2 2.3 2.2 1.1 1.1 1.9 1.8 1.0 1.2 1.6 1.7
2000 1.0 1.6 2.5 1.8 1.1 1.4 1.9 1.6 1.0 1.3 1.8 1.4
5000 1.0 1.6 2.7 1.4 0.9 1.3 2.0 1.2 1.0 1.1 1.7 1.2

Panel C: Autoregressive data

100 0.9 0.8 1.3 2.6 1.2 0.8 1.1 1.7 1.4 1.1 1.1 1.6
500 1.1 1.2 2.0 3.1 1.1 1.2 1.5 2.4 1.1 1.1 1.4 2.1
2000 1.1 1.2 2.2 1.8 1.2 1.1 1.8 1.5 1.0 1.1 1.6 1.4
5000 1.0 1.5 1.7 1.6 1.0 1.5 1.6 1.2 1.1 1.4 1.6 1.4

Panel D: AR-GARCH data

100 0.8 0.8 1.1 2.6 0.9 1.1 1.1 2.0 1.0 1.1 1.2 1.9
500 1.0 1.4 2.1 2.8 1.2 1.3 1.6 2.4 1.1 1.2 1.5 2.2
2000 1.0 1.4 2.3 1.8 1.0 1.1 1.8 1.4 0.9 1.2 1.7 1.3
5000 1.1 1.6 2.0 1.5 1.0 1.4 1.7 1.3 0.9 1.2 1.5 1.1

Notes: This table presents the empirical size of the mode rationality test for a Gaussian kernel,
varying sample sizes, varying levels of skewness in the residual distribution and different instru-
ment choices for a nominal significance level of 1%.
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Table S.2: Empirical size of the mode rationality test: 10% significance level

Instrument set 1 Instrument set 2 Instrument set 3

Skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5 0 0.1 0.25 0.5

Sample size
Panel A: Homoskedastic iid data

100 9.5 9.8 11.3 15.3 10.4 11.0 11.4 14.7 10.5 10.9 12.2 14.1
500 10.9 12.0 14.3 14.7 10.4 10.9 13.3 13.8 10.8 10.9 13.2 13.2
2000 11.1 12.6 14.7 12.7 10.6 11.8 13.2 12.5 10.3 11.7 12.8 12.0
5000 10.2 11.4 12.8 11.6 10.3 11.0 11.9 11.2 10.0 10.8 11.9 10.6

Panel B: Heteroskedastic data

100 10.0 10.4 12.1 15.7 10.6 10.6 11.9 14.8 11.1 10.9 11.9 14.2
500 11.4 11.6 14.4 14.8 11.5 11.1 13.6 13.1 10.9 11.1 13.4 12.5
2000 10.1 12.4 15.1 13.0 10.3 12.1 13.7 11.6 10.2 11.7 12.9 11.5
5000 10.3 13.0 15.4 12.0 10.1 11.9 13.7 11.8 10.1 11.4 12.8 11.1

Panel C: Autoregressive data

100 9.6 10.2 11.4 14.7 10.8 10.6 11.5 13.6 11.3 10.9 11.6 13.2
500 11.2 12.0 14.2 15.1 10.7 11.2 13.1 14.1 10.8 10.9 12.5 13.7
2000 10.5 12.3 13.9 12.2 10.4 11.1 12.4 11.7 10.3 11.3 12.2 11.6
5000 10.2 12.1 13.3 11.9 10.6 11.8 12.0 11.6 10.4 11.2 11.9 11.1

Panel D: AR-GARCH data

100 9.6 9.7 11.1 16.6 10.2 10.5 11.4 15.2 10.7 10.6 11.8 14.8
500 11.2 12.2 14.6 15.3 11.1 11.6 13.7 14.5 11.2 10.9 13.0 13.9
2000 10.5 12.2 14.0 12.3 10.3 11.1 13.0 11.8 10.0 10.7 12.4 11.4
5000 10.0 12.2 13.9 12.0 10.5 11.4 12.5 11.5 10.3 11.3 12.0 11.2

Notes: This table presents the empirical size of the mode rationality test for a Gaussian kernel, varying
sample sizes, varying levels of skewness in the residual distribution and different instrument choices for
a nominal significance level of 10%.
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Table S.3: Empirical coverage of the confidence sets for central tendency:
Cross-sectional data

Symmetric data Skewed data

Centrality measure θMean θMed θMode 100 500 2000 5000 100 500 2000 5000

Panel A: Homoskedastic iid data

Mean 1.00 0.00 0.00 89.3 90.0 89.8 89.2 89.4 90.2 89.6 90.2
Mode 0.00 0.00 1.00 90.1 89.1 89.8 90.1 85.7 86.0 87.6 88.8
Median 0.28 0.00 0.72 90.0 88.9 89.4 89.7 91.3 93.0 93.3 92.2
Median 0.15 0.50 0.35 89.5 89.0 89.6 89.6 90.3 91.9 91.4 91.2
Median 0.00 1.00 0.00 89.5 89.5 89.7 89.6 89.5 90.2 89.8 90.4
Mean-Mode 0.15 0.00 0.85 90.1 88.9 89.3 89.9 91.1 92.2 92.2 92.1
Mean-Mode 0.08 0.18 0.74 90.1 89.0 89.4 90.0 90.7 92.2 92.0 91.9
Mean-Mode 0.00 0.37 0.63 89.9 88.7 89.6 89.8 90.6 91.9 91.8 91.9
Mean-Median 0.50 0.00 0.50 89.8 89.2 89.2 89.6 91.0 92.0 92.3 90.4
Mean-Median 0.49 0.29 0.22 89.8 89.6 89.6 89.5 90.4 91.1 90.3 90.4
Mean-Median 0.41 0.59 0.00 89.5 89.8 89.8 89.2 89.7 90.3 89.4 89.7
Median-Mode 0.08 0.00 0.92 90.1 88.9 89.6 89.9 90.2 91.0 90.8 91.3
Median-Mode 0.04 0.08 0.88 89.9 89.0 89.6 89.8 90.1 90.9 90.7 91.4
Median-Mode 0.00 0.17 0.83 89.9 88.9 89.6 89.9 90.0 90.9 90.7 91.4
Mean-Median-Mode 0.18 0.00 0.82 90.2 88.9 89.2 89.9 91.3 92.5 92.7 92.6
Mean-Median-Mode 0.10 0.24 0.66 90.1 88.9 89.5 89.8 90.9 92.3 92.3 91.8
Mean-Median-Mode 0.00 0.51 0.49 89.7 88.8 89.6 89.6 90.5 91.8 91.8 91.4

Panel B: Heteroskedastic data

Mean 1.00 0.00 0.00 89.2 89.9 89.6 90.3 88.7 89.6 89.4 89.5
Mode 0.00 0.00 1.00 89.5 89.5 89.9 89.8 85.8 86.4 87.9 88.7
Median 0.28 0.00 0.72 89.3 89.2 89.9 90.1 90.4 91.1 91.1 91.8
Median 0.15 0.50 0.35 89.0 89.8 90.1 89.9 90.0 90.9 90.8 90.7
Median 0.00 1.00 0.00 89.3 89.9 90.1 90.2 89.3 89.9 89.7 89.5
Mean-Mode 0.15 0.00 0.85 89.3 89.4 89.8 89.9 90.2 91.3 91.1 91.4
Mean-Mode 0.08 0.18 0.74 89.2 89.5 89.8 90.0 90.0 91.1 91.0 90.9
Mean-Mode 0.00 0.37 0.63 89.3 89.7 89.9 90.0 89.9 90.8 90.7 91.0
Mean-Median 0.50 0.00 0.50 89.1 89.4 90.1 90.3 89.5 90.0 89.6 90.5
Mean-Median 0.49 0.29 0.22 89.2 89.6 90.0 90.5 89.3 90.2 89.7 90.0
Mean-Median 0.41 0.59 0.00 89.2 89.8 89.9 90.6 89.0 89.8 89.2 88.1
Median-Mode 0.08 0.00 0.92 89.3 89.3 89.8 89.9 89.2 90.0 90.3 90.8
Median-Mode 0.04 0.08 0.88 89.3 89.4 89.8 90.0 89.0 90.0 90.3 90.8
Median-Mode 0.00 0.17 0.83 89.4 89.5 89.9 90.0 89.1 90.1 90.1 90.4
Mean-Median-Mode 0.18 0.00 0.82 89.2 89.4 89.7 90.0 90.6 91.3 91.1 91.5
Mean-Median-Mode 0.10 0.24 0.66 89.2 89.7 89.9 90.1 90.3 91.2 91.1 91.3
Mean-Median-Mode 0.00 0.51 0.49 89.2 89.6 89.8 90.0 90.1 90.9 90.6 90.9

Notes: This tables presents the empirical coverage rates of the confidence sets for the forecasts of central tendency
with a nominal coverage rate of 90%. We report the results for symmetric (γ = 0) and skewed data (γ = 0.5), for
four sample sizes (T = 100, 500, 2000, 5000) and the two cross-sectional DGPs. We fix the instruments ht = (1, Xt)
and use a Gaussian kernel. In this application the set of identification function weights (θ) corresponding to a
particular forecast combination weight vector is either a singleton (for the mean and mode) or a line. For the cases
where the set is a line we present results for the end-points and the mid-point of this line.
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Table S.4: Empirical coverage of the confidence sets for central tendency:
Time series data

Symmetric data Skewed data

Centrality measure θMean θMed θMode 100 500 2000 5000 100 500 2000 5000

Panel A: Autoregressive data

Mean 1.00 0.00 0.00 89.2 90.1 89.9 90.3 89.4 89.4 89.8 90.3
Mode 0.00 0.00 1.00 89.2 89.8 89.3 89.9 85.4 86.2 88.0 88.7
Median 0.28 0.00 0.72 89.1 89.7 89.0 89.6 91.5 92.3 93.5 91.7
Median 0.15 0.50 0.35 89.0 89.8 89.1 89.7 90.4 90.7 92.3 90.7
Median 0.00 1.00 0.00 88.9 90.0 89.2 89.9 89.0 89.2 90.7 89.9
Mean-Mode 0.15 0.00 0.85 89.1 89.6 89.1 89.8 90.5 92.0 92.7 91.7
Mean-Mode 0.08 0.18 0.74 88.9 89.9 89.2 89.7 90.5 91.6 92.5 91.3
Mean-Mode 0.00 0.37 0.63 89.0 89.9 89.4 89.6 90.2 91.4 92.3 91.5
Mean-Median 0.50 0.00 0.50 88.9 89.8 89.3 89.9 90.8 91.0 92.8 90.1
Mean-Median 0.49 0.29 0.22 88.8 90.2 89.3 89.9 90.0 89.8 91.2 89.7
Mean-Median 0.41 0.59 0.00 88.8 90.5 89.6 90.0 89.2 88.8 90.0 89.4
Median-Mode 0.08 0.00 0.92 89.2 89.7 89.1 89.8 89.4 90.8 91.4 91.1
Median-Mode 0.04 0.08 0.88 89.1 89.9 89.1 89.9 89.4 90.5 91.5 91.1
Median-Mode 0.00 0.17 0.83 89.1 90.0 89.1 89.8 89.3 90.6 91.5 91.0
Mean-Median-Mode 0.18 0.00 0.82 89.0 89.7 89.1 89.7 91.2 92.2 93.2 92.2
Mean-Median-Mode 0.10 0.24 0.66 89.0 89.7 89.2 89.6 90.7 91.7 92.7 91.7
Mean-Median-Mode 0.00 0.51 0.49 89.1 89.7 89.2 89.6 90.2 91.1 92.0 91.2

Panel B: AR-GARCH data

Mean 1.00 0.00 0.00 89.2 90.4 89.9 90.0 89.5 89.9 89.9 89.8
Mode 0.00 0.00 1.00 90.0 89.0 89.6 89.9 85.9 86.1 88.4 88.9
Median 0.28 0.00 0.72 89.5 89.1 89.1 89.4 91.1 92.5 93.1 92.0
Median 0.15 0.50 0.35 88.8 89.4 89.3 89.5 90.1 91.2 91.3 90.8
Median 0.00 1.00 0.00 88.6 89.5 89.8 89.6 89.1 89.7 89.8 90.1
Mean-Mode 0.15 0.00 0.85 89.9 88.9 89.4 89.7 90.4 91.5 92.7 91.5
Mean-Mode 0.08 0.18 0.74 89.6 89.1 89.6 89.6 90.3 91.3 92.3 91.3
Mean-Mode 0.00 0.37 0.63 89.5 89.1 89.6 89.6 90.2 91.2 92.1 91.1
Mean-Median 0.50 0.00 0.50 89.0 89.3 89.1 89.3 90.9 91.6 92.1 90.5
Mean-Median 0.49 0.29 0.22 88.7 89.7 89.3 89.4 90.1 90.7 90.8 89.9
Mean-Median 0.41 0.59 0.00 88.8 89.8 89.6 89.6 89.2 89.7 89.9 89.3
Median-Mode 0.08 0.00 0.92 90.2 89.0 89.5 89.7 89.4 90.5 92.1 91.0
Median-Mode 0.04 0.08 0.88 90.1 89.0 89.5 89.7 89.4 90.6 92.0 91.1
Median-Mode 0.00 0.17 0.83 90.0 89.2 89.6 89.7 89.3 90.5 91.8 90.8
Mean-Median-Mode 0.18 0.00 0.82 89.9 88.9 89.3 89.7 91.0 92.0 92.8 92.4
Mean-Median-Mode 0.10 0.24 0.66 89.6 89.2 89.3 89.7 90.4 91.7 92.3 91.2
Mean-Median-Mode 0.00 0.51 0.49 89.4 89.2 89.3 89.6 89.9 91.4 91.9 91.1

Notes: This tables presents the empirical coverage rates of the confidence sets for the forecasts of central tendency
with a nominal coverage rate of 90%. We report the results for symmetric (γ = 0) and skewed data (γ = 0.5), for
four sample sizes (T = 100, 500, 2000, 5000) and the two time-series DGPs. We fix the instruments ht = (1, Xt) and
use a Gaussian kernel. In this application the set of identification function weights (θ) corresponding to a particular
forecast combination weight vector is either a singleton (for the mean and mode) or a line. For the cases where the
set is a line we present results for the end-points and the mid-point of this line.
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Figure S.1: Test power for different kernel functions. This figure plots the empirical rejection
frequencies for the Gaussian and the biweight kernels against the degrees of misspecification κ for different
sample sizes in the vertical panels and for four skewness levels in the horizontal panels. We simulate data
from the AR-GARCH process, the misspecification follows the bias setup and we utilize the instrument vector
(1, Xt) and a nominal significance level of 5%.
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Figure S.2: Coverage rates of the confidence regions for central tendency measures for the
homoskedastic DGP.

(a) Cross Sectional Homoskedastic DGP with skewness γ = 0
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(b) Cross Sectional Homoskedastic DGP with skewness γ = 0.5
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This figure shows coverage rates of 90% confidence regions for the measures of central tendency for the
homoskedastic DGP. The true forecasted functional is given in the text above each triangle. The dots
that comprise each triangle correspond to specific convex combinations of the vertices, which are the mean,
median and mode functionals. The color of the dots indicates how often a specific point is contained in the
90% confidence regions. The upper panel shows results for the symmetric DGP, where all central tendency
measures are equal. The lower panel uses a skewed DGP, with γ = 0.5. We use a red circle or a red line to
indicate the (set of) central tendency measure(s) that correspond(s) to the forecast. We consider the sample
size T = 2000, the instruments ht = (1, Xt) and use a Gaussian kernel.
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S.6 Clustered Covariance Estimator

Figures S.3 to S.6 below are equivalent to Figures 4 to 7 after substituting equation (3.9) with a clustered

covariance estimator Σ̂CL
T . Let ϕi,t,T (θ) denote the moment function of individual i at time t. T denotes the

number of waves and nt the number of observations within wave such that T =
∑T

t=1 nt.

Σ̂CL
T (θ) =

1

T

T∑
t=1

(
nt∑
i=1

ϕ̂i,t,T (θ)

)(
nt∑
i=1

ϕ̂i,t,T (θ)

)⊤

(S.6.1)

Overall, the results are robust to clustering at the time level. While the mean rejection is less pronounced

in Figure S.3, the confidence sets are sharper for the subpopulations. In Figure S.4 to S.6 mean rationality

is consistently rejected for lower income individuals at the 5% level.

mode

mean median

mode

mean median

1 1, X

confidence sets 90% 95% rejected

Figure S.3: Confidence sets for income survey forecasts. This figure shows the measures of centrality
that rationalize the New York Federal Reserve income survey forecasts with clustered covariance estimator.
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Figure S.4: Confidence sets for income survey forecasts, stratified by income. This figure shows
the measures of centrality for low-, middle- and high-income respondents with clustered covariance estimator.
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Figure S.5: Confidence sets for income survey forecasts, stratified by income and age. This figure
shows the measures of centrality that rationalize the New York Federal Reserve income survey forecasts, for
low- and high-income respondents who are below or above the age of 40 with clustered covariance estimator.
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Figure S.6: Confidence sets for income survey forecasts, stratified by income and job offer. This
figure shows the measures of centrality that rationalize the New York Federal Reserve income survey forecasts,
for low- and high-income respondents in the private sector or not with clustered covariance estimator.
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Figure S.7: Confidence sets for income survey forecasts, stratified by income and elicitation
round. This figure shows the measures of centrality that rationalize the New York Federal Reserve income
survey forecasts, for low- and high-income respondents in their first and second panel round with clustered
covariance estimator.
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Figure S.8: Confidence sets for income survey forecasts, stratified by income and shock size.
This figure shows the measures of centrality that rationalize the New York Federal Reserve income survey
forecasts, for low- and high-income respondents with small and large income shocks with clustered covariance
estimator.
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S.7 Additional results for the Survey of Consumer Expectations

Table S.5 shows the test results for the subsamples considered in Section 5 that were omitted in Table 4.

Table S.5: Summary of p-values for rationality tests in different samples

n Mean Median Mode Quantiles Expectiles

Offer, low income 429 0.01 0.00 0.64 0.00 [0.63, 0.71] 0.01 [0.50, 0.70]
No offer, low income 1471 0.11 0.00 0.95 0.00 [0.57, 0.61] 0.05 [0.42, 0.53]
Offer, high income 328 0.20 0.00 0.70 0.03 [0.63, 0.71] 0.08 [0.40, 0.63]
No offer, high income 1560 0.11 0.10 0.96 0.11 [0.62, 0.66] 0.04 [0.43, 0.54]

First round, low income 1263 0.03 0.00 0.84 0.00 [0.58, 0.62] 0.03 [0.50, 0.60]
Second round, low income 638 0.05 0.00 0.06 0.00 [0.59, 0.65] 0.03 [0.32, 0.51]
First round, high income 1238 0.09 0.00 0.42 0.03 [0.63, 0.68] 0.03 [0.45, 0.57]
Second round, high income 650 0.52 0.20 0.36 0.29 [0.60, 0.66] 0.28 [0.40, 0.56]

Large error, low income 376 0.08 0.00 0.00 0.00 [0.53, 0.61] 0.03 [0.34, 0.56]
Small error, low income 262 0.04 0.30 0.76 0.50 [0.62, 0.72] 0.46 [0.17, 0.43]
Large error, high income 267 0.87 0.72 0.49 0.95 [0.53, 0.63] 0.73 [0.36, 0.58]
Small error, high income 383 0.56 0.08 0.10 0.03 [0.62, 0.70] 0.29 [0.41, 0.60]

Notes: The first four columns of this table present the sample size and p-values from tests of rationality
when interpreting the point forecasts as forecasts of the mean, median, or mode. The last two columns
present p-values from tests of rationality when interpreting the point forecasts as quantiles or expectiles
following Elliott et al. (2005), and 90% confidence intervals for the asymmetry parameter, given in square
brackets.

S.8 Additional Empirical Applications

In this section, we present two additional economic applications, to “Greenbook” forecasts of US GDP growth,

and to random walk forecasts of exchange rates. In some of this applications we find evidence against mode

rationality but not against mean rationality. This confirms that our proposed mode forecast rationality test

has non-trivial power in relevant applications.

S.8.1 Greenbook forecasts of U.S. GDP growth

First, we consider one-quarter-ahead forecasts of U.S. GDP growth produced by the staff of the Board of

Governors of the Federal Reserve (the so-called “Greenbook” forecasts), from 1967Q2 until 2015Q2, a total of

192 observations.1 These forecasts are prepared in preparation for each meeting of the Federal Open Market

Committee, and substantial resources are devoted to them, see e.g. Romer and Romer (2000). Greenbook

1Greenbook forecasts are only available to the public after a five-year lag.
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Figure S.9: Confidence sets for Greenbook GDP forecasts. This figure shows the measures of
centrality that “rationalize” the Federal Reserve Board’s “Greenbook” forecasts of U.S. GDP growth. The
three panels use three different measures of GDP growth in a given quarter. Black dots indicate that the
measure is inside the Stock-Wright 90% confidence set, grey dots indicate that the measure is inside the 95%
confidence set, and white dots indicate that rationality for that measure of centrality can be rejected at the
5% level. All panels use a constant and the forecast as test instruments.

forecasts are available several times each quarter; for this analysis we take the single forecast closest to the

middle date in each quarter. Broadly similar results are found when using the first, or last, forecast within

each quarter.

Figure S.9 presents the confidence set for the measures of centrality that can be rationalized for these

forecasts. As GDP growth is measured with error and official values are often revised, we present results for

three different “vintages” of the realized value: the first, second and most recent release. For the first and

second vintages, we see that only measures of centrality “close to” the mean can be rationalized as optimal,

while the mode, median and similar measures can all be rejected. This is particularly noteworthy given the

known lower power at the mode vertex. Using the most recent vintage for GDP growth, both the mean

and median, and centrality measures between and near those, are included in the confidence set. That the

Greenbook GDP forecasts are rational when interpreted as mean forecasts, but not when taken as mode or

median forecasts, is consistent with the Fed staff using econometric models for these forecasts, as such models

almost invariably focus on the mean.2

S.8.2 Random walk forecasts of exchange rates

For our final empirical application we revisit the famous result of Meese and Rogoff (1983), that exchange

rate movements are approximately unpredictable when evaluated by the squared-error loss function, implying

2Reifschneider and Tulip (2019) discuss the ambiguity in the specific centrality measure reported in the Greenbook
forecasts, but write that they are “typically viewed as modal forecasts” by the Federal Reserve staff. Our results
suggest that they are better interpreted as mean forecasts.
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Figure S.10: Confidence sets for random walk forecasts of exchange rates. This figure shows
the measures of centrality that “rationalize” the random walk forecast of daily exchange rates movements.
Black dots indicate that the measure is inside the Stock-Wright 90% confidence set, grey dots indicate that
the measure is inside the 95% confidence set, and white dots indicate that rationality for that measure of
centrality can be rejected at the 5% level. All panels use a constant and the forecast as test instruments.

that the lagged exchange rate is an optimal mean forecast. See Rossi (2013) for a more recent survey of the

literature on forecasting exchange rates. We use daily data from the European Central Bank’s “Statistical

Data Warehouse” on the USD/EUR, JPY/EUR and AUD/EUR exchange rates, over the period January

2000 to July 2020, a total of 5, 265 trading days. Note that our sample period has no overlap with that of

Meese and Rogoff (1983), and so their conclusions about the mean-optimality of the random walk forecast

need not hold in our data.

Figure S.10 presents the results of our tests for rationality, all of which use a constant and the forecast

as the instrument set. The middle and right panels reveal that for the JPY/EUR and AUD/EUR exchange

rates the lagged exchange rate is not rejected as a mean forecast, while it is rejected when taken as a mode

or median forecast. Thus the rationality of the random walk forecast critically depends, for these exchange

rates, on whether it is interpreted as a mean, median or mode forecast. For the USD/EUR exchange rate we

cannot reject rationality with respect to any of convex combination of these measures of central tendency,

implying that the random walk forecast is consistent with rationality under any of these measures.3 The

mean vertex being included in the confidence set for all three exchange rates, indicating no evidence against

rationality of the random walk model when interpreted as a mean forecast, is consistent with the conclusion

of Meese and Rogoff (1983).

3Results for the GBP/EUR and CAD/EUR exchange rates are identical to those for the USD/EUR.
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Table S.6: Summary of p-values for rationality tests in different samples

Data n Mean Median Mode Quantiles Expectiles

FRBNY income forecasts 3916 0.01 0.00 0.77 0.00 [0.61, 0.64] 0.01 [0.49, 0.56]
Greenbook GDP forecasts 192 0.35 0.06 0.03 0.02 [0.46, 0.57] 0.20 [0.45, 0.61]
Random walk: USD/EUR 5264 0.94 0.32 0.17 0.35 [0.48, 0.51] 0.86 [0.48, 0.51]

JPY/EUR 5264 0.91 0.02 0.04 0.43 [0.47, 0.50] 0.74 [0.48, 0.51]
AUD/EUR 5264 0.88 0.09 0.03 0.96 [0.51, 0.53] 0.62 [0.48, 0.52]

Notes: The first four columns of this table present the sample size and p-values from tests of rationality
when interpreting the point forecasts as forecasts of the mean, median, or mode. The last two columns
present p-values from tests of rationality when interpreting the point forecasts as quantiles or expectiles
following Elliott et al. (2005), and 90% confidence intervals for the asymmetry parameter are given in
square brackets. The first row uses the FRBNY consumer survey data introduced in Section 5 of the
main paper. The second row uses Federal Reserve “Greenbook” forecasts of US GDP growth discussed
in Section S.8.1. The last three rows uses daily data on exchange rates, discussed in Section S.8.2.

S.8.3 Summary of results across empirical applications

Table S.6 summarizes the rationality tests for the mean, median, and mode functionals, as well as the Elliott

et al. (2005) rationality test that allows for optimism and pessimism. For the Federal Reserve Bank of New

York (FRBNY) survey data, mode rationality is not rejected, but all other functionals are rejected. For the

Greenbook GDP forecasts, the mode is rejected a the 5% level, but the mean and expectiles close to the mean

are consistent with the data. For the exchange rates random walk forecasts, the mean and central quantiles

and expectiles are consistent with the data, while mode rationality is rejected for two of the three exchange

rates at the 5% level.
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