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Abstract

Rational respondents to economic surveys may report as a point forecast any measure of the central

tendency of their (possibly latent) predictive distribution, for example the mean, median, mode,

or any convex combination thereof. We propose tests of forecast rationality when the measure of

central tendency used by the respondent is unknown. We overcome an identification problem that

arises when the measures of central tendency are equal or in a local neighborhood of each other,

as is the case for (exactly or nearly) symmetric distributions. As a building block, we also present

novel tests for the rationality of mode forecasts. We apply our tests to income forecasts from the

Federal Reserve Bank of New York’s Survey of Consumer Expectations. We find these forecasts are

rationalizable as mode forecasts, but not as mean or median forecasts. We also find heterogeneity

in the measure of centrality used by respondents when stratifying the sample by past income, age,

job stability, and past forecast accuracy.
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1 Introduction

Economic surveys are a rich source of information about future economic conditions, yet most

economic surveys are vague about the specific statistical quantity the respondent should report.

For example, the New York Federal Reserve’s labor market survey asks respondents “What do you

believe your annual earnings will be in four months?” A reasonable response to this question is the

respondent reporting her mathematical expectation of future earnings, or her median, or her mode;

all common measures of the central tendency of a distribution. When these measures coincide,

as they do for symmetric unimodal distributions, this ambiguity does not affect the information

content of the forecast. When these measures differ, the specific measure adopted by the respondent

can influence its use in other applications, and testing rationality of forecasts becomes difficult.

Subjective forecast distributions have been found to be asymmetric for many important economic

variables as GDP growth (Adrian et al., 2019; Bekaert and Popov, 2019), inflation rates (Garcia

and Manzanares, 2007), firm earnings (Foster, 1986; Givoly and Hayn, 2000; Gu and Wu, 2003)

and consumer expenses (Howard et al., 2022), motivating the need for reliable forecast evaluation

methods for the different measures of central tendency.

While the assumption of a mean forecast1 is common in the economic and statistical literature

(see, e.g., Coibion and Gorodnichenko, 2015; Bordalo et al., 2020), it may be mistaken in some

applications. For example, Knüppel and Schultefrankenfeld (2012) conclude that point forecasts of

inflation published by central banks almost always correspond to the modes of the forecast densities,

and Reifschneider and Tulip (2019) suggest that forecasts from the U.S. Board of Governors are

best interpreted as mode forecasts. Howard et al. (2022) and Zhao (2022) find that some survey

forecasts are more consistent with the respondents’ modes than means or medians. In an early

experimental study, Peterson and Miller (1964) found that respondents could accurately predict the

mode and median if incentivized correctly, but had difficulty reporting accurate estimates of the

mean, and a more recent study by Kröger and Pierrot (2019b) reports that participants asked to

summarize their predictive distribution responded most frequently with their mode. We propose

1We use the phrase “mean forecasts,” or similar, as shorthand for the forecaster reporting the mean of her predictive
distribution as her point forecast.
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that other measures of central tendency deserve further consideration, especially given the growing

evidence that point forecasts may reflect the mode.

Given the ambiguity around which specific measure of central tendency is used by survey re-

spondents, we consider a class of such measures defined by the set of convex combinations of the

mean, median, and mode.2 Similar to Elliott et al. (2005), we propose a testing framework that

nests the mean as a special case, but unlike that paper’s approach we allow for alternative forecasts

within a class of measures of central tendency, rather than measures that represent other aspects

of the predictive distribution (such as non-central quantiles or expectiles). Our approach faces an

identification problem: for symmetric distributions, the combination weight vector is unidentified,

for “mildly” asymmetric distributions, the weight vector is only weakly identified, and even for

strongly asymmetric distributions the weight vector may only be partially identified. Economic

variables may fall into any of these cases, and a valid testing approach must accommodate these

measures of central tendency being equal, unequal, or in a local neighborhood of each other. We

use the work of Stock and Wright (2000) to obtain asymptotically valid confidence sets for the

combination weights and to test forecast rationality.

Depending on the skewness of the respondent’s predictive distribution, our approach may allow

the researcher to distinguish mean, median, and mode forecasts based on point forecasts and real-

izations alone. An alternative approach was proposed in Engelberg et al. (2009), who combine point

and density forecasts to determine whether the point forecasts are the mean, median, or mode of

the predictive density. In their study of respondents to the Federal Reserve Bank of Philadelphia’s

Survey of Professional Forecasters, Engelberg et al. (2009) find that most point forecasts are consis-

tent with the bounds derived for all three functionals. Zhao (2022) applies the same methodology to

inflation forecasts from the Federal Reserve Bank of New York’s Survey of Consumer Expectations

and finds the mode of the density forecast to be most consistent with the point forecasts, but the

mean and median are also valid for a majority of forecasts. Our testing approach accommodates

the fact that these functionals may be hard, or impossible, to separately identify in data.

2These are the three measures described in introductory statistics textbooks (McClave et al., 2017), in previous
studies, (Engelberg et al., 2009), in central bank publications (the Bank of England’s quarterly inflation reports), and
in psychological work, (p. 86, Kahneman et al., 1982). Nevertheless, our approach can easily be extended to consider
a broader set of measures of centrality.
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Before implementing the above test for rationality for a general forecast of central tendency, we

must first overcome a lack of rationality tests for mode forecasts. Rationality tests for mean forecasts

go back to at least Mincer and Zarnowitz (1969), see Elliott and Timmermann (2016) for a recent

survey, while rationality tests for quantile forecasts (nesting median forecasts as a special case) are

considered in Christoffersen (1998) and Gaglianone et al. (2011). A critical impediment to similar

tests for mode forecasts is that the mode is not an “elicitable functional” (Heinrich, 2014), meaning

that it cannot be obtained as the solution to an expected loss minimization problem.3,4 We obtain a

test for mode forecast rationality by first proposing novel results on the asymptotic elicitability of the

mode. We define a functional to be asymptotically elicitable if there exists a sequence of elicitable

functionals that converges to the target functional. We consider the (elicitable) “generalized modal

interval,” defined in detail in Section 2.2, and show that it converges to the mode for a general class

of probability distributions. We combine these results with recent work on mode regression (Kemp

and Silva, 2012; Kemp et al., 2020) and nonparametric kernel methods to obtain mode forecast

rationality tests analogous to well-known tests for mean and median forecasts. In addition to size

control, we show that the proposed test has non-trivial asymptotic power against both fixed and

local alternative hypotheses.

We evaluate the finite sample performance of the new mode rationality test and of the proposed

method for obtaining confidence sets for measures of centrality through an extensive simulation

study. We use cross-sectional and time-series data generating processes with a range of asymmetry

levels. We find that our proposed mode forecast rationality test has satisfactory size properties,

even in small samples, and exhibits strong power across different misspecification designs. Our

simulation design allows us to consider the four identification cases that can arise in practice:

strongly identified (skewed data), where the mean, median and mode differ; unidentified (symmetric

unimodal data), where all centrality measures coincide; weakly identified (mildly skewed data),

where the centrality measures differ but are close to each other; and partially identified (skewed

3Gneiting (2011) provides an overview of elicitability and identifiability of statistical functionals and shows that
several important functionals such as variance, Expected Shortfall, and mode are not elicitable. Fissler and Ziegel
(2016) introduce the concept of higher-order elicitability, which facilitates the elicitation of vector-valued (stacked)
functionals such as the variance and Expected Shortfall, though not the mode (Dearborn and Frongillo, 2020).

4For categorical data, rationality tests for mode forecasts were established in Das et al. (1999) and extended in
Madeira (2018). Our focus is on continuously distributed target variables, and so we cannot use their results.
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location-scale data), where one centrality measure is a convex combination of the other two. We

find that in the symmetric case, the resulting confidence sets contain, correctly, the entire set of

convex combinations of mean, median and mode. In the asymmetric cases, our rationality test is

able to identify the combination weights corresponding to the issued centrality forecast.

We apply the new tests to the income survey responses from the Survey of Consumer Expec-

tations conducted by the Federal Reserve Bank of New York. In the full sample of respondents,

we find the intriguing result that we can reject rationality with respect to the mean or median,

however we cannot reject rationality when interpreting these as mode forecasts, suggesting that

survey participants report the anticipated most likely outcome rather than the average or median.

When allowing for cross-respondent heterogeneity, we find that forecasts from low-income younger

survey respondents cannot be rationalized using any measure of central tendency, while forecasts

from high-income respondents, regardless of their age, are rationalizable for many different measures

of centrality. We also find evidence of learning between survey rounds (Kim and Binder, 2023) for

high-income respondents, but much less so for low-income respondents. We compare our rationality

test results with those obtained using the approach of Elliott et al. (2005) (EKT), which allows

for rational optimism or pessimism. We find no cases where allowing for optimism or pessimism

“overturns” a rejection of rationality based on a measure of centrality. As a stark example, we

find that forecasts from younger low-income respondents cannot be rationalized as any centrality

measure, nor as a measure in the EKT framework.

Our paper is related to the large literature on forecasting under asymmetric loss, see Granger

(1969), Christoffersen and Diebold (1997), Elliott et al. (2005), Patton and Timmermann (2007)

and Elliott et al. (2008) amongst others. The work in these papers is motivated by the fact that

forecasters may wish to use a loss function other than the omnipresent squared-error loss function.

The use of asymmetric loss functions generally leads to point forecasts that differ from the mean

(though this is not always true, see Gneiting, 2011 and Patton, 2020), and generally these point

forecasts are not interpretable as measures of central tendency. For example, Christoffersen and

Diebold (1997) show that the linex loss function implies an optimal point forecast that is a weighted

sum of the mean and variance, while Elliott et al. (2008) find that their sample of macroeconomic
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forecasters report an expectile with asymmetry parameter around 0.4. Instead of moving from the

mean to a point forecast that is not a measure of location, our novel approach considers moving

only within a general class of central tendency measures.

The remainder of the paper is structured as follows. In Section 2 we propose new forecast

rationality tests for the mode based on the concepts of asymptotic elicitability and identifiability.

Section 3 presents forecast rationality tests for general measures of central tendency, allowing for

weak and partial identification. Section 4 presents simulation results on the finite-sample properties

of the proposed tests, and Section 5 presents the empirical application using income survey forecasts.

Proofs are presented in Appendix A. A supplemental appendix contains additional technical details,

simulation results, and empirical analyses of the Federal Reserve Board’s “Greenbook” forecasts of

US GDP growth and random walk forecasts of exchange rates.

2 Eliciting and Evaluating Mode Forecasts

2.1 General Forecast Rationality Tests

Let Zt =
(
Yt, Xt, h̃t

)
be a stochastic process defined on a common probability space

(
Ω,F ,P

)
. Yt+1

denotes the (scalar) variable of interest, h̃t denotes a vector of variables known to the forecaster at

the time she issues her point forecast for Yt+1, which is denoted Xt.
5 We define the information set

Ft = σ
{
Ys, Xs, h̃s; s ≤ t

}
as the σ-field containing all information known to the forecaster at time

t. We denote the distribution of Yt+1 given Ft by Ft, and with corresponding density ft. Neither

the forecaster’s information set, Ft nor her predictive distribution, Ft, are assumed known to the

econometrician. In conducting the forecast rationality test, we assume that the econometrician uses

an Ft-measurable (k × 1) vector ht, which can be thought of as a subset of h̃t.
6 Note that since

Ft is not observed, we do not know whether this distribution is strongly skewed, mildly skewed, or

symmetric, and thus our inference method must be valid for all of these possibilities. Conditional

5Given our focus on survey forecasts, where the underlying model used by the respondents, if any, is unknown, we
take the forecasts as given, putting this paper in the general framework of Giacomini and White (2006), as opposed
to that of West (1996).

6The intepretability of the outcome of a forecast rationality test, including ours, critically depends on the “test
vector” or “instrument vector,” ht, being observable to the forecaster. In our empirical analysis we only use vectors
that are guaranteed to satisfy this requirement.
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expectations are denoted Et[·] = E[·|Ft]. We use P to denote a class of distributions.

We start by considering rationality tests (also known as calibration tests; Nolde and Ziegel,

2017) for the mean, i.e. we assume that the forecasts Xt are one-step ahead mean forecasts for Yt+1.

We are interested in testing if these forecasts are rational, which would imply the null hypothesis:

H0 : Xt = E[Yt+1|Ft] ∀ t a.s. (2.1)

We test this hypothesis using the “identification function” for the mean, which is simply the differ-

ence between the forecast and the realized value, i.e., the forecast error:7

VMean

(
Xt, Yt+1

)
= Xt − Yt+1 =: εt. (2.2)

Specifically, the null hypothesis in (2.1) implies that the identification function VMean

(
Xt, Yt+1

)
is uncorrelated with any instrument vector ht ∈ Ft, which provides a testable moment condition.

Under the above null hypothesis and subject to standard regularity conditions, it is straight forward

to show that T−1/2
∑T

t=1 VMean

(
Xt, Yt+1

)
ht

d→ N
(
0,ΩMean

)
as T → ∞, and that

JT =
1

T

(
T∑
t=1

VMean

(
Xt, Yt+1

)
h⊤
t

)
Ω̂−1
T,Mean

(
T∑
t=1

VMean

(
Xt, Yt+1

)
ht

)
d→ χ2

k (2.3)

as T → ∞, where Ω̂T,Mean is a consistent estimator of ΩMean. This result facilitates testing whether

given forecasts Xt are rational mean forecasts for the realizations Yt+1 by using the test statistic

JT in equation (2.3) to test for uncorrelatedness of the identification function VMean

(
Xt, Yt+1

)
and

the instrument vector ht. As in most other tests in the literature, this is of course only a test of

a necessary condition for forecast rationality, and the conclusion may be sensitive to the choice of

instruments, ht.
8

7The identification function for a point forecast can be obtained as the first derivative of any loss function that
elicits that forecast. The quadratic loss function elicits the mean, and so its identification function is simply the
forecast error, up to scale and sign. In econometrics the forecast error is usually defined as Yt+1 −Xt, that is, as the
negative of the identification function in equation (2.2). Given the important role that forecast identification functions
play in this paper, we adopt the definition for εt given in equation (2.2), and we refer to εt as the forecast error.

8Like most of the forecast evaluation literature, we assume that the vector of instruments is of fixed and finite
length. A Bierens (1982)-type test, where the length of the vector diverges with the sample size, is considered for
forecast evaluation in, for example, Corradi and Swanson (2002).
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The test statistic in equation (2.3) is only informative about rationality if the forecasts are inter-

preted as being for the mean of Yt+1. The decision-theoretic framework of identification functions

and consistent loss functions is fundamental for generalizations to other measures of central ten-

dency, such as the median and the mode. For a general real-valued functional Γ : P −→ R, a strict

identification function VΓ(Y, x) is defined by being zero in expectation if and only if x equals the

functional Γ(F ). Strict identification functions are generally obtained as the derivatives of strictly

consistent loss functions, which are defined as having the functional Γ(F ) as their unique minimizer

(in expectation). A functional is called identifiable if a strict identification function exists, and

is called elicitable if a strictly consistent loss function exists. See Gneiting (2011) for a general

introduction to elicitability and identifiability.

The forecast error Xt − Yt+1 is a strict identification function for the mean, and a strict identi-

fication function for the median is given by the step function:

VMed

(
Xt, Yt+1

)
= 1{Yt+1<Xt} − 1{Yt+1>Xt}. (2.4)

We obtain a test of median forecast rationality by replacing VMean and Ω̂T,Mean by VMed and Ω̂T,Med

in equation (2.3).

2.2 The Mode Functional

In contrast to the mean and the median, rationality tests for mode forecasts are more challenging

to consider. The underlying reason is that there do not exist identification functions for the mode

for random variables with continuous Lebesgue densities (Heinrich, 2014; Dearborn and Frongillo,

2020). In this section we simplify notation and refer to the target variable and forecast as Y and x.

We define the mode for random variables with continuous Lebesgue densities as the global maxima

of the density function.9 We make the following distinction in the notion of unimodality.

9More generally, the mode is often defined as the limit, as δ → 0, of the modal midpoint functional MMPδ, given in
equation (2.5) below (Gneiting, 2011; Dearborn and Frongillo, 2020). This definition coincides with the global maxima
of the density function for distributions with continuous Lebesgue density; and it coincides with the points of maximal
probability for discrete distributions (Heinrich, 2014). Note that our definition of the mode as the global maxima of
a density function is only valid for distributions with continuous Lebesgue densities as otherwise the density function
can be modified on singletons (null sets in the distribution) without altering the underlying probability measure.
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Definition 2.1. An absolutely continuous distribution is defined as (a) weakly unimodal if it has a

unique and well-defined mode, and (b) strongly unimodal if it is weakly unimodal and does not have

further local modes.

Heinrich-Mertsching and Fissler (2022) show that even for the class of strongly unimodal dis-

tributions, neither strictly consistent loss functions nor strict identification functions exist for the

mode. Gneiting (2011) notes that it is sometimes stated informally that the mode is an optimal

point forecast under the loss function Lδ(x, Y ) = 1{|x−Y |≤δ} for some fixed δ > 0. In fact, this loss

function elicits the midpoint of the modal interval (also known as the modal midpoint, or MMP) of

length 2δ. The MMP of Y ∼ P is defined as the midpoint of the interval of length 2δ that contains

the highest probability:

MMPδ(P ) = sup
x∈R

P
(
Y ∈ [x− δ, x+ δ]

)
. (2.5)

More formally, it holds that for any δ > 0 small enough, the modal midpoint is well-defined for all

distributions with unique and well-defined mode, and it holds that limδ↓0MMPδ(P ) = Mode(P )

(Gneiting, 2011). In a similar manner, Eddy (1980), Kemp and Silva (2012) and Kemp et al. (2020)

propose estimation of the mode by estimating the modal interval with an asymptotically shrinking

length. We formalize these ideas in the decision-theoretical framework in the following definition.

Definition 2.2. The functional Γ : P −→ R is asymptotically elicitable (identifiable) relative to P if

there exists a sequence of elicitable (identifiable) functionals Γδ : P −→ R, such that Γδ(P ) → Γ(P )

as δ → 0 for all P ∈ P.

As the modal midpoint converges to the mode, this establishes asymptotic elicitability for the

mode functional for the class of weakly unimodal probability distributions with continuous Lebesgue

densities. Unfortunately, this does not directly allow for asymptotic identifiability of the mode as

any pseudo-derivative of the loss function Lδ equals zero. We establish asymptotic identifiability of

the mode through the generalized modal midpoint.

Definition 2.3. Given a kernel function K(·) and bandwidth parameter δ, the generalized modal

9



midpoint, ΓK
δ (P ), of Y ∼ P is defined as

ΓK
δ (P ) = argmin

x∈R
E
[
LK
δ (x, Y )

]
, where LK

δ (x, Y ) = −1

δ
K

(
x− Y

δ

)
. (2.6)

The familiar modal midpoint is nested in this definition by using a rectangular kernel for K(u) =

1{|u|≤1}, and this definition allows for smooth generalizations. As this definition involves the argmin

of a function, we first establish that this is well-defined and that it converges to the mode functional.

The following theorem also considers identifiability of the generalized modal midpoint.

Theorem 2.4. Let K be a strictly positive kernel function on the real line that is log-concave,

i.e. log(K(u)) is a concave function, and additionally let
∫
K(u)du = 1 and

∫
|u|K(u)du < ∞.

Let P be the class of absolutely continuous and weakly unimodal distributions with bounded and

Lipschitz-continuous density and let P̃ ⊂ P be the subclass of strongly unimodal distributions.

(a) The functional ΓK
δ induced by the loss function (2.6) is well-defined for all δ > 0 and P ∈ P.

(b) It holds that ΓK
δ (P ) → Mode(P ) as δ → 0 for all P ∈ P.

(c) If K is differentiable, for all (fixed) δ > 0 and P ∈ P̃, it holds that the function

V K
δ (x, Y ) =

∂

∂x
LK
δ (x, Y ) = − 1

δ2
K ′
(
x− Y

δ

)
(2.7)

is a strict identification function for ΓK
δ . In particular, the generalized modal midpoint is

identifiable and the mode is asymptotically identifiable with respect to P̃.

This theorem shows that for the classes of weakly (strongly) unimodal distributions, the gener-

alized modal midpoint is elicitable (and identifiable), and consequently, the mode is asymptotically

elicitable (and identifiable). While V K
δ (x, Y ) being an identification function for the generalized

modal midpoint is obvious from Definition 2.3, Theorem 2.4(c) establishes its strictness.

For a fixed δ > 0, strict identifiability is doomed to fail when both the underlying distribution

and the kernel function have bounded support as the expected identification function equals zero

for values far outside both supports. Theorem 2.4(c) shows that employing log-concave kernels with
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infinite support circumvents this problem. While kernels with bounded support generally exhibit a

superior performance in nonparametric statistics, this proposition motivates the use of kernels with

infinite support like the Gaussian density function. Furthermore, the Gaussian density function,

among many others, satisfies the required log-concavity of the kernel function.10

2.3 Forecast Rationality Tests for the Mode

Having established the asymptotic identifiability of the mode in the previous section, we now con-

sider rationality testing of mode forecasts, i.e. testing the following null hypothesis,

H0 : Xt = Mode(Yt+1|Ft) ∀t a.s. (2.8)

While classical,
√
T -consistent rationality tests based on strict identification functions are unavail-

able for the mode due to its non-identifiability, we next propose a rationality test for mode forecasts

based on an asymptotically shrinking bandwidth parameter δT . Consider the (asymptotically valid)

identification function V K
δT

with bandwidth δT , and multiplied by the instruments ht,

ψ(Yt+1, Xt,ht, δT ) := V K
δT
(Xt, Yt+1)ht = − 1

δ2T
K ′
(
Xt − Yt+1

δT

)
ht. (2.9)

We make the following assumptions. For the remainder of the paper all limits are taken as

T → ∞, unless stated otherwise.

Assumption 2.5.

(A1) The sequence
(
εt,ht

)
for t ∈ N is α-mixing of size −r/(r − 1) for some r > 1.

(A2) It holds that E
[
||ht||2r+δ

]
<∞ for all t ∈ N for some δ > 0.

(A3) The matrix E
[
hth

⊤
t

]
has full rank for all t ∈ N.

(A4) The limit, ΩMode, of ΩT,Mode :=
1
T

∑T
t=1 E

[
hth

⊤
t ft(0)

] ∫
K ′(u)2du is positive definite.

10Theorem 2.4(c) also holds if log-concavity of the underlying density, instead of the kernel function, holds. This
illustrates that kernels with bounded support can be employed at the cost of restricting the class of distributions.
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(A5) For all t ∈ N, the conditional distribution of εt = Xt − Yt+1 given Ft is absolutely continuous

with density ft(·) which is three times continuously differentiable with bounded derivatives.

(A6) K : R → R, u 7→ K(u) is a non-negative and continuously differentiable kernel function such

that: (i)
∫
K(u)du = 1, (ii)

∫
uK(u)du = 0, (iii) supK(u) ≤ c <∞, (iv) supK ′(u) ≤ c <∞,

(v)
∫
u2K(u)du <∞, (vi)

∫ ∣∣K ′(u)
∣∣du <∞, (vii)

∫
uK ′(u)du <∞.

(A7) δT is a strictly positive and deterministic sequence such that (i) TδT → ∞, and (ii) Tδ7T → 0.

The above assumptions are a combination of standard assumptions from rationality testing and

nonparametric statistics. Conditions (A1) and (A2) facilitate the use of a law of large numbers and

of a central limit theorem for martingale difference arrays (MDA) (that generalize MD sequences

to triangular arrays; see Davidson (1994)) and allows for both possibly non-stationary time-series

and cross-sectional applications. Notice that the rate in the mixing condition (A1) is relatively

weak as we only need it for a law of large numbers while we apply a central limit theorem for MDA

in the proof of Theorem 2.6 below. In cross-sectional applications with independent observations,

this assumption can be replaced (and weakened) by the classical Lindeberg condition (see e.g.

White (2001), Section 5.2). Notice that as the kernel function K ′ is bounded, we do not require

existence of any moments of Yt or Xt, which makes this more flexible than rationality testing

for mean forecasts. The full rank condition (A3) prevents the instruments from being perfectly

colinear which in turn prevents the asymptotic covariance matrix from being singular. Condition

(A4) guarantees that the asymptotic covariance matrix is well behaved for non-stationary data.

Assumption (A5) assumes a relatively smooth behavior of the conditional density function which

is required to apply a Taylor expansion common to the nonparametric literature. Conditions (A6)

and (A7) are standard kernel and bandwidth conditions from the nonparametric literature. We

discuss specific kernel and bandwidth choices in Supplemental Appendices S.2 and S.3 respectively.

Theorem 2.6. Under Assumption 2.5 and H0 : Xt = Mode(Yt+1|Ft) ∀ t a.s., it holds that

δ
3/2
T T−1/2

T∑
t=1

ψ(Yt+1, Xt,ht, δT )
d→ N

(
0,ΩMode

)
, (2.10)
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where ΩMode is the limit of ΩT,Mode =
1
T

∑T
t=1 E

[
hth

⊤
t ft(0)

] ∫
K ′(u)2du as T → ∞.

We obtain a test for the rationality of mode forecasts by drawing on the literature on nonpara-

metric estimation. Unsurprisingly, therefore, the rate of convergence is slower than
√
T ; Assumption

(A7) requires δT ∝ T−κ with κ ∈ (1/7, 1), which implies that the fastest convergence rate approaches

T 2/7 and is obtained by setting δT ≈ T−1/7.11

Theorem 2.4 guarantees the strictness of the identification function Vδ(x, Y ) only if K has

infinite support and is strictly increasing (decreasing) left (right) of its mode. These conditions are

satisfied by the familiar Gaussian kernel, which we adopt for our analysis.12

Following Kemp and Silva (2012) and Kemp et al. (2020), we estimate the covariance matrix by

its sample counterpart,

Ω̂T,Mode =
1

T

T∑
t=1

δ−1
T K ′

(
Xt − Yt+1

δT

)2

hth
⊤
t . (2.11)

The following theorem shows consistency of the asymptotic covariance estimator, its proof is pre-

sented in Supplemental Appendix S.1.

Theorem 2.7. Given Assumption 2.5, it holds that Ω̂T,Mode − ΩT,Mode
P→ 0.

We can now define the Wald test statistic:

JT =

(
δ
3/2
T T−1/2

T∑
t=1

ψ
(
Yt+1, Xt,ht, δT

))⊤

Ω̂−1
T,Mode

(
δ
3/2
T T−1/2

T∑
t=1

ψ
(
Yt+1, Xt,ht, δT

))
. (2.12)

The following statement follows directly from Theorem 2.6 and Theorem 2.7.

Corollary 2.8. Under Assumption 2.5 and the null hypothesis H0 : Xt = Mode(Yt+1|Ft) ∀ t a.s.,

it holds that JT
d→ χ2

k.

11Under additional assumptions, the speed of convergence of a nonparametric estimator may be increased via the
use of higher-order kernel functions, see e.g. Li and Racine (2006). However, as the generalized modal midpoint
introduced in Definition 2.3 requires a log-concave kernel to be well-defined and unique (see Theorem 2.4), and as
this assumption is automatically violated for higher-order kernels, we do not consider them here.

12We also considered the relatively efficient quartic (or biweight) kernel but did not observe a change in power
relative to the Gaussian kernel. See Supplemental Appendix S.2 for further discussion of the kernel choice and
simulation results.
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This corollary justifies an asymptotic test at level α ∈ (0, 1) which rejects H0 when

JT > Qk(1 − α), where Qk(1 − α) denotes the (1 − α) quantile of the χ2
k distribution.13 Note

that the bandwidth parameter, δT , is introduced only to conduct the test of mode forecast ratio-

nality; the forecast itself, Xt, is, under the null, the true conditional mode of the target variable,

not a (smoothed) modal midpoint.

We now turn to the behavior of our test statistic JT under a local alternative hypothesis,

HA,loc :
1

T

T∑
t=1

f ′t(0)ht = c · aT + oP (1), (2.13)

for some constant c ∈ Rk and some possibly stochastic sequence aT to be specified in the follow-

ing Theorem 2.9, which characterizes the behavior of our mode rationality test under the local

alternative.

Theorem 2.9. If Tδ3T → ∞, then under Assumption 2.5 and the alternative HA,loc in (2.13):

(a) If aTT
1/2δ

3/2
T

P→ 1, then JT
d→ χ2

k

(
c⊤Ω−1

Modec
)
, where χ2

k

(
c̃
)
denotes a χ2

k distribution with

non-centrality parameter c̃ ∈ R.

(b) If aTT
1/2δ

3/2
T

P→ 0, then JT
d→ χ2

k.

(c) If
(
aTT

1/2δ
3/2
T

)−1 P→ 0, then P (JT ≥ c̄) → 1 for any c̄ > 0, i.e., we have uniform power.

This theorem shows that the power of our mode rationality test is essentially driven by the

condition that 1
T

∑T
t=1 f

′
t(0)ht is non-zero, which implies that Xt cannot be the mode of Ft. It

essentially means that the instruments ht are correlated with the conditional density slope at zero,

f ′t(0). This is analogous to the case for standard mean and median rationality tests which have

power against the alternative that E
[
V (Xt, Yt+1)ht] ̸= 0, where V (Xt, Yt+1) is the identification

function for the mean or median.14 When the instruments include a constant, a sufficient condition

13Our focus on one-step ahead forecasts allows for the application of a central limit theorem for MDAs, which only
requires the existence of second moments. Multi-step ahead forecasts, on the other hand, are usually handled via
CLTs for processes with more memory (e.g., mixing processes) at a cost of imposing stronger moment conditions. We
leave this extension for future research.

14See e.g. Theorem 2 of Giacomini and White (2006), where their Comment 6 and Nolde and Ziegel (2017) point
out that the theory can be directly adapted to rationality testing.
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for a global alternative hypothesis, where aT is constant, is f ′t(0) ≥ c > 0 (f ′t(0) ≤ −c < 0) for all

t ∈ N, i.e. when all forecasts are issued to the left (right) of the mode. This can be interpreted as

uniform power against the class of strongly unimodal distributions. Our test will have low power

to reject forecasts that are far in the tail, where the density is (almost) flat, however our test is

intended for forecasts of a measure of central tendency, and such forecasts will lie broadly in the

central region of the distribution where this concern does not arise.

Part (a) of Theorem 2.9 shows that if 1
T

∑T
t=1 f

′
t(0)ht converges at rate T−1/2δ

−3/2
T , then the

asymptotic distribution of JT stabilizes as a non-central χ2-distribution, implying that for a fixed

alternative, our test statistic diverges at rate T 1/2δ
3/2
T , which is approximately T 2/7 in practice. In

contrast, it is easy to show that rationality tests for identifiable functionals as the mean and median

have local power against alternatives that converge with rate T−1/2, which is of course faster than

the rate T−1/2δ
−3/2
T of the mode test . We demonstrate in the simulations and the applications that

our mode test nevertheless has satisfactory power in practice in typically encountered sample sizes.

Part (b) of Theorem 2.9 further shows that if 1
T

∑T
t=1 f

′
t(0)ht converges to zero faster than

T−1/2δ
−3/2
T , then our test behaves as under the null and has no power. Finally, part (c) implies

that our test has unit power asymptotically when 1
T

∑T
t=1 f

′
t(0)ht converges to zero slower than

T−1/2δ
−3/2
T , which nests the classical case of a fixed, global alternative.

Beyond the rationality tests proposed here, the concept of asymptotic elicitability is of interest

in its own right. Asymptotic elicitability may facilitate forecast comparison and elicitation of novel

measures of uncertainty. See for example Eyting and Schmidt (2021) for an elicitation procedure

for the maximum, a functional that generally is not elicitable (Bellini and Bignozzi, 2015).

3 Evaluating Forecasts of Measures of Central Tendency

We define a class of measures of central tendency nesting the mean, median, and mode, and we

propose tests of whether a forecast is rational with respect to any element of the class. Formally,

we consider convex combinations of loss functions pertaining to the mean, median, and mode:

LMean(x, y) = (x − y)2, LMed(x, y) = |x − y|, LMode,δ(x, y) = −δ1/2K ((x− y)/δ), for some kernel
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K.15 Each vector in the unit simplex, Θ := {θ ∈ R3 : ||θ||1 = 1, θ ≥ 0}, generates an optimal

forecast

X∗
t (θ) = argmin

X∈Ft

Et

[
θ⊤
[
LMean(X,Yt+1), LMed(X,Yt+1), LMode,δ(X,Yt+1)

]⊤ ]
, (3.1)

where we minimize over all Ft-measurable X. At the vertices of Θ, this nests the mean, median,

and generalized modal midpoint, the latter tending to the mode as δ → 0; see Theorem 2.4.

Remark 3.1. Intuitively one might be inclined to consider a convex combination of the functional

values rather than of the associated loss functions, however such functionals are generally neither

elicitable nor identifiable (see Proposition S.4.1 in the Supplemental Appendix), rendering infeasible

an extension of the rationality tests introduced in Section 2.1 to this case. However it can be shown

(Proposition S.4.2) that any forecast following equation (3.1) lies between the mean, median and

generalized modal midpoint, though with combination weights for loss functions that generally differ

from the combination weights for the functional values.

Assuming that a forecaster generates her forecasts Xt = X∗
t (θ0) according to (3.1), we aim

to determine the set of values for θ0 for which the given forecasts are optimal. Tests of forecast

optimality are commonly conducted via an unconditional moment condition obtained by interacting

an Ft-measurable (k × 1) vector of instruments ht with the first order condition of the optimal

forecast (Elliott et al., 2005; Nolde and Ziegel, 2017). The latter also arise in the rationality tests

introduced in (2.3) and (2.9). We continue in this tradition and test rationality across our general

class of central tendency measures by testing the following hypothesis:

H0 : ∃ θ0 ∈ Θ s.t. lim
T→∞

T−1/2E [ϕt,T (θ0)] = 0 ∀t ≤ T, (3.2)

where ϕt,T (θ) = ht θ
⊤


wMean VMean(Xt, Yt+1)

wMed VMed(Xt, Yt+1)

wMode VMode,δT(Xt, Yt+1)

 , for θ ∈ Θ. (3.3)

15Note that LMode,δ differs from LK
δ in equation (2.6) by a scaling factor of δ3/2. This arises from the convergence

rate presented in Theorem 2.6.
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The identification functions VMean and VMed are given in (2.2) and (2.4), and VMode,δ(x, y) =

−δ−1/2K ′ ((x− y)/δ) is an appropriately scaled version of (2.7) that guarantees asymptotic nor-

mality in Theorem 2.6 and Theorem 3.3. The limit as T → ∞ is required in (3.2) to capture the

mode through its asymptotic elicitability. Notice that ϕt,T is a triangular array, depending on t and

T , through its dependence on the bandwidth δT .

In equation (3.3), we allow for normalizations of each identification function using the scalar

weights wMean, wMed and wMode. This allows one to adjust the importance of each loss function in

order to construct tests that are robust to linear data transformations. To do so, we use the inverse

of the standard deviations of the respective identification functions in our empirical analysis, though

one could instead use equal weights, or some other choice. We define ϕ̂t,T (θ) as in equation (3.3),

but using sample-dependent weights ŵT,Mean, ŵT,Med and ŵT,Mode.

Consider the GMM objective function based on ϕ̂t,T (θ):

ST (θ) =

[
T−1/2

T∑
t=1

ϕ̂t,T (θ)

]⊤
Σ̂−1
T (θ)

[
T−1/2

T∑
t=1

ϕ̂t,T (θ)

]
, (3.4)

where Σ̂−1
T (θ) denotes an OP (1) positive definite weighting matrix, which may depend on the pa-

rameter θ. Unlike the problem in Elliott et al. (2005), the unknown parameter in our framework

(the weight vector θ) cannot be assumed to be well identified. For example, for symmetric distribu-

tions, the combination weights are completely unidentified. For distributions that exhibit only mild

asymmetry a weak identification problem arises. For asymmetric distributions where one measure is

a convex combination of the other two (a situation that arises naturally in location-scale processes)

we have partial identification of the weight vector. The distribution of economic variables may or

may not exhibit asymmetry, and so addressing this identification problem is a first-order concern.

The possibility that the true parameter θ0 is unidentified, partially identified, or weakly identified

implies that the objective function ST (θ) may be flat or almost flat in a neighborhood of θ0, ruling

out consistent estimation of θ0. Stock and Wright (2000) show that, under regularity conditions,

we can nevertheless construct asymptotically valid confidence bounds for θ0, by showing that the

objective function ST evaluated at θ0 continues to exhibit an asymptotic χ2 distribution. This
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facilitates the construction of asymptotically valid confidence bounds even in a setting where the

parameter vector may be strongly identified, weakly identified, or unidentified.16

We further impose the following regularity conditions on our process.

Assumption 3.2. (A) E
[
|εt|2+δ

]
< ∞ and E

[
||ht||2+δ|εt|2+δ

]
< ∞, (B) ŵT,Mean

P→ wMean,

ŵT,Med
P→ wMed, and ŵT,Mode

P→ wMode for some positive weights wMean, wMed and wMode; (C)

The limit of ΣT (θ0) defined in (3.8) is positive definite. (D) There exists a θ0 ∈ Θ and triangular

arrays ϕ∗t,T (θ0) and ut,T (θ0), such that

ϕt,T (θ0) = ϕ∗t,T (θ0) + ut,T (θ0), where (3.5)

(a)
{
T−1/2ϕ∗t,T (θ0),Ft+1

}
is a martingale difference array,

(b) T−1
∑T

t=1 ||ut,T (θ0)||2
P→ 0, and

∑T
t=1 E

[
||T−1/2ut,T (θ0)||2+δ

]
→ 0,

(c) T−1
∑T

t=1 ut,T (θ0)ϕt,T (θ0)
⊤ P→ 0 and T−1

∑T
t=1 E

[
ut,T (θ0)ϕt,T (θ0)

⊤]→ 0.

While conditions (A), (B), and (C) are standard, a discussion of (D) is in order. Assumption

(D) strengthens the null hypothesis in (3.2) by restricting the dependence structure of the array

ϕt,T (θ0) such that a CLT can be applied. The decomposition in equation (3.5) implies that the array

T−1/2ϕt,T (θ0) is an approximate MDA in the sense that T−1/2ϕt,T (θ0) can be decomposed into a

MDA T−1/2ϕ∗t,T (θ0) and some asymptotically vanishing array T−1/2ut,T (θ0). This decomposition is

required as the two standard assumptions—mixing and exact MDA conditions—are too restrictive

for our application. First, the assumption that
{
T−1/2ϕt(θ0),Ft+1

}
is a MDA does not hold for the

baseline case that Xt is an optimal mode forecast (see the proof of Theorem 2.6 for details). Second,

imposing mixing conditions is too weak for our case as CLTs for mixing processes generally require

finite moments of some order r > 2, which is not fulfilled for the mode case as these moments

diverge through the bandwidth parameter δT .

The intermediate case of Assumption 3.2 (D) allows to apply a CLT based on finite second

moments only, and can easily be shown to hold at the three vertices, where the forecast is the

16Alternative approaches to estimate the confidence sets under partial identification include Kleibergen (2005),
Chernozhukov et al. (2007), Beresteanu and Molinari (2008) and Chen et al. (2018) among others.
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mean, median or mode. Specifically, when Xt is a mean or median forecast (i.e. θ0 = (1, 0, 0) or

θ0 = (0, 1, 0)), set ut,T (θ0) = 0 and
{
T−1/2ϕt,T (θ0),Ft+1

}
is obviously a MDA. When Xt is the true

conditional mode of Yt+1, (i.e. θ0 = (0, 0, 1)), set

ut,T (θ0) = Et [ϕt,T (θ0)] = −ωModeδ
−1/2
T Et

[
K ′
(
εt
δT

)]
ht. (3.6)

Then, the conditions on ut,T (θ0) in Assumption 3.2 (D) are fulfilled as shown in Lemma S.1.8 in

the Supplemental Appendix.

When Xt is a convex combination of a mean and median forecast, i.e., θ0 = (ξ, 1− ξ, 0) for some

ξ ∈ [0, 1], we set ut,T (θ0) = 0 and
{
T−1/2ϕt,T (θ0),Ft+1

}
is again a MDA. When Xt is a convex

combination with non-zero weight on the mode, Assumption 3.2 (D) is difficult to verify.

Theorem 3.3 below presents the asymptotic distribution of the process T−1/2
∑T

t=1 ϕ̂t,T (θ0) at

the true parameter θ0.

Theorem 3.3. Under Assumptions 2.5, 3.2 and the null hypothesis, H0 : ∃ θ0 ∈ Θ such that

limT→∞ T−1/2E [ϕt,T (θ0)] = 0 for all t ≤ T , it holds that

T−1/2
T∑
t=1

ϕ̂t,T (θ0)
d→ N

(
0,Σ(θ0)

)
, (3.7)

where Σ(θ0) is the limit as T → ∞ of

ΣT (θ0) :=
1

T

T∑
t=1

E
[
θ210wMeanhth

⊤
t wMeanε

2
t + θ220wMedhth

⊤
t wMed

(
1{εt>0} − 1{εt<0}

)2
+ θ230wModehth

⊤
t wModeft(0)

∫
K ′(u)2du

+2θ10θ20wMeanhth
⊤
t wMedεt

(
1{εt>0} − 1{εt<0}

)]
.

(3.8)

Under the null hypothesis, Assumption 3.2 (D) implies that T−1/2ϕt,T (θ0) (and hence also

T−1/2ϕ̂t,T (θ0)) is an approximate MDA, i.e. this array is approximately (as T → ∞) uncorrelated.

Consequently, we do not need to rely on HAC covariance estimation, and can instead estimate the

asymptotic covariance matrix using the simple sample covariance matrix:
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Σ̂T (θ) =
1

T

T∑
t=1

ϕ̂t,T (θ)ϕ̂t,T (θ)
⊤. (3.9)

The next theorem shows consistency of the outer product covariance estimator, its proof is

presented in Supplemental Appendix S.1.

Theorem 3.4. Given Assumptions 2.5 and 3.2, it holds that Σ̂T (θ0)− ΣT (θ0)
P→ 0.

Corollary 3.5. Given Assumptions 2.5 and 3.2, it holds that ST (θ0)
d→ χ2

k.

Following Stock and Wright (2000), this corollary allows one to construct asymptotically valid

confidence regions for θ0 with coverage probability (1− α)% by considering the set

{
θ ∈ Θ : ST (θ) ≤ Qk(1− α)

}
, (3.10)

where Qk(1− α) denotes the (1− α) quantile of the χ2
k distribution.

Given the above results, we obtain a test for forecast rationality for a general measure of central

tendency by evaluating the GMM objective function using a dense grid of convex combination

parameters θj ∈ Θ for j = 1, . . . , J . An asymptotically valid confidence set is given by the values of

θj for which ST (θj) ≤ Qk(1−α). These values represent the centrality measures that “rationalize”

the observed sequence of forecasts and realizations, in that rationality cannot be rejected for these

measures of centrality. It is possible that the confidence set is empty, in which case we reject

rationality at the α significance level for the entire class of general centrality measures.

The power of the rationality test depends on the instrument choice. This property is shared

with many other tests in the literature (e.g., Elliott et al., 2005; Patton and Timmermann, 2007;

Schmidt et al., 2021). Good instruments span the information set of the forecaster and are not

strongly correlated with each other. Additional instruments generally improve power asymptotically

(or shrink the identified set, in the partial identification case), but can deteriorate power in finite

samples. An informative instrument, and one used as far back as Mincer and Zarnowitz (1969), is

the forecast Xt itself. In our simulations and applications we found the forecast to be a powerful

instrument. Additionally, it is guaranteed to be in the information set of the forecaster, and so is a

valid instrument.
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The forecast evaluation problem and approach considered here is related to, but distinct from,

Elliott et al. (2005). These authors consider the case that a respondent’s point forecast corresponds

to some quantile (or expectile) of her predictive distribution. They employ a parametric loss function

(“lin-lin” for quantiles, “quad-quad” for expectiles), L(Y,X; τ) with a scalar unknown parameter

(τ) characterizing the asymmetry of the loss. Elliott et al. (2005) use GMM to estimate the τ

that best describes the sequence of forecasts and realizations, and test whether forecast rationality

holds at the estimated value for τ . Economically, our approach differs from Elliott et al. (2005)

in that we consider forecasts only as measures of centrality, allowing for a wide range of such

measures, while that paper considers only a single centrality measure nested within a wide range

of asymmetric forecasts. Statistically, our approach differs as we are forced to address the feature

that our parameter may be partially, weakly, or un-identified, which precludes point estimation.

We use convex combinations of identification functions to parametrically nest the mean, the

median, and (asymptotically) the mode. Alternative approaches are possible, e.g., via the Lp norm.

Our convex combination approach has the advantage of separating the parameter of interest θ

from the bandwidth parameter δT , and further does not suffer from technical difficulties such as

bandwidth parameters in the exponent, or identification functions with singularities at the mode.

4 Simulation Study

This section studies the finite-sample performance of the methods proposed above. Section 4.1

presents simulations for the mode rationality test and Section 4.2 analyzes the test for rationality

for general measures of central tendency.

4.1 Rationality tests for mode forecasts

To evaluate the finite-sample properties of our mode rationality test, we simulate data from the

following data generating processes (DGPs). We consider two cross-sectional DGPs, one ho-

moskedastic and the other heteroskedastic, and two time-series DGPs, a simple AR(1) and an

AR(1)-GARCH(1,1). We simulate data using the following unified framework:
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Yt+1 = Z⊤
t ζ + σt+1ξt+1, where ξt+1

iid∼ SN (0, 1, γ), (4.1)

where SN (0, 1, γ) is a skewed standard Normal distribution, and Zt denotes a vector of covari-

ates (possibly including lagged values of Yt+1), ζ denotes a parameter vector and σt+1 denotes a

conditional variance process. Using this general formulation, the four cases we consider are:

(1) Homoskedastic cross-sectional data: Zt
iid∼ N

(
(1, 1,−1, 2) , diag(0, 1, 1, 0.1)

)
,

where ζ = (1, 1, 1, 1) and σt+1 = 1.

(2) Heteroskedastic cross-sectional data: As in case (1), but σt+1 = 0.5 + 1.5(t+ 1)/T .

(3) AR(1) data: Zt = Yt with ζ = 0.5 and σt+1 = 1.

(4) AR(1)-GARCH(1,1) data: As in case (3), but σ2t+1 = 0.1 + 0.8σ2t + 0.1σ2t ξ
2
t .

All the above DGPs are based on a skewed Gaussian residual distribution with skewness param-

eter γ. This choice nests the case of a standard Gaussian distribution at γ = 0, and in this case all

measures of centrality coincide. As the skewness parameter increases in magnitude, the measures

of centrality increasingly diverge.

For the general DGP in (4.1), optimal one-step ahead mode forecasts are given by

Xt = Mode(Yt+1|Ft) = Z⊤
t ζ + σt+1Mode(ξt), (4.2)

where Mode(ξt) depends on the skewness parameter γ.

We consider a range of skewness parameters, γ ∈ {0, 0.1, 0.25, 0.5}, and sample sizes

T ∈ {100, 500, 2000, 5000}. In all cases we use 10, 000 replications. To evaluate the size of our

test in finite samples, we generate optimal mode forecasts through equation (4.2) and apply the

mode forecast rationality test based on three choices of instruments: we use the instrument choices

ht,1 = 1 and ht,2 = (1, Xt) for all DGPs; for the two cross-sectional DGPs, our third choice of

instruments is ht,3 = (1, Xt, Zt,1), while for the two time-series DGPs we use ht,3 = (1, Xt, Yt−1).
17

17Notice that the choice of instruments (1, Xt, Yt) is invalid for the AR-GARCH DGP for γ = 0 as in that case Xt

and Yt are perfectly colinear. Consequently, we use the lag Yt−1 as instrument here.
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Table 1: Size of the mode rationality test in finite samples

Instrument Set 1 Instrument Set 2 Instrument Set 3

Skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5 0 0.1 0.25 0.5

Sample size
Panel A: Homoskedastic iid data

100 4.7 4.7 5.9 9.1 5.1 5.1 6.1 8.2 5.5 5.3 6.1 7.7
500 5.2 5.9 8.0 8.9 5.3 5.7 7.2 7.8 5.2 5.7 7.3 7.2
2000 5.3 6.9 8.7 7.2 5.3 6.2 7.4 6.8 5.4 6.1 6.8 6.3
5000 5.3 6.1 7.2 6.4 5.1 5.8 6.4 5.7 5.1 5.5 6.4 5.6

Panel B: Heteroskedastic data

100 5.1 5.1 6.5 9.3 5.3 5.2 6.2 8.4 5.6 5.7 6.1 7.6
500 6.0 5.9 8.4 8.2 5.7 5.5 7.6 7.4 5.6 5.9 7.2 6.8
2000 5.1 6.8 8.4 6.9 5.2 6.2 7.4 6.3 5.3 6.0 7.1 6.2
5000 5.3 7.2 9.2 6.5 5.1 6.1 7.7 6.0 4.8 5.9 7.1 5.9

Panel C: Autoregressive data

100 4.8 4.8 6.0 8.3 5.5 5.1 5.9 7.5 5.8 5.2 5.8 7.1
500 5.6 5.9 7.8 9.3 5.4 5.7 7.1 8.0 5.3 5.2 6.4 7.6
2000 5.5 6.3 8.0 6.8 5.3 5.8 7.1 6.2 5.2 5.7 6.5 5.7
5000 5.1 6.4 7.2 6.5 5.2 6.5 6.5 5.9 5.2 5.9 6.3 5.9

Panel D: AR-GARCH data

100 4.7 4.8 5.7 9.7 5.0 4.9 5.8 8.6 5.4 5.4 5.8 8.2
500 5.5 6.4 8.6 9.3 5.7 6.1 7.2 8.4 5.6 5.4 6.8 7.8
2000 5.3 6.5 8.3 6.7 4.8 5.5 7.2 6.2 5.0 5.6 6.6 6.2
5000 5.3 6.6 7.7 6.3 5.2 5.9 6.7 6.1 5.3 6.0 6.6 5.6

Notes: This table presents the empirical rejection rates (in percent) of the mode rationality test
using various sample sizes, various levels of skewness in the residual distribution, different choices of
instruments, and the four DGPs described in equation (4.1). The nominal significance level is 5%.

Table 1 presents the finite-sample sizes of the test under the different DGPs, sample sizes,

instrument choices, and skewness parameters. In all cases we use a Gaussian kernel and set the

nominal size to 5%. Results for nominal test sizes of 1% and 10% are given in Table S.1 and

Table S.2 in the Supplemental Appendix.

We find that our mode rationality test leads to finite-sample rejection rates that are generally

close to the nominal test size, across all of the different choices of DGPs, instruments, and skewness

parameters. (In the Supplemental Appendix we present similar results for different significance

levels and kernel choices.) Table 1 reveals that an increasing degree of skewness in the underly-
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Figure 1: Power study for the “bias” simulation. This figure plots the empirical rejection frequencies
against the degrees of misspecification κ for different sample sizes in the vertical panels and for the four
DGPs in the horizontal panels. The misspecification follows the design in equation (4.3) and we utilize the
instrument vector (1, Xt) and a nominal significance level of 5%.

ing conditional distribution negatively influences the tests’ performance. This is explained by the

fact that for more skewed data we choose a smaller bandwidth parameter (following the rule of

thumb described in Supplemental Appendix S.3), resulting in less efficient estimates. Consequently,

for highly skewed distributions, the mode rationality test requires larger sample sizes in order to

converge to the nominal test size.

To analyze the power of the mode forecast rationality test we use the DGPs from (4.1) and

consider two forms of sub-optimal forecasts:
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Figure 2: Power for the “noise” simulation. This figure plots the empirical rejection frequencies against
the degrees of misspecification κ for different sample sizes in the vertical panels and for the four DGPs in
the horizontal panels. The misspecification follows the design in equation (4.4) and we utilize the instrument
vector (1, Xt) and a nominal significance level of 5%.

Bias: X̃t = Xt + κσX , where σX =
√

Var(Xt) and κ ∈ (−1, 1) (4.3)

Noise: X̃t = Xt +N (0, κσ2X), where σX =
√
Var(Xt) and κ ∈ (0, 1) (4.4)

The first type of misspecification introduces a deterministic bias, where the degree of misspecifi-

cation depends on the misspecification parameter κ. We standardize the bias using the unconditional

standard deviation of the optimal forecasts,
√

Var(Xt). The second type of misspecification intro-

duces independent noise, and the magnitude of the noise is regulated through the parameter κ: for

κ = 1, the signal-to-noise ratio is one, and as κ shrinks to zero the noise vanishes.
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Figure 1 presents power plots for the “biased” forecasts and Figure 2 presents power plots

for the “noisy” forecasts. In each of the figures, we plot the rejection rate against the degree of

misspecification κ. For all plots, we use the instrument choice (1, Xt), a Gaussian kernel, and a

nominal level of 5%. Notice that for κ = 0 the figures reveal the empirical test size.

Figures 1 and 2 reveal that the proposed mode rationality test exhibits, as expected, increasing

power for an increasing degree of misspecification. Also as expected, larger sample sizes lead to

tests with greater power, although even the two smaller sample sizes exhibit reasonable power,

particularly in the case of biased forecasts. The figures also reveal that increasing degree of skewness

yields to a slight loss of power (given a fixed degree of misspecification). This is driven through the

bandwidth choice, where larger values of the (empirical) skewness result in a smaller bandwidth,

and consequently a lower test power (analogous to the bias-variance trade-off in the nonparametric

estimation literature). Overall, these results show that even though our mode rationality test

converges at a slower-than-parametric rate (approximately T 2/7), it nevertheless has considerable

power for the empirically relevant sample sizes of T ≥ 500; as e.g., in our application in Section 5.

4.2 Rationality tests for an unknown measure of central tendency

In this section we examine the small sample behavior of the asymptotic confidence sets for the

measures of central tendency, described in Section 3. As in the previous section, we consider the

four DGPs described in and after equation (4.1) and the same varying sample sizes T , skewness

parameters γ, and instruments ht. We generate optimal one-step ahead forecasts for the mean,

median and mode as the true conditional mean, median and mode of Yt+1 given Ft:

XMean
t = ζ⊤Zt + σt+1Mean(ξt+1), (4.5)

XMed
t = ζ⊤Zt + σt+1Median(ξt+1), (4.6)

XMode
t = ζ⊤Zt + σt+1Mode(ξt+1). (4.7)

We use the notation Xt =
(
XMean

t , XMed
t , XMode

t

)⊤
and consider convex combinations of these

functionals Xt = X⊤
t β, using the following specifications: (a) Mean: β = (1, 0, 0)⊤, (b) Mode: β =
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(0, 0, 1)⊤, (c) Median: β = (0, 1, 0)⊤, (d) Mean-Mode: β = (1/2, 0, 1/2)⊤, (e) Mean-Median: β =

(1/2, 1/2, 0)⊤, (f) Median-Mode: β = (0, 1/2, 1/2)⊤, (g) Mean-Median-Mode: β = (1/3, 1/3, 1/3)⊤.

For the interpretation of simulation results below, recall that the functional identified by a convex

combination of loss functions for the mean, median and the mode (with weights θ) is some convex

combination of the mean, median and mode forecasts, but with possibly different combination

weights, β. For example, an equal-weighted combination of the mean and the mode forecasts is

not necessarily identified by an equal-weighted combination of the mean and mode loss functions,

rather it will generally be some other weighted combination of these functions. This makes directly

interpreting values of θ difficult, except, of course, when all but one of its elements are equal to

zero.

Note also that in some applications, for any given forecast combination weight vector β0, there

may be infinitely many other forecast combination weights β̃, each with a corresponding loss function

combination weight θ̃, that lead to the same forecast. For example, in the right-skewed DGP used

here, the three centrality measures are ordered Mode<Median<Mean, and given the functional

forms of the optimal forecasts for this DGP presented in equations (4.5)-(4.7), this implies that when

the forecast is the median, and so β0 = (0, 1, 0)⊤, any weight vector β̃ =
(
β̃Mean, β̃Med, β̃Mode

)⊤
∈ Θ

that satisfies

β̃Mean =
Median(ξt+1)−Mode(ξt+1)

Mean(ξt+1)−Median(ξt+1)
· β̃Mode (4.8)

will lead to a combination forecast that coincides with the median forecast. Equation (4.8) defines

a line through the unit simplex, starting at the median vertex and ending somewhere on the edge

connecting the mean and mode vertices.18 This again highlights the identification problems that

can arise in our analysis of forecasts of measures of central tendency. In contrast, the mean and

mode centrality measures in this DGP each have a unique identification function combination weight

vector, equal to the associated forecast combination weight vector.

18When the DGP is conditionally location-scale, one of the three centrality measures can always be expressed as
a (constant) convex combination of the other two. In this DGP, this is the median, but in other applications it
may be any of the three measures. When the conditional distribution exhibits variation in higher-order moments or
other “shape” parameters, this restriction will generally not hold, and the variation may or may not be sufficient to
separately identify the three centrality measures.

27



Analyzing the coverage properties of this method requires knowledge of the set of identification

function weights θ corresponding to the forecast weights β used to construct the forecast. In

general, θ is not known in closed-form; we use one thousand draws from each DGP and skewness

level to numerically obtain the identification function weights corresponding to each set of forecast

combination weights.

Table 2 shows the empirical coverage rates for the confidence sets of centrality measures for the

seven simulated convex combinations of functionals, different sample sizes, skewness parameters,

and DGPs. When the set of identification function weights corresponding to a particular forecast

combination weight vector is not a singleton, we choose the mid-point of the line that defines this

set.19 In the left panel of Table 2 the data is unimodal and symmetric, and the measures of central

tendency coincide, making all seven forecasts identical. The test outcomes, however, can differ as

each row uses a different set of moment conditions to evaluate forecast rationality. We see that in

all cases the coverage rates are very close to the nominal 90% level. In the right panel of Table 2 the

data is asymmetric and the measures of central tendency differ. The coverage rates remain close to

the nominal 90% level, especially for larger sample sizes.

Figure 3 illustrates the average rejection (coverage) rates based on 90% confidence sets for the

central tendency measures across a richer set of combination weights. (We omit the mean-median

combination forecast from this figure in the interest of space.) This figure uses the AR-GARCH

DGP; equivalent results for the homoskedastic cross-sectional DGP are shown in Figure S.2 in the

Supplemental Appendix. Each point in the triangles corresponds to a tested centrality measure, i.e.

to one value of θ, and for each point we compute how often it is contained in the 90% confidence

set. We depict a coverage rate between 85% and 100% by a black point, a coverage rate between

50% and 85% by a grey point and anything below 50% by a white point. We use a cut-off of 85%

to include points with coverage rates “close” to the nominal rate of 90%. We use a sample size

T = 2000, instruments ht = (1, Xt) and a Gaussian kernel. The upper panel presents results for

the DGPs with zero skewness and the lower panel considers skewness of γ = 0.5.

19For this DGP, θ is a singleton only when the forecast is the mean or the mode. Table S.3 and Table S.4 in the
Supplemental Appendix show finite-sample rejection rates for three values of θ: the end-points of the line defining the
set, and the mid-point reported in Table 2. In all cases we find very similar results for all three points.
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Table 2: Coverage of the central tendency confidence sets in finite samples

Symmetric data Skewed data

Sample size 100 500 2000 5000 100 500 2000 5000

Centrality measure
Panel A: Homoskedastic iid data

Mean 89.3 90.0 89.8 89.2 89.4 90.2 89.6 90.2
Mode 90.1 89.1 89.8 90.1 85.7 86.0 87.6 88.8
Median 89.5 89.0 89.6 89.6 90.3 91.9 91.4 91.2
Mean-Mode 90.1 89.0 89.4 90.0 90.7 92.2 92.0 91.9
Mean-Median 89.8 89.6 89.6 89.5 90.4 91.1 90.3 90.4
Median-Mode 89.9 89.0 89.6 89.8 90.1 90.9 90.7 91.4
Mean-Median-Mode 90.1 88.9 89.5 89.8 90.9 92.3 92.3 91.8

Panel B: Heteroskedastic data

Mean 89.2 89.9 89.6 90.3 88.7 89.6 89.4 89.5
Mode 89.5 89.5 89.9 89.8 85.8 86.4 87.9 88.7
Median 89.0 89.8 90.1 89.9 90.0 90.9 90.8 90.7
Mean-Mode 89.2 89.5 89.8 90.0 90.0 91.1 91.0 90.9
Mean-Median 89.2 89.6 90.0 90.5 89.3 90.2 89.7 90.0
Median-Mode 89.3 89.4 89.8 90.0 89.0 90.0 90.3 90.8
Mean-Median-Mode 89.2 89.7 89.9 90.1 90.3 91.2 91.1 91.3

Panel C: Autoregressive data

Mean 89.2 90.1 89.9 90.3 89.4 89.4 89.8 90.3
Mode 89.2 89.8 89.3 89.9 85.4 86.2 88.0 88.7
Median 89.0 89.8 89.1 89.7 90.4 90.7 92.3 90.7
Mean-Mode 88.9 89.9 89.2 89.7 90.5 91.6 92.5 91.3
Mean-Median 88.8 90.2 89.3 89.9 90.0 89.8 91.2 89.7
Median-Mode 89.1 89.9 89.1 89.9 89.4 90.5 91.5 91.1
Mean-Median-Mode 89.0 89.7 89.2 89.6 90.7 91.7 92.7 91.7

Panel D: AR-GARCH data

Mean 89.2 90.4 89.9 90.0 89.5 89.9 89.9 89.8
Mode 90.0 89.0 89.6 89.9 85.9 86.1 88.4 88.9
Median 88.8 89.4 89.3 89.5 90.1 91.2 91.3 90.8
Mean-Mode 89.6 89.1 89.6 89.6 90.3 91.3 92.3 91.3
Mean-Median 88.7 89.7 89.3 89.4 90.1 90.7 90.8 89.9
Median-Mode 90.1 89.0 89.5 89.7 89.4 90.6 92.0 91.1
Mean-Median-Mode 89.6 89.2 89.3 89.7 90.4 91.7 92.3 91.2

Notes: This table presents empirical coverage rates (in percent) of nominal 90% confidence
sets for the forecasts of central tendency. We report the results for symmetric and skewed
data (γ = 0 or 0.5), for various sample sizes and the four DGPs described in equation
(4.1). As instruments we use ht = (1, Xt).
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Figure 3: Coverage rates of the confidence regions for central tendency measures

(a) AR-GARCH DGP with skewness γ = 0
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(b) AR-GARCH DGP with skewness γ = 0.5
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This figure shows coverage rates of 90% confidence regions for the measures of central tendency for the
AR-GARCH DGP. The true forecasted functional is given in the text above each triangle. The circles
that comprise each triangle correspond to specific convex combinations of the vertices, which are the mean,
median and mode functionals. The color of the dots indicates how often a specific point is contained in the
90% confidence regions. The upper panel shows results for the symmetric DGP, where all central tendency
measures are equal. The lower panel uses a skewed DGP, with γ = 0.5. We use a red circle or a red line to
indicate the (set of) central tendency measure(s) that correspond(s) to the forecast. We consider the sample
size T = 2000, the instruments ht = (1, Xt) and use a Gaussian kernel.

Panel (a) of Figure 3 uses a unimodal DGP with zero skewness, and so all measures of central

tendency and all convex combinations thereof coincide. This implies that all three of these triangles

are identical; we include them here for ease of comparison with the lower panel, where the optimal

forecasts differ. (The points inside each triangle need not be identical, as they represent tests for

optimality of different centrality measures.) Under symmetry and unimodality, every point in the
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triangle should be contained in the confidence set with probability 90%, and the figure is consistent

with this, thus confirming the procedure’s coverage level in this simulation design.

Panel (b) of Figure 3 considers nonzero skewness, and the measures of central tendency differ. In

the two point-identified cases (mean and mode), we use a red circle to highlight the single centrality

measure that corresponds to the forecast. The case for the median is only partially identified and

we use a red line to indicate the set of centrality measures that correspond to the forecast.

The left plot of Panel (b) considers optimal mean forecasts and exhibits the expected behavior:

the mean, and convex combinations close to the mean, are usually contained in the confidence set,

whereas points far away are usually excluded. Note that the mode rationality test has sufficient

power, in this setting, against a true mean forecast to consistently reject it. A similar, but more

pronounced, picture can be observed for optimal mode forecasts in the right plot.

The middle plot in Panel (b) of Figure 3 reveals, as expected, that the optimal median forecast

is generally not rejected when testing using the identification function for the median (revealed by

the dot at the median vertex being black). This plot further shows that the convex combinations of

mean, median and mode that coincide with the median (see equation (4.8), represented in Figure 3

by a red line) are also included in the confidence set, as are convex combinations that are close to

these, leading to a region of black or grey dots around the red line.

5 Evaluating Survey Forecasts of Individual Income

We apply our proposed tests to survey responses to the Federal Reserve Bank of New York’s Sur-

vey of Consumer Expectations.20,21 We focus on the Labor Market Survey component, which is

conducted each March, July, and November, and which asks participants a variety of questions,

20Source: Survey of Consumer Expectations,© 2013-2019 Federal Reserve Bank of New York (FRBNY). The SCE
data are available without charge at http://www.newyorkfed.org/microeconomics/SCE and may be used subject to
license terms posted there. FRBNY disclaims any responsibility or legal liability for this analysis and interpretation
of Survey of Consumer Expectations data.

21In Supplemental Appendix S.8 we consider two other empirical applications. The first is to the “Greenbook”
forecasts of US GDP growth produced by economists at the Board of Governors of the Federal Reserve. In that
application we find that the Greenbook forecasts are rational mean forecasts, but not mode or median forecasts. Our
second application is to random walk forecasts of exchange rates, in the spirit of Meese and Rogoff (1983). We find
random walk forecasts to be rational mean forecasts for three different exchange rates, while the mode and median
are rejected for two of the three exchange rates.
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Table 3: Evaluating income survey forecasts

Centrality measure

vector ht Mean Median Mode

1 0.008 0.401 0.737
1, X 0.014 0.000 0.768
1, X, lagged income 0.031 0.000 0.970
1, X, government sector 0.064 0.000 0.949
1, X, private sector 0.047 0.000 0.898
1, X, job offers 0.006 0.000 0.913

Notes: This table presents p-values from tests of rationality of individual income forecasts from the
New York Federal Reserve’s Survey of Consumer Expectations. The columns present test results when
interpreting the point forecasts as forecasts of the mean, median or mode. The rows present results for
different choices of instrument vectors ht used in the test: 1 is the constant, X is the forecast, “lagged
income” is the respondent’s income at the time of the forecast, “government sector” and “private sector”
are indicators for the self-reported industry in which the respondent works, “job offers” is an indicator
for whether the respondent received any job offers in the previous four months.

including about their current earnings and their beliefs about their earnings in four months (i.e.,

the date of the next survey). Using adjacent surveys over the period March 2015 to March 2018, we

obtain a sample of 3,916 pairs of forecasts (Xt) and realizations (Yt+1).
22,23 In testing the rational-

ity of these forecasts we initially assume that all participants report the same, unknown, measure

of centrality as their forecast. In the next subsection, we explore potential heterogeneity in the

measure of centrality used by different respondents.

Table 3 presents the results of rationality tests for three measures of central tendency, and for a

variety of instrument sets. The first instrument set includes just a constant, and the rationality test

simply tests whether the forecast errors have unconditional mean, median or mode, respectively, of

zero. The other instrument sets additionally include the forecast (Xt) itself, and other information

about the respondent collected in the survey. We consider the respondent’s income at the time of

making the forecast, indicators for the respondent’s type of employer,24 and whether the respondent

22We drop observations that include forecasts or realizations of annualized income below $1,000 or above $1 million,
which represent less than 1% of the initial sample. We also drop observations where the ratio of the realization to the
forecast, or its inverse, is between 9 and 13, to avoid our results being affected by misplaced decimal points or by the
failure to report annualized income (leading to proportional errors of around 10 to 12 respectively).

23Most respondents in our sample appear just once: the 3,916 forecast-realization pairs come from 2,628 unique
individuals. Our econometric approach does not require repeated samples and so this causes no difficulty, and our
results are qualitatively unchanged if we use only the first forecast-realization pair from each respondent.

24The survey includes the categories government, private (for-profit), non-profit, family business, and “other.” The
first two categories dominate the responses and so we only consider indicators for those.
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Figure 4: Confidence sets for income survey forecasts. This figure shows the measures of centrality
that “rationalize” the New York Federal Reserve income survey forecasts. The circles that comprise each the
triangle correspond to specific convex combinations of the vertices, which are the mean, median and mode
functionals. Black dots indicate that the measure is inside the Stock-Wright 90% confidence set, grey dots
indicate that the measure is inside the 95% confidence set, and white dots indicate that rationality for that
measure of centrality can be rejected at the 5% level. The left panel uses only a constant as the instrument;
the right panel uses a constant and the forecast.

received any job offers in the past four months.

The first row of Table 3 shows that when only a constant is used, rationality of the survey

forecasts can be rejected for the mean, but cannot be rejected for the other two measures of central

tendency. When we additionally include the forecast as an instrument, we can reject rationality as

mean or median forecasts, but we cannot reject rational mode forecasts. We are similarly able to

reject rationality as mean and median forecasts when we include additional covariates, but find no

evidence against rationality when these forecasts are interpreted as mode forecasts.

Figure 4 shows the convex combinations of mean, median and mode forecasts that lie in the

confidence set constructed using the methods for weakly-identified GMM estimation in Stock and

Wright (2000).25 In the left panel we see that when using only a constant as the instrument, we are

able to reject rationality for the mean, and for measures of centrality “close” to the mean, but we

are unable to reject rationality for the median or mode and measures in a neighborhood of these.

This is consistent with the entries in the first row of Table 3, which correspond directly to the three

vertices in Figure 4. In the right panel of Figure 4, when the instrument set includes a constant and

25The interpretation of this figure is slightly different to that of Figure 3: in that figure the shade of each dot
indicated the proportion of times, across simulations, that point was included in the confidence set, allowing us to
study the finite-sample coverage rates of our procedure. In Figure 4 the shade of each dot indicates whether, for this
sample, that point is included in the 90% confidence set, the 95% confidence set, or is outside the 95% confidence set,
the latter indicating a rejection of rationality at the 5% significance level.
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the forecast, we see that only the mode and centrality measures very close to the mode are included

in the confidence set; all other forecasts can be rejected at the 5% level. Overall, we conclude

that the responses to the New York Fed’s income survey, taken on aggregate, are consistent with

rationality when interpreted as mode forecasts, but not when interpreted as forecasts of the mean,

median, or convex combinations of these measures.

When interpreting the results in Figure 4, and similar figures below, it is worth keeping in

mind that the power to detect sub-optimal forecasts is not uniform across values of θ: sampling

variation in the mean and median vanishes at rate T−1/2, while for the mode it vanishes only at rate

approximately T−2/7 (see Theorem 2.9). This implies that for comparably sub-optimal forecasts,

power will be lower at the mode vertex than at the mean or median vertices. This unavoidable

variation in power means that the information conveyed by inclusion in the confidence set differs

across values of θ.26

The analysis of individual income survey forecasts above used 3, 916 pairs of forecasts and

realizations from a total of 2, 628 unique survey respondents. This naturally raises the question

of whether there is heterogeneity in the measure of centrality used by different respondents.27

Given that our survey respondents generally only appear once or twice in our sample, allowing

for arbitrary heterogeneity is not empirically feasible. In our analysis below we instead stratify

survey respondents by observable characteristics and test forecast rationality separately for each

subsample. Stratifying the sample may reduce power, due to the smaller sample sizes available,

or it may reveal irrationality that is undetected in a joint analysis, for example if one subsample

deviates strongly from rationality while the remaining subsamples are rational.

5.1 Forecast rationality and income level

Firstly, we consider stratifying our sample by income. This is motivated by the possibility that,

in addition to a different level of future income, low-income respondents face a different shape

26Stock and Wright (2000) suggest caution when interpreting a small but nonempty confidence set, as such an
outcome is consistent with both a correctly-specified model (a rational forecast, in our case) estimated precisely and
also with a misspecified model (irrational forecast) facing low power. These two interpretations clearly have very
different economic implications, but cannot be disentangled empirically. Given the lower power at the mode vertex,
the latter explanation may be relevant here.

27Heterogeneity in the underlying predictive distributions, Ft, is accommodated by our approach.
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Figure 5: Confidence sets for income survey forecasts, stratified by income. This figure shows
the measures of centrality that “rationalize” the New York Federal Reserve income survey forecasts, for low-,
middle- and high-income respondents. Groups are formed using terciles of lagged reported income. Black dots
indicate that the measure is inside the Stock-Wright 90% confidence set, grey dots indicate that the measure
is inside the 95% confidence set, and white dots indicate that rationality for that measure of centrality can
be rejected at the 5% level. All panels use a constant and the forecast as test instruments.

of future income, compared with high-income respondents. This analysis may also reveal that

respondents at different income levels use different centrality measures to summarize their predictive

distribution. Figure 5 presents confidence sets for forecast rationality of measures of centrality

for low-, middle-, and high-income respondents based on terciles of the distribution of reported

income.28 We see that for low-income respondents, only the mode and measures very close to the

mode are contained in the confidence set. For middle- and high-income respondents, the mode,

mean, and centrality measures “close” to the mean and mode are included in the confidence set.

This finding is consistent with all respondents using the mode, and only the distribution for low-

income respondents allowing for separate identification of the mode and the mean. Specifically,

if the conditional distribution of future earnings is more skewed for low-income respondents than

for high-income respondents, then the measures of centrality are better separated for the former,

which allows for better identification of the functional used by survey respondents. As income is

commonly correlated with numeracy and education levels, rejecting mean- and median-rationality

for lower-income respondents is consistent with work in the experimental literature: Kröger and

Pierrot (2019a) observe high-numeracy individuals to be better at mean and median forecasting.29

28Qualitatively similar results are found if we stratify the sample into just two groups based on median income.
29Given the panel structure of our data, the target variable may be subject to common unpredictable shocks,

leading to forecast errors correlated across individuals within the same wave. In Supplemental Appendix Section S.6,
we repeat all of our analyses using a covariance estimator clustered at the time level and find very similar results.
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Figure 6: Confidence sets for income survey forecasts, stratified by age and income. This figure
shows the measures of centrality that “rationalize” the New York Federal Reserve income survey forecasts,
for low- and high-income respondents who are below or above the age of 40. Income groups are formed using
the median lagged reported income. Black dots indicate that the measure is inside the Stock-Wright 90%
confidence set, grey dots indicate that the measure is inside the 95% confidence set, and white dots indicate
that rationality for that measure of centrality can be rejected at the 5% level. All panels use a constant and
the forecast as test instruments.

5.2 Forecast rationality and age

We next stratify the sample both by income and by age, motivated by the possibility that younger

respondents have less experience in the workforce and may be less able to predict their future

earnings. The latest versions of the FRBNY survey contain a field for whether the respondent is

above or below 40 years of age, while earlier versions asked for the respondent’s specific age. To

maximize coverage, we adopt the age 40 split contained in the later versions of the survey. We

have 2,457 (1,332) respondents over (under) that age. We use the median income within each age

category to define “low” and “high” income groups.

Figure 6 presents the striking result that forecasts from younger low-income workers cannot be

rationalized using any measure of centrality; all points lie outside the 95% confidence set. Forecasts

from older low-income respondents can be rationalized as only mode forecasts. In contrast, forecasts
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from both young and old high-income workers can be rationalized for a variety of measures of

centrality.30 This figure suggests that younger low-income workers make systematic errors when

attempting to predict their income in the coming four months. Asymmetric loss functions, such

as those used in Elliott et al. (2005) (EKT), have the potential to explain these forecasts, and we

consider this in Section 5.6 below. Foreshadowing those results, we also reject rationality of forecasts

from younger low-income respondents in the EKT framework.

5.3 Forecast rationality and job stability

An important component of income uncertainty is job search and new job offers, see Mueller and

Spinnewijn (2022) for a recent review of survey expectations in the job search literature. Respon-

dents naturally have different prospects of changing jobs, and these changes impact their predictive

distributions of income. To proxy for the likelihood of changing jobs, we stratify respondents based

on whether they reported receiving at least one job offer over the previous four months.31

Figure 7 reveals that forecasts from low-income respondents who reported receiving a job offer in

the past four months can only be rationalized as mode forecasts; rationality for all other centrality

measures is rejected. We find that respondents who did not receive a job offer, and high-income

respondents who did, provide forecasts that can be rationalized as the mean, mode, and combina-

tions thereof. These results reveal that low-income respondents with more job uncertainty differ

meaningfully from the other three subgroups.

5.4 Forecast rationality and survey experience

As economic agents gather experience, their actions and expectations change, see Van Nieuwerburgh

and Veldkamp (2006) and Malmendier and Nagel (2011) for example. In recent work, Kim and

Binder (2023) show that this effect is true in economic surveys as well: forecasts of inflation show

30Note that a large confidence set for θ does not imply that the respondents are “more rational” than if the confident
set were small; a respondent can be fully rational at just a single value of θ, and if the predictive distribution is
sufficiently skewed then the confidence set will, in the limit, contain just that value of θ. A large confidence set may
reflect a predictive distribution that does not allow for the identification of a single value of θ, or low finite-sample
power.

31We find very similar results when we stratify respondents using their estimated probability of receiving a job offer
in the next four months, or by their estimated probability of staying in the same job for the next four months.
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Figure 7: Confidence sets for income survey forecasts, stratified by job offer status and income.
This figure shows the measures of centrality that “rationalize” the New York Federal Reserve income survey
forecasts, for low- and high-income respondents that received a job offer or not. Groups are formed using the
median lagged reported income, and whether or not the respondent reported receiving at least one job offer
in the past four months. Black dots indicate that the measure is inside the Stock-Wright 90% confidence set,
grey dots indicate that the measure is inside the 95% confidence set, and white dots indicate that rationality
for that measure of centrality can be rejected at the 5% level. All panels use a constant and the forecast as
test instruments.

less uncertainty as respondents garner experience responding to the survey. We next investigate

whether having survey experience leads to more rational forecasts. The FRBNY survey includes

participants for a maximum of twelve months, and within that period they are asked to predict

future income and report current income three times, providing us with up to two matched pairs

of forecasts and realizations for each respondent. We have a total of 1,288 respondents with two

matched pairs, and we study the rationality of the first and second of these forecasts separately.

Figure 8 reveals a stark difference in the impact of the round of elicitation between low- and high-

income respondents. Forecasts from low-income respondents can be rationalized as mode forecasts,

and the results change only slightly from the first to the second round: in the first round some

“near mode” functionals are also rationalizable, and in the second round the mode functional is

only rationalizable at the 95% significance level. For high-income respondents, in contrast, only
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Figure 8: Confidence sets for income survey forecasts, stratified by elicitation round and
income. This figure shows the measures of centrality that “rationalize” the New York Federal Reserve
income survey forecasts, for low- and high-income respondents in their first and second panel round. Black
dots indicate that the measure is inside the Stock-Wright 90% confidence set, grey dots indicate that the
measure is inside the 95% confidence set, and white dots indicate that rationality for that measure of centrality
can be rejected at the 5% level. All panels use a constant and the forecast as test instruments.

the mode and mean functionals (and convex combinations thereof) are rationalizable in the first

round, while in the second round, four months later, all functionals are rationalizable. Assuming

that the true conditional distributions of future income are unaffected by survey participation,

and from the second round results we can infer these are (approximately) symmetric, this suggests

that high-income respondents’ forecasts are more accurate in the second round, and as a result

can be (correctly) rationalized via more functionals.32 Our results for high-income respondents are

consistent with the findings of Kim and Binder (2023) for inflation forecasts, while the similarity

across survey rounds for low-income respondents differs from that study.

32Recall that a large confidence set does not imply “more rational,” merely that the forecast is rationalizable by a
wider variety of measures of centrality.
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Figure 9: Confidence sets for income survey forecasts, stratified by forecast error size and
income. This figure shows the measures of centrality that “rationalize” the New York Federal Reserve
income survey forecasts, for low- and high-income respondents with small and large past forecast errors.
Black dots indicate that the measure is inside the Stock-Wright 90% confidence set, grey dots indicate that
the measure is inside the 95% confidence set, and white dots indicate that rationality for that measure of
centrality can be rejected at the 5% level. All panels use a constant and the forecast as test instruments.

5.5 Forecast rationality and past forecast accuracy

Finally, we investigate the relationship between past forecast accuracy and the rationality of sub-

sequent forecasts. D’Acunto et al. (2019) find absolute forecast errors to be negatively correlated

with cognitive ability measures for inflation expectations, which may suggest that respondents with

larger past forecast errors are more likely to issue irrational forecasts. In contrast, Van Nieuwer-

burgh and Veldkamp (2006) propose that economic agents learn more about the economy when

more signals are available, and a large forecast error may signal to the respondent that they need to

pay more attention to their forecast. We address this question using the set of 1,288 respondents to

the FRBNY survey for which we have two matched pairs of predictions and realizations. We classify

respondents as having “small” or “large” past forecast errors using the cross-respondent median of

absolute percentage forecast errors in the first round as a cutoff. In addition to the (relative) size

of their past forecast errors, we continue to stratify by income.
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Figure 9 shows that respondents who had a small forecast error in the first round provide second-

round forecasts that can be rationalized using many different measures of centrality, and there are

few differences across low- and high-income respondents: for low-income respondents, only the

mean leads to a rejection, while for high-income respondents the median and measures between the

median and the mode are rejected. For respondents with a large forecast error in the first round,

the rationality test results are starkly different for low and high income respondents: high-income

respondents can be rationalized using any measure of centrality, while low-income respondents can

be rationalized only as mean, or near-mean, forecasters, but only at the 95% confidence level; at the

90% confidence level rationality is rejected for all centrality measures. An alternative interpretation

of Figure 9 is that high-income respondents produce forecasts that are rationalizable for almost

all measures of centrality, regardless of past forecast accuracy, while the rationality of low-income

respondents’ forecasts varies greatly with past forecast errors: those with large past forecast errors

are not rationalizable as any measure of centrality at the 90% confidence level, while those with

small forecast errors are rationalizable as almost any measure of centrality.

5.6 Irrational or optimistic?

The premise of the rationality test proposed in this paper is that survey respondents use a measure

of central tendency when providing a point forecast but the specific centrality measure used is

unknown. An alternative framework is to model the respondent as reporting either a centrality

measure or some other functional of their predictive distribution. For example, rather than using

the median they may use some other quantile, capturing optimism or pessimism. Elliott et al.

(2005) (EKT) consider such a case, and model respondents as using either “lin-lin” loss, which

elicits a quantile of the predictive distribution, or “quad-quad” loss, which elicits an expectile of

the predictive distribution. In both cases, the loss function contains an asymmetry parameter, and

the special case of symmetry corresponds to the respondent using the median or the mean.

Table 4 presents tests of rationality in the EKT framework, as well as the results for the three

measures of centrality considered in this paper. These are presented for the full sample, the three

income subsamples, and the 2 × 2 stratifications based on age and income. Results for the other
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Table 4: Summary of p-values for rationality tests in different samples

n Mean Median Mode Quantiles Expectiles

Full sample 3916 0.01 0.00 0.77 0.00 [0.61, 0.64] 0.01 [0.49, 0.56]

Low income 1263 0.03 0.00 0.89 0.00 [0.56, 0.61] 0.01 [0.45, 0.57]
Middle income 1263 0.13 0.00 0.92 0.00 [0.62, 0.66] 0.06 [0.40, 0.54]
High income 1263 0.15 0.02 0.46 0.05 [0.62, 0.67] 0.06 [0.47, 0.57]

Under 40, Low income 665 0.00 0.00 0.00 0.00 [0.56, 0.62] 0.00 [0.63, 0.80]
Over 40, Low income 1236 0.05 0.00 0.61 0.00 [0.59, 0.64] 0.02 [0.47, 0.59]
Under 40, High income 667 0.35 0.03 0.83 0.01 [0.61, 0.68] 0.15 [0.42, 0.57]
Over 40, High income 1221 0.15 0.09 0.98 0.26 [0.62, 0.67] 0.05 [0.44, 0.56]

Notes: This table presents the sample size and p-values from tests of rationality when interpreting the
point forecasts as forecasts of the mean, median, or mode. The last two panels present p-values from
tests of rationality when interpreting the point forecasts as quantiles or expectiles following Elliott et al.
(2005), as well as 90% confidence intervals for the asymmetry parameter, given in square brackets.

stratifications considered above are presented in Supplementary Section S.7. As in our previous

analysis, we use a constant and the forecast as instruments for the EKT tests.

For the full sample of respondents, in the top line of Table 4, we see that rationality is rejected in

the EKT framework. When interpreted as a quantile forecast, the respondents’ estimated quantile

90% confidence interval is 0.61 to 0.64, indicating optimism, but the p-value for the test of rationality

is less than 0.005, rejecting rationality.33 When interpreted as an expectile forecast, the shape

parameter straddles 0.5 (the case of symmetry, where the expectile equals the mean) but the test

again rejects rationality. The only functional for which rationality is not rejected is the mode, using

the new mode forecast rationality test proposed in this paper.

The results of the rationality tests stratified by income, presented in the second panel of Table

4, show that middle- and high-income respondents can be rationalized as expectile forecasters,

and in both cases the confidence interval for the estimated shape parameter includes the point of

symmetry, consistent when the mean functional not being rejected for these subsamples. For low-

income respondents, we see that allowing for optimism or pessimism through the EKT framework

does not rationalize these forecasts: the p-values of the EKT rationality tests for these cases are

both less than or equal to 0.01.

33The estimated shape parameter is interpretable as the one that makes the observed forecasts as close as possible
to rational, and the corresponding p-value determines whether these forecasts are consistent or inconsistent with
rationality.
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Finally, we stratify survey respondents by both age and income, and present the results in the

lower panel of Table 4. Recall that above we found that the younger, low-income subsample could

not be rationalized as any measure of centrality. When using the EKT framework, we find that

the estimated shape parameters for the lin-lin and quad-quad loss functions are both greater than

0.5, the point of symmetry, indicating optimistic forecasts. However the p-values in both cases are

less than 0.005, strongly rejecting rationality. Thus, forecasts from younger low-income respondents

cannot be rationalized as centrality measures, nor as quantiles or expectiles.

6 Conclusion

Reasonable people can interpret a request for their prediction of a random variable in a variety

of ways. Some, including perhaps most economists, will report their expectation of the value of

the variable (i.e., the mean of their predictive distribution), others might report the value such

that the observed outcome is equally likely to be above or below it (i.e., the median), and others

may report the value most likely to be observed (i.e, the mode). Still others might solve a loss

minimization problem and report a forecast that is not a measure of central tendency. Economic

surveys generally request a point forecast, despite calls for surveys to solicit distributional forecasts,

see Manski (2004) for example, and the specific type of point forecast (mean, median, etc.) to be

reported is generally not made explicit in the survey.

This paper proposes new methods to test the rationality of forecasts of some unknown measure

of central tendency. Similar to Elliott et al. (2005), we propose a testing framework that nests the

mean forecast as a special case, but unlike that paper we allow for alternative forecasts within a

general class of measures of central tendency, rather than measures that represent other aspects

of the predictive distribution (such as non-central quantiles or expectiles). We consider a class of

central tendency measures that nests convex combinations of the mean, median and mode, and

we overcome an inherent identification problem that arises using the methods of Stock and Wright

(2000).

As a building block for the above test, we also present new tests for the rationality of mode

forecasts. Some recent work (e.g., Knüppel and Schultefrankenfeld, 2012; Reifschneider and Tulip,
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2019) suggests that point forecasts from central banks should be interpreted as mode rather than

mean forecasts, and experimental studies (e.g., Peterson and Miller, 1964; Kröger and Pierrot,

2019b) report that participants are more likely to use the mode to summarize their predictive

distribution than other measures of central tendency. While mode regression has received some

attention in the recent literature (Kemp and Silva, 2012 and Kemp et al., 2020), tests for mode

forecast rationality similar to those available for the mean and median (e.g., Mincer and Zarnowitz,

1969 and Gaglianone et al., 2011) are lacking. Direct analogs of existing tests are infeasible because

the mode is not elicitable (Heinrich, 2014). We introduce the concept of asymptotic elicitability

and show it applies to the mode by considering a generalized modal midpoint with asymptotically

vanishing length. We then present results that allow for tests similar to the famous Mincer-Zarnowitz

regression for mean forecasts.

We apply our tests to individual income expectation survey data collected by the Federal Reserve

Bank of New York. We reject forecast rationality when interpreting responses as mean or median

forecasts, however we cannot reject rationality when interpreting them as mode forecasts. We

also find evidence of heterogeneity across respondents: for example, forecasts from younger, low-

income respondents are not rationalizable using any measure of centrality, while forecasts from high-

income respondents, regardless of their age, are rationalizable for many, though not all, measures

of centrality. Further, we find that the behavior of high-income survey participants changes as they

gain experience in the survey, consistent with the learning suggested in Kim and Binder (2023).

Previous analyses of economic surveys have typically assumed that responses are mean forecasts,

and deviations from that benchmark have motivated learning and attention models which can

account for such irrationality (e.g., Bordalo et al., 2020; Coibion and Gorodnichenko, 2015; Kohlhas

and Walther, 2021). This paper proposes an intriguingly simple alternative to mean rationality,

and one which is supported by our empirical work: point forecasts may not reflect the statistical

average, but simply the most likely value, the mode.
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A Proofs

Proof of Theorem 2.4. For the proof of statement (a), let Y ∼ P ∈ P with density f , define

K̃δ(e) =
1
δK
(
e
δ

)
and introduce the notation L̄K

δ (x, P ) = EY∼P

[
LK
δ (x, Y )

]
. Then, it holds that

L̄K
δ (x, P ) = −

∫
1

δ
K

(
x− y

δ

)
f(y) dy = −

∫
K̃δ (x− y) f(y) dy = −(f ∗ K̃δ)(x),

where f ∗ K̃δ denotes the convolution of the functions f and K̃δ. Ibragimov (1956) shows that

for any log-concave density, its convolution with any other unimodal distribution function is again

unimodal.34 Thus, L̄K
δ (x, P ) exhibits a unique minima which shows that ΓK

δ is well-defined by (2.6).

We continue with statement (b) and show that Γδ(P ) → Mode(P ) for all P ∈ P. Notice that

L̄K
δ (x, P ) = −

∫
1

δ
K

(
x− y

δ

)
f(y) dy = −

∫
f(x+ uδ)K (u) du = −

∫
f(x+ uδ) dK(u), (A.1)

by applying integration by substitution and by interpreting the kernel K(·) as the density of the

probability measure K. It holds that

sup
x∈R

∣∣L̄K
δ (x, P )−

(
− f(x)

)∣∣ = sup
x∈R

∣∣∣∣f(x)− ∫ f(x+ uδ)dK(u)

∣∣∣∣ (A.2)

≤ sup
x∈R

∫ ∣∣f(x)− f(x+ uδ)
∣∣dK(u) ≤ sup

x∈R

∫
|cδu| dK(u) = cδ

∫
|u|K(u)du→ 0 (A.3)

as δ → 0 as f is Lipschitz continuous with constant c ≥ 0 and
∫
|u|K(u)du <∞. Hence, L̄K

δ (x, P )

converges uniformly (for all x ∈ R) to −f(x) as δ → 0 and it holds that argminx L̄
K
δ (x, P ) →

argminx(−f(x)) as δ → 0. Consequently,

lim
δ→0

Γδ(P ) = lim
δ→0

(
argmin

x∈R
L̄K
δ (x, P )

)
= argmin

x∈R

(
lim
δ→0

L̄K
δ (x, P )

)
= argmin

x∈R
(−f(x)) ,

which equals the mode for distributions with continuous Lebesgue density by definition.

For the proof of statement (c), we consider a fixed δ > 0 and define V̄ K
δ (x, P ) := −EY∼P [Vδ(x, Y )] =

34Ibragimov (1956) calls densities satisfying this property strongly unimodal. It is important to note that his notion
of strong unimodality is different from ours introduced in Definition 2.1.
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1
δ2

∫
K ′ (x−y

δ

)
f(y)dy and K̃ ′

δ(e) =
1
δ2
K ′ ( e

δ

)
. Then,

V̄ K
δ (x, P ) =

∫
K̃ ′

δ(x− y)f(y)dy =
(
K̃ ′

δ ∗ f
)
(x) =

(
K̃δ ∗ f ′

)
(x) =

∫
K̃δ(x− y)f ′(y)dy (A.4)

=

∫
K̃δ(x+Mode(P )− y)f ′(y −Mode(P ))dy (A.5)

=

∫
K̃δ(x+Mode(P )− y)g′(y)dy (A.6)

for some shifted density g with mode at zero. As the kernel K̃δ is log-concave it has a monotone

likelihood ratio (Proposition 2.3 (b) in Saumard and Wellner, 2014), i.e. for any a ≤ b and y ≥ 0,

it holds that K̃δ(a−y)

K̃δ(a)
≤ K̃δ(b−y)

K̃δ(b)
and as g′(y) ≤ 0 for y ≥ 0, this implies that

K̃δ(a− y)

K̃δ(b− y)
g′(y) ≥ K̃δ(a)

K̃δ(b)
g′(y). (A.7)

Analogously, the same inequality follows for any a ≤ b and y ≤ 0, where the monotone likelihood

ratio above holds with the reverse inequality but at the same time g′(y) ≥ 0. Thus, for any x > z,

V̄ K
δ (x, P ) =

∫
K̃δ(x+Mode(P )− y)g′(y)dy (A.8)

=

∫
K̃δ(x+Mode(P )− y)

K̃δ(z +Mode(P )− y)
K̃δ(z +Mode(P )− y)g′(y)dy (A.9)

≥ K̃δ(x+Mode(P ))

K̃δ(z +Mode(P ))

∫
K̃δ(z +Mode(P )− y)g′(y)dy (A.10)

=
K̃δ(x+Mode(P ))

K̃δ(z +Mode(P ))
V̄ K
δ (z, P ). (A.11)

For any root x∗ such that V̄ K
δ (x∗, P ) = 0, it follows that V̄ K

δ (xu, P ) ≥ 0 for all xu > x∗ and

V̄ K
δ (xl, P ) ≤ 0 for all xl < x∗ as the kernel K̃δ has infinite support. If there exist two distinct

roots x∗l < x∗u of V̄ K
δ (·, P ), the above implies that V̄ K

δ (x, P ) = 0 for all x ∈ [x∗l , x
∗
u], which implies

that the roots of V̄ K
δ (·, P ) constitute a closed interval. As L̄K

δ (x, P ) has a unique maximum for

all P ∈ P̃ ⊂ P by part (a) and V̄ K
δ (x, P ) = − ∂

∂x L̄
K
δ (x, P ), it follows that V̄ K

δ (x, P ) must have

a unique root, which implies that V K
δ (x, Y ) is a strict identification function for the generalized

modal midpoint.
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Proof of Theorem 2.6. We define

gt,T := δ
3/2
T T−1/2ψ(Yt+1, Xt,ht, δT ) = −(TδT )

−1/2K ′
(
Xt − Yt+1

δT

)
ht, (A.12)

get,T := Et[gt,T ], and g∗t,T := gt,T − get,T , (A.13)

such that

δ
3/2
T T−1/2

T∑
t=1

ψ(Yt+1, Xt,ht, δT ) =

T∑
t=1

get,T +

T∑
t=1

g∗t,T . (A.14)

Lemma S.1.1 shows that
∑T

t=1 g
e
t,T

P→ 0. Thus, it remains to shows that
∑T

t=1 g
∗
t,T

d→ N
(
0,ΩMode

)
.

For some arbitrary, but fixed λ ∈ Rk, ||λ||2 = 1, we define

zt,T := λ⊤g∗t,T , ω̄2
T :=

T∑
t=1

Var(zt,T ), ht,T :=
zt,T
ω̄T

, and ω2 := λ⊤ΩModeλ, (A.15)

and show that a univariate CLT for martingale difference arrays (MDA) holds for
∑T

t=1 ht,T . It

obviously holds that
(
g∗t,T ,Ft+1

)
is a MDA as g∗s,T ∈ Ft+1 for all s ≤ t and Et

[
g∗t,T
]
= 0 a.s. by

definition. Thus,
(
zt,T ,Ft+1

)
and

(
ht,T ,Ft+1

)
are also MDAs.

In the following, we verify the following three conditions of Theorem 24.3 of Davidson (1994):

(a)
∑T

t=1Var(ht,T ) = 1, (b)
∑T

t=1 h
2
t,T

P→ 1, and (c) max1≤t≤T |ht,T |
P→ 0. Lemma S.1.2 shows that

ω̄2
T =

∑T
t=1Var[zt,T ] → λ⊤ΩModeλ = ω2. Thus, as ΩMode is assumed to be positive definite, ω̄2

T is

strictly positive for all T sufficiently large and hence, ht,T is well-defined and
∑T

t=1Var(ht,T ) = 1,

which shows condition (a). Lemma S.1.3 shows that
∑T

t=1 z
2
t,T

P→ ω2 as T → ∞ which implies

condition (b), i.e.
∑T

t=1 h
2
t,T =

∑T
t=1

z2t,T
ω̄2
T

P→ 1. Eventually, Lemma S.1.4 shows condition (c) and

we can apply Theorem 24.3 of Davidson (1994) in order to conclude that for all λ ∈ Rk, ||λ||2 = 1,

it holds that
∑T

t=1 ht,T
d→ N (0, 1). As ω̄2

T → ω2, Slutsky’s theorem implies that
∑T

t=1 zt,T =∑T
t=1 λ

⊤g∗t,T
d→ N

(
0, ω2

)
, and as this holds for all λ ∈ Rk, ||λ||2 = 1, we apply the Cramér-Wold

theorem and get that
∑T

t=1 g
∗
t,T

d→ N
(
0,ΩMode

)
, which concludes the proof of this theorem.
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Proof of Theorem 2.9. We let

gt,T := δ
3/2
T T−1/2ψ(Yt+1, Xt,ht, δT ) = −(TδT )

−1/2K ′
(
Xt − Yt+1

δT

)
ht,

get,T := Et[gt,T ], and g∗t,T := gt,T − get,T ,

such that
∑T

t=1 gt,T =
∑T

t=1 g
e
t,T +

∑T
t=1 g

∗
t,T as in the proof of Theorem 2.6. Then, it holds that∑T

t=1 g
∗
t,T

d→ N (0,ΩMode) as in the proof of Theorem 2.6. Notice for this that the employed Lemmas

S.1.2–S.1.4 do not require the null hypothesis in (2.8).

We continue to analyze the term
∑T

t=1 g
e
t,T as in the proof of Lemma S.1.1. However, the Taylor

expansion in (S.1.13) now entails another term as we now impose HA,loc in (2.13) instead of using

f ′t(0) = 0 that resulted from H0 in (2.8). Hence, using that
∫
K(u)du = 1, we get

T∑
t=1

get,T = T−1/2δ
3/2
T

T∑
t=1

f ′t(0)ht + oP (1) = c ·
(
aTT

1/2δ
3/2
T + oP (1)

)
+ oP (1) (A.16)

For statement (a), aTT
1/2δ

3/2
T

P→ 1, and thus,
∑T

t=1 g
e
t,T = c+oP (1). As Theorem 2.7 shows that

Ω̂T,Mode − ΩT,Mode
P→ 0, applying Slutzky’s theorem implies Ω̂

−1/2
T,Mode

∑T
t=1 gt,T

d→ N
(
Ω
−1/2
Modec, Ik

)
.

Hence, JT converges to a non-central χ2-distribution,

JT =

(
Ω̂
−1/2
T,Mode

T∑
t=1

gt,T

)⊤(
Ω̂
−1/2
T,Mode

T∑
t=1

gt,T

)
d→ χ2

k

(
c⊤Ω−1

Modec
)
.

For statement (b), aTT
1/2δ

3/2
T = oP (1) and hence,

∑T
t=1 g

e
t,T = oP (1) putting us exactly in the

situation of Theorem 2.6.

Finally, for statement (c), it holds that
(
aTT

1/2δ
3/2
T

)−1 P→ 0, which implies that for any c̄ ∈ R,

P
(∣∣∣∑T

t=1 g
e
t,T

∣∣∣ ≥ c̄
)

→ 1, and consequently also P
(∣∣∣∑T

t=1 gt,T

∣∣∣ ≥ c̄
)

→ 1. As furthermore JT =(∑T
t=1 gt,T

)⊤
Ω̂−1
T,Mode

(∑T
t=1 gt,T

)
and Ω̂T,Mode − ΩT,Mode

P→ 0 by Theorem 2.7, where ΩT,Mode is

uniformly positive definite for T large enough, the conditions of Theorem 8.13 of White (1994) are

satisfied and we can conclude that for any c̄ ∈ R, P (|JT | ≥ c̄) → 1, which concludes the proof of

this theorem.
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Proof of Theorem 3.3. For all fixed λ ∈ Rk such that ||λ||2 = 1, we define

σ2T := λ⊤ΣT (θ0)λ =
1

T

T∑
t=1

E
[
θ210

(
h⊤
t wMeanλ

)2
ε2t + θ220

(
h⊤
t wMedλ

)2 (
1{εt>0} − 1{εt<0}

)2
+ θ230

(
h⊤
t wModeλ

)2
ft(0)

∫
K ′(u)2du

+2θ10θ20

(
h⊤
t wMeanλ

)(
h⊤
t wMedλ

)
εt
(
1{εt>0} − 1{εt<0}

)]
.

(A.17)

Lemma S.1.5 shows that
∑T

t=1Var
(
T−1/2ϕ∗t,T (θ0)λ

)
−σ2T → 0. As σ2 := λ⊤Σ(θ0)λ, which is strictly

positive by assumption, is the limit of σ2T , the latter must be strictly positive for T large enough

and consequently, σ−1
T T−1/2

∑T
t=1 ϕ

∗
t,T (θ0)λ is well-defined. In the following, we first show that

σ−1
T T−1/2

∑T
t=1 ϕ

∗
t,T (θ0)λ

d→ N
(
0, 1
)
by applying Theorem 24.3 in Davidson (1994) and by verifying

that the respective conditions hold (with Xt,T = σ−1
T T−1/2ϕ∗t,T (θ0)λ).

Lemma S.1.6 shows that T−1
∑T

t=1

(
ϕ∗t,T (θ0)λ

)2 − σ2T
P→ 0, which implies condition (a) of The-

orem 24.3 of Davidson (1994), i.e. σ−2
T T−1

∑T
t=1

(
ϕ∗t,T (θ0)λ

)2 P→ 1. Lemma S.1.7 shows condition

(b), i.e. maxt=1,...,T

∣∣σ−1
T T−1/2ϕ∗t,T (θ0)λ

∣∣ P→ 0. Thus, we can apply Theorem 24.3 of Davidson (1994)

and conclude that σ−1
T T−1/2

∑T
t=1 ϕ

∗
t,T (θ0)λ

d→ N
(
0, 1
)
.

As σ2T has the limit σ2, Slutsky’s theorem implies that T−1/2
∑T

t=1 ϕ
∗
t,T (θ0)λ

d→ N (0, σ2) and

as this holds for all λ ∈ Rk such that ||λ||2 = 1, we can conclude that T−1/2
∑T

t=1 ϕ
∗
t,T (θ0)

d→

N
(
0,Σ(θ0)

)
. Furthermore, ||T−1/2

∑T
t=1(ϕ

∗
t,T (θ0) − ϕt,T (θ0))|| = ||T−1/2

∑T
t=1 ut,T (θ0)||

P→ 0 by

Assumption 3.2 (D) and

T−1/2
T∑
t=1

(
ϕ̂t,T (θ0)− ϕt,T (θ0)

)
= T−1/2

T∑
t=1

θ0 ·


h⊤
t (ŵT,Mean − wMean) εt

h⊤
t (ŵT,Med − wMed)

(
1{εt>0} − 1{εt<0}

)
h⊤
t (ŵT,Mode − wMode) δ

−1/2
T K ′

(
−εt
δT

)
 P→ 0,

as it holds that ŵT,Mean
P→ wMean, ŵT,Med

P→ wMed and ŵT,Mode
P→ wMode by assumption. Hence we

can conclude that T−1/2
∑T

t=1 ϕ̂t,T (θ0)
d→ N

(
0,Σ(θ0)

)
, which concludes the proof of this theorem.
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