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Abstract

We construct daily house price indexes for ten major U.S. metropolitan areas. Our
calculations are based on a comprehensive database of several million residential prop-
erty transactions and a standard repeat-sales method that closely mimics the procedure
used in the construction of the popular monthly Case-Shiller house price indexes. Our
new daily house price indexes exhibit dynamic features similar to those of other daily
asset prices, with mild autocorrelation and strong conditional heteroskedasticity. The
correlations across house price index returns are low at the daily frequency, but rise
monotonically with the return horizon, and are commensurate with existing empirical
evidence for existing monthly and quarterly house price series.

Timely and accurate measures of house prices are important in a variety of appli-
cations, and are particularly valuable during times of turbulence, such as the recent
housing crisis. To quantify the informational advantage of our daily index, we show
that a relatively simple multivariate time series model for the daily house price index
returns, explicitly allowing for commonalities across cities and GARCH effects, pro-
duces forecasts of monthly house price changes that are superior to various alternative
forecast procedures based on lower frequency data.
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1 Introduction

For many U.S. households their primary residence represents their single largest finan-

cial asset holding: the Federal Reserve estimated the total value of the U.S. residential

real estate market at $16 trillion at the end of 2011, compared with $18 trillion for the

U.S. stock market (as estimated by the Center for Research in Security Prices). Conse-

quently, changes in housing valuations importantly affect households’ saving and spending

decisions, and in turn the overall growth of the economy. A number of studies (e.g., Case

et al., 2011) have also argued that the wealth effect of the housing market for aggregate

consumption is significantly larger than that of the stock market. The recent economic

crisis, which arguably originated with the precipitous drop in housing prices beginning in

2006, directly underscores this point. Despite all of of this, and in sharp contrast to most

other financial asset classes, aggregate price indexes for residential real estate valuations

are only available at relatively low monthly or quarterly frequencies.

Set against this background, we provide a new set of daily house price indexes for ten

major U.S. metropolitan areas. To the best of our knowledge, this represents the first set

of house price indexes at the daily frequency. Our construction is based on a comprehen-

sive database of publicly recorded residential property transactions. We show that the

dynamic dependencies in the new daily housing price series closely mimic those of other

asset prices (see, e.g., Tsay, 2005, for a discussion of financial time series), and that these

dynamic dependencies along with the cross-city correlations are well described by a stan-

dard multivariate GARCH type model. This relatively simple daily model in turn allows

for the construction of improved longer-run monthly and quarterly housing price forecasts

compared with forecasts based on existing monthly and/or quarterly indexes.

Our new daily house price indexes are based on the same “repeat-sales” methodology

as the popular S&P/Case-Shiller monthly indexes (see Shiller, 1991), and the Office of Fed-

eral Housing Enterprise Oversight’s quarterly indexes. However, the coarser monthly and

quarterly frequency of reporting employed in the existing indexes ignores potentially im-
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portant information in the daily records of housing transactions, and is likely to result in

“aggregation biases” if the true index changes at a higher frequency than the measurement

period. Aggregating the indexes to lower frequencies also reduces their volatility, thereby

underestimating the true risk of the housing market.

More timely house prices are of direct interest to policy makers, central banks, devel-

opers and lenders alike. Also, even though actual housing decisions are made relatively in-

frequently, potential buyers and sellers could still benefit from more timely price indicators.

The need for higher frequency daily indexing is perhaps most acute in periods when prices

change rapidly, with high volatility, as observed during the recent financial crisis and its

aftermath. To illustrate, Figure 1 shows our new daily house price index along with the

oft-cited monthly S&P/Case-Shiller index for Los Angeles from September 2008 through

September 2010. The precipitous drop in the daily index over the first six months clearly

leads the monthly index. Importantly, the daily index also shows the uptick in housing val-

uations that occurred around April 2009 some time in advance of the monthly index. Sim-

ilarly, the more modest rebound that occurred in early 2010 is also first clearly manifest in

the daily index.

Systematically analyzing the features of the dynamics of the new daily house price

indexes for all of the ten metropolitan areas in our sample, we find that, in parallel to

the daily returns on most other broadly defined asset classes, they exhibit only mild pre-

dictability in the mean, but strong evidence of volatility clustering. We show that the

volatility clustering within and across the different house price indexes can be satisfacto-

rily described by a multivariate GARCH model. The correlation between the daily returns

on the city indexes is much lower than the correlation observed for the existing monthly

return indexes. However, as we temporally aggregate the daily returns to monthly and

quarterly frequencies, we find that the correlations increase to levels consistent with the

ones observed for existing lower frequency indexes. Furthermore, we document that the

new daily indexes do indeed result in improved forecasts, not solely in that they more
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quickly identifying turning points as suggested by Figure 1 for Los Angeles, but also more

generally for longer forecast horizons and other sample periods. This holds true for the

city-specific housing returns and a composite index, thus directly underscoring the infor-

mational advantages of the new daily index developed here vis-a-vis the existing monthly

published indexes.

The rest of the paper is organized as follows. The next section provides a review of

house price index construction and formally describes the S&P/Case-Shiller methodology.

Section 3 describes the data and the construction of our new daily prices series. Section 4

briefly summarizes the dynamic and cross-sectional dependencies in the daily series, and

presents our simple multivariate GARCH model designed to account for these dependen-

cies. Section 5 demonstrates how the new daily series and our modeling thereof may be

used in more accurately forecasting the corresponding longer-run returns. Section 6 con-

cludes. A Supplemental Appendix contains additional details and empirical results.

2 House price index methodologies

The construction of house price indexes is plagued by two major difficulties. Firstly, houses

are heterogeneous assets; each house is a unique asset, in terms of its location, characteris-

tics, maintenance status, etc., all of which affect its price. House price indexes aim to mea-

sure the price movements of a hypothetical house of average quality, with the assumption

that average quality remains the same across time. In reality, average quality has been in-

creasing over time, because newly-built houses tend to be of higher quality and more in

line with current households’ requirements than older houses. Detailed house qualities are

not always available or not directly observable, so when measuring house prices at an ag-

gregate level, it is difficult to take the changing average qualities of houses into consider-

ation. The second major difficulty is sale infrequency. For example, the average time in-

terval between two successive transactions of the same property is about six years in Los
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Angeles, based on our data set described in Section 3 below. Related to that, the houses

sold at each point in time may not be a representative sample of the overall housing stock.

Three main methodologies have been used to overcome the above-mentioned difficul-

ties in the construction of reliable house price indexes (see, e.g., the surveys by Cho, 1996;

Rappaport, 2007; Ghysels et al., 2013). The simplest approach relies on the median value

of all transaction prices in a given period. The National Association of Realtors employ

this methodology and publishes median prices of existing home sales monthly for both the

national and four Census regions. The median price index has the obvious advantage of

calculation simplicity, but it does not control for heterogeneity of the houses actually sold.

A second, more complicated, approach uses a hedonic technique, to price the “average

quality” house by explicitly pricing its specific attributes. The U.S. Census Bureau con-

structs its Constant Quality (Laspeyres) Price Index of New One-Family Houses Sold us-

ing a hedonic method. Although this method does control for the heterogeneity of houses

sold, it also requires much richer data than are typically available.

A third approach relies on repeat sales. This is the method used by both Standard

& Poor’s and the Office of Federal Housing Enterprise Oversight (OFHEC). The repeat

sales model was originally introduced by Bailey, Muth, and Nourse (1963), and subse-

quently modified by Case and Shiller (1989). The specific model currently used to con-

struct the S&P/Case-Shiller indexes was proposed by Shiller (1991) (see Clapp and Gi-

accotto, 1992; Meese and Wallace, 1997, for a comparison of the repeat-sales method with

other approaches).

As the name suggests, the repeat sales method estimates price changes by looking at

repeated transactions of the same house. This provides some control for the heterogeneity

in the characteristics of houses, while only requiring data on transaction prices and dates.

The basic models, however, are subject to some strong assumptions (see, e.g., the discus-

sion in Cho, 1996; Rappaport, 2007). Firstly, it is assumed that the quality of a given

house remains unchanged over time. In practice, of course, the quality of most houses
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changes through aging, maintenance or reconstruction. This in turn causes a so-called

“renovation bias.” Secondly, repeat sales indexes exploit information only from houses that

have been sold at least twice during the sampling period. This subset of all houses may

not be representative of the entire housing stock, possibly resulting in a “sample-selection

bias.” Finally, as noted above, all of the index construction methods are susceptible to “ag-

gregation bias” if the true average house price fluctuates within the estimation window.

Our new daily home price indexes are designed to mimic the popular S&P/Case-Shiller

house price indexes for the “typical” prices of single-family residential real estate. They

are based on a repeat sales method and the transaction dates and prices for all houses that

sold at least twice during the sample period. If a given house sold more than twice, then

only the non-overlapping sale pairs are used. For example, a house that sold three times

generates included sale pairs from the first and second transaction, and the second and

third transaction; the pair formed by the first and third transaction is not included.

Specifically, for a house j that sold at times s and t at prices Hj,s and Hj,t, the repeat

sales model postulates that,

βtHj,t = βsHj,s +
√

2σwwj,t +
√

(t − s)σvvj,t, 0 ≤ s < t ≤ T, (1)

with the value of the house price index at time τ is defined by the inverse of βτ . The last

two terms on the right-hand side account for “errors” in the sale pairs, with
√

2σwwj,t rep-

resenting the “mispricing error,” and
√

(t − s)σvvj,t representing the “interval error.” Mis-

pricing errors are included to allow for imperfect information between buyers and sellers,

potentially causing the actual sale price of a house to differ from its “true” value. The in-

terval error represents a possible drift over time in the value of a given house away from

the overall market trend, and is therefore scaled by the (square root of the) length of the

time interval between the two transactions. The error terms wj,t and vj,t are assumed inde-

pendent and identically standard normal distributed.
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The model in (1) and the corresponding error structure naturally lend itself to esti-

mation by a multi-stage generalized least square type procedure (for additional details,

see Case and Shiller, 1987). The base period of the S&P/ Case-Shiller indexes is January

2000. All index values prior to the base period are estimated simultaneously. After the

base period, the index values are estimated using a chain-weighting procedure that condi-

tions on all previous values. This chain-weighting procedure is used to prevent revisions

of previously published index values. Finally, the S&P/Case-Shiller indexes are smoothed

by repeating a given transaction in three successive months, so that the index for a given

month is based on sale pairs for that month and the preceding two months (see the Index

Construction Section of S&P/Case-Shiller Home Price Index Methodology).

3 Daily house price indexes

We focus our analysis on the ten largest Metropolitan Statistical Areas (MSAs), as mea-

sured in the year 2000 (further details pertaining to the counties included in each of the

ten MSAs are provided in Table A.1 of the Supplementary Appendix).

3.1 Data and data cleaning

The transaction data used in our daily index estimation is obtained from DataQuick, a

property information company. This database contains detailed transactions of more than

one hundred million properties in the United States. For most of the areas, the historical

transaction records extends from the late 1990s to 2012, with some large metropolitan ar-

eas, such as Boston and New York, having transactions recorded as far back as 1987. Prop-

erties are uniquely identified by property IDs, which enable us to identify sale pairs. We

rely U.S. Standard Use Codes contained in the DataQuick database to identify transac-

tions of single-family residential homes.

Our data cleaning rules are based on the same filters used by S&P/Case-Shiller in the
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construction of their monthly indexes. In brief, we remove any transaction that are not

“arms length,” using a flag for such transactions available in the database. We also remove

transactions with “unreasonably” low or high sale prices (below $5000 or above $100 mil-

lion, and those generating an average annual return of below -50% or above 100%), as well

as any sales pair with an interval of less than six months. Sale pairs are also excluded if

there are indications that major improvements have been made between the two transac-

tions, although such indications are not always present in the database. For the Los An-

geles MSA, for example, this yields a total of 877,885 “clean” sale pairs, representing an

average of 180 daily sale pairs over the estimation period. Additional details for all ten

MSAs are provided in Table A.2 of the Supplementary Appendix.

3.2 Estimation of the daily index

The repeat-sales index estimation based on equation (1) is not computationally feasible at

the daily frequency, as it involves the simultaneous estimation of several thousand parame-

ters: the daily time spans for the ten MSAs range from 2837 for Washington D.C. to 4470

days for New York. To overcome this difficulty, we use an expanding-window estimation

procedure: we begin by estimating daily index values for the final month in an initial start-

up period, imposing the constraint that all of the earlier months in the period have only a

single monthly index value. Restricting the daily values to be the same within each month

for all but the last month drastically reduces the dimensionality of the estimation problem.

We then expand the estimation period by one month, and obtain daily index values for the

new “last” month. We continue this expanding estimation procedure through to the end of

our sample period. (This estimation method results in an index that is “revision proof,” in

that earlier values of the index do not change when later data becomes available.) Finally,

similar to the S&P/Case-Shiller methodology, we normalize all of the individual indexes to

100 based on their average values in the year 2000.

One benefit of the estimation procedure we adopt is that it is possible to formally test
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whether the “raw” daily price series actually exhibit significant intra-monthly variation. In

particular, following the approach used by Calhoun et al. (1995) to test for “aggregation

biases,” we test the null hypothesis that the estimates of βi,τ for MSA i are the same for

all days τ within a given calendar month against the alternative that these estimates differ

within the month. These tests strongly reject the null for all months and all ten metropoli-

tan areas; further details concerning the actual F-tests are available upon request. We

show below that this statistically significant intra-monthly variation also translates into

economically meaningful variation and corresponding gains in forecast accuracy compared

to the forecasts based on coarser monthly index values only.

3.3 Noise filtering

The raw daily house price indexes are subject to measurement errors, due to the relatively

few transactions that are available on a given day. (The average number ranges from 49

for Las Vegas to 180 for Los Angeles.) To help alleviate this problem, it is useful to further

clean the data in an effort to extract more accurate estimates of the the true latent daily

price series. We rely on a standard Kalman filter-based approach to do so. Specifically,

let Pi,t denote the true latent index for MSA i at time t. We assume that the “raw” price

indexes constructed in the previous section, P ∗

i,t = 1/βi,t, are related to the true latent

price indexes by,

log P ∗

i,t = log Pi,t + ηi,t, (2)

where the ηi,t measurement errors are assumed to be serially uncorrelated. For simplicity

of the filter, we further assume that the true index follows a random walk with drift,

ri,t ≡ ∆ log Pi,t = µi + ui,t, (3)
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where ηi,t and ui,t are mutually uncorrelated. It follows readily by substitution that,

r∗

i,t ≡ ∆ log P ∗

i,t = ri,t + ηi,t − ηi,t−1. (4)

Combining (3) and (4), this in turn implies an MA(1) error structure for the “raw” re-

turns, with the value of the MA coefficient determined by the variances of ηi,t and ui,t, σ2
η

and σ2
u. This simple MA(1) structure is consistent with the sample autocorrelations for the

raw return series reported in Figure A.1 in the Supplementary Appendix.

Interpreting equations (3) and (4) as a simple state-space system, µ, σ2
η and σ2

u may

easily be estimated by standard (quasi-)maximum likelihood methods. This also allows for

the easy filtration of of the “true” daily returns, ri,t, by a standard Kalman filter; see, e.g.,

Hamilton (1994). The Kalman filter implicitly assumes that ηi,t and ui,t are iid normal. If

the assumption of normality is violated, the filtered estimates are interpretable as best lin-

ear approximations. The Kalman filter parameter estimates reported in the Supplementary

Appendix imply that the noise-to-signal (ση/σu) ratios for the daily index returns range

from a low of 6.48 (Los Angeles) to a high of 15.18 (Boston), underscoring the importance

of filtering out the noise.

The filtered estimates of the latent “true” daily price series for Los Angeles are de-

picted in Figure 2 (similar plots for all ten cities are available in Figure A.2 in the Supple-

mentary Appendix). For comparison, we also include the raw daily prices and the monthly

S&P/Case-Shiller index. Looking first at the top panel for the year 2000, the figure clearly

illustrates how the filtered daily index mitigates the noise in the raw price series. At the

same time, the filtered prices also point to discernable within month variation compared to

the step-wise constant monthly S&P/Case-Shiller index.

The bottom panel of Figure 2 reveals a similar story for the full 1995-2012 sample pe-

riod. The visual differences between the daily series and the monthly S&P/Case-Shiller in-

dex are obviously less glaring on this scale. Nonetheless, the considerable (excessive) vari-
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ation in the raw daily prices coming from the noise is still evident. We will consequently

refer to and treat the filtered series as the daily house price indexes in the sequel.

Before turning to our empirical analysis and modeling of the dynamic dependencies in

the daily series, it is instructive to more formally contrast the information inherent in the

daily indexes with the traditional monthly S&P/Case-Shiller index.

3.4 Comparisons with the monthly S&P/Case-Shiller index

Like the monthly S&P/Case-Shiller indexes, our daily house price indexes are based on all

publicly available property transactions. However, the complicated non-linear transforma-

tions of the data used in the construction of the indexes prevent us from expressing the

monthly indexes as explicit functions of the corresponding daily indexes. Instead, as a sim-

ple way to help gauge the relationship between the indexes, and the potential loss of infor-

mation in going from the daily to the monthly frequency, we consider the linear projection

of the monthly S&P/Case-Shiller returns for MSA i, denoted rS&P
i,t , on 60 lagged values of

the corresponding daily index returns,

rS&P
i,t = δ(L)ri,t + εi,t ≡

59
∑

j=0

δjL
jri,t + εi,t, (5)

where Ljri,t refers to the daily return on the jth day before the last day of month t. (As

discussed further below, all of the price series appear to be non-stationary. We consequently

formulate the projection in terms of returns as opposed to the price levels.) The inclusion

of 60 daily lags match the three-month smoothing window used in the construction of the

monthly S&P/Case-Shiller indexes, discussed in Section 2. The true population coefficients

in the linear δ(L) filter are, of course, unknown, however they are readily estimated by or-

dinary least squares (OLS).

The OLS estimates for δj=0,...,59 obtained from the single regression that pools the re-

turns for all ten MSAs are reported in the top panel of Figure 3. Each of the individual
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coefficients are obviously subject to a fair amount of estimation error. At the same time,

there is a clear pattern in the estimates for δj across lags, naturally suggesting the use of

a polynomial approximation in j to help smooth out the estimation error. The solid line

in the figure shows the resulting nonlinear least squares (NLS) estimates obtained from a

simple quadratic approximation. The corresponding R2s for the unrestricted OLS and the

NLS fit (δ̂j = 0.1807 + 0.0101j − 0.0002j2) are 0.860 and 0.851, indicating only a slight

deterioration in the accuracy of the fit by imposing a quadratic approximation to the lag

coefficients. Moreover, even though the monthly S&P/Case-Shiller returns are not an ex-

act linear function of the daily returns, the simple relationship dictated by δ(L) accounts

for the majority of the monthly variation.

To further illuminate the features of the approximate linear filter linking the monthly

returns to the daily returns, consider the gain and the phase of δ(L),

G(ω) =





59
∑

j=0

59
∑

k=0

δjδkcos(|j − k|ω)





1/2

, ω ∈ (0, π), (6a)

θ(ω) = tan−1

(
∑59

j=0 δjsin(jω)
∑59

j=0 δjcos(jω)

)

, ω ∈ (0, π). (6b)

Looking first at the gains in Figures 3b and 3c, the unrestricted OLS estimates and the

polynomial NLS estimates give rise to similar conclusions. The filter effectively down-weights

all of the high-frequency variation (corresponding to periods less than around 70 days),

while keeping all of the low-frequency information (corresponding to periods in excess of

100 days). As such, potentially valuable information for forecasting changes in house prices

is obviously lost in the monthly aggregate. Further along these lines, Figures 3d and 3e

show the estimates of θ(ω)
ω

, or the number of days that the filter shifts the daily returns

back in time across frequencies. Although the OLS and NLS estimates differ somewhat for

the very highest frequencies, for the lower frequencies (periods in excess of 60 days) the fil-

ter systematically shifts the daily returns back in time by about 30 days. This corresponds
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roughly to one-half of the three month (60 business days) smoothing window used in the

construction of the monthly S&P/Case-Shiller index.

In sum, the monthly S&P/Case-Shiller indexes essentially “kill” all of the within quar-

ter variation inherent in the new daily indexes, while delaying all of the longer-run infor-

mation by more than a month. We turn next to a more detailed analysis of the time series

properties of the new daily indexes.

4 Time series modeling of daily housing returns

To facilitate the formulation of a multivariate model for all of the ten city indexes, we re-

strict our attention to the common sample period from June 2001 to September 2012. Ex-

cluding weekends and federal holidays, this yields 2,843 daily observations.

4.1 Summary statistics

Summary statistics for each of the ten daily series are reported in Table 1. Panel A gives

the sample means and standard deviations for each of the index levels. Standard unit root

tests clearly suggest that the price series are non-stationary, and as such the sample mo-

ments in Panel A need to be interpreted with care; further details concerning the unit root

tests are available upon request. In the sequel, we therefore focus on the easier-to-interpret

daily return series.

The daily sample mean returns reported in Panel B are generally positive, ranging

a low of -0.006 (Las Vegas) to a high of 0.015 (Los Angeles and Washington D.C.). The

standard deviation of the most volatile daily returns 0.599 (Chicago) is double that of the

least volatile returns 0.291 (New York). The first-order autocorrelations are fairly close to

zero for all of the cities, but the Ljung-Box χ2
10 tests for up to tenth order serial correla-

tion indicate significant longer-run dynamic dependencies in many of the series.

The corresponding results for the squared daily returns reported in Panel C indicate
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very strong dynamic dependencies. This is also immediately evident from the plot of the

ten daily return series in Figure 4, which show a clear tendency for large returns in an ab-

solute sense to be follow by other large absolute returns. This directly mirrors the ubiqui-

tous volatility clustering widely documented in the literature for other daily speculative

returns (e.g., Tsay, 2005). Further, consistent with the evidence for other financial asset

classes, there is also a clear commonality in the volatility patterns across the ten series.

4.2 Modeling conditional mean dependencies

The summary statistics discussed above point to existence of some, albeit relatively mild,

dynamic dependencies in the daily conditional means for most of the cities. Some of these

dependencies may naturally arise from a common underlying dynamic factor that influ-

ences housing valuations nationally. In order to accommodate both city specific and na-

tional effects within a relatively simple linear structure, we postulate the following model

for the conditional means of the daily returns,

Et−1(ri,t) = ci + ρi1ri,t−1 + ρi5ri,t−5 + ρimrm
i,t−1 + bicr

m
c,t−1, (7)

where rm
i,t refers to the (overlapping) “monthly” returns defined by the summation of the

corresponding daily returns,

rm
i,t =

19
∑

j=0

ri,t−j, (8)

and the composite (national) return rc,t is defined as a weighted average of the individual

city returns,

rc,t =
10
∑

i=1

wiri,t, (9)

with the weights identical to the ones used in the construction of the composite ten city

monthly S&P/Case Shiller index, which are 0.212, 0.074, 0.089, 0.037, 0.050, 0.015, 0.055,

0.118, 0.272, and 0.078. The own fifth lag of the returns is included to account for any

weekly calendar effects. The inclusion of the own monthly returns and the composite monthly
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returns provides a parsimonious way of accounting for longer-run city-specific and com-

mon national dynamic dependencies. This particular formulation is partly motivated by

the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) for modeling

so-called realized volatilities, and we will refer to it as an HAR-X model for short. We es-

timate this model for the conditional mean simultaneously with the model for the condi-

tional variance described in the next section via quasi-maximum likelihood.

The estimation results in Table 2 reveal that the ρ1 and ρ5 coefficients associated with

the own lagged returns are mostly, though not uniformly, insignificant when judged by the

robust standard errors reported in parentheses. Meanwhile, the bc coefficients associated

with the composite monthly return are significant for nine out of the ten cities. Still, the

one-day return predictability implied by the model is fairly modest, with the average daily

R2 across the ten cities equal to 0.024, ranging from a low of 0.007 (Denver) to a high of

0.049 (San Francisco). This mirrors the low R2s generally obtained from time series model-

ing of other daily financial returns.

The adequacy of the common specification for the conditional mean in equation (7)

is broadly supported by the tests for up to tenth-order serial correlation in the residuals

εi,t ≡ ri,t − Et−1(ri,t) from the model reported in Panel C of Table 2. Only two of the tests

are significant at the 5% level (San Francisco and Washington, D.C.) when judged by the

standard χ2
10 distribution. At the same time, the tests for serial correlation in the squared

residuals ε2
i,t from the model, given in the bottom two rows of Panel C, clearly indicate

strong non-linear dependencies in the form of volatility clustering.

4.3 Modeling conditional variance and covariance dependencies

Numerous parametric specifications have been proposed in the literature to describe volatil-

ity clustering in asset returns. Again, in an effort to keep our modeling procedures simple

and easy to implement, we rely on the popular GARCH(1,1) model (Bollerslev, 1986) for
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describing the dynamic dependencies in the conditional variances for all of the ten cities,

V art−1(ri,t) ≡ hi,t = ωi + κiε
2
i,t−1 + λihi,t−1. (10)

The results from estimating this model jointly with the the conditional mean model de-

scribed in the previous section are reported in Panel B of Table 2 together with robust

standard errors following Bollerslev and Wooldridge (1992) in parentheses.

The estimated GARCH parameters are all highly statistically significant and fairly

similar across cities. Consistent with the results obtained for other daily financial return

series, the estimates for the sum κ+λ are all very close to unity (and just above for Chicago,

at 1.002) indicative of a highly persistent, but eventually mean-reverting, time-varying

volatility process.

Wald tests for up to tenth-order serial correlation in the resulting standardized residu-

als, εi,t/h
1/2
i,t , reported in Panel C, suggest that little predictability remains, with only one

city (San Francisco) rejecting the null of no autocorrelation. The tests for serial correla-

tion in the squared standardized residuals, ε2
i,t/hi,t, reject the null for four cities, perhaps

indicative of some remaining predictability in volatility not captured by this relatively sim-

ple model. However for the majority of cities the specification in equation (10) appears to

provide a satisfactory fit. The dramatic reduction in the values of the test statistics for the

squared residuals compared to the values reported in the second row of Panel C is particu-

larly noteworthy.

The univariate HAR-X-GARCH models defined by equations (7) and (10) indirectly

incorporate commonalities in the cross-city returns through the composite monthly returns

rc,t included in the conditional means. The univariate models do not, however, explain the

aforementioned commonalities in the volatilities observed across cities and the correspond-

ing dynamic dependencies in the conditional covariances of the returns.

The Constant Conditional Correlation (CCC) model proposed by Bollerslev (1990)
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provides a particularly convenient framework for jointly modeling the ten daily return

series by postulating that the temporal variation in the conditional covariances are pro-

portional to the products of the conditional standard deviations. Specifically, let rt ≡

[r1,t, ..., r10,t]
′ and Dt ≡ diag

{

h
1/2
1t , ..., h

1/2
10,t

}

denote the 10 × 1 vector of daily returns and

10 × 10 diagonal matrix with the GARCH conditional standard deviations along the diag-

onal, respectively. The GARCH-CCC model for the conditional covariance matrix of the

returns may then be succinctly expressed as,

V art−1(rt) = DtRDt, (11)

where R is a 10 × 10 matrix with ones along the diagonal and the conditional correlations

in the off-diagonal elements. Importantly, the R matrix may be efficiently estimated by

the sample correlations for the 10 × 1 vector of standardized HAR-X-GARCH residuals;

i.e., the estimates of D−1
t [rt − Et−1(rt)]. The resulting estimates are reported in Table A.5

in the Supplementary Appendix.

We also experimented with the estimation of the Dynamic Conditional Correlation

(DCC) model of Engle (2002), resulting in only a very slight increase in the maximized

value of the (quasi-) log-likelihood function. Hence, we conclude that the relatively simple

multivariate HAR-X-GARCH-CCC model defined by equations (7), (10), and (11) pro-

vides a satisfactory fit to the joint dynamic dependencies in the conditional first and sec-

ond order moments of the ten daily housing return series.

4.4 Temporal aggregation and housing return correlations

The estimated conditional correlations from the HAR-X-GARCH-CCC model for the daily

index returns reported in the Supplementary Appendix average only 0.022. By contrast

the unconditional correlations for the monthly S&P/Case Shiller indexes calculated over

the same time period average 0.708, and range from 0.382 (Denver–Las Vegas) to 0.926
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(Los Angeles–San Diego). The discrepancy between the two sets of numbers may appear

to call into question the integrity of our new daily indexes and/or the time-series models

for describing the dynamic dependencies therein, however conditional daily correlations

and the unconditional monthly correlations are not directly comparable. In an effort to

more directly compare the longer-run dependencies inherent in our new daily indexes with

the traditional monthly S&P/Case Shiller indexes, we aggregate our daily return indexes

to a monthly level by summing the daily returns within a month (20 days). The uncondi-

tional sample correlations for these new monthly returns are reported in the lower triangle

of Panel B in Table 3. These numbers are obviously much closer, but generally still below

the 0.708 average unconditional correlation for the published monthly S&P/Case Shiller

indexes.

However, as previously noted, the monthly S&P/Case Shiller indexes are artificially

“smoothed,” by repeating each sale pair in the two months following the actual sale. As

such, a more meaningful comparison of the longer-run correlations inherent in our new

daily indexes with the correlations in the S&P/Case Shiller indexes is afforded by the un-

conditional quarterly (60 days) correlations reported in the upper triangle of Panel B in

Table 3. There, we find an average correlation of 0.668, and a range of 0.317 (Denver–Las

Vegas) to 0.906 (Los Angeles–San Diego), which are quite close to the corresponding num-

bers for the published S&P/Case Shiller indexes.

These comparisons, of course, say nothing about the validity of the HAR-X-GARCH-

CCC model for the daily returns, and the low daily conditional correlations estimated by

that model. As a further model specification check, we therefore also consider the model-

implied longer-run correlations, and study how these compare with the sample correlations

for the actual longer-run aggregate returns.

The top number in each element of Panels A and B of Table 3 gives the median model-

implied unconditional correlations for the daily, weekly, monthly, and quarterly return hori-

zons, based on 500 simulated sample paths. The bottom number in each element is the
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corresponding sample correlations for the actual longer-run aggregated returns. Although

the daily unconditional correlations in Panel A are all close to zero, the unconditional cor-

relations implied by the model gradually increase with the return horizon, and almost all

of the quarterly correlations are in excess of one-half. Importantly, the longer-run model-

implied correlations are all in line with their unconditional sample analogues.

To further illuminate this feature, Figure 5 presents the median model-implied and

sample correlations for return horizons ranging from one-day to a quarter, along with the

corresponding simulated 95% confidence intervals implied by the model for the Los Angeles–

New York city pair. The model provides a very good fit across all horizons, with the ac-

tual correlations well within the confidence bands. The corresponding plots for all of the

45 city pairs, presented in Figure A.3 in the Supplementary Appendix, tell a similar story.

Taken as whole these results clearly support the idea that the longer-run cross-city

dependencies inherent in our new finer sample daily house price series are consistent with

those in the published coarser monthly S&P/Case Shiller indexes. The results also con-

firm that the joint dynamic dependencies in the daily returns are well described by the

relatively simple HAR-X-GARCH-CCC model, in turn suggesting that this model could

possibly be used in the construction of improved house price forecasts over longer horizons.

5 Forecasting housing returns

One of the major potential benefits from higher frequency data is the possibility of con-

structing more accurate forecasts by using models that more quickly incorporate new in-

formation. The plot for Los Angeles discussed in the introduction alludes to this idea. In

order to more rigorously ascertain the potential improvements afforded by the daily house

price series and our modeling thereof, we consider a comparison of the forecasts from the

daily HAR-X-GARCH-CCC model with different benchmark alternatives.

Specifically, consider the problem of forecasting the 20-day (“monthly”) return on the
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house price index for MSA i,

r
(m)
i,t ≡

19
∑

j=0

ri,t−j (12)

for forecast horizons ranging from h = 20 days ahead to h = 1 day ahead. When h = 20

this corresponds to a simple one-step ahead forecast for one-month returns, but for h < 20

an optimal forecast will contain a mixture of observed data and a forecast for the return

over the remaining part of the month. We will use the period June 2001 to June 2009 as

our in-sample period, and the period July 2009 to September 2012 as our out-of-sample

period, with all of the model parameters estimated once over the fixed in-sample period.

Our simplest benchmark forecast is based purely on end-of-month data, and is there-

fore not updated as the horizon shrinks. We will consider a simple AR(1) for these monthly

returns,

r
(m)
i,t = φ0 + φ1r

(m)
i,t−20 + ei,t. (13)

As the forecast is not updated through the month, the forecast made at time t−h is simply

the AR(1) forecast made at time t − 20,

r̂Mthly
i,t−h = φ̂0 + φ̂1r

(m)
i,t−20. (14)

Our second benchmark forecast is again purely based on monthly data, but now we

allow the forecaster to update the forecast at time t − h, which may be in the middle of a

month. We model the incorporation of observed data by allowing the forecaster to take a

linear combination of the monthly return observed on day t − h and the one-month-ahead

forecast made on that day,

r̂Interp
i,t−h =

(

1 − h

20

)

r
(m)
i,t−h +

h

20

(

φ̂0 + φ̂1r
(m)
i,t−h

)

. (15)

Our third forecast fully exploits the daily return information, by using the actual re-

turns from time t − 19 to t − h as the first component of the forecast, as these are part of
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the information set at time t − h, and then using a “direct projection” method to obtain

a forecast for the remaining h-day return based on the one-month return available at time

t − h. Specifically,

r̂Direct
i,t−h =

19
∑

j=h

ri,t−j + β̂
(h)
0 + β̂

(h)
1 r

(m)
i,t−h, (16)

where β
(h)
0 and β

(h)
1 are estimated from the projection:

h−1
∑

j=0

ri,t−j = β
(h)
0 + β

(h)
1 r

(m)
i,t−h + ui,t. (17)

Finally, we consider a forecast based on the HAR-X-GARCH-CCC model presented

in the previous section. Like the third forecast, this forecast uses the actual returns from

time t − 19 to t − h as the first component, and then iterates the expression for the condi-

tional daily mean in equation (7) forward to get forecasts for the remaining h days,

r̂HAR
i,t−h =

19
∑

j=h

ri,t−j +
h−1
∑

j=0

Êt−h [ri,t−j] . (18)

Given the construction of the target variable, we expect the latter three forecasts (“In-

terp”, “Direct”, “HAR”) to all beat the “Mthly” forecast for all horizons less than 20 days.

If intra-monthly returns have dynamics that differ from those of monthly returns, then

we expect the latter two forecasts to beat the “Interp” forecast. Finally, if the HAR-X-

GARCH-CCC model presented in the previous section provides a better description of the

true dynamics than a simple direct projection, then we would expect the fourth forecast to

beat the third.

Figure 6 shows the resulting Root Mean Squared Errors (RMSEs) for the four fore-

casts as a function of the forecast horizon, when evaluated over the July 2009 to Septem-

ber 2012 out-of-sample period. The first striking, though not surprising, feature is that ex-

ploiting higher frequency (intra-monthly) data leads to smaller forecast errors than a fore-

cast based purely on monthly data. All three of the forecasts that use intra-monthly infor-
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mation out-perform the model based solely on end-of-month data. The only exception to

this is for Las Vegas at the h = 20 horizon, where the HAR model slightly under-performs

the monthly model.

Another striking feature of Figure 6 is that the more accurate modeling of the daily

dynamic dependencies afforded by the HAR-X-GARCH-CCC model results in lower RM-

SEs across all forecasts horizons for eight of the ten cities. For San Francisco and Las Ve-

gas the direct projection forecasts perform essentially as well as the HAR forecasts, and for

Denver and Los Angeles the improvement of the HAR forecast is small (but positive for all

horizons). For some of the cities (Boston, Miami and Washington D.C., in particular) the

improvements are especially dramatic over longer horizons.

The visual impression from Figure 6 is formally underscored by Diebold-Mariano tests,

reported in Table 4. Not surprisingly, the HAR forecasts significantly outperform the monthly

forecasts for horizons of 1, 5 and 10 days, for all ten cities and the composite index. At

the one-month horizon, a tougher comparison for the model, the HAR forecasts are signif-

icantly better than the monthly model forecasts for four out of ten cities, as well as the

composite index, and are never significantly beaten by the monthly model forecasts. Al-

most identical conclusions are drawn when comparing the HAR forecasts to the “interpo-

lation” forecasts, supporting the conclusion that the availability of daily data clearly holds

the promise of more accurate forecasts, particularly over shorter horizons, but also even at

the monthly level.

The bottom row of each panel in Table 4 compares the HAR forecasts with those from

a simple direct projection model. Such forecasts have often been found to perform well in

comparison with “iterated” forecasts from more complicated dynamic models. By contrast,

the Diebold-Mariano tests reported here suggest that the more complicated HAR forecasts

generally perform better than the direct projection forecasts. For no city-horizon pair does

the direct projection forecast lead to significantly lower out-of-sample forecast RMSE than

the HAR forecasts, while for many city-horizon pairs the reverse is true. In particular, for
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Boston, Miami and Washington D.C., the HAR forecasts significantly beat the direct pro-

jection forecasts across all four horizons, and for the composite index this is true for all

but the shortest horizon.

6 Conclusion

We present a set of new daily house price indexes for ten major U.S. Metropolitan Statisti-

cal Areas spanning the period from June 2001 to September 2012. The indexes are based

on the repeat sales method of Shiller (1991), and use a comprehensive database of several

million publicly recorded residential property transactions. We demonstrate that the dy-

namic dependencies in the new daily housing price series closely mimic those of other fi-

nancial asset prices, and that the dynamics, along with the cross-city correlations, are well

described by a standard multivariate GARCH-type model. We find that this simple daily

model allows for the construction of improved daily, weekly, and monthly housing price

forecasts compared to the forecasts based solely on monthly price indexes.

The new “high frequency” house price indexes developed here open the possibility for

many other applications. Most directly, by providing more timely estimates of movements

in the housing market, the daily series should be of immediate interest to policy makers

and central banks. In a related context, the series may also prove useful in further study-

ing the microstructure of the housing market. At a broader level, combining the daily

house price series with other daily estimates of economic activity should afford better and

more up-to-date insights into changes in the macro economy. Along these lines, the series

also hold the promise for the construction of more accurate forecasts for other macro eco-

nomic and financial time series. We leave all of these issues for future research.
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Table 1: Daily summary statistics

Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel A: Level
Mean 177.764 145.561 128.901 118.049 162.896 136.511 164.473 137.702 159.450 170.039

Std. dev. 41.121 13.381 21.631 4.605 48.351 48.568 34.058 27.169 25.877 34.830

Panel B: Returns
Mean 0.015 0.008 -0.002 0.003 0.006 -0.006 0.010 0.005 0.011 0.015

Std.dev. 0.347 0.351 0.599 0.303 0.428 0.370 0.387 0.509 0.291 0.502
AR(1) -0.059 0.047 0.008 -0.018 -0.034 0.061 -0.005 -0.113 0.049 -0.018
LB(10) 67.877 21.935 24.362 16.838 17.742 59.549 15.065 269.509 13.335 24.977

Panel C: Squared returns
Mean 0.121 0.123 0.358 0.092 0.183 0.137 0.150 0.259 0.085 0.252

Std. dev. 0.200 0.260 1.269 0.242 0.336 0.369 0.270 0.616 0.170 0.607
AR(1) 0.113 0.102 0.075 0.021 0.107 0.071 0.037 0.042 0.042 0.132
LB(10) 182.307 109.914 102.316 33.414 445.189 85.348 50.715 179.632 53.109 106.434

Note: The table reports summary statistics for each of the ten MSAs for the June 2001 to September 2012 sample period, a total of 2,843 daily observations. AR(1) denotes
the first order autocorrelation coefficient. LB(10) refers to the Ljung-Box portmanteau test for up to tenth order serial correlation. The 95% critical value for this test is 18.31.
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Table 2: Daily HAR-X-GARCH models
ri,t = ci + ρi,1ri,t−1 + ρi,5ri,t−5 + ρi,mrm

i,t−1 + bi,cr
m
c,t−1 + εi,t

εi,t|Ωt−1 ∼ N(0, hi,t)
hi,t = ωi + κiε

2
i,t−1 + λihi,t−1

Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel A: Mean

c (×10−2) 1.710 -0.302 0.094 -0.074 1.152 -0.111 0.240 -0.222 0.908 1.245

(0.678) (0.769) (0.163) (5.338) (0.942) (0.368) (3.221) (0.223) (0.538) (0.884)

ρ1 -0.080 0.030 0.005 -0.015 -0.034 0.004 -0.037 -0.094 0.040 0.012

(0.020) (0.022) (0.011) (0.052) (0.020) (0.016) (0.020) (0.018) (0.020) (0.024)

ρ5 0.054 0.009 -0.006 0.010 -0.006 0.006 -0.036 0.160 0.004 0.032

(0.020) (0.017) (0.010) (0.101) (0.032) (0.039) (0.022) (0.022) (0.017) (0.020)

ρm -0.014 -0.014 -0.023 -0.011 -0.008 0.017 -0.013 -0.014 -0.029 -0.035

(0.007) (0.005) (0.007) (0.008) (0.006) (0.004) (0.006) (0.006) (0.006) (0.007)

bc 0.059 0.039 0.049 0.020 0.060 0.035 0.060 0.056 0.054 0.084

(0.009) (0.007) (0.008) (0.018) (0.008) (0.007) (0.010) (0.009) (0.006) (0.010)

R2 0.039 0.018 0.009 0.007 0.027 0.044 0.030 0.049 0.033 0.027
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Table 2: Continued

Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel B: Variance

ω (×10−2) 0.013 0.230 0.075 0.215 0.016 0.014 0.024 0.023 0.041 0.067

(0.015) (0.074) (0.058) (0.103) (0.014) (0.013) (0.028) (0.026) (0.023) (0.043)

κ 0.020 0.056 0.056 0.034 0.013 0.017 0.014 0.016 0.026 0.032

(0.008) (0.010) (0.009) (0.012) (0.003) (0.006) (0.007) (0.006) (0.005) (0.006)

λ 0.979 0.926 0.946 0.943 0.986 0.982 0.985 0.983 0.969 0.965

(0.009) (0.012) (0.009) (0.017) (0.002) (0.006) (0.008) (0.007) (0.006) (0.007)

κ + λ 0.999 0.982 1.002 0.977 0.999 0.999 0.999 0.999 0.995 0.998

Panel C: Serial correlation tests

εi,t 16.325 10.934 15.178 11.144 8.952 18.086 8.953 25.641 7.133 18.906

(0.091) (0.363) (0.126) (0.346) (0.537) (0.054) (0.537) (0.004) (0.713) (0.042)

ε2

i,t 92.430 62.011 56.910 22.875 150.471 46.849 41.513 72.156 36.577 36.247

(0.000) (0.000) (0.000) (0.011) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

εi,th
−1/2

i,t 11.003 11.878 15.071 14.344 6.576 20.148 7.677 18.762 6.386 12.855

(0.357) (0.293) (0.130) (0.158) (0.765) (0.028) (0.660) (0.043) (0.782) (0.232)

ε2

i,th
−1

i,t 12.511 24.289 24.616 25.424 9.426 4.946 16.156 40.312 8.650 11.998

(0.252) (0.007) (0.006) (0.005) (0.492) (0.895) (0.095) (0.000) (0.566) (0.285)

Note: Panel A and B report Quasi Maximum Likelihood Estimates (QMLE) of HAR-X-GARCH models with robust standard errors in parentheses. Panel C reports Wald

test statistics for up to tenth order serial correlation in the (squared) residuals and standardized residuals, with corresponding p-values in parentheses.
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Table 3: Unconditional return correlations for different return horizons

Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel A: Daily (lower triangle) and Weekly (upper triangle)

Los Angeles – 0.117
0.065

0.061
0.124

0.066
0.073

0.197
0.219

0.172
0.250

0.198
0.240

0.280
0.309

0.164
0.145

0.156
0.204

Boston 0.017
0.026

– 0.033
0.068

0.068
0.128

0.139
0.130

0.133
0.121

0.143
0.063

0.118
0.054

0.105
0.128

0.120
0.129

Chicago 0.002
0.019

−0.007
−0.001

– 0.025
0.108

0.077
0.149

0.058
0.064

0.049
0.042

0.084
0.148

0.102
0.115

0.068
0.089

Denver 0.001
−0.003

0.023
0.031

−0.002
−0.003

– 0.105
0.100

0.092
0.110

0.100
0.090

0.060
0.106

0.053
0.006

0.084
0.090

Miami 0.072
0.069

0.047
0.043

0.024
0.046

0.044
0.047

– 0.173
0.239

0.178
0.214

0.165
0.176

0.187
0.169

0.150
0.183

Las Vegas 0.060
0.077

0.051
0.049

0.015
0.032

0.038
0.027

0.053
0.054

– 0.165
0.209

0.147
0.162

0.123
0.060

0.142
0.173

San Diego 0.077
0.072

0.059
0.053

−0.006
0.022

0.045
0.042

0.056
0.060

0.058
0.065

– 0.171
0.263

0.148
0.169

0.137
0.127

San Francisco 0.183
0.235

0.037
0.038

0.037
0.065

0.006
−0.003

0.057
0.060

0.052
0.068

0.069
0.066

– 0.138
0.137

0.136
0.151

New York 0.032
0.041

0.011
0.000

0.047
0.061

−0.009
−0.002

0.065
0.063

0.010
−0.002

0.027
0.029

0.024
0.031

– 0.149
0.088

Washington, D.C. 0.047
0.045

0.038
0.034

0.017
0.024

0.032
0.041

0.041
0.038

0.049
0.034

0.033
0.027

0.038
0.038

0.044
0.043

–
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Table 3: Continued

Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel B: Monthly (lower triangle) and Quarterly (upper triangle)

Los Angeles – 0.634
0.621

0.530
0.602

0.463
0.506

0.730
0.852

0.600
0.837

0.731
0.906

0.724
0.834

0.759
0.747

0.733
0.856

Boston 0.382
0.348

– 0.451
0.655

0.400
0.559

0.616
0.507

0.533
0.522

0.624
0.673

0.594
0.623

0.643
0.735

0.627
0.688

Chicago 0.266
0.344

0.207
0.320

– 0.323
0.502

0.519
0.612

0.417
0.510

0.513
0.567

0.500
0.667

0.572
0.767

0.532
0.675

Denver 0.251
0.355

0.210
0.254

0.138
0.293

– 0.457
0.370

0.391
0.317

0.454
0.557

0.416
0.625

0.458
0.411

0.456
0.513

Miami 0.493
0.619

0.384
0.277

0.274
0.355

0.271
0.239

– 0.591
0.797

0.696
0.769

0.669
0.754

0.734
0.761

0.697
0.801

Las Vegas 0.395
0.633

0.328
0.322

0.210
0.233

0.229
0.201

0.404
0.547

– 0.589
0.782

0.558
0.657

0.599
0.659

0.582
0.708

San Diego 0.497
0.626

0.388
0.307

0.260
0.276

0.266
0.351

0.468
0.570

0.400
0.497

– 0.678
0.822

0.731
0.711

0.694
0.824

San Francisco 0.511
0.623

0.334
0.288

0.253
0.404

0.216
0.427

0.424
0.527

0.343
0.417

0.435
0.600

– 0.700
0.663

0.677
0.791

New York 0.505
0.478

0.384
0.415

0.318
0.427

0.247
0.149

0.499
0.496

0.383
0.354

0.480
0.430

0.431
0.394

– 0.738
0.761

Washington, D.C. 0.469
0.603

0.366
0.375

0.277
0.385

0.253
0.309

0.444
0.515

0.368
0.444

0.433
0.551

0.414
0.486

0.478
0.437

–

Note: Model-implied correlations are upper numbers and data-based correlations are in smaller font just below. Daily, weekly, monthly and quarterly horizons correspond to 1, 5, 20,

60 days respectively.
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Table 4: Diebold-Mariano forecast comparison tests

Composite Los Angeles Boston Chicago Denver Miami Las Vegas San Diego San Francisco New York Washington, D.C.

Panel A: One-day-ahead (h = 1)

Mthly v.s. HAR 9.240 8.337 7.378 10.060 9.845 8.680 9.981 9.929 8.067 8.981 9.142
Interp v.s. HAR 8.707 10.171 7.623 6.242 9.249 11.415 8.569 10.786 7.865 8.609 10.293
Direct v.s. HAR 1.599 1.381 2.943 -0.176 1.224 2.785 0.126 -0.276 3.139 -0.012 2.173

Panel B: One-week-ahead (h = 5)

Mthly v.s. HAR 4.956 4.458 3.876 5.412 5.126 5.087 6.682 6.581 4.258 5.268 4.981
Interp v.s. HAR 4.071 2.964 4.856 5.466 6.724 5.882 4.501 4.761 5.349 4.588 5.304
Direct v.s. HAR 4.495 1.200 3.580 1.514 1.141 2.669 -0.298 0.768 -0.373 0.562 3.212

Panel C: Two-weeks-ahead (h = 10)

Mthly v.s. HAR 4.544 2.751 3.799 6.647 4.343 4.078 5.204 5.847 3.453 5.261 4.392
Interp v.s. HAR 4.372 1.478 3.617 4.586 4.042 3.333 2.489 3.598 2.954 2.973 3.798
Direct v.s. HAR 5.668 0.828 3.567 2.640 0.763 2.585 -0.214 1.342 -0.381 0.964 3.563

Panel D: One-month-ahead (h = 20)

Mthly v.s. HAR – – – – – – – – – – –
Interp v.s. HAR 6.762 0.623 3.553 4.117 0.830 2.211 -0.511 1.777 0.941 1.909 4.268
Direct v.s. HAR – – – – – – – – – – –

Note: The table reports the Diebold-Mariano test statistics for equal predictive accuracy against the alternative that the HAR forecast outperforms the other three forecasts, Mthly,
Interp and Direct. The test statistics are asymptotically standard Normal under the null of equal predictive accuracy. The tests are based on the out-of-sample period from July 2009
to September 2012. The Mthly, Interp and Direct models are all identical when h = 20, so only one set of test statistics are reported in Panel D.
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Figure 1: Daily and monthly house price indexes for Los Angeles
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Figure 2: Raw and filtered daily house price indexes for Los Angeles
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Figure 3: Characteristics of the δ(L) filter
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Figure 4: Daily housing returns
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Figure 5: Unconditional return correlations for Los Angeles and New York
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Figure 6: Forecast RMSEs as a function of forecast horizon (1 to 20 days)
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