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Abstract

We construct daily house price indexes for ten major U.S. metropolitan areas. Our
calculations are based on a comprehensive database of several million residential prop-
erty transactions and a standard repeat-sales method that closely mimics the proce-
dure used in the construction of the popular monthly Case-Shiller house price indexes.
Our new daily house price indexes exhibit similar characteristics to other daily asset
prices, with mild autocorrelation and strong conditional heteroskedasticity, which are
well described by a relatively simple multivariate GARCH type model. The sample
and model-implied correlations across house price index returns are low at the daily
frequency, but rise monotonically with the return horizon, and are all commensurate
with existing empirical evidence for the existing monthly and quarterly house price se-
ries. A simple model of daily house price index returns produces forecasts of monthly
house price changes that are superior to various alternative forecast procedures based
on lower frequency data, underscoring the informational advantages of our new more
finely sampled daily price series.
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”There are many ways to measure changes in house prices, but the Standard & Poor’s/Case-

Shiller index has become many economists’ favored benchmark in recent years.”

Wall Street Journal, September 25, 2012

1 Introduction

For many U.S. households their primary residence represents their single largest financial

asset holding.1 Consequently, changes in housing valuations importantly affect households’

saving and spending decisions, and in turn the overall growth of the economy. Indeed, a

number of studies (see, e.g., Campbell and Cocco, 2007; Case et al., 2005, 2011; Davis and

Heathcote, 2005, among others) have argued that the wealth effect of the housing market

for aggregate consumption is significantly larger than that of the stock market. The recent

economic crisis, which arguably originated with the precipitous drop in housing prices be-

ginning in 2006, directly underscores this point.

Meanwhile, compared to most other financial asset classes data on residential real es-

tate valuations, especially at the aggregate level, are notoriously poor, and only available

at relatively low monthly or quarterly frequencies. Set against this background, we pro-

vide a new set of daily house price indexes for ten major U.S. metropolitan areas. To the

best of our knowledge, this represents the first set of house price indexes at the daily fre-

quency. Our construction is based on a comprehensive database consisting of all publicly

recorded residential property transactions. We show that the dynamic dependencies in the

new daily housing price series closely mimic those of other aggregate asset price indexes,

and that these dynamic dependencies along with the cross-city correlations are well de-

scribed by a standard multivariate GARCH type model. This relatively simple daily model

in turn allows for the construction of improved longer-run monthly and quarterly housing
1At the aggregate level, estimates based on the Federal Reserve Flow of Fund Accounts put the to-

tal value of the U.S. residential real estate market at $16 trillion at the end of 2011, compared with $18
trillion for the U.S. stock market as estimated by the Center for Research in Security Prices.
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price forecasts compared to the forecasts based only on existing monthly and/or quarterly

indexes.

Our house price indexes are based on the same “repeat-sales” methodology as the pop-

ular S&P/Case-Shiller indexes, currently published at a monthly frequency (see Shiller,

1991, for further documentation).2 This low frequency of reporting ignores the potential

information available in the daily records of housing transactions, and is likely to induce

“aggregation biases” if the true index changes at a higher frequencies than the measure-

ment period (see, e.g., the discussion in Calhoun et al., 1995). Further along these lines,

aggregating the indexes to lower frequencies also reduces their volatility, thereby underesti-

mating the true risk of the housing market.

Our construction of “high frequency” house price indexes is related to recent work on

real-time estimates of the macro economy (Evans, 2005; Aruoba et al., 2009, among oth-

ers). Like these authors, we are motivated by the potential usefulness of more timely infor-

mation about the state of the economy and economic activity. More timely house prices,

in particular, are also of direct interest to policy makers, central banks, developers and

lenders, as well as, of course, potential buyers and sellers.

In parallel to the daily returns on most other broadly defined asset classes, we find

that our new daily house price indexes exhibit only mild predictability in the mean, but

strong evidence of volatility clustering. We show that the volatility clustering within and

across the different house price indexes can be satisfactorily described by a relatively sim-

ple multivariate GARCH model. The correlation between the daily returns on the city

indexes is much lower than the correlation observed for the existing monthly return in-

dexes. However, as we temporally aggregate the daily returns to a monthly or quarterly

frequency, we find that the correlations increase to levels consistent with the ones observed

for existing lower frequency indexes. Going one step further, we also document that the

new daily indexes result in improved forecasts over longer monthly horizons for both the
2A similar approach is also used in the construction of the quarterly Office of Federal Housing Enter-

prise Oversight house price indexes.
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composite and city-specific housing returns, thus directly underscoring the informational

advantages over the existing monthly published indexes.

The rest of the paper is organized as follows. The next section provides a review of

house price index construction, and introduces the S&P/Case-Shiller methodology that we

employ in our analysis. Section 3 describes the data and the practical construction of our

new daily prices series. Section 4 briefly summarizes the dynamic and cross-sectional de-

pendencies in the daily series, and presents our simple multivariate GARCH-type model

designed to account for these dependencies. We also show how the low cross-city corre-

lations estimated by the daily model are consistent with the much stronger longer-run

monthly and quarterly correlations observed across cities in the existing indexes. Section

5 demonstrates how the new daily series and our modeling thereof may be used in more

accurately forecasting the corresponding longer-run returns. Section 6 concludes.

2 Construction of house price indexes

The construction of house price indexes is plagued by two major difficulties. Firstly, houses

are heterogeneous assets; each house is a unique asset, in terms of its location, characteris-

tics, maintenance status, etc., which will affect its price. House price indexes aim to mea-

sure the price movements of a hypothetical house of average quality, with the assumption

that average quality remains the same across time. In reality, average quality has been in-

creasing over time, because newly-built houses tend to be of higher quality and more in

line with current households’ requirements than older houses. Detailed house qualities are

not always available or not directly observable, so when measuring average house prices, it

is difficult to take the changing average qualities of houses into consideration.

The second major difficulty is sale infrequency.3 The price of a house is not observed

until an actual transaction occurs. Related to that, the houses sold at each point in time
3For example, the average time interval between two successive transactions of the same property is

about six years in Los Angeles, based on our data set described in detail in Section 3 below.
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might not be a representative sample of the overall housing stock. These difficulties may in

turn result in various biases.

2.1 Index methodologies

Three main methodologies have been used to overcome the above-mentioned difficulties

in the constructing reliable house price indexes (see, e.g., the surveys by Rappaport, 2007;

Ghysels et al., 2013). One approach is to rely on the median value of all transaction prices

in a given period. The National Association of Realtors employ this methodology and pub-

lishes median prices of existing home sales monthly for both the national and four Census

regions. The median price index has the obvious advantage of calculation simplicity, but it

does not control at all for heterogeneity of the houses actually sold.

A second, more complicated, approach uses a hedonic technique, which prices the

“average quality” house by explicitly pricing its specific attributes. This method controls

the heterogeneity of houses. The U.S. Census Bureau constructs its Constant Quality

(Laspeyres) Price Index of New One-Family Houses Sold using the hedonic method and

publishes its index quarterly. However this method requires much richer data than are typ-

ically available.

A third approach is based on a repeat sales model. This is the method used by Stan-

dard & Poor’s and the Office of Federal Housing Enterprise Oversight (OFHEC).4 The

repeat sales model was originally introduced by Bailey, Muth, and Nourse (1963), and sub-

sequently modified by Case and Shiller (1989). The specific model currently used to con-

struct the S&P/Case-Shiller indexes was proposed by Shiller (1991).5

As their name suggests, repeat sales models estimate house price changes by looking
4As Meese and Wallace (1997) point out, repeat-sales models can be viewed as a special case of hedonic

models, assuming that the attributes, and the shadow prices of the attributes, of the houses do not change
between sales. Thus, if the additional house characteristic data were widely available, it would clearly be
preferable to use a hedonic pricing model.

5Chauvet et al. (2013) propose an interesting, but quite different, type of housing index based on inter-
net search data for queries related to investor distress.
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at repeated transactions of the same house.6 This provides some control for the hetero-

geneity in the characteristics of houses, while only requiring data on transaction prices

and dates. The basic models, however, are subject to some strong assumptions (see, e.g.,

the discussion in Cho, 1996; Rappaport, 2007). Firstly, it is assumed that the quality of

a given house remains unchanged over time. In practice, of course, the quality of most

houses changes through aging, maintenance or reconstruction. This in turn causes a so-

called “renovation bias.” Secondly, repeat sales indexes exploit information only from houses

that have been sold at least twice during the sampling period. This subset of all houses is

assumed to be representative of the entire housing stock, possibly resulting in a “sample-

selection bias.” In addition, as previously noted, these indexes are also subject to a pos-

sible “aggregation bias” if the true average house price fluctuates within the estimation

window.7

2.2 The S&P/Case-Shiller methodology

Our new daily home price indexes are designed to mimic the popular S&P/Case-Shiller

house price indexes for the “typical” prices of single-family residential real estate. They

are based on a repeat sales method and the transaction dates and prices for all houses that

sold at least twice during the sample period.8 Specifically, for a house j that sold at times
6Cho (1996) provides a good survey on various repeat sales models, and Ghysels et al. (2013) discuss

house price index construction with a view to forecasting. Extensions to the basic repeat-sales model in-
clude Shiller (1993), Case and Quigley (1991), Quigley (1995), Goetzmann and Spiegel (1997), Nagaraja
et al. (2011) and others. Although these extensions have advantages in one aspect or another, the basic
repeat sales model is still the most computationally efficient and least data demanding method, and is
widely used by many companies and institutions.

7Calhoun et al. (1995) compare repeat sales indexes over annual, semiannual, quarterly as well as
monthly intervals, and conclude that aggregation bias arises for all intervals greater than one month. By
analogy, if the true housing values fluctuates within months, the standard monthly indexes are likely to be
biased.

8If a given house sold more than twice, then only the non-overlapping sale pairs are used. For example,
a house that sold three times would generate two sale pairs from the first and second transaction, and the
second and third transaction; the pair formed by the first and third transaction is not included.

6



s and t at prices Hj,s and Hj,t, the repeat sales model postulates that,

βtHj,t = βsHj,s +
√

2σwwj,t +
√

(t − s)σvvj,t, 0 ≤ s < t ≤ T, (1)

with the value of the house price index at time τ is defined by the inverse of βτ . The last

two terms on the right-hand side account for “errors” in the sale pairs, with
√

2σwwj,t rep-

resenting the “mispricing error,” and
√

(t − s)σvvj,t representing the “interval error.” Mis-

pricing errors are included to allow for imperfect information between buyers and sellers,

potentially causing the actual sale price of a house to differ from its “true” value. The in-

terval error represents a possible drift over time in the value of a given house away from

the overall market trend, and is therefore scaled by the (square root of the) length of the

time-interval between the two transactions. The error terms wj,t and vj,t are assumed inde-

pendent and identically standard normal distributed.

The S&P/Case-Shiller model and the corresponding error structure naturally lend it-

self to estimation by a three-stage generalized least square type procedure (for additional

details, see Case and Shiller, 1987). The base period of the S&P/ Case-Shiller indexes

is January 2000. All index values prior to the base period are estimated simultaneously.

After the base period, the index values are estimated using a chain-weighting procedure

that conditions on all previous values. This chain-weighting procedure is used to prevent

revisions of previously published index values. Finally, and importantly, the indexes are

smoothed by repeating a given transaction in three successive months, so that, for exam-

ple, the December index is based on a triplication of the sales that occurred in October,

November and December.9
9Quoting from the Index Construction Section of S&P/Case-Shiller Home Price Index Methodology:

“The indices are calculated monthly, using a three-month moving average algorithm ... The index point for
each reporting month is based on sales pairs found for that month and the preceding two months.”
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3 Daily house price indexes

Following most studies in the academic literature, as well as reports in the popular press,

we will focus our analysis on the ten largest Metropolitan Statistical Areas (MSAs), as

measured in the year 2000. Table 1 shows the counties included in the calculation for each

of the ten MSAs. For conciseness, we will refer to the largest county in a given MSA as

the label for that area.

[ INSERT TABLE 1 ABOUT HERE ]

3.1 Data and data cleaning

The transaction data used in our daily index estimation is obtained from DataQuick, a

property information company. This database contains detailed transactions of more than

one hundred million properties in the United States. For most of the areas, the historical

transaction records extends from the late 1990s to 2012, with some large metropolitan ar-

eas, such as Boston and New York, having transactions recorded as far back as 1987. Prop-

erties are uniquely identified by property IDs, which enable us to identify sale pairs. We

rely U.S. Standard Use Codes contained in the DataQuick database to identify transac-

tions of single-family residential homes.

Our data ”cleaning” rules are based on the same filters used by S&P/Case-Shiller and

Caplin et al. (2008) in the construction of their monthly indexes. In brief, we remove any

transaction that are not “arms-length,” using a flag for such transactions available in the

database. We also remove transactions with “unreasonably” low or high sale prices (be-

low $5000 or above $100 million, and those generating an average annual return of below

-50% or above 100%), as well as any sales pair with an interval of less than six months.

Sale pairs are also excluded if there are indications that major improvements have been

made between the two transactions, although such indications are not always present in

the database. For the Los Angeles MSA, for example, this yields a total of 877,885 ”clean”
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sale pairs, representing an average of 180 daily sale pairs over the estimation period. Ta-

ble 2 further summarizes the data for all of the ten MSAs.

[ INSERT TABLE 2 ABOUT HERE ]

3.2 Practical estimation

The monthly S&P/Case-Shiller repeat-sales indexes are estimated using equation (1). This

approach is not computationally feasible at the daily frequency, as it involves the simul-

taneous estimation of several thousand parameters.10 To overcome this difficulty, we use

an expanding-window estimation procedure: conditional on a start-up period, we begin by

estimating daily index values for the final month in an initial sample, imposing the con-

straint that all of the earlier months have only a single monthly index value. Restricting

the daily values to be the same within each month for all but the last month drastically

reduces the dimensionality of the estimation problem. We then expand the estimation pe-

riod by one month, thereby obtaining daily index values for the new “last” month. We

continue this expanding estimation procedure through to the end of our sample period.

Finally, following the S&P/Case-Shiller methodology, we normalize all of the individual

indexes to 100 based on their average values in the year 2000.

One benefit of the estimation procedure we adopt is that it is possible to formally test

whether the “raw” daily price series actually exhibit significant within month variation.

In particular, following the approach used by Calhoun et al. (1995) to test for “aggrega-

tion biases” in excess of one month, we test the null hypothesis that the estimates of βi,τ

for MSA i are the same for all days τ within a given calendar month against the alter-

native that these estimates differ within the month. All of these tests strongly reject the

null for all of the ten metropolitan areas; further details concerning the actual test results

are available upon request. Importantly, as we describe in detail below, this statistically
10The daily time spans for the ten MSAs range from a low of 2837 for Washington, D.C. to a high of

4470 days for New York.
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significant intra-monthly variation also translates into economically meaningful variation

and corresponding gains in forecast accuracy compared to the forecasts based on coarser

monthly index values only.

3.3 Noise filtering

The raw daily house price indexes discussed above are invariably subject to measurement

errors. To help alleviate this problem, it is useful to further clean the data in an effort to

extract more accurate estimates of the the true latent daily price series. We rely on a stan-

dard Kalman filter-based approach for doing so.11

Specifically, let Pi,t denote the true latent index for MSA i at time t. We assume that

the “raw” price indexes constructed in the previous section, P ∗
i,t = 1/βi,t, are related to the

true latent price indexes by,

log P ∗
i,t = log Pi,t + ηi,t, (2)

where the ηi,t measurement errors are assumed to be serially uncorrelated. For simplicity

of the filter, we will further assume that the true daily price index follows a random walk

with drift,

ri,t ≡ ∆ log Pi,t = µi + ui,t, (3)

where ηi,t and ui,t are mutually uncorrelated. It follows readily by substitution that,

r∗
i,t ≡ ∆ log P ∗

i,t = ri,t + ηi,t − ηi,t−1. (4)

Combining (3) and (4), this in turn implies an MA(1) error structure for the “raw” re-

turns, with the value of the MA(1) coefficient determined by the variances of ηi,t and ui,t,

σ2
η and σ2

u, respectively. This simple MA(1) structure is consistent with the sample auto-
11This mirrors the use of filtering techniques for extracting the true latent price process from high-

frequency intraday data contaminated by market microstructure noise explored in the financial economet-
rics literature; see, e.g., Owens and Steigerwald (2006).
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correlations for the raw return series for all of the ten cities reported in Figure 1. Except

for the first-order autocorrelations, which are close to −0.5 for all of the cities, none of the

higher order autocorrelations are significantly different from zero on a systematic basis.

[ INSERT FIGURE 1 ABOUT HERE ]

Interpreting equations (3) and (4) as a simple state-space system, µ, σ2
η and σ2

u may

easily be estimated by standard (quasi-)maximum likelihood methods. This also allows for

the easy filtration of of the “true” daily returns ri,t from r∗
i,t by a standard Kalman filter;

see, e.g., Hamilton (1994).12 The resulting estimates reported in Table 3 imply that the

ση/σu noise-to-signal ratios for the daily index returns range from a low of 6.48 (Los Ange-

les) to a high of 15.18 (Boston), underscoring the importance of filtering out the noise.

[ INSERT TABLE 3 ABOUT HERE ]

The corresponding filtered estimates of the latent “true” daily price series for Los An-

geles are depicted in Figure 2. For comparison, we also include the raw daily prices and

the monthly S&P/Case-Shiller index. Looking first at the top panel for the year 2000, the

figure clearly illustrates how the filtered daily index mitigates the noise in the raw price se-

ries. At the same time, the filtered prices also point to discernable within month variation

compared to the step-wise constant monthly S&P/Case-Shiller index.

The bottom panel for the full 1995-2012 sample period tells a similar story. The visual

differences between the filtered daily series and the monthly S&P/Case-Shiller index are

obviously less glaring on this scale. Nonetheless, the considerable (excessive) variation in

the raw daily prices coming from the noise is still evident.

The full-sample plots for the same three price series for all of the ten MSAs shown in

Figure 3 further corroborate these same ideas. The relatively simple Kalman filter-based
12The Kalman filter implicitly assumes that ηi,t and ui,t are iid normal. If the assumption of normality

is violated, the filtered estimates are interpretable as best linear approximations.
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approach effectively cleans out the noise in the raw daily prices. We will consequently refer

to and treat the filtered series as the daily house price indexes in the sequel.13

Before turning to our empirical analysis and modeling of the dynamic dependencies in

the daily series, it is instructive to more formally contrast the information inherent in the

daily indexes with the traditional monthly S&P/Case-Shiller index.

[ INSERT FIGURES 2 AND 3 ABOUT HERE ]

3.4 Comparisons with the monthly S&P/Case-Shiller index

Like the monthly S&P/Case-Shiller indexes, our daily house price indexes are based on all

publicly available property transactions. However, the complicated non-linear transforma-

tions of the data used in the construction of the indexes prevent us from expressing the

monthly indexes as explicit functions of the corresponding daily indexes. Instead, as a sim-

ple way to help gauge the relationship between the indexes, and the potential loss of infor-

mation in going from the daily to the monthly frequency, we consider the linear projection

of the monthly S&P/Case-Shiller returns for MSA i, denoted rS&P
i,t , on 60 lagged values of

the corresponding daily index returns,14

rS&P
i,t = δ(L)ri,t + εi,t =

59∑
j=0

δjL
jri,t + εi,t, (5)

where Ljri,t refers to the daily return on the jth day before the last day of month t. The

inclusion of 60 daily lags match the three-month smoothing window used in the construc-

tion of the monthly S&P/Case-Shiller indexes, as discussed in Section 2. The true popula-

tion coefficients in the linear δ(L) filter are, of course, unknown. However, they are readily

estimated by ordinary least squares (OLS).
13The “smoothed” daily prices constructed from the full sample look almost indistinguishable from the

filtered series shown in the figures. We purposely rely on filtered as opposed to smoothed estimates to
facilitate the construction of meaningful forecasts.

14As discussed further below, all of the price series appear to be non-stationary. We consequently formu-
late the projection in terms of returns as opposed to the price levels.
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The resulting estimates for δj=0,...,59 obtained from the single regression that pools the

returns for all ten MSAs are reported in the top panel of Figure 4. Each of the individual

coefficients are obviously subject to a fair amount of estimation error. At the same time,

there is a clear pattern in the estimates for δj across lags. This naturally suggests the use

of a polynomial approximation in j to help smooth out the estimation error. The solid line

in the figure shows the resulting nonlinear least squares (NLS) estimates obtained from a

simple quadratic approximation. The corresponding R2s for the unrestricted OLS and the

NLS fit δ̂j = 0.1807 + 0.0101j − 0.0002j2 are 0.860 and 0.851, respectively, indicating only

a slight deterioration in te accuracy of the fit by imposing the quadratic approximation

to the lag coefficients. Moreover, even though the monthly S&P/Case-Shiller returns are

not an exact linear function of the daily returns, the simple relationship dictated by δ(L)

accounts for the majority of the monthly variation.

[ INSERT FIGURE 4 ABOUT HERE ]

To further illuminate the feature of the approximate linear filter linking the monthly

returns to the daily returns, consider the gain and the phase of δ(L),

G(ω) =

 59∑
j=0

59∑
k=0

δjδkcos(|j − k|ω)

1/2

, ω ∈ (0, π), (6a)

θ(ω) = tan−1
(∑59

j=0 δjsin(jω)∑59
j=0 δjcos(jω)

)
, ω ∈ (0, π). (6b)

Looking first at the gains in Figure 4b and 4c, the unrestricted OLS estimates and the

polynomial NLS estimates give rise to similar conclusions. The filter effectively down-weights

all of the high-frequency variation (corresponding to periods less than around 70 days),

while keeping all of the low-frequency information (corresponding to periods in excess of

100 days). As such, potentially valuable information for forecasting changes in house prices

is obviously lost in the monthly aggregate. Further along these lines, Figure 4d and 4e

show the estimates of θ(ω)
ω

, or the number of days that the filter shifts the daily returns
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back in time across frequencies. Although the OLS and NLS estimates differ somewhat for

the very highest frequencies, for the lower frequencies (periods in excess of 60 days) the fil-

ter systematically shifts the daily returns back in time by about 30 days. This corresponds

roughly to one-half of the three month (60 business days) smoothing window used in the

construction of the monthly S&P/Case-Shiller index.

In sum, the monthly S&P/Case-Shiller indexes essentially “kill” all of the within quar-

ter variation inherent in the new daily indexes, while delaying all of the longer-run infor-

mation by more than a month. We turn next to a more detailed analysis of the actual

time series properties of the new daily indexes, along with a simple model designed to con-

veniently describe the dependencies.

4 Time series modeling of daily housing returns

To facilitate the formulation of a multivariate model for all of the ten city indexes, we re-

strict our attention to the common sample period from June 2001 to September 2012. Ex-

cluding weekends and federal holidays, this leaves us with a total of 2,843 daily observa-

tions.

4.1 Summary statistics

Summary statistics for each of the ten daily series are reported in Table 4. The first Panel

A gives the sample means and standard deviations for each of the index levels. Standard

unit root tests clearly suggest that the price series are non-stationary, and as such the sam-

ple moments in Panel A need to be interpreted with care; further details concerning the

unit root tests are available upon request. In the sequel, we focus on the easier-to-interpret

daily return series.

[ INSERT TABLE 4 ABOUT HERE ]
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The daily sample mean returns reported in Panel B are generally positive, ranging

a low of -0.006 (Las Vegas) to a high of 0.015 (Los Angeles and Washington D.C.). The

standard deviation of the most volatile daily returns 0.599 (Chicago) is double that of the

least volatile returns 0.291 (New York). The first-order autocorrelations are fairly close to

zero for all of the cities, but the Ljung-Box tests for up to tenth order serial correlation

indicate significant longer-run dynamic dependencies in many of the series.

The corresponding results for the squared daily returns reported in Panel C indicate

very strong dynamic dependencies. This is also immediately evident from the plot of the

ten daily return series in Figure 5, which show a clear tendency for large returns in an ab-

solute sense to be follow by other large absolute returns. This directly mirrors the ubiqui-

tous volatility clustering widely documented in the literature for other daily speculative

returns. Again, consistent with the extant empirical finance literature and the evidence re-

ported for other financial asset classes, there is also a clear commonality in the volatility

patterns across the ten series.

4.2 Modeling conditional mean dependencies

The summary statistics discussed above point to existence of some, albeit relatively mild,

dynamic dependencies in the daily conditional means for most of the cities. Some of these

dependencies may naturally arise from a common underlying dynamic factor that influ-

ences housing valuations nationally. In order to accommodate both city specific and na-

tional effects within a relatively simple linear structure, we postulate the following model

for the conditional means of the daily returns,15

Et−1(ri,t) = ci + ρi1ri,t−1 + ρi5ri,t−5 + ρimrm
i,t−1 + bicr

m
c,t−1, (7)

15We do not seek to identify the absolute best time series model for each of the ten individual daily
MSA indexes. Instead, we attempt to provide a relatively simple and easy-to-implement common paramet-
ric specification that fits all of the ten cities reasonably well.
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where rm
i,t refers to the (overlapping) “monthly” returns defined by the summation of the

corresponding daily returns,

rm
i,t =

19∑
j=0

ri,t−j, (8)

and the composite (national) return rc,t is defined as a weighted average of the individual

city returns,

rc,t =
10∑

i=1
wiri,t, (9)

with the weights identical to the ones used in the construction of the composite ten city

monthly S&P/Case Shiller index.16 The own fifth lag of the returns is included to account

for any weekly calendar effects. The inclusion of the own monthly returns and the compos-

ite monthly returns provides a parsimonious way of accounting for longer-run city-specific

and common national dynamic dependencies. This particular formulation is partly mo-

tivated by the Heterogeneous Autoregressive (HAR) model originally proposed by Corsi

(2009) for modeling so-called realized volatilities, and we will refer to it as an HAR-X model

for short. We estimate this model for the conditional mean simultaneously with the model

for the conditional variance described in the next section via quasi-maximum likelihood.

The estimation results in Table 5 reveal that the ρ1 and ρ5 coefficients associated with

the own lagged returns are mostly, though not uniformly, insignificant when judged by the

robust standard errors reported in parentheses. Meanwhile, the bc coefficients associated

with the composite monthly return are significant for nine out of the ten cities. Still, the

one-day return predictability implied by the model is fairly modest, with the average daily

R2 across the ten cities equal to 0.024, ranging from a low of 0.007 (Denver) to a high of

0.049 (San Francisco). This is consistent with the low R2s generally obtained from time

series modeling of other daily financial returns.

The adequacy of the common specification for the conditional mean in equation (7)
16The specific values for each of the ten cities are 0.212, 0.074, 0.089, 0.037, 0.050, 0.015, 0.055, 0.118,

0.272, and 0.078, respectively, representing the total aggregate value of the housing stock in the ten MSAs
in the year 2000.
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is broadly supported by the tests for up to tenth order serial correlation in the residuals

εi,t ≡ ri,t − Et−1(ri,t) from the model reported in Panel C of Table 5. Only two of the tests

are significant at the 5% level (San Francisco and Washington, D.C.). At the same time,

the tests for serial correlation in the squared residuals ε2
i,t from the model, given in the

bottom two rows, clearly indicate strong non-linear dependencies in the form of volatility

clustering.

[ INSERT TABLE 5 ABOUT HERE ]

4.3 Modeling conditional variance and covariance dependencies

Numerous parametric specifications have been proposed in the literature for best describ-

ing volatility clustering in asset returns. Again, in an effort to keep our modeling pro-

cedures simple and easy-to-implement, we will rely on the popular GARCH(1,1) model

(Bollerslev, 1986) for describing the dynamic dependencies in the conditional variances for

all of the ten cities,

V art−1(ri,t) ≡ hi,t = ωi + κiε
2
i,t−1 + λihi,t−1. (10)

The results from estimating this model jointly with the the conditional mean model de-

scribed in the previous section are reported in Panel B of Table 5 together with robust

standard errors following Bollerslev and Wooldridge (1992) in parentheses.

The estimated GARCH parameters are all highly statistically significant and fairly

similar across cities. Consistent with the results obtained for other daily financial return

series, the estimates for the sum κ+λ are all very close to unity (and just above for Chicago,

at 1.002) indicative of a highly persistent, but eventually mean-reverting, time-varying

volatility process.

The Wald tests for up to tenth order serial correlation in the resulting standardized

residuals εi,t/h
1/2
i,t reported in Panel C suggest that little predictability remains, with only

one city (San Francisco) rejecting the null of no autocorrelation. The tests for serial corre-
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lation in the squared standardized residuals ε2
i,t/hi,t reject the null for four cities, perhaps

indicative of some remaining predictability in volatility not captured by this relatively sim-

ple model. However for the majority of cities the specification in equation (10) appears to

provide a satisfactory fit. The dramatic reduction in the values of the test statistics for the

squared residuals compared to the values reported in the second row of Panel C is particu-

larly noteworthy.

The univariate HAR-X-GARCH models defined by equations (7) and (10) indirectly

incorporate commonalities in the cross-city returns through the composite monthly returns

rc,t included in the conditional means. The univariate models do not, however, explain the

aforementioned commonalities in the volatilities observed across cities and the correspond-

ing dynamic dependencies in the conditional covariances of the returns.

The Constant Conditional Correlation (CCC) model proposed by Bollerslev (1990)

provides a particularly convenient framework for jointly modeling the ten daily return

series by postulating that the temporal variation in the conditional covariances are pro-

portional to the products of the conditional standard deviations. Specifically, let rt ≡

[r1,t, ..., r10,t]′ and Dt ≡ diag
{
h

1/2
1t , ..., h

1/2
10,t

}
denote the 10 × 1 vector of daily returns and

10 × 10 diagonal matrix with the GARCH conditional standard deviations along the diag-

onal, respectively. The GARCH-CCC model for the conditional covariance matrix of the

returns may then be succinctly expressed as,

V art−1(rt) = DtRDt, (11)

where R is a 10 × 10 matrix with ones along the diagonal and the conditional correlations

in the off-diagonal elements. Importantly, the R matrix may be efficiently estimated by

the sample correlations for the 10 × 1 vector of standardized HAR-X-GARCH residuals;

i.e., the estimates of D−1
t [rt − Et−1(rt)].

The resulting estimates for R are reported in Table 6. These daily correlations may
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seem surprisingly small, but as discussed further below, the model do imply much larger

longer-run correlations.

We also experimented with the estimation of the Dynamic Conditional Correlation

(DCC) model of Engle (2002), in which the time-varying conditional correlations are de-

termined by a GARCH(1,1) structure for the vector of standardized residuals. The max-

imized value of the (quasi-) log-likelihood function for the DCC model of 85.229 is only

slightly larger than the value of 85.176 obtained for the CCC model, and the GARCH

parameters characterizing the temporal variation in Rt are also statistically insignificant.

Hence, we conclude that the relatively simple multivariate HAR-X-GARCH-CCC model

defined by equations (7), (10), and (11) provides a satisfactory fit to the joint dynamic

dependencies in the conditional first and second order moments of the ten daily housing

return series.

4.4 Temporal aggregation and housing return correlations

The estimated conditional correlations from the HAR-X-GARCH-CCC model for the daily

index returns reported in Table 6 averages only 0.022. By contrast the unconditional cor-

relations for the monthly S&P/Case Shiller indexes calculated over the same time period

reported in Table 7 averages 0.708, ranging from 0.382 (Denver–Las Vegas) to 0.926 (Los

Angeles–San Diego). This apparent discrepancy between the two sets of numbers, seem-

ingly calls into question the integrity of our new daily indexes and/or the time-series mod-

els for describing the dynamic dependencies therein.

Of course, the conditional daily correlations and the unconditional monthly correla-

tions are not directly comparable, as the conditioning and the temporal aggregation may

affect covariances (the numerator) differently from variances (the denominator). Hence, in

order to more directly compare the longer-run dependencies inherent in our new daily in-

dexes to the more traditional monthly S&P/Case Shiller indexes, we aggregate our daily

return indexes to a monthly level by summing the daily returns within a month (20 days).
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The unconditional sample correlations for these new monthly returns are reported in the

lower triangle of Panel B in Table 8. These numbers are obviously much closer to the un-

conditional correlations for the published S&P/Case Shiller indexes in Table 7. However,

they are generally still below those values.

However, as previously noted, the monthly S&P/Case Shiller indexes are artificially

“smoothed,” by repeating each sale pair in the two months following the actual repeat sale.

As such, a more meaningful comparison of the longer-run correlations inherent in our new

daily indexes with the correlations in the S&P/Case Shiller indexes is afforded by the un-

conditional quarterly (60 days) correlations reported in the upper triangle of Panel B in

Table 8. All of these sample correlations are very close to the ones in Table 7, thus indi-

rectly corroborating our new daily index construction.

[ INSERT TABLE 8 ABOUT HERE ]

This, of course, says nothing about the validity of the HAR-X-GARCH-CCC model

for the daily returns, and the previously noted very low daily conditional correlations for

the model in Table 6. As a further indirect specification check for the model, we therefore

also consider the model-implied longer-run correlations, and study how these compare with

the sample correlations for the actual longer-run aggregate returns.

The HAR-X-GARCH-CCC model does not admit closed-form expressions for the

lower-frequency implied correlations, but these are easy to approximate by numerical simu-

lations. The top number in each element of Panels A and B of Table 8 gives the simulated

median model-implied unconditional correlations for the daily, weekly, monthly, and quar-

terly return horizons, based on a total of 500 simulated sample paths. The bottom number

in each element is the corresponding sample correlations for the actual longer-run aggre-

gate returns.

Consistent with the conditional correlations from the model in Table 6, the daily un-

conditional correlations in Panel A are all close to zero. However, the unconditional cor-
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relations implied by the model gradually increase with the return horizon, and almost all

of the quarterly correlations are in excess of one-half. Importantly, the longer-run model-

implied correlations closely match their unconditional sample analogues reported in the

upper triangular panels.

Further to this effect, Figure 6 presents the median model-implied and sample correla-

tions for return horizons ranging from one-day to a quarter, along with the corresponding

simulated 95% confidence intervals implied by the model for the Los Angeles–Boston and

Los Angeles–New York city pairs. The model evidently provides a very good fit across all

horizons, with the actual correlations well within the confidence bands. The correspond-

ing plots for all of the 45 city pairs, presented in Figure 7, tell a similar story. The median

simulated values and actual sample correlations reported in the upper triangular part of

the figure are systematically close, and the sample values are well within the 95% confi-

dence intervals implied by the model given in the lower triangular portion of the figure.

Taken as whole the results in Figures 6 and 7 clearly support the idea that the longer-

run cross-city dependencies inherent in our new finer sample daily house price series are

fully compatible with those in the published coarser monthly S&P/Case Shiller indexes.

The results also confirm that the joint dynamic dependencies in the daily returns are well

described by the relatively simple HAR-X-GARCH-CCC model developed above, in turn

suggesting that this model could possibly be used in the construction of improved house

price forecasts over longer monthly horizons.

[ INSERT FIGURES 6 and 7 ABOUT HERE ]

5 Forecasting housing returns

One of the major potential benefits from higher frequency data is the possibility of con-

structing more accurate forecasts, by using models that more quickly incorporate new in-

formation. In order to ascertain the potential improvements along this dimension afforded

21



by the daily house price series and our modeling thereof, we consider a comparison of the

forecasts from the daily HAR-X-GARCH-CCC model with different benchmark alterna-

tives.

Specifically, consider the problem of forecasting the 20-day return (which we shall re-

fer to as “monthly”) on the house price index for MSA i,

r
(m)
i,t ≡

19∑
j=0

ri,t−j (12)

for forecast horizons ranging from h = 20 days ahead to h = 1 day ahead.17 When h = 20

this corresponds to a simple one-step ahead forecast for one-month returns, but for h < 20

an optimal forecast will contain a mixture of observed data and a forecast for the return

over the remaining part of the month. We will use the period June 2001 to June 2009 as

our in-sample period, and the period July 2009 to September 2012 as our out-of-sample

period.18 All of the model parameters are estimated once over the fixed in-sample period.

Our simplest benchmark forecast is based purely on end-of-month data, and is there-

fore not updated as the horizon shrinks. We will consider a simple AR(1) for these monthly

returns,

r
(m)
i,t = ϕ0 + ϕ1r

(m)
i,t−20 + ei,t.

As the forecast is not updated through the month, the forecast made at time t−h is simply

the AR(1) forecast made at time t − 20,

r̂Mthly
i,t−h = ϕ̂0 + ϕ̂1r

(m)
i,t−20. (13)

Our second benchmark forecast is again purely based on monthly data, but now we
17In the forecast literature, this is referred to as a “fixed event” forecast design, see Nordhaus (1987) for

an early analysis of such problems.
18A preliminary version of this paper used an earlier vintage of the DataQuick database that ended in

June 2009, which is how we chose our sample-split point. This preliminary version of the paper did not
consider any out-of-sample comparisons, and so the results presented here are close to “true,” rather than
“pseduo,” out-of-sample.
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allow the forecaster to update the forecast at time t − h, which may be in the middle of a

month. We model the incorporation of observed data by allowing the forecaster to take a

linear combination of the monthly return observed on day t − h and the one-month-ahead

forecast made on that day,

r̂Interp
i,t−h =

(
1 − h

20

)
r

(m)
i,t−h + h

20
(
ϕ̂0 + ϕ̂1r

(m)
i,t−h

)
. (14)

Our third forecast fully exploits the daily return information, by using the actual re-

turns from time t − 19 to t − h as the first component of the forecast, as these are part of

the information set at time t − h, and then using a “direct projection” method to obtain

a forecast for the remaining h-day return based on the one-month return available at time

t − h. Specifically,

r̂Direct
i,t−h =

19∑
j=h

ri,t−j + β̂
(h)
0 + β̂

(h)
1 r

(m)
i,t−h, (15)

where,
h−1∑
j=0

ri,t−j = β
(h)
0 + β

(h)
1 r

(m)
i,t−h + ui,t,

and the β
(h)
0 and β

(h)
1 coefficients are estimated from the relevant projection.

Finally, we consider a forecast based on the HAR-X-GARCH-CCC model presented

in the previous section. Like the third forecast, this forecast uses the actual returns from

time t − 19 to t − h as the first component, and then iterates the expression for the con-

ditional daily mean returns in equation (7) forward to get forecasts for the remaining h

days,

r̂HAR
i,t−h =

19∑
j=h

ri,t−j +
h−1∑
j=0

Êt−h [ri,t−j] . (16)

Given the construction of the target variable, we expect the latter three forecasts (“In-

terp”, “Direct”, “HAR”) to all beat the “Mthly” forecast for all horizons less than 20 days.

If intra-monthly returns have dynamics that differ from those of monthly returns, then we

expect the latter two forecasts to beat the “Interp” forecast, as they both explicitly allow
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for this characteristic. Finally, if the HAR-X-GARCH-CCC model presented in the previ-

ous section provides a closer description of the true dynamics than a simple direct projec-

tion, then we would also expect the fourth forecast to beat the third.

Figure 8 shows the resulting Root Mean Squared Errors (RMSEs) for the four fore-

casts as a function of the forecast horizon, when evaluated over the July 2009 to Septem-

ber 2012 out-of-sample period. The first striking, though not surprising, feature is that ex-

ploiting higher frequency (intra-monthly) data leads to smaller forecast errors than a fore-

cast based purely on monthly data. All three of the forecasts that use intra-monthly infor-

mation out-perform the model based solely on end-of-month data. The only exception to

this is for Las Vegas at the h = 20 horizon, where the HAR model slightly under-performs

the monthly model.

Another striking feature of Figure 8 is that the more accurate modeling of the daily

dynamic dependencies afforded by the HAR-X-GARCH-CCC model results in lower RM-

SEs across all forecasts horizons for eight of the ten cities. For San Francisco and Las Ve-

gas the direct projection forecasts perform essentially as well as the HAR forecasts, and for

Denver and Los Angeles the improvement of the HAR forecast is small (but positive for all

horizons). For some of the cities (Boston, Miami and Washington D.C., in particular) the

improvements are especially dramatic over longer horizons.

[ INSERT FIGURE 8 ABOUT HERE ]

The visual impression from Figure 8 is formally underscored by Diebold-Mariano tests,

reported in Table 9. Not surprisingly, the HAR forecasts significantly outperform the monthly

forecasts for horizons of 1, 5 and 10 days, for all ten cities and the composite index. At

the one-month horizon, a tougher comparison for the model, the HAR forecasts are signif-

icantly better than the monthly model forecasts for four out of ten cities, as well as the

composite index, and are never significantly beaten by the monthly model forecasts. Al-

most identical conclusions are drawn when comparing the HAR forecasts to the “interpo-
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lation” forecasts, supporting the conclusion that the availability of daily data clearly holds

the promise of more accurate forecasts, particularly over shorter horizons, but also even at

the monthly level.

The bottom row of each panel in Table 9 compares the HAR forecasts with those from

a simple direct projection model. Such forecasts have often been found to perform well in

comparison with “iterated” forecasts from more complicated models (see, e.g., Marcellino

et al., 2006, for a recent comparison along these lines in the context of macroeconomic

forecasting). By contrast, the Diebold-Mariano tests reported here suggest that the more

complicated HAR forecasts generally perform better than the direct projection forecasts.

For no city-horizon pair does the direct projection forecast lead to significantly lower out-

of-sample forecast RMSE than the HAR forecasts, while for many city-horizon pairs the

reverse is true. In particular, for Boston, Miami and Washington D.C., the HAR forecasts

significantly beat the direct projection forecasts across all four horizons, and for the com-

posite index this is true for all but the shortest horizon.

All-in-all, the results from our out-of-sample forecast analysis clearly suggest that

the access to higher frequency daily data holds the promise of more accurate longer-run

house price forecasts. Of course, more complicated models incorporating additional high-

frequency information may give rise to even better forecasts than the relatively simple

HAR-X-GARCH-CCC time series model developed here.

[ INSERT TABLE 9 ABOUT HERE ]

6 Conclusion

We present a set of new daily house price indexes for ten major U.S. Metropolitan Statisti-

cal Areas spanning the period from June 2001 to September 2012. The index construction

is based on the same repeat sales method underlying the popular monthly and quarterly

S&P/Case-Shiller indexes (Shiller, 1991), along with a comprehensive database of several
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million publicly recorded residential property transactions. We demonstrate that the dy-

namic dependencies in the new daily housing price series closely mimic those of other fi-

nancial asset prices, and that these dynamic dependencies along with the cross-city corre-

lations are well described by a standard multivariate GARCH-type model. We also show

that this relatively simple daily model allows for the construction of improved longer-run

weekly and monthly housing price forecasts compared to the forecasts based solely on ex-

isting coarser monthly price indexes.

The new “high frequency” house price indexes developed here open the possibility for

many other applications. Most directly, by providing more timely estimates of movements

in the housing market, the daily series should be of immediate interest to policy makers

and central banks, alike. In a related context, the series may also prove useful in further

studying the microstructure of the housing market, as well as in the estimation of more

structural equilibrium-based models for the housing market (see, e.g. Bajari et al., 2013).

At a broader level, combining the daily house price series with other daily estimates of eco-

nomic activity should afford better and more up-to-date insights into changes in the macro

economy. Along these lines, the series also hold the promise for the construction of more

accurate forecasts for many other macro economic and financial time series. We leave all

of these issues for future research.
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Figure 1: Sample autocorrelations for raw daily index returns
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Figure 2: Raw and filtered daily house price indexes for Los Angeles
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Figure 3: Raw and filtered daily house price indexes for ten MSAs
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Figure 6: Unconditional return correlations as a function of return horizon
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Figure 8: Forecast RMSEs as a function of forecast horizon
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