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S.1 Equal predictive ability tests

In this section we consider tests of equal predictive ability, corresponding the null and alternative

hypotheses (H ′
0 and H ′

1) in equations (4)-(5) of the main paper. We consider the test statistics:

sup t2n ≡ sup
γ∈Γ

t2n(γ) (S.1)

ave t2n ≡ ∫
Γ
t2n(γ)dJ(γ) (S.2)

where J is a weight function on Γ, for example J may be Uniform on Γ.

As for the sup-t test statistic in the main paper, each of the above test statistics can be

interpreted as functions v(tn), where v maps functionals on Γ to R. Importantly, each of

these functions is continuous with respect to the uniform metric, monotonic in the sense that

if Z1(γ) ≤ Z2(γ) for all γ then v(Z1) ≤ v(Z2), and has the property that if Z(γ) → ∞ for γ for

some subset of Γ with positive mass under weight function J , then v(Z) → ∞. Further, we can

consider feasible versions of both of these test statistics based on Sn Monte Carlo samples of γ

from distribution J on Γ, or based on a grid with Kn points in Γ.

The proofs presented in the next section are applicable to both the superior predictive ability

tests presented in the main paper and the equal predictive ability tests outlined here. For the

ave-t2 we require absolute continuity of J in Proposition 1. This requirement is obviously met

for J uniform on Γ.
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S.2 Proofs

S.2.1 Proof of Theorem 1

Finite dimensional convergence of
√
n(L̄n(⋅) − E[L1(⋅)]) follows from a CLT for (centered)

stationary mixing sequences (e.g. Theorem 4 in Doukhan et al. (1994)), and the Crámer-Wold

device (Proposition 5.1 in White (2001)), under Assumptions 1, 2, and 4. The mixing condition

of Theorem 4 in Doukhan et al. (1994)) is satisfied if limT→∞∑
T
t=1 t

1/(r−1)α(t) < ∞. It is easy to

see that this holds for α(t) = O(t−A), with A > r/(r−1). Notice that β-mixing implies α-mixing,

with relation α(t) ≤ 1
2β(t) between β-mixing and α-mixing coefficients (see, e.g., Doukhan et al.

(1995, p. 397)). But under Assumption 1 β(t) diminishes at a faster, geometric rate, such that

the mixing condition is satisfied.

We apply Theorem 1 of Doukhan et al. (1995) to establish stochastic equicontinuity of

√
n(L̄n(⋅)−E[L1(⋅)]). First, notice from Application 1 in Doukhan et al. (1995) that the mixing

condition is satisfied if limT→∞∑
T
t=1 t

1/(r−1)β(t) < ∞, which was established in the preceding.

Second, notice that under Assumption 2, the Lt+1(⋅) belong to L2r, where L2r denotes the class

of functions satisfying ∥f∥2r < ∞. From Application 1 in Doukhan et al. (1995) we then find

that the entropy condition is satisfied if ∫
1

0

√
H[](δ,Γ, ∥ ⋅ ∥2r)du < ∞, where H[](δ,Γ, ∥ ⋅ ∥2r) is

defined as the natural logarithm of the L2r bracketing numbers N[](δ,Γ, ∥ ⋅ ∥2r).

We can always choose N points in Γ, denoted γk, for k = 1, . . . ,N , and collected in ΓN , such

that for each γ ∈ Γ, mink ∣γ − γk∣ < GN
−1/d, because Γ is a bounded subset of Rd.

Assumption 3 implies that ∥Lt+1(γ) − Lt+1(γ
′)∥2r ≤ ∥Lt+1(γ) − Lt+1(γ

′)∥4r ≤ C ∣γ − γ′∣λ, for

all γ, γ′ ∈ Γ.

Setting N(δ) = δ−d/γGdC−d/λ, we therefore find that for all γ ∈ Γ there exists a γk ∈ ΓN such

that ∥Lt+1(γ) − Lt+1(γk)∥2r ≤ C ∣γ − γk∣
λ ≤ CGλN−λ/d = δ. Hence, N(δ) = δ−d/λGdC−d/λ satisfies

the definition of the L2r-bracketing numbers. Moreover, the entropy condition ∫
1

0 H[](δ,Γ, ∥ ⋅

∥2r)du = ∫
1

0 log(Cd/λGdδ−d/λ)dδ = d log(C1/λG)+∫
1

0 δ
−d/λdδ = d log(C1/λG)+ 1

2

√
πd/λ < ∞ holds.

It follows from Theorem 1 in Doukhan et al. (1995) that
√
n(L̄n(⋅) −E[L1(⋅)]) is stochas-

tically equicontinuous. Together with finite dimensional convergence this implies
√
n(L̄n(⋅) −

E[L1(⋅)]) ⇒ Z(⋅), with Z(⋅) a Gaussian process with covariance kernel Σ(⋅, ⋅).

Note that σ2
n(⋅)

a.s
Ð→ σ2(⋅) uniformly over Γ under Assumption 4. That v(τn)

d
Ð→ v(t̃) follows

by application of the Continuous Mapping Theorem.
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S.2.2 Proof of Theorem 2

The result under H ′
0 follows from Theorem 1 and the distribution function of v(t̃) being abso-

lutely continuous on (0,∞), and noting that v(tn) ≤ v(τn) for all n, since E[L1(γ)] ≤ 0 for all

γ ∈ Γ. The absolute continuity of the distribution function of v(t̃) follows from Z(⋅) having a

nondegenerate covariance kernel, and thus t̃(⋅) having nondegenerate covariance kernel under

Assumption 4, and the particular functional forms of v(⋅) under consideration (see Theorem

11.1 of Davydov et al. (1998)).

The result under H ′
1 is established as follows. Under the assumptions of Theorem 1 it

follows that L̄n(γ)
a.s
Ð→ E [Lt+1(γ)] ≡ ∆(γ), uniformly over Γ. Additionally, under Assumption

4 it follows that σ̂2
n(γ)

a.s.
ÐÐ→ σ2

m(γ) uniformly over γ ∈ Γ, and infγ∈Γ σ
2(γ) > 0.

By the Continuous Mapping Theorem supγ∈Γ(L̄n(γ)/σ̂n(γ))
p
→ supγ∈Γ(E[L1(γ)]/σ(γ))

p
≥

∆′, for some ∆′ > 0, and p = 1,2. Hence, for sup tpn = np/2 supγ∈Γ(L̄n(γ)/σ̂n(γ))
p
, P [sup tpn >

c] → 1, for any constant c ∈ R.

For the ave-t2n test we use additionally that Γ� ≡ {γ ∶ ∣γ−γ�∣λ < ∆/C} has positive mass under

the J-measure, the constant C given in Assumption 3, since the density of J is assumed positive

for all γ ∈ Γ. Then note that, for any γ ∈ Γ, ∣E[Lt+1(γ
�)]∣−∣E[Lt+1(γ

�)−Lt+1(γ)]∣ ≤ ∣E[Lt+1(γ)]∣

by the Triangle Inequality. Furthermore, from Jensen’s inequality, Hölder’s inequality and under

Assumption 3, it follows that

∣E[Lt+1(γ
�
) −Lt+1(γ)]∣ ≤ E[∣Lt+1(γ

�
) −Lt+1(γ)∣]

≤ ∥Lt+1(γ
�
) −Lt+1(γ)∥4r

≤ C ∣γ − γ�∣λ.

Hence, there here exists a ∆
′′
> 0 such that ∣E [Lt+1(γ)] ∣ = ∣∆(γ)∣ ≥ ∆

′′
, for all γ ∈ Γ�. It

follows that ∣L̄n(γ)∣ > ∆
′′
, a.s., uniformly over Γ�. Hence, there exists a ∆

′′′
> 0 so that

n−1/2∣tn(γ)∣
a.s.
ÐÐ→

∣L̄n(γ)∣
σ(γ) > ∆

′′′
, a.s., uniformly over Γ�, and P [avet2n > c] → 1, for any constant

c ∈ R.

S.2.3 Proof of Theorem 3

That
√
nL̄∗n(⋅) ⇒ Z(⋅) almost surely follows from Theorem 1 in Bühlmann (1995). Assumption

A1, A2, and A3 in Bühlmann (1995) are satisfied under Assumptions 1, 2, and 5 respectively.

Finally, Assumption A4 in that paper is established in the proof of Theorem 1, since N(δ)

satisfies the definition of the L4r bracketing numbers, and N(δ) = δ−d/λGdC−d/λ, for all δ > 0.
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Note that σ2
n(⋅)

a.s
Ð→ σ2(⋅) uniformly over Γ under Assumption 4, such that t∗n(⋅) ⇒ t̃(⋅)

almost surely under the Continuous Mapping Theorem.

That v(t∗n)
d
Ð→ v(t̃) in probability follows by application of a Continuous Mapping Theorem

for bootstrapped processes (see Theorem 10.8 in Kosorok (2008)), given that the bootstrap

is consistent in probability, which is implied by
√
nL̄∗n(⋅) ⇒ Z(⋅) almost surely. The result

follows.

S.2.4 Proof of Proposition 1

We show the result for ave t2n. The result for the other tests follows from similar steps. Part 1:

The weak convergence of t2n as established in Theorem 1 and the Continuous Mapping Theorem,

implies stochastic equicontinuity (see, e.g., Proposition 1 in Andrews (1994)), i.e., for all ε > 0,

lim
δ↓0

lim sup
n→∞

P
⎛

⎝
sup

∣γ−γ′∣<δ
∣t2n(γ) − t

2
n(γ

′
)∣ > ε

⎞

⎠
= 0,

where we again use the Euclidean metric to metrize Γ.

From absolute continuity of J it follows that that ∫Γ dJ(γ) = ∑
Kn
i=1 ∫Γi

n
dJ(γ). Hence,

∣∫
Γ
t2n(γ)dJ(γ) −

Kn

∑
i=1

t2n(γn,i)∫
Γi
n

dJ(γ)∣ ≤
Kn

∑
i=1
∫

Γi
n

∣t2n(γ) − t
2
n(γn,i)∣dJ(γ)

≤
Kn

∑
i=1

sup
γ∈Γi

n

∣t2n(γ) − t
2
n(γn,i)∣∫

Γi
n

dJ(γ)

≤ sup
∣γ−γ′∣<δn

∣t2n(γ) − t
2
n(γn,i)∣

Kn

∑
i=1
∫

Γi
n

dJ(γ)

= sup
∣γ−γ′∣<δn

∣t2n(γ) − t
2
n(γn,i)∣ ,

For any ε > 0 there exists a δ > 0 (with δn < δ eventually), such that

lim sup
n→∞

P (∣∫
Γ
t2n(γ)dJ(γ) −

Kn

∑
i=1

t2n(γn,i)∫
Γi
n

dJ(γ)∣ > ε) ≤ lim sup
n→∞

P
⎛

⎝
sup

∣γ−γ′∣<δn
∣t2n(γ) − t

2
n(γn,i)∣ > ε

⎞

⎠

≤ lim sup
n→∞

P
⎛

⎝
sup

∣γ−γ′∣<δ
∣t2n(γ) − t

2
n(γn,i)∣ > ε

⎞

⎠

< ε,

where the last display follows from the stochastic equicontinuity of t2n(γ). Because δ is arbitrary,

the result follows.
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Part 2: We cover Γ with some hyperrectangle Γ̄, which we can do because Γ is a bounded

subset of Euclidian space. Consider the d-dimensional hyperrectangular grid of Γ̄ with K̄n

elements {Γ̄in}
K̄n
i=1 , such that supγ,γ′∈Γ̄i

n
∣γ − γ′∣ < δn, for all i = 1, . . . , K̄n.

Now let {Γni }
Kn
i=1 be the Kn elements of {Γ̄in}

K̄n
i=1 , such that Γni ∩ Γ is nonempty, and choose

the γn,i such that γn,i ∈ Γ.

We can expand

ãve t2n − âve t2n =
1

Sn

Sn

∑
j=1

t2n(γ
(j)

) −
Kn

∑
i=1

t2n(γn,i)∫
Γi
n

dJ(γ)

=
Kn

∑
i=1

t2n(γn,i)

⎧⎪⎪
⎨
⎪⎪⎩

1

Sn

Sn

∑
j=1

1 (γ(j) ∈ Γin) − ∫
Γi
n

dJ(γ)

⎫⎪⎪
⎬
⎪⎪⎭

+
Kn

∑
i=1

1

Sn

Sn

∑
j=1

(t2n(γ
(j)

) − t2n(γn,i))1 (γ(j) ∈ Γin)

= An +Bn.

Notice that

∣An∣ ≤ sup
γ∈Γ

t2n(γ) ⋅
Kn

∑
i=1

∣
1

Sn

Sn

∑
j=1

1(γ(j) ∈ Γin) − ∫
Γi
n

dJ(γ)∣

≤Kn sup
γ∈Γ

t2n(γ) sup
Γ′⊂Γ

∣
1

Sn

Sn

∑
j=1

1(γ(j) ∈ Γ′) − ∫
Γ′
dJ(γ)∣

=KnOp(1)Cn,

where the last line follows from Theorem 1.

Furthermore, we can show that S
1/2−η
n Cn = op(1), for any η ∈ (0,1/2), where the probability

statement now holds under the J-measure, by a CLT for iid empirical processes. Notice that

due to the hyperrectangular shape of the Γin, we have for each Γin ⊂ Γ̄

1 (γ ∈ Γni ) =
d

∏
i=1

1 (γi ≤ �Γin)
d

∏
i=1

(1 − 1(γi ≤ Γin)), (S.3)

with γ̄ni denotes the maximum of the ith coordinate of all points in Γin, and with γn
i

denoting

the mininum.

Indicator functions such as the factors in (S.3) are type I(b) functions in the definition of

Andrews (1994), and by Theorem 3 in Andrews (1994) so is the product (S.3). A functional

CLT follows from Theorem 1 and 2 in Andrews (1994)), and by application of the Continu-
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ous Mapping Theorem we find supΓ′⊂Γ̄∣
1
Sn
∑
Sn
j=1 1 (γ(j) ∈ Γ′) − ∫Γ′ dJ(γ)∣ = Op(S

−1/2
n ). Hence,

S
1/2−η
n Cn = Op(1).

Furthermore, notice that

∣Bn∣ ≤
1

Sn

Sn

∑
j=1

Kn

∑
i=1

∣t2n(γ
(j)

) − t2n(γn,i)∣1 (γ(j) ∈ Γin)

≤ 2d
1

Sn

Sn

∑
j=1

sup
∣γ(j)−γ′∣<δn

∣t2n(γ
(j)

) − t2n(γ
′
)∣

≤ 2d sup
∣γ−γ′∣<δn

∣t2n(γ) − t
2
n(γ

′
)∣ = op(1),

by the stochastic equicontinuity of t2n(γ) and where 2d equals the maximum number of vertices

shared amongst hyperrectangles in a hyperrectangular grid.

If we can choose Kn = o(S
−1/2+η
n ) then ∣An∣ = Op(1)KnCn = Op(1)op(1) = op(1). Hence,

∣ãve t2n − âve t2n∣ = op(1). But we are free to choose the rate at which Kn → ∞ as n → ∞, so the

result follows.

S.3 Results for tests of equal predictive ability

In this section we present simulation and empirical results for tests of equal predictive ability, a

two-sided counterpart to the one-sided test of superior predictive ability presented in the main

paper.

S.3.1 Simulation results

In this section we present tables for the tests of equal predictive ability using the same three

simulation designs as in the main paper.

For comparison with the proposed sup-t2 and ave-t2 tests, we consider a Bonferroni ad-

justment, as we do for the sup-t test considered in the main paper. We also study standard

joint Wald tests. Consider some discrete parameter set ΓM = {γ1, . . . , γM} ⊂ Γ. The Wald test

statistic is then obtained as:

Q̂hn ≡ nL̃n(ΓM)
′Ω̂−1
M,nL̃n(ΓM), (S.4)

where L̃n(ΓM) ≡ (L̄n(γ1)
′, . . . , L̄n(γM)′)

′
, and Ω̂M,n is some HAC estimator of the asymptotic

covariance matrix of
√
nL̃n(ΓM), e.g., the estimator of Newey and West (1987).
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A two-sided α-level test rejects the null hypothesis when Q̂hn > χ
2
M,1−α, where χ2

M,1−α denotes

the (1 − α)-quantile of a χ2 distribution with M degrees of freedom. As M increases Ω̂M,n

becomes near-singular, which can lead to erratic behavior in the test statistic; which we indeed

observe in our simulation results below. A two-sided α-level test using the Bonferroni correction

rejects the null hypothesis if, for at least one γ ∈ ΓM , we find nL̄2
n(γ)/σ̃

2
n(γ) > χ

2
1,1−α/M , with

σ̃2
n(γ) a HAC asymptotic covariance estimator of

√
nL̄n(γ).

Tables S.1 to S.3 present the results for the three simulation designs, analogous to the results

in Tables 1 to 3 of the main paper for the test of superior predictive ability. We find comparable

size and power results to those in the main paper, although, as expected from the theory, the

two-sided tests generally have size closer to the nominal value of 5% than the one-sided sup-t

test. Regarding the joint Wald test, the near-singularity of the asymptotic covariance matrix

Ω̂M,n, which occurs with increasing Kn and Sn, impacts the test in such a way that we always

reject for large Kn and Sn. Similar to the results in the main paper, the two-sided test based

on the Bonferonni correction becomes conservative when we increase Kn and Sn.

S.3.2 Multi-step quantile forecasts of portfolio returns

In this section we study a multi-step forecast extension of the design in Section 4.2 of the main

paper. We consider the h-period cumulative return vector Yt+1∶t+h ∶= ∑
h
j=1 Yt+j , and consider

forecasts derived from the GARCH-DCC and RiskMetrics models defined in Section 4.2.

The RiskMetrics forecast is given by

QRM
h∣t,α(γ) = Φ−1

(α)
√

γ′Σ̂h∣tγ, (S.5)

where Σ̂h∣t = h ⋅Σ̂t+1. This linear scaling of the h-step covariance matrix follows from the random

walk structure of the RiskMetrics model.
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Table S.1: Small sample rejection rates of equal expected utility tests on equal weighted and
minimum-variance portfolio strategies

n=500 n=2,000

Kn Wald Bonf. ave-t2 sup-t2 Wald Bonf. ave-t2 sup-t2

Panel A: Size properties

1 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06

10 0.51 0.02 0.07 0.05 0.57 0.02 0.06 0.04

50 0.50 0.01 0.08 0.05 0.54 0.01 0.05 0.04

100 0.50 0.01 0.08 0.06 0.50 0.01 0.07 0.04

250 0.53 0.01 0.09 0.07 0.56 0.00 0.08 0.05

Panel B: Power properties

1 0.94 0.94 0.95 0.95 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 0.81 0.99 1.00 1.00 0.83 1.00 1.00 1.00

100 0.64 0.99 1.00 1.00 0.72 1.00 1.00 1.00

250 0.42 0.95 1.00 1.00 0.53 1.00 1.00 1.00

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and sup-
t2), as well as the benchmark tests (Wald and Bonferroni). The data is generated according
to equation (18), and the equal-weighed and minimum-variance portfolio strategies are given
in equation (17). The minimum-variance portfolio weights are estimated using a rolling
window of m = 120 observations. The out-of-sample period consists of n = 500, and 2,000
observations. We consider discrete grids of Γ = [1,10] formed using Kn = 1,10,50,100, and
250 equally spaced grid points.

We compare this with the GARCH-DCC forecast:

QDCC
h∣t,α (γ) = Φ−1

(α)
√

γ′Ω̂h∣tγ (S.6)

where Ω̂h∣t =
h

∑
j=1

Ĥ
1/2
t+j∣t

Ĉt+j∣tĤ
1/2
t+j∣t

,

Ĥt+j∣t = diag (ĥt+j∣t,1, . . . , ĥt+j∣t,N) ,

ĥt+j∣t,i = ω0

j−1

∑
k=0

(ω1 + ω2)
k
+ (ω1 + ω2)

jht,i,

Ĉt+j∣t = Et[ht+j,i]((1 − ξ1 − ξ2)C̄)

j−1

∑
k=0

(ξ1 + ξ2)
k
+ (ξ1 + ξ2)

jCt,

We employ a simplification in generating the GARCH-DCC forecast to reduce computational
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Table S.2: Small sample rejection rates of quantile forecast tests, for differences between mul-
tivariate GARCH-DCC and RiskMetrics models, two-sided tests

n=500 n=2,000

Sn Wald Bonf. ave-t2 sup-t2 Wald Bonf. ave-t2 sup-t2

Panel A: Size properties

31 0.36 0.03 0.03 0.05 0.03 0.01 0.01 0.02

50 0.93 0.03 0.03 0.04 0.13 0.01 0.02 0.01

100 1.00 0.02 0.03 0.04 0.81 0.00 0.01 0.01

250 1.00 0.01 0.03 0.04 1.00 0.00 0.02 0.01

500 - 0.01 0.03 0.04 1.00 0.00 0.02 0.01

1000 - 0.01 0.03 0.05 1.00 0.00 0.02 0.01

Panel B: Power properties

31 0.42 0.10 0.20 0.11 0.33 0.50 0.81 0.52

50 0.91 0.07 0.16 0.10 0.38 0.42 0.66 0.52

100 1.00 0.05 0.13 0.10 0.82 0.30 0.52 0.50

250 1.00 0.03 0.11 0.10 1.00 0.20 0.46 0.50

500 - 0.02 0.12 0.10 1.00 0.14 0.46 0.51

1000 - 0.01 0.11 0.10 1.00 0.09 0.43 0.49

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and sup-
t2) as well as the benchmark tests (Wald and Bonferroni). The quantile forecasts for the
portfolio returns from the GARCH-DCC and multivariate RiskMetrics models are defined
in equations (20) and (21). The data is generated as in equation (19) with N = 30. We test
at 31 fixed portfolio weight vector being the equal weighted portfolio vector and the 30 basis
vectors, as well as Sn − 31 weight vectors drawn uniformly from the unit simplex.

time: we assume that the cumulative return Yt+1∶t+h is normal, whereas it can be shown that

Yt+1∶t+h has kurtosis greater than a normal random variable, if the GARCH-DCC model is

correct. The correct multi-period forecast does not have a closed-form expression and can only

be obtained via simulation, which is prohibitive in the context of a simulation study involving

a bootstrap test. The misspecification that follows from the simplification is not a problem in

our testing framework, since we do not require correct specification of the forecasts.

Table S.4 presents small sample rejection rates of the size and power experiments, for the

10-day forecasts. Compared to the results for the 1-day forecast given in Table 2 we note that

the sup-t test has size closer to the nominal value 5%. Moreover, in the power experiment

the outperformance of the sup-t test relative to the Bonferonni correction test is now larger,

although the rejection rates are up to 19 percentage points smaller across tests.
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Table S.3: Small sample rejection rates of Murphy diagram tests, for quantile forecast differences
between GARCH, RiskMetrics, and Rolling Window models, two-sided tests

Panel A: Size Panel B: Power

n=500 n=2,000 n=500 n=2,000

Test Kn RM RW RM RW RM RW RM RW

DM 1 0.07 0.21 0.06 0.16 0.11 0.32 0.37 0.90

avg-t2 50 0.04 0.14 0.04 0.11 0.04 0.26 0.10 0.76

avg-t2 100 0.03 0.14 0.05 0.13 0.04 0.33 0.10 0.85

avg-t2 250 0.02 0.15 0.04 0.14 0.03 0.30 0.12 0.89

sup-t2 50 0.04 0.12 0.05 0.08 0.04 0.27 0.08 0.72

sup-t2 100 0.03 0.10 0.05 0.09 0.04 0.30 0.08 0.77

sup-t2 250 0.02 0.09 0.04 0.07 0.03 0.27 0.10 0.82

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and
sup-t2) comparing forecasts from a GARCH model with those from the RiskMetrics (RM)
and Rolling Window (RW) forecasts. The Diebold-Mariano test (DM) using the tick loss
function is also presented. The quantile forecasts from the GARCH and RiskMetrics models
are given in equations (20) and (21), with N = 1. We consider out-of-sample period lengths
n = 500, and 2,000, and discrete grids of Γ = [−20,0] with Kn equally-spaced points.

Table S.4: Small sample rejection rates of 10-day quantile forecast tests, for differences between
multivariate GARCH-DCC and RiskMetrics models

Panel A: Size Panel B: Power

n=500 n=2,000 n=500 n=2,000

Sn Bonf. sup-t Bonf. sup-t Bonf. sup-t Bonf. sup-t

31 0.01 0.06 0.02 0.06 0.11 0.22 0.35 0.47

50 0.01 0.06 0.02 0.06 0.08 0.23 0.26 0.47

100 0.00 0.05 0.01 0.07 0.05 0.22 0.18 0.46

250 0.00 0.05 0.01 0.06 0.03 0.22 0.09 0.46

500 0.00 0.05 0.00 0.06 0.02 0.22 0.06 0.46

1000 0.00 0.06 0.00 0.07 0.01 0.21 0.04 0.45

Note: This table presents the rejection rates of the proposed one-sided test (sup-t), as well as
the benchmark Bonferroni test. The 10-step-ahead quantile forecasts for the portfolio returns
from the GARCH-DCC and multivariate RiskMetrics models are defined in equations (S.5)
and (S.6). The data is generated as in equation (19) with N = 30. We test at 31 fixed
portfolio weight vector being the equal weighted portfolio vector and the 30 basis vectors,
as well as Sn − 31 weight vectors drawn uniformly from the unit simplex.
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