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Abstract

We develop tests for out-of-sample forecast comparisons based on loss functions that con-

tain shape parameters. Examples include comparisons using average utility across a range

of values for the level of risk aversion, comparisons of forecast accuracy using characteristics

of a portfolio return across a range of values for the portfolio weight vector, and compar-

isons using recently-proposed “Murphy diagrams” for classes of consistent scoring rules. An

extensive Monte Carlo study verifies that our tests have good size and power properties in

realistic sample sizes, particularly when compared with existing methods which break down

when then number of values considered for the shape parameter grows. We present three

empirical illustrations of the new test.
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1 Introduction

Forecast comparison problems in economics and finance invariably rely on a loss function or

utility function, and in many cases these functions contain a shape parameter, for example, when

comparing two forecasting models based on average utility. In many cases, there is no single

specific value for the shape parameter that is of interest, rather there is a range of values that are

of interest to the researcher. In this case a null hypothesis of superior predictive accuracy has a

continuum of testable implications, but most existing work instead tests predictive accuracy at

a few ad hoc values of the shape parameter. This paper combines work on forecast comparison

tests, see Diebold and Mariano (1995), White (2000), and Giacomini and White (2006), with

bootstrap theory for empirical processes, see Bühlmann (1995), to provide forecast comparison

tests that allow for inference across a range of values of a loss function shape parameter.

A leading example of an application that depends on a shape parameter is a test of equal

expected utility in which the utility function is parameterized by a risk aversion parameter.

Given that economists have not converged on what value of risk aversion is appropriate (see, e.g.,

Bliss and Panigirtzoglou, 2004, for discussion) it is desirable to consider a range of reasonable

risk aversion values, instead of testing at some single value. Current practice usually evaluates

the hypothesis of equal expected utility at one or a select few risk aversion parameter values, see

Fleming et al. (2001), Marquering and Verbeek (2004), Engle and Colacito (2006) and DeMiguel

et al. (2007) for example.

Another application that involves a continuum of testable implications is when one evaluates

forecasts from multivariate models on the basis of their implied forecasts of univariate quantities,

for example, evaluating a multivariate volatility model through its forecasts of Value-at-Risk

for portfolios of the underlying assets. In practice, comparisons of quantile forecasts of portfolio

returns, as generated from multivariate models, often only consider the equal weighted portfolio

or some other fixed combination of portfolio constituents, see McAleer and Da Veiga (2008),

Santos et al. (2012) and Kole et al. (2017) for example. Considering only a single weight vector

can fail to reveal the sensitivity, or the robustness, of the ranking of two models to the choice

of weight vector.

A final, recent example is the comparison of forecasts using “elementary scoring rules,” see

Ehm et al. (2016). These authors show that the family of loss functions (or “scoring rules”) that

are consistent for a given statistical functional (e.g., the mean, a quantile, an expectile) can be
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represented as a convex combination of elementary scoring rules. The plot of the elementary

scoring rules is called a “Murphy diagram,” and Ehm et al. (2016) note that joint testing of

the Murphy diagram is not yet fully developed. Ziegel et al. (2020) introduce tests for Murphy

diagrams based on controlling the family-wise error rate but such corrections can perform poorly

in large-scale multiple testing problems, see Hand (1998) and White (2000). Moreover, their

tests consider only a finite subset of the testable implications instead of a continuum.

This paper develops new out-of-sample tests for multiple testing problems over a continuum

of shape parameters, including the above three examples, which do not rely on bounds such as

the Bonferroni correction, and which take into account the time series nature of the data used

in most forecasting settings. To the best of our knowledge, such tests have not been considered

in the literature to date. We consider tests of equal predictive ability (two-sided tests) and

superior predictive ability (one-sided tests), and provide a framework for forecast dominance

between two models based on one-sided tests that use opposing null hypotheses. We derive our

tests using functions of the Diebold-Mariano test statistic for each value of the shape parameter

in its range, and obtain critical values using the moving blocks bootstrap of Bühlmann (1995),

which is applicable to weakly dependent empirical processes indexed by classes of functions,

and is general enough to cover our cases of interest: loss functions parameterized by a vector

that can take values in a bounded subset of Euclidian space.

Our tests build on the out-of-sample testing framework of Diebold and Mariano (1995) and

West (1996). Similar to Giacomini and White (2006) we consider evaluating the forecasting

method, which, in addition to the forecasting model, includes the estimation scheme and choices

of in-sample and out-of-sample periods. Our problem has some similarities with the work

of White (2000), Hansen (2005) and Hubrich and West (2010) who present predictive ability

tests to compare a benchmark model with finitely many alternative models using a single loss

function. In contrast, we consider only two models but we compare them using a continuum

of loss functions. As such, our testing problem cannot be addressed using the work of those

papers.

Recently, Jin et al. (2017) and Post et al. (2018) introduced multiple comparison tests for

general loss functions over relatively large classes of loss functions (although the loss function

should take its minimum value when the forecast error is zero), by translating the multiple hy-

pothesis into hypotheses about stochastic dominance and “nonparametric forecast optimality,”

respectively. This allows the authors to develop tests based on the empirical distribution func-
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tion or empirical likelihood. Our paper differs from this strand of research in two ways. First, we

consider classes of loss functions that are economically motivated, whereas the previous authors

abstract away from this choice. In many settings, such as the ones considered in this paper, it

is realistic to assume the researcher has at least some knowledge of what constitutes a relevant

loss, and thus what values of the shape parameter are relevant. Ruling out economically unin-

teresting loss functions from the general set of loss functions can improve test power. Second,

our paper applies to scenarios in which the loss function is not minimal at zero forecast error,

or where the very notion of a forecast error is unclear. Such loss functions include, for instance,

many utility functions as well as the Fissler and Ziegel (2016) loss function for Value-at-Risk

and Expected Shortfall.

We show via an extensive simulation study that the proposed testing methods have good size

and power properties in realistic sample sizes. These positive results stand in stark contrast to

the two most familar existing methods used to compare forecasts across a range of loss function

parameter values: we find that the Wald test has finite-sample size as high as 50% for a 5%

level test, while tests based on a Bonferroni correction are conservative and suffer, as a result,

from low power.

We consider three empirical applications of the proposed new tests. Firstly, in a compari-

son of expected utility of equal weighted and minimum-variance portfolio strategies (see, e.g.,

DeMiguel et al., 2007) we show that our tests are able to reject the null hypothesis when existing

alternative methods cannot. Secondly, we consider a tests of portfolio quantile forecasts gener-

ated by multivariate GARCH-DCC and RiskMetrics models and we find that our tests again

are able to detect violations of the null hypothesis where existing methods cannot. Finally, we

consider tests based on the Murphy diagrams for quantile forecasts generated by GARCH and

RiskMetrics models, an application where existing methods simply cannot be applied due to

the nature of the testing problem.

The remainder of the paper is structured as follows. In Section 2 we discuss our three

illustrative examples. In Section 3 we present the general testing framework and develop our

tests. In Section 4 we use Monte Carlo experiments to study the small sample properties of

our tests in settings close to our illustrative examples. In Section 5 we explore these settings

empirically. Section 6 concludes.
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2 Loss function shape parameters in practice

We consider three representative examples of forecast comparison scenarios. In all of these

examples we consider loss differences defined as

Lt+1(γ) = S(Yt+1, g
A
t (γ);γ) − S(Yt+1, g

B
t (γ);γ) (1)

where S is the loss function (or scoring rule), γ ∈ Γ ⊂ Rd is the shape parameter of the loss

function, Yt+1 is the target variable, and git(γ) is the forecast of Yt+1 made using model i ∈ {A,B},

which may depend on the shape parameter γ.

We focus on tests of uniform superior predictive ability, which consider the hypotheses:

H0 ∶ E [Lt+1(γ)] ≤ 0 ∀ γ ∈ Γ (2)

vs. H1 ∶ E [Lt+1(γ
�
)] ≥ ∆ > 0 for some γ� ∈ Γ (3)

We will assume that lower values of the scoring rule are preferred, and so H0 implies that model

A is weakly better than model B for all γ ∈ Γ, while H1 implies that model B is strictly better

than model A for some γ ∈ Γ. In the supplemental appendix we also consider a test of uniform

equal predictive accuracy:

H ′
0 ∶ E [Lt+1(γ)] = 0 ∀ γ ∈ Γ (4)

vs. H ′
1 ∶ ∣E [Lt+1(γ

�
)]∣ ≥ ∆ > 0 for some γ� ∈ Γ (5)

2.1 Comparisons based on expected utility

Two forecasting models each generate forecasts of optimal portfolio weights and we seek to

compare them in terms of out-of-sample average utility from the resulting portfolio returns. The

portfolio returns are obtained as Y ′
t+1g

i
t(γ), where Yt+1 is a vector of returns on the underlying

assets, and git(γ) is the forecasted optimal portfolio weights from model i ∈ {A,B} assuming a

preference parameter γ, and per-period utility is computed using some utility function u(⋅;γ).

For instance, when u(⋅;γ) is the exponential utility function γ denotes the (scalar) risk aversion
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parameter, and Γ = [a, b], for some 0 < a < b < ∞. In this case we set

S(Yt+1, g
i
t(γ);γ) = −u(Y

′
t+1g

i
t(γ);γ), for i ∈ {A,B} (6)

so that lower values of the scoring rule indicate better performance.

2.2 Multivariate forecast comparison based on portfolio characteristics

Let Yt+1 denote some vector of returns, and compute portfolio returns as Ỹt+1(γ) = γ′Yt+1

for some weight vector γ. We are interested in forecasting some statistic ψt of Ỹt+1(γ) for all

portfolio weights γ ∈ Γ. When we consider all long-only portfolios with weights summing to one,

the parameter space Γ is the unit simplex. If we consider α-quantile forecasts of the portfolio

return, then we may use the “tick” loss function to measure forecast performance and so set

S(Yt+1, g
i
t(γ,α);γ,α) = (1{γ′Yt+1 ≤ g

i
t(γ,α)} − α)(g

i
t(γ,α) − γ

′Yt+1), for i ∈ {A,B}, (7)

where 1{⋅} equals one if the argument is true and zero otherwise.

2.3 Forecast comparisons via Murphy diagrams

Let Yt+1 denote some scalar return, and let ξt denote some statistic of Yt+1, such as a mean or

quantile. If ξt is elicitable, see Gneiting (2011a), then there exists a family of scoring rules (loss

functions), S such that for any scoring rule S∗ ∈ S it holds

E[S∗(Yt+1, ξt)] ≤ E[S∗(Yt+1, x)], ∀x ∈ X (8)

where X is the support of ξt. That is, ξt has lower expected loss than any other forecast, x,

for all scoring rules S∗ ∈ S. The scoring rule S∗ is then said to be “consistent” for the statistic

ξt. Many statistics, such as the mean, quantile, and expectile, admit families of consistent

scoring functions, see Gneiting (2011a). For example, the mean is well-known to be elicitable

using the quadratic loss function, and more generally it is elicitable using any “Bregman” loss

function. The α-quantile is elicitable using the tick loss function in equation (7), and more

generally using any “generalized piecewise linear” (GPL) loss function, see Gneiting (2011b).

Comparisons of forecasts are usually done using a single consistent scoring rule (e.g., using

mean squared error to compare estimates of the mean), however Patton (2020) shows that in
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the presence of parameter estimation error or misspecified models the ranking of forecasts can

be sensitive to the specific scoring rule used.

In a recent paper, Ehm et al. (2016) show that any scoring rule that is consistent for a

quantile or an expectile (the latter nesting the mean as a special case) can be represented as:

S∗(Yt+1, x) = ∫
∞

−∞
S̃(Yt+1, x;γ)dH(γ) (9)

for some non-negative measure H, and γ ∈ Γ ⊂ R, where S̃ is an “elementary” scoring rule,

defined below. A plot of the average elementary scores across all values of γ is called a “Murphy

diagram” by Ehm et al. (2016). If one forecast’s Murphy diagram lies below that of another

forecast for all values of γ, then it has lower average loss for any consistent scoring rule.

With the above representation of a consistent scoring rule as a mixture of elementary scoring

rules, we can consider rankings across all consistent scoring rules, overcoming the sensitivity

discussed in Patton (2020). For example, to compare α-quantile forecasts we set

S(Yt+1, g
i
t(α);γ,α) = (1{Yt+1 < g

i
t} − α)(1{γ < g

i
t(α)} − 1{γ < Yt+1}), for i ∈ {A,B} (10)

and then test for forecast superiority across all γ ∈ R. The right-hand side of the above equation

is the quantile elementary scoring rule from Ehm et al. (2016).

3 Forecast comparison tests in the presence of a loss function

shape parameter

Consider the stochastic process W = {Wt ∶ Ω→ RN+s, N ∈ N+, s ∈ N, t = 1,2, . . .} defined on a

complete probability space (Ω,F , P ). We partition the observed vector Wt as Wt = (Yt,Xt),

where Yt ∶ Ω→ RN is a vector a variables of interest and Xt ∶ Ω→ Rs is a vector of explanatory

variables. We define Ft = σ(W1, . . . ,Wt).

To fix notation, we let ∣A∣ = (tr(A′A))
1/2

denote the Euclidean norm of a matrix A, and

∥A∥q = (E∣A∣q)
1/q denote the Lq norm of a random matrix. Finally,⇒ denotes weak convergence

with respect to the uniform metric.

We denote the total sample size by T and the out-of-sample size by n. We consider moving

or fixed window forecasts generated with in-sample periods of size m, such that the forecast for

period t + 1 is obtained using observations at periods t −m + 1, . . . , t with the moving scheme,
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and 1, . . . ,m with the fixed scheme, respectively.

We consider some (scalar) measurable loss difference:

Lt+1(γ) = L(Wt+1,Wt, . . . ,Wt−m+1;γ) (11)

that takes as arguments m + 1 < ∞ elements of W and some parameter vector γ ∈ Γ ⊂ Rd

that is independent of W , with Γ a bounded set. As in Giacomini and White (2006), our

assumption that m < ∞ imposes a limited memory condition on the forecasting methods, which

precludes methods with model parameters estimated over expanding windows, but allows for

those estimated over fixed and rolling windows of finite length. Note that McCracken (2020)

cautions that in some applications additional assumptions are needed to apply the theory in

Giacomini and White (2006) when a fixed-window estimation scheme is used. (We use a rolling

window estimation scheme in our empirical analysis.) Also note that our Giacomini-White style

analysis of forecast performance rules out inference on forecast performance at the pseudo-true

parameter value, as in West (1996) and Clark and McCracken (2001).

3.1 Superior predictive ability tests

We will focus attention on tests of uniform superior predictive ability, which consider the null

and alternative hypotheses, H0 and H1, defined in equations (2)-(3). The case of equal predictive

accuracy, which considers the hypotheses H ′
0 and H ′

1 defined in equations (4)-(5), is perhaps less

economically interesting than that of superior accuracy, and so we relegate further discussion

of that case to the supplemental appendix. Notice that H ′
0 in equation (4) is the element of H0

least favorable to the alternative, and is the point at which we derive the limit distribution of our

test statistic. Also note that these null hypotheses involve unconditional expected loss, rather

than expected loss conditional on some other variable, which is also considered in Giacomini

and White (2006).

To develop a test of H0 we consider the Diebold and Mariano (1995) test statistic as a

function of γ ∈ Γ and then take the supremum of that function over Γ:

tn(γ) ≡
√
n
L̄n(γ)

σ̂n(γ)
(12)

sup tn ≡ sup
γ∈Γ

tn(γ). (13)
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where L̄n(γ) ≡
1
n ∑

T−1
t=m Lt+1(γ), and σ̂2

n(γ) denotes a consistent estimator of σ2(γ) ≡ E[Lt+1(γ)
2].

It should be noted that when autocorrelation is present in Lt+1(γ), tn(γ) does not converge

in distribution to a standard normal limit, because σ̂2
n(γ) is not a heteroskedasticity and auto-

correlation consistent (HAC) estimator of the asymptotic covariance matrix of
√
nL̄n(γ), see,

e.g. Newey and West (1987)). We are not aware of strong uniform law of large numbers results

for HAC estimators, which are required in our theoretical results below. As noted by Hansen

(2005), σ̂2
n(γ) is not required to be a consistent estimator of the variance of

√
nL̄n(γ), because

the bootstrap accounts for time series features in the data to obtain critical values of our tests.

Indeed, in some scenarios it might be better not to studentize at all, and fix σ̂2
n(γ) = 1 instead.

Such scenarios include those for which σ̂2
n(γ) may be close to zero in small samples.

The test statistic sup tn can be written as a function v(tn), where v maps functionals on Γ

to R and we write tn = {tn(γ) ∶ γ ∈ Γ} as a random function on Γ. The function v is continuous

with respect to the uniform metric, monotonic in the sense that if Z1(γ) ≤ Z2(γ) for all γ then

v(Z1) ≤ v(Z2), and has the property that if Z(γ) → ∞ for some γ then v(Z) → ∞. Adopting

this notation also facilitates easily handling of test statistics for tests of equal predictive ability,

which are discussed in the supplemental appendix.

We derive the asymptotic distribution of the test statistic above using the following assump-

tions.

Assumption 1. {Wt} is stationary and β-mixing (absolutely regular), with β(t) = cβa
t, for

some finite constant cβ, and 0 < a < 1.

Assumption 2. E[supγ∈Γ ∣Lt+1(γ)∣
4r] < ∞, for some r > 1, and for all t.

Assumption 3. ∥Lt+1(γ)−Lt+1(γ
′)∥4r ≤ C ∣γ−γ′∣λ, for some C < ∞, λ > 0, and for all γ, γ′ ∈ Γ,

and t.

Assumption 4. σ̂2
n(γ)

a.s.
ÐÐ→ σ2(γ) uniformly over γ ∈ Γ. Moreover, infγ∈Γ σ

2(γ) > 0.

The β-mixing condition in Assumption 1, which is stronger than α-mixing, but weaker

than φ-mixing, is usually assumed when deriving functional CLTs for time series data with

unbounded absolute moments. Bühlmann (1995) notes that the mixing rate is satisfied for

ARMA(p, q) processes with innovations dominated by the Lebesgue measure. Boussama et al.

(2011) provides conditions under which multivariate GARCH models satisfy geometric ergodic-

ity, and Bradley et al. (2005, Thm. 3.7) shows that geometric ergodicity implies β-mixing with
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at least exponential rate, satisfying Assumption 1. Assumption 2 is a standard moment condi-

tion, and Assumption 3 requires a Lipschitz condition to hold for these moments. Assumption 4

requires that σ̂2
n(⋅) satisfies a strong Uniform Law of Large Numbers (see, e.g., Andrews, 1992),

and also imposes uniform non-singularity of σ2(⋅).

As a building block, we first provide a functional CLT for a demeaned version of tn(γ):

τn(γ) ≡
√
n(L̄n(γ) −E[L1(γ)])/σ̂n(γ), as H0 allows for nonpositive E[L1(⋅)]. We then provide

inference results for the test statistic v(tn).

Theorem 1. Let Assumptions 1 to 4 be satisfied. It follows that
√
n(L̄n(⋅)−E[L1(⋅)]) ⇒ Z(⋅),

for some Gaussian process Z(⋅) with covariance kernel Σ(⋅, ⋅) ≡ limn→∞Cov(
√
nL̄n(⋅),

√
nL̄n(⋅)).

Moreover, v(τn)
d
Ð→ v(t̃), with t̃(⋅) ≡ Z(⋅)/σ(⋅) .

The following result establishes inference under the null and alternative hypotheses.

Theorem 2. Let Assumptions 1 to 4 be satisfied, and let Σ(⋅, ⋅) be nondegenerate. Under H0 it

follows that lim supn→∞ P (v(tn) > c(1 − α)) ≤ limn→∞ P (v(τn) > c(1 − α)) = α, where c(1 − α)

is chosen such that P (v(t̃) > c(1 − α)) = α. Under H1 it follows that P (v(tn) > c(1 − α)) → 1.

The result in Theorem 2 shows that our test has size of at most α under the one-sided

null H0. Under the two-sided null H ′
0 we achieve the nominal rate α. The tests have power

approaching one against fixed alternatives. In the case of i.i.d. loss differences Lt+1(⋅) one can

employ the results in Andrews and Shi (2013) to obtain nominal size for the one-sided test as

well. Unfortunately, these results cannot straightforwardly be extended to loss differences with

time-series properties, such as those encountered in the forecasting applications in this paper,

and we do not pursue such an extension here.

We establish the consistency of the block bootstrap for general empirical processes of

Bühlmann (1995) for v(tn). The block bootstrap was first studied by Künsch (1989) for general

stationary observations. The bootstrap counterpart of
√
nL̄n(γ) is given by

√
nL̄∗n(γ) ≡

√
n

1

n

T−1

∑
t=m

(L∗t+1(γ) − µ
∗
n(γ)), (14)

where µ∗n(γ) ≡
1

n−l+1 ∑
n−l+1
i=1

1
l ∑

m+i+l−1
t=m+i Lt(γ) denotes the expectation of 1

n ∑
T−1
t=m L

∗
t+1(γ) condi-

tional on the original sample, l denotes the block length, and L∗t+1(γ) denotes the bootstrap

counterpart of Lt+1(γ). Similarly, let t∗n(γ) ≡
√
nL̄∗n(γ)/σ̂n(γ), and let c∗n(1 − α) denote the

α-quantile of t∗n(γ).
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We impose the following condition on the rate that l = l(n) → ∞, as n→∞.

Assumption 5. The block length l satisfies l(n) = O(n1/2−ε), for some 0 < ε < 1/2.

The following result establishes consistency of the bootstrap.

Theorem 3. Let Assumptions 1 to 5 be satisfied. It follows that
√
nL̄∗n(⋅) ⇒ Z(⋅) almost surely.

Moreover, under H0 lim supn→∞ P (v(tn) > c
∗
n(1 − α)) ≤ limn→∞ P (v(τn) > c

∗
n(1 − α)) = α.

Theorem 3 shows that we can estimate c∗n(1−α) through simulation: let cBn (1−α) denote the

α ⋅ 100% percentile of the test statistics v(t
∗(1)
n (γ)), . . . , v(t

∗(B)
n (γ)) obtained from B bootstrap

samples. As B →∞, cBn (1 − α) becomes arbitrarily close to c∗n(1 − α).

The above framework can also be used to derive a test based on inf tn. In this case the al-

ternative hypothesis is that the benchmark model is worse than the competing model uniformly

on Γ, i.e., under the alternative hypothesis the competing model dominates the benchmark

uniformly. Below we consider a framework for forecast dominance based on the employment of

two one-sided tests.

3.2 Feasible implementation of the tests

When Γ ∈ Rd contains infinitely many elements, as in our main examples, it is not possible to

evaluate the test statistic in equation (13). Here we provide two numerical approximations for

which Theorems 1 and 2 remain valid.

We first consider discretizations of Γ that become increasingly dense. Consider a grid of Γ

with Kn elements Γin, such that supγ,γ′∈Γi
n
∣γ − γ∣ < δn, for all i = 1, . . . ,Kn, and let γn,i be some

point in Γin. We have the following approximation to our test statistic:

ŝup tn ≡ max
i=1,...,Kn

tn(γn,i). (15)

If Γ is a hyperrectangle in Rd, a particularly convenient choice of Kn and {Γin}
Kn
i=1 derives

from partitioning each dimension of Γ in vn equal parts, which results in Kn = v
d
n.

The condition that δn → 0 implies that Kn grows quickly with large d. As a result, the

calculation of ŝup tn becomes problematic for large d. In such cases one can instead use Monte

Carlo draws from some distribution J with uniformly positive density on Γ (e.g., a Uniform

distribution) to obtain an approximation of the test statistic. Consider Sn independent draws

11



γ(i) from J , i = 1, . . . , Sn, and the approximation:

s̃up tn ≡ max
i=1,...,Sn

tn(γ
(i)

). (16)

Proposition 1. Let the assumptions of Theorem 1 hold. For some Kn →∞, such that δn → 0,

as n→∞, v̂(tn)
p
Ð→ v(tn). Moreover, ṽ(tn)

p
Ð→ v(tn) for Sn →∞ as n→∞.

3.3 Detecting forecast dominance

A rejection of the null hypothesis H0 in equation (2) constitutes evidence against model A in

favor of model B at some values of γ in Γ. However, it is possible that model A is superior to

model B for other points in Γ, and thus that neither model uniformly dominates the other.

To resolve this ambiguity we propose a framework using two one-sided tests: the first being

the test of H0 above, and the second being a test of the opposite null hypothesis:

H
′′
0 ∶ E [−Lt+1(γ)] ≤ 0 ∀ γ ∈ Γ

and which is implemented simply by using test statistic sup−tn.

Similar to forecast encompassing tests, see Chong and Hendry (1986), employing both tests

results in one of the following four outcomes:

1. Fail to reject H0, reject H
′′
0 . A significantly beats B for some values of γ, and is not

significantly beaten by B for any γ. Thus A dominates B.

2. Reject H0, fail to reject H
′′
0 : Similar to outcome 1, but B dominates A.

3. Fail to reject both H0 and H
′′
0 . Neither model significantly beats the other for any value

of γ. Thus the models have statistically equal performance across γ.

4. Reject both H0 and H
′′
0 : There are values of γ for which A significantly beats B, and

values for which B significantly beats A. Thus there is no ordering of the models across

all γ.

Outcomes 1 and 2 clearly reveal a preferred model. Outcome 3 indicates a lack of power to

distinguish between the competing models (or actual equality of forecast performance across γ).

Outcome 4 reveals an important sensitivity in the ranking of the models to the choice of shape

parameter. Given that the above procedure involves two tests, each with non-zero Type I error
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probability, and each with, inevitably, imperfect finite-sample power, we interpret the outcome

of the above procedure as merely informative about forecast dominance, not as a formal test.

4 Simulation studies

In this section we evaluate the finite-sample performance of our proposed test in the three

applications described in Section 2. In Section 4.1 we present an application for i.i.d. data, in

Sections 4.2–4.3 we present two time series simulation designs, and in Section 4.4 we present

the results.

4.1 Comparisons based on expected utility

We consider the difference in expected utility of two commonly-used portfolio management

strategies: the equal-weighted portfolio and the minimum-variance portfolio. For an in-depth

analysis of these and other portfolio strategies see DeMiguel et al. (2007). These strategies can

be defined in terms of portfolio weight vectors:

weq
t =

1

N
ι,

wmv
t =

1

ι′Σ−1
t ι

Σ−1
t ι,

(17)

where Yt is an (N × 1) vector of monthly excess returns with conditional covariance matrix

Σt, and ι is an (N × 1) vector of ones. Denote the portfolio returns as Y eq
t = weq

t
′
Yt, and

Y mv
t = wmv

t
′Yt. The feasible counterpart of wmv

t depends on an estimate of Σt. In our simulation

study we consider a simple rolling window estimate of the covariance matrix based on the most

recent 120 observations, corresponding to 10 years of monthly data or six months of daily data.

We test whether the equal weighted and minimum-variance portfolio returns have equivalent

expected utility across a range of levels of risk aversion. We model utility using the exponential

utility function u(y;γ) = −exp{−γy}/γ. A wide range of values of the risk aversion parameter

have been reported in the literature, ranging from near zero to as high as 60, see Bliss and Pani-

girtzoglou (2004). These authors estimate this parameter as being between 2.98 to 10.56, while

DeMiguel et al. (2007) perform comparisons for investors with risk aversion ranging between 1

and 10. Based on this, we test for equal expected utility over Γ = [1,10].

We simulate excess returns Yt according to a one-factor model, based on the DGP in the

simulation study of DeMiguel et al. (2007). Let Yt = (Y f
t , Y1,t, . . . , YN−1,t)

′, where Y f
t denotes

13



the excess return on the factor portfolio and Yi,t denotes the N −1 excess returns, generated as:

Yi,t = αi + βiY
f
t + ηi,t,

νi,t ∼ iid N(0, σ2
η,i),

Y f
t ∼ iid N(µf , σ

2
f).

(18)

We follow the parameterization of DeMiguel et al. (2007), which resembles estimates that

are commonly found in empirical studies. We set αi = 0, and βi = 0.5 + (i − 1)/(N − 1), for all

i = 1, . . . ,N − 1. Moreover, we set µf = 8%, and σf = 16%. Finally, we let the idiosyncratic

volatilities vary between 10% and 30%. However, unlike DeMiguel et al. (2007), who draw

from the uniform distribution on [10%,30%], we opt for deterministic cross-sectional variation

between 10% and 30% by setting ση,i = 10%+20% ⋅ sin (π(i − 1)/(N − 1)). We do so to facilitate

the approximation of E[Lt(γ)], which is required in the size experiment.

Given the portfolio strategies we consider, it is not generally possible to find a parameteriza-

tion that implies E[Lt(γ)] = 0 for all γ ∈ Γ, which is the point in the null hypothesis (equation

2) least favorable to the alternative. In the size experiment we therefore test the null hypothesis

E[Lt(γ)] = ζm(γ) instead of zero, where ζm(γ) ≠ 0 is the population value of E[Lt(γ)], which

we estimate using 100,000 simulations. (Note that Lt(γ) depends on the rolling window sample

covariance matrix, and this is used when computing its population expectation.) The power

experiment tests the hypothesis E[Lt(γ)] = 0 for all γ ∈ Γ.

4.2 Forecast comparison via tail quantile forecasts of portfolio returns

We next study a scenario comparing quantile forecasts of portfolio returns implied by multivari-

ate forecasting models. We simulate returns data using a GARCH-DCC model (Engle, 2002)

with normal errors, parameterized to resemble the properties of daily asset returns.

We compare two widely-used models: (i) a GARCH-DCC model with normal errors, and

(ii) a multivariate normal distribution with the RiskMetrics covariance estimator (Riskmetrics,

14



1996). We let the N × 1 return vector Yt+1 follow a GARCH-DCC process

Yt+1 = µt+1 +H
1/2
t+1C

1/2
t+1νt+1,

νt+1 = (νt+1,1, . . . , νt+1,N)
′
∼ iidN(0, I),

Ht+1 = diag (ht+1,1, . . . , ht+1,N) ,

ht+1,i = ω0 + ω1ht,i + ω2ht,iν
2
t,i,

Ct+1 = diag (C̃t+1)
−1/2

C̃t+1diag (C̃t+1)
−1/2

,

C̃t+1 = (1 − ξ1 − ξ2)C̄ + ξ1C̃t + ξ2diag (C̃t)
1/2
νtν

′
t diag (C̃t)

1/2
,

C̄ = [C̄]ij , where [C̄]ij = 1 −
∣i − j∣

N
.

(19)

We choose GARCH parameters ω0 = 0.05, ω1 = 0.10, ω2 = 0.85 and DCC parameters ξ1 =

0.025, ξ2 = 0.95, to match time-varying volatility and correlation patterns commonly found in

daily equity returns. We set µt+1 = 0 for simplicity. To fix the value of C̄ we use the covariance

matrix generated by a Bartlett kernel with bandwith set to N . This specification generates a

diverse set of correlations, and ensures positive definiteness of C̄.

We are interested in one-period-ahead α-quantile forecasts for portfolio returns Ỹt+1(γ) =

γ′Yt+1, with α = 5%, for a range of portfolio weights γ ∈ Γ. The first forecast we consider is the

optimal forecast, based on the GARCH-DCC model above. This forecast is given by

QDCC
t,α (γ) = Φ−1

(α) ⋅

√

γ′H
1/2
t+1Ct+1H

1/2
t+1γ, (20)

where Φ−1(α) denotes the α-quantile of the standard normal distribution.

The RiskMetrics forecast is

QRM
t,α (γ) = Φ−1

(α) ⋅
√

γ′Σ̂t+1γ, (21)

where Σ̂t+1 = cλ,m
m−1

∑
j=0

λj (Yt−j − µ̂t) (Yt−j − µ̂t)
′ (22)

where µ̂t+1 =
1
m ∑

m−1
j=0 Yt−j and cλ,m is a constant that normalizes the summed weights ∑mj=1 λ

j

to one. As is standard for the RiskMetrics approach using daily returns, we set λ = 0.94.

We obtain the scores (losses) Sit+1(γ) using the tick loss function, which is a consistent loss
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function for the quantile, and is defined as

Sit+1(γ,α) = (1{Ỹ p
t+1(γ) < Q

i
t,α(γ)} − α)(Q

i
t,α(γ) − Ỹ

p
t+1(γ)), for i ∈ {DCC,RM}, (23)

and obtain loss differences Lt+1(γ) = S
DCC
t+1 (γ) − SRM

t+1 (γ).

We consider all portfolio return vectors with positive weights summing to one, i.e. Γ = {γ ∶

γi ≥ 0, i = 1, . . . ,N, ∑Ni=1 γi = 1}. Γ is thus the (N − 1)-simplex, and drawing uniformly from Γ is

particularly easy using the Dirichlet distribution of order N with concentration parameters set

to one. See Kotz et al. (2000, Ch. 49) for an elaborate treatment of the Dirichlet distribution.

As in the previous example, to study the finite-sample size of this test we consider the null

hypothesis that E[Lt+1(γ)] = ζm(γ) instead of zero, where ζm(γ) ≠ 0 is the population value of

E[Lt+1(γ)], which we estimate using 100,000 simulations. The power experiment tests the null

hypothesis E[Lt+1(γ)] = 0 for all γ ∈ Γ.

4.3 Forecast comparison via Murphy diagrams of quantile forecasts

Under mild regularity conditions (see, e.g., Gneiting, 2011a) the α-quantile of a random variable

Yt is elicitable using the “generalized piecewise linear” (GPL) class of scoring rules:

S(Yt+1, x;α, g) = (1(Yt+1 < x) − α)(g(x) − g(Yt+1)), (24)

where g(⋅) is a non-decreasing function. A commonly used member of this family is the tick

loss function, which sets g(z) = z, and which was used in the previous section. In this example

we test for differences in predictive ability of competing α-quantile forecasts across the set of

all consistent scoring rules for α-quantiles, denoted SαGPL, using the mixture representation for

this class of loss functions presented in Ehm et al. (2016):

S(Yt+1, x;α, g) = ∫
∞

−∞
S̃(Yt+1, x;α, γ)dH(γ; g) (25)

where S̃(Yt+1, x;α, γ) = (1(Yt+1 < x) − α)(1(γ < x) − 1(γ < Yt+1)), (26)

where H(⋅; g) some non-negative measure.

Consider two forecasts QAt,α and QBt,α. We say that QAt,α uniformly outperforms QBt,α if

E[L(Yt,Q
A
t,α,Q

B
t,α, α, g)] ≡ E[S(Yt+1,Q

A
t,α, α, g) − S(Yt+1,Q

B
t,α, α, g)] ≤ 0 ∀ S ∈ S

α
GPL (27)
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Corollary 1 in Ehm et al. (2016) establishes that equation (27) is implied by

E[L̃(Yt+1,Q
A
t,α,Q

B
t,α, α, γ)] ≡ E[S̃(Yt+1,Q

A
t,α, α, γ) − S̃(Yt+1,Q

B
t,α, α, γ)] ≤ 0 ∀ γ ∈ R (28)

We can therefore test for superior predictive ability by testing the above condition. It should

be noted that our theory requires the range of γ, denoted Γ, to be bounded, and so we cannot

test over all γ ∈ R. However, in practice we can make Γ large enough to cover all relevant

parameter values, since S̃(Yt+1,Q
A
t,α;α, γ)− S̃(Yt+1,Q

B
t,α;α, γ) is known to be identically zero for

γ ∉ [min(Yt+1,Q
A
t,α,Q

B
t,α),max(Yt+1,Q

A
t,α,Q

B
t,α)].

In small samples it can occur that S̃(Yt+1,Q
A
t,α;α, γ) − S̃(Yt+1,Q

B
t,α;α, γ) = 0 for all observa-

tions in a given sample, for some values of γ. As a result, σ̂2
n(γ) = 0 for these values of γ. To

circumvent this we fix σ2
n(γ) = 1 for all γ ∈ Γ, i.e. we consider a test based on tn(γ) =

√
nL̄n(γ)

instead of tn(γ) =
√
nL̄n(γ)/σ̂n(γ). The p-values remain valid under the bootstrap. The HAC

covariance estimators used in the calculation of the multivariate Wald test and the Bonferroni-

corrected test suffer from the same singularity. However, inference is no longer valid for these

tests, because the limit law of these test statistics is no longer standard without studentization.

We use the same quantile forecast models as in the simulation design in the previous section,

but set N = 1, so that the quantile forecasts defined in equations (20) and (21) are obtained

from a GARCH model instead of a GARCH-DCC model. For an additional comparison, we

also consider a rolling window sample quantile estimated over the previous 250 days.

As in the previous examples, to study the finite-sample size of this test we consider the null

hypothesis that E[Lt+1(γ)] = ζm(γ) instead of zero, where ζm(γ) ≠ 0 is the population value of

E[Lt+1(γ)], which we estimate using 100,000 simulations. The power experiment tests the null

hypothesis E[Lt+1(γ)] = 0 for all γ ∈ Γ.

4.4 Simulation results

Table 1 presents rejection rates for the size and power experiments introduced in Section 4.1,

based on 1,000 Monte Carlo simulations. We consider out-of-sample period lengths n = 500 and

2,000 observations, two common sample sizes in applied work. We consider increasingly large

grids of Γ, with the number of grid points set to Kn = 1,10,50,100, and 250. We obtain critical

values using B = 1,000 bootstrap samples, and for the block length l we follow a standard

rule-of-thumb in the HAC literature and set l = 4(n/100)2/9, which satisfies our Assumption 5.
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Table 1: Small sample rejection rates of superior expected utility tests on equal weighted and
minimum-variance portfolio strategies

Panel A: Size Panel B: Power

n=500 n=2,000 n=500 n=2,000

Kn Bonf. sup-t Bonf. sup-t Bonf. sup-t Bonf. sup-t

1 0.08 0.09 0.02 0.02 0.00 0.00 0.00 0.00

10 0.02 0.10 0.02 0.10 0.99 1.00 1.00 1.00

50 0.02 0.10 0.01 0.04 0.99 1.00 1.00 1.00

100 0.02 0.09 0.01 0.07 0.97 1.00 1.00 1.00

250 0.01 0.13 0.00 0.07 0.95 1.00 1.00 1.00

Note: This table presents the rejection rates of the proposed one-sided test (sup-t), as well
as the benchmark test (Bonferroni). The data is generated according to equation (18), and
the equal-weighed and minimum-variance portfolio strategies are given in Equation (17).
The minimum-variance portfolio weights are estimated using a rolling window of m = 120
observations. The out-of-sample period consists of n = 500, and 2,000 observations. We
consider discrete grids of Γ = [1,10] formed using Kn = 1,10,50,100, and 250 equally spaced
grid points.

For comparison with the proposed test, we consider applying the familiar Bonferroni multiple-

comparison correction. It should be noted that this correction can only be applied at a finite

number of points, M , in Γ, and therefore cannot generally test over all Γ. A one-sided α-level

test using the Bonferroni correction rejects the null hypothesis if, for at least one γ ∈ ΓM , we find

nL̄n(γ)/σ̃n(γ) > z
−1
1−α/M , with z−1

1−α/M denoting the (1 − α/M)-quantile of the standard normal

distribution. As usual for Bonferroni-corrected tests, the critical value is much larger than for

the individual tests (z−1
1−α/M rather than z−1

1−α) which can lead to low power.

From Panel A of Table 1 we observe that the sup-t test is somewhat oversized for n = 500

but approximately correctly-sized for n = 2,000. Reassuringly, we observe that the sup-t tests

are stable in terms of rejection rates once Kn is moderately large, indicating robustness to this

tuning parameter. The Bonferroni-based test has satisfactory size control for the smaller sample

size, and becomes conservative for the larger sample size. Panel B shows rejection rates in the

power experiment, and we observe the sup-t has good power for both sample sizes.

Table 2 presents small sample rejection rates of the size and power experiments introduced

in Section 4.2, for portfolios composed of 30 assets. Results are presented for sample sizes of

n = 500 and 2,000 observations, and six sets of weight vectors, which are drawn as follows.

We first consider a set of 31 deterministic weight vectors: the equal weighted portfolio weights
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Table 2: Small sample rejection rates of quantile forecast tests, for differences between multi-
variate GARCH-DCC and RiskMetrics models

Panel A: Size Panel B: Power

n=500 n=2,000 n=500 n=2,000

Sn Bonf. sup-t Bonf. sup-t Bonf. sup-t Bonf. sup-t

31 0.01 0.01 0.01 0.01 0.16 0.15 0.62 0.65

50 0.01 0.01 0.00 0.01 0.11 0.14 0.55 0.64

100 0.00 0.01 0.00 0.01 0.07 0.14 0.43 0.63

250 0.00 0.01 0.00 0.01 0.04 0.14 0.28 0.64

500 0.00 0.01 0.00 0.01 0.03 0.14 0.21 0.64

1000 0.00 0.01 0.00 0.01 0.02 0.13 0.15 0.64

Note: This table presents the rejection rates of the proposed one-sided test (sup-t), as well
as the benchmark Bonferroni test. The quantile forecasts for the portfolio returns from the
GARCH-DCC and multivariate RiskMetrics models are defined in equations (20) and (21).
The data is generated as in equation (19) with N = 30. We test at 31 fixed portfolio weight
vector being the equal weighted portfolio vector and the 30 basis vectors, as well as Sn − 31
weight vectors drawn uniformly from the unit simplex.

and the 30 basis vectors. Subsequently we randomly draw Sn − 31 weight vectors from J , for

Sn = 50,100,250,500 and 1,000. We use B = 1,000 bootstrap samples to obtain critical values.

Panel A of Table 2 provides rejection rates in the size experiment. We observe that the sup-t

test is conservative, though less than the benchmark Bonferroni test. Panel B shows rejection

rates in the power experiment, and as in the previous section, we observe the sup-t test rejection

probabilities are stable across values of Sn. Power is greater than the Bonferroni-based test,

and that test’s power declines monotonically as Sn increases.

Finally, Table 3 provides small sample rejection rates of the tests in size and power experi-

ments introduced in Section 4.3. The columns labeled “RM” compare GARCH forecasts with

RiskMetrics forecasts, and the columns labeled “RW” compares GARCH forecasts with rolling

window forecasts. We again consider sample sizes of n = 500 and n = 2,000. We consider grids

of Γ with Kn = 50, 100, and 250 grid points equally spaced over the interval [−20,0]. We select

this interval because outside of it the elementary score differences are equal to zero in almost

all realizations. As we cannot always (across values of γ in the elementary scores) compute the

asymptotic covariance required to obtain the benchmark Bonferroni-corrected tests, we do not

implement those here. Instead, we present the results of a standard Diebold-Mariano test based

on the tick loss function as benchmark. These are reported in the rows labeled “1”.

19



Table 3: Small sample rejection rates of Murphy diagram tests, for quantile forecast differences
between GARCH, RiskMetrics, and Rolling Window models

Panel A: Size Panel B: Power

n=500 n=2,000 n=500 n=2,000

Test Kn RM RW RM RW RM RW RM RW

DM 1 0.04 0.05 0.04 0.06 0.19 0.45 0.49 0.95

sup-t 50 0.03 0.07 0.03 0.05 0.06 0.36 0.14 0.81

sup-t 100 0.02 0.09 0.04 0.08 0.06 0.39 0.13 0.85

sup-t 250 0.01 0.08 0.04 0.06 0.04 0.36 0.15 0.88

Note: This table presents the rejection rates of the proposed one-sided test (sup-t) com-
paring forecasts from a GARCH model with those from the RiskMetrics (RM) and Rolling
Window (RW) forecasts. The Diebold-Mariano test (DM) using the tick loss function is also
presented. The quantile forecasts from the GARCH and RiskMetrics models are given in
equations (20) and (21), with N = 1. We consider out-of-sample period lengths n = 500, and
2,000, and discrete grids of Γ = [−20,0] with Kn = 50,100, and 250 equally-spaced points.

Panel A of Table 3 provides rejection rates for the size experiments. We observe that the

rejection rates are close to their nominal level for both sample sizes, though the sup-t test is

somewhat conservative at n = 500. The benchmark Diebold-Mariano test using the tick loss

function, is also approximately correctly sized. The rejection rates of the sup-t test are stable

across values Kn, indicating robustness to this tuning parameter. Panel B of Table 3 provides

rejection rates in the power experiment. In this design, the RiskMetrics and GARCH forecasts

generate losses that are not very different and so power is low in that case, especially for the

smaller sample size. At n = 2,000 the proposed test has power against the alternative, but the

benchmark Diebold-Mariano (DM) test turns out to be more powerful in this design. It should

of course be noted that the DM test considers a different null to ours; that test considers only

a single loss function rather than a continuum of loss functions.

5 Applications to equity return forecast environments

5.1 Comparing the utility of two portfolio strategies

In this section we compare equal weighted and minimum-variance portfolio strategies in terms

of average utility, across a range of levels of risk aversion. We use monthly returns data on 30
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Table 4: p-values from tests of superior expected utility from equal-weighted and minimum-
variance portfolio strategies

Risk aversion in [1,10] Risk aversion in [1,5] Risk aversion in [5,10]

Kn Bonf. sup-t Bonf. sup-t Bonf. sup-t

Panel A: H1: EW superior for some γ

1 0.02 0.01 0.02 0.02 0.56 0.57

10 0.02 0.00 0.02 0.00 1.00 0.22

50 0.11 0.00 0.11 0.00 1.00 0.17

100 0.22 0.00 0.22 0.00 1.00 0.22

250 0.56 0.01 0.56 0.01 1.00 0.20

Panel B: H1: MV superior for some γ

1 0.97 0.97 0.98 0.98 0.44 0.43

10 1.00 0.18 1.00 0.86 1.00 0.19

50 1.00 0.20 1.00 0.85 1.00 0.22

100 1.00 0.24 1.00 0.83 1.00 0.17

250 1.00 0.21 1.00 0.85 1.00 0.20

Note: This table presents p-values from tests for superior predictive accuracy. The equal-
weighted and minimum-variance portfolio strategies are given in equation (17). The data
consists of monthly returns of 30 industry portfolios and runs from September 1926 to
December 2017. The three panels consider three ranges of values for the risk aversion
parameter. Kn indicates the number of (equally-spaced) grid points.

U.S. industry portfolios, from September 1926 to December 2017, a total of 1,098 observations.1

The minimum-variance portfolio weights are estimated over a rolling window of m = 120 months.

We use the exponential utility function u(y;γ) = −exp{−γy}/γ, with γ ∈ [1,10], which covers

all risk aversion parameter values considered in DeMiguel et al. (2007).

Table 4 provides p-values for the proposed new test, as well as the benchmark Bonferroni-

adjusted tests. The rows labeled Kn = 1 tests the hypothesis of equal predictive ability for

one particular value of risk aversion γ = 2.5, while the remaining rows use Kn = 10,50,100,250

equally-spaced points in [1,10]. We set B = 1,000.

In the left panel Table 4 we consider Γ = [1,10]. When Kn = 1, the sup-t test rejects

the null of weakly greater utility from the minimum variance portfolio compared with the

equal-weighted portfolio and fails to reject the opposite null, indicating that the equal-weighted

1The returns can be obtained from the data library at http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html
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strategy dominates the minimum variance portfolio for this particular risk aversion. When we

increase Kn, and test the hypothesis of equal average utility over the entirety of Γ, we find

the much stronger result that the equal-weighted portfolio dominates the minimum variance

portfolio across all values for the risk aversion parameter. In contrast, the Bonferroni-corrected

test fails to reject the null hypothesis for larger values of Kn. This finding is consistent with the

conservativeness of this test as Kn increases documented in the simuation study in the previous

section.

Figure 1 shows the sample mean of expected utility differences and the pointwise 95%

confidence bounds for each γ ∈ [1,10]. We observe that for γ less than about 3, the confidence

interval does not include zero, indicating that for lower levels of risk aversion the equal-weighted

portfolio significantly outperforms the minimum variance portfolio. For higher levels of risk

aversion, the pointwise confidence intervals either contain zero, or lie below zero.

The middle and right panels of Table 4 show results for Γ = [1,5] and Γ = [5,10], to examine

the sensitivity of the conclusions of these tests to the range of values of risk aversion considered.

Consistent with Figure 1, for less risk averse investors, with Γ = [1,5], we observe that the

equal-weighted strategy dominates the minimum variance strategy, while we cannot distinguish

between the strategies over Γ = [5,10].

5.2 Quantile forecasts of portfolio returns from multivariate models

In this analysis we compare two multivariate volatility models, a GARCH-DCC model and

the RiskMetrics model, by the quality of their forecasts for the 5% Value-at-Risk (i.e., the 5%

quantile) of the returns on portfolios of the underlying assets. We use daily returns on the

same 30 U.S. industry portfolios as in the previous section, over the period January 1998 to

December 2017, a total of 5,032 observations. The GARCH-DCC model is estimated over a

rolling window of 1,000 observations. We set B = 1,000.

We consider the following sets of portfolios. For Sn = 1 we consider only the equal weighted

portfolio. For Sn = 31 we consider the equal weighted portfolio and all 30 single-asset port-

folios. For Sn > 31, we additionally consider Sn − 31 random weight vectors drawn from the

30-dimensional simplex.

Table 5 presents p-values of the tests of equal or superior predictive ability. We show results

for the full sample, as well as the first and second halves of the sample period. The results

for the full sample show that the models have approximately equal performance, since the test
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Figure 1: Utility differential of equal weighted and minimum-variance portfolio strategies
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Note: This figure plots the the sample mean of utility from the equal-weighted portfolio strategy
minus the sample mean of utility derived from the minimum-variance portfolio strategies. The
strategies are given equation (17). The data consists of monthly returns of 30 industry portfolios
from September 1926 to December 2017. We consider risk aversion, γ, in the range [1,10].

cannot reject the null in favor of either RiskMetrics or DCC; the p-values are all well above

0.05.

In the middle panel of Table 5, which examines performance in the first half of our sample

period, we find that we can reject in favor of the RiskMetrics model, but not the reverse,

indicating that the RiskMetrics model dominates the GARCH-DCC model in this sub-sample.

In the second sub-sample, similar to the full sample, we cannot reject the hypotheses of superior

predictive ability, indicating an inability to distinguish between these forecasting models.

Figure 2 plots the sample mean of the tick loss differences and the 95% confidence bounds

for the first 100 portfolio weights that we draw, over the full sample and subsamples, and sorted

on mean tick loss difference. In the first half of the sample we indeed find that the RiskMetrics

forecasts perform better, although for only few portfolio vectors do we observe (pointwise)

confidence intervals that exclude zero. In the second half of the sample the average tick loss

differences are generally negative, but not significantly different from zero.
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Figure 2: Tick-loss differential for tail quantile forecasts generated by the multivariate GARCH-
DCC and RiskMetrics models
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(a) Full sample
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(b) First sub-sample
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(c) Second sub-sample

Note: This figure plots the sample average of the tick loss from the GARCH-DCC forecasts
minus the sample mean tick loss of the RiskMetrics forecasts. The forecasts are defined in
equations (20) and (21). The mean tick loss differences are shown for Sn = 100 portfolio
weight vectors, with 31 of these being the equal weighted portfolio vector and the 30 single-
asset portfolio vectors, and the rest drawn uniformly from the 30-dimensional simplex. The
portfolios are presented sorted on mean tick loss difference. The data consists of daily returns
for 30 Industry portfolios and runs from January 1998 to December 2017.
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Table 5: p-values of quantile forecast tests, for differences between multivariate GARCH-DCC
and RiskMetrics models

Full sample First sub-sample Second sub-sample

Sn Bonf. sup-t Bonf. sup-t Bonf. sup-t

Panel A: H1 ∶ RiskMetrics superior for some γ

1 0.39 0.39 0.15 0.15 0.84 0.85

31 1.00 0.62 0.02 0.02 1.00 0.87

100 1.00 0.64 0.08 0.03 1.00 0.90

250 1.00 0.59 0.20 0.03 1.00 0.91

500 1.00 0.54 0.40 0.04 1.00 0.90

1000 1.00 0.58 0.80 0.03 1.00 0.91

Panel B: H1 ∶ DCC superior for some γ

1 0.61 0.56 0.85 0.85 0.16 0.11

31 1.00 0.93 1.00 0.99 0.17 0.08

100 1.00 0.93 1.00 1.00 0.56 0.09

250 1.00 0.93 1.00 1.00 1.00 0.09

500 1.00 0.92 1.00 1.00 1.00 0.09

1000 1.00 0.93 1.00 0.99 1.00 0.11

This table presents p-values from tests for superior predictive accuracy. The quantile fore-
casts for the portfolio returns from the GARCH-DCC and multivariate RiskMetrics models
are defined in equations (20) and (21). The data consists of twenty years of daily returns
of 30 industry portfolios from January 1998 to December 2017. We consider Sn portfolio
weight vectors. When Sn = 1 we use equal weights. For Sn ≥ 31 we test at 31 fixed portfolio
weight vectors (the equal-weighted portfolio vector and the 30 basis vectors) and Sn − 31
weight vectors drawn uniformly from the 30-dimensional unit simplex.

5.3 Quantile forecast comparison via Murphy diagrams

Our final empirical analysis compares two forecast models for the 5% quantile (i.e., the 5%

Value-at-Risk) of a single asset. We compare three models: a GARCH(1,1) model (Bollerslev,

1986), the RiskMetrics model, and a simple rolling window sample quantile calculated over

the previous 250 days. We use the same data as the previous sub-section: daily returns on

30 U.S. industry portfolios, over the period January 1998 to December 2017, a total of 5,032

observations. The GARCH model is estimated over a rolling window of 1,000 observations. The

parameter space for the elemetary scoring rule shape parameter (see Section 4.3 for details) is

Γ = [−20,0], and we consider an increasingly fine grid of equally-spaced points in this space

when implementing the new tests. We set B = 5,000.
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We implement the tests for each of the 30 industry portfolio returns separately. In Table 6

we present detailed results for a single representative portfolio (the “Transportation” industry

portfolio), and in Table 7 we present a summary of the results across all 30 industry portfolios.

Panel A of Table 6 compares RiskMetrics and GARCH forecasts. We find that the bench-

mark Diebold and Mariano (1995) test using the tick loss function fails to reject both nulls,

with a p-values well above 0.05. The sup-t test rejects the null of weakly superior GARCH

forecasts with p-values around 0.03, but does not reject in the opposite direction, indicating

that the RiskMetrics forecasts dominate the GARCH forecasts for the Transportation industry

portfolio.

The upper panel of Figure 3 shows the “Murphy diagram” for this comparison, applied to

the Transportation portfolio, and reveals that for most values of the elementary scoring rule

parameter the GARCH and RiskMetrics forecasts have similar average losses. For values of the

parameter around −1 the GARCH forecast significantly outperforms the RiskMetrics forecast,

with the pointwise confidence intervals being far from zero, whereas the RiskMetrics forecast

shows some (pointwise) significant outperformance for values of the parameter around −2. The

results of the tests in Table 6, however, indicate that the RiskMetrics forecasts dominate the

GARCH forecasts overall.

Panel B of Table 6 compares the GARCH forecast with the rolling window sample quantile

forecast. The sup-t test finds no evidence that the rolling window sample quantile outperforms

the GARCH forecast for any value of elementary scoring rule parameter, whereas we do find

evidence in the opposite direction, indicating that the GARCH forecast dominates the rolling

window forecasts for the Transportation industry portfolio. The lower panel of Figure 3 shows

that the difference in average loss is negative almost everywhere, consistent with the tests in

Table 6, and the pointwise confidence intervals exclude zero for a large part of the parameter

space.

Panel A of Table 7 compares Riskmetrics and GARCH forecasts across 30 industry portfolios

and reports the proportion of portfolios in each of the four “forecast dominance” outcomes based

on the sup-t tests discussed in Section 3.3. Focusing on the Kn =1,000 row, we see that for

17% of the 30 portfolios either the RiskMetrics model dominates (10%) or the GARCH model

dominates (7%), while for the remaining portfolios we are unable to statistically distinguish the

performance of these two models. Consistent with this, results for the one-sided Diebold and

Mariano (1995) tests using tick loss (not reported in the interests of space) do not reject for
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Table 6: Quantile forecast comparison tests for the Transportation industry portfolio

H1: Comp. superior for some γ H
′′
1 : GARCH superior for some γ

Kn tick loss sup-t tick loss sup-t

Panel A: RiskMetrics vs. GARCH

1 0.38 - 0.62 -

50 - 0.01 - 0.06

100 - 0.04 - 0.21

250 - 0.05 - 0.25

500 - 0.03 - 0.24

1000 - 0.04 - 0.24

Panel B: Rolling window vs. GARCH

1 1.00 - 0.00 -

50 - 0.96 - 0.00

100 - 0.98 - 0.00

250 - 0.99 - 0.00

500 - 0.98 - 0.00

1000 - 0.99 - 0.00

Note: This table presents p-values from tests comparing the predictive accuracy of forecasts
of the 5% quantile for daily returns obtained from GARCH, RiskMetrics and rolling window
models. We consider tests based on the elementary scoring rules for the quantile, as well
a test using the tick loss function, applied to daily returns on the Transportation industry
portfolio. We consider equally-spaced discrete grids of Γ = [−20,0] with Kn grid points. The
tick loss based tests use only a single loss function, and are reported in the rows labeled
Kn = 1. The model referred to in the panel labeled “Comp. superior” is RiskMetrics in
Panel A and rolling window in Panel B.

any portfolio in any direction.

In contrast, Panel B of Table 7 reveals a clear ordering of the rolling window and GARCH

forecasts: the “forecast dominance” outcomes reveal that the GARCH model provides superior

forecasts to the rolling window model, for all 30 portfolios. One-sided Diebold and Mariano

(1995) tests (unreported) using only the tick loss function arrive at the same conclusion.

6 Concluding remarks

In many empirical applications, researchers are faced with the problem of comparing forecasts

using a loss function that contains a shape parameter; examples include comparisons using

average utility across a range of values for the level of risk aversion, and comparisons using
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Figure 3: Murphy diagrams for quantile forecasts for the Transportation portfolio returns

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

-15

-10

-5

0

5

10-3

mean elementary score differential
95% confidence interval

(a) GARCH vs. RiskMetrics
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(b) GARCH vs. rolling window sample quantile

Note: This figure plots the sample mean of the elementary scoring rule of the GARCH forecasts
minus the sample mean of the elementary scoring rule of the RiskMetrics forecasts. The forecasts
are 5% quantile forecasts for daily returns of the US Transportation industry index from January
1998 to December 2017. The elementary scoring rules are indexed by the scalar parameter
γ ∈ [−10,0].
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Table 7: Quantile forecast comparison test results across all 30 industry portfolios.

Forecast dominance outcomes

(1) (2) (3) (4)

Comp. GARCH No No

Kn dominates dominates rejections ordering

Panel A: RiskMetrics vs. GARCH

50 0.17 0.00 0.83 0.00

100 0.23 0.10 0.67 0.00

250 0.10 0.03 0.83 0.03

500 0.10 0.07 0.80 0.03

1000 0.10 0.07 0.83 0.00

Panel B: Rolling window vs. GARCH

50 0.00 1.00 0.00 0.00

100 0.00 1.00 0.00 0.00

250 0.00 1.00 0.00 0.00

500 0.00 1.00 0.00 0.00

1000 0.00 1.00 0.00 0.00

Note: This table presents the proportion of forecast dominance outcomes across 30 industry
portfolios, using tests comparing the predictive accuracy of forecasts of the 5% quantile for
daily returns obtained from GARCH, RiskMetrics and rolling window models. We consider
equally-spaced discrete grids of Γ = [−20,0] with Kn grid points. The forecast dominance
results in the final four columns are based on the decision rule described in Section 3.3. The
model referred to in the column labeled “Comp. dominates” is RiskMetrics in Panel A and
rolling window in Panel B.

characteristics of a portfolio return across a range of values for the portfolio weight vector.

We propose new forecast comparison tests, in the spirit of Diebold and Mariano (1995) and

Giacomini and White (2006), that may be applied in such applications. We consider tests for

superior forecast accuracy across the entire range of values of the loss function parameter. The

asymptotic properties of the test statistics are derived using block bootstrap theory for empirical

processes, see Bühlmann (1995).

We show via an extensive simulation study that the tests have satisfactory finite sample

properties, unlike the leading existing alternative which breaks down when a large number of

values of the shape parameter is considered. We illustrate the new tests in three empirical

applications: comparing portfolio strategies using average utility across a range of levels of risk

aversion; comparing multivariate volatility models via their Value-at-Risk forecasts for portfolios
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of the underlying assets across a range of values for the portfolio weight vector; and comparisons

using recently-proposed “Murphy diagrams” (Ehm et al., 2016) for classes of consistent scoring

rules for quantile forecasting.

This paper leaves open some interesting avenues for future research. If a functional CLT

for triangular arrays of weakly dependent sequences can be invoked, then a time series analog

of the approach in Andrews and Shi (2013) may be pursued, with the potential to improve

power. In a different direction, our setting, where the researcher wishes to consider a range of

values for the loss function parameter rather than a single value, may prompt one to consider a

Bayesian approach with some prior distribution on the loss function parameter. We leave these

explorations for subsequent research.
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Ziegel, J. F., Krüger, F., Jordan, A., and Fasciati, F. (2020). Robust Forecast Evaluation of

Expected Shortfall. Journal of Financial Econometrics, 18(1):95–120.

33


	Introduction
	Loss function shape parameters in practice
	Comparisons based on expected utility
	Multivariate forecast comparison based on portfolio characteristics
	Forecast comparisons via Murphy diagrams
	Forecast comparison tests in the presence of a loss function shape parameter
	Superior predictive ability tests
	Feasible implementation of the tests
	Detecting forecast dominance
	Simulation studies
	Comparisons based on expected utility
	Forecast comparison via tail quantile forecasts of portfolio returns
	Forecast comparison via Murphy diagrams of quantile forecasts
	Simulation results

	Applications to equity return forecast environments
	Comparing the utility of two portfolio strategies
	Quantile forecasts of portfolio returns from multivariate models
	Quantile forecast comparison via Murphy diagrams


	Concluding remarks
	Equal predictive ability tests
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 1
	Results for tests of equal predictive ability
	Simulation results
	Multi-step quantile forecasts of portfolio returns






