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Abstract

We develop tests for out-of-sample forecast comparisons based on loss functions that contain

shape parameters. Examples include comparisons using average utility across a range of val-

ues for the level of risk aversion, comparisons of forecast accuracy using characteristics of

a portfolio return across a range of values for the portfolio weight vector, and comparisons

using a recently-proposed “Murphy diagrams” for classes of consistent scoring rules. An

extensive Monte Carlo study verifies that our tests have good size and power properties in

realistic sample sizes, particularly when compared with existing methods which break down

when then number of values considered for the shape parameter grows. We present three

empirical illustrations of the new test.
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1 Introduction

Forecast comparison problems in economics and finance invariably rely on a loss function or

utility function, and in many cases these functions contain a shape parameter, for example,

when comparing two forecasting models based on average utility. In many cases, there is no

single specific value for the shape parameter that is of interest, rather there is a range of values

that are of interest to the researcher. In this case the null hypothesis of equal predictive accuracy

has a continuum of testable implications, but most existing work instead tests equal predictive

accuracy at a few ad hoc values of the shape parameter. This paper combines work on forecast

comparison tests, see Diebold and Mariano (1995) and Giacomini and White (2006), with

bootstrap theory for empirical processes, see Bühlmann (1995), to provide forecast comparison

tests that allow for inference across a range of values of a loss function shape parameter.

A leading example of an application that depends on some arbitrary parameter is a test of

equal expected utility in which the utility function is parameterized by a risk aversion parameter.

Given that economists have not converged on what value of risk aversion is appropriate (see,

e.g., Bliss and Panigirtzoglou, 2004, for discussion) it is desirable to consider a null hypothesis

of equal expected utility over a range of reasonable risk aversion values, instead of testing at

some single value. Current practice usually evaluates the hypothesis of equal expected utility

at one or a select few risk aversion parameter values, see Fleming et al. (2001), Marquering and

Verbeek (2004), Engle and Colacito (2006) and DeMiguel et al. (2007) for example.

Another application that involves a continuum of testable implications is when one evaluates

forecasts from multivariate models on the basis of their implied forecasts of univariate quantities,

for example, evaluating a multivariate volatility model through its forecasts of Value-at-Risk

for portfolios of the underlying assets. In practice, comparisons of quantile forecasts of portfolio

returns, as generated from multivariate models, often only consider the equal weighted portfolio

or some other fixed combination of portfolio constituents, see McAleer and Da Veiga (2008),

Santos et al. (2012) and Kole et al. (2017) for example. Considering only a single weight vector

can fail to reveal the sensitivity, or the robustness, of the ranking of two models to the choice

of weight vector.

A final, recent, example is the comparison of forecasts using “elementary scoring rules,” see

Ehm et al. (2016). These authors show that the family of loss functions (or “scoring rules”) that

are consistent for a given statistical functional (e.g., the mean, a quantile, an expectile) can be
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represented as a convex combination of elementary scoring rules. The plot of the elementary

scoring rules is called a “Murphy diagram,” and Ehm et al. (2016) note that joint testing of

the Murphy diagram is not yet fully developed. Ziegel et al. (2017) introduce tests for Murphy

diagrams based on controlling the family-wise error rate but such corrections can perform poorly

in large-scale multiple testing problems, see Hand (1998) and White (2000). Moreover, their

tests consider only a finite subset of the testable implications instead of a continuum.

This paper develops new out-of-sample tests for multiple testing problems over a continuum

of shape parameters, including the above three examples, which do not rely on bounds such as

the Bonferroni correction, and which take into account the time series nature of the data used in

most forecasting settings. To the best of our knowledge, such tests have not been considered in

the literature to date. We consider tests of equal predictive ability (two-sided tests) and superior

predictive ability (one-sided tests), and provide a framework for forecast dominance between two

models based on one-sided tests that use opposing null hypotheses. We derive our tests using the

supremum or average of Diebold-Mariano test statistics for each value of the shape parameter

in its range, and obtain critical values using the moving blocks bootstrap of Bühlmann (1995),

which is applicable to weakly dependent empirical processes indexed by classes of functions,

and is general enough to cover our cases of interest: loss functions parameterized by a vector

that can take values in a bounded subset of Euclidian space.

Our tests build on the out-of-sample testing framework of Diebold and Mariano (1995) and

West (1996). Similar to Giacomini and White (2006) we consider evaluating the forecasting

method, which, in addition to the forecasting model, includes the estimation scheme and choices

of in-sample and out-of-sample periods. Our framework has some similarities with the work of

White (2000) and Hansen (2005), who present predictive ability tests to compare a benchmark

model with (finitely) many alternative models using a single loss function. In contrast, we

consider only two models but we compare them using a continuum of loss functions. As such,

our testing problem cannot be addressed using the work of those papers.

Recently, Jin et al. (2017) and Post et al. (2018) introduced multiple comparison tests for

general loss functions over relatively large classes of loss functions (although the loss function

should be minimized at zero), by translating the multiple hypothesis into hypotheses about

stochastic dominance and “nonparametric forecast optimality,” respectively. This allows the

authors to develop tests based on the empirical distribution function or empirical likelihood.

Our paper differs from this strand of research in two ways. First, we consider classes of loss
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functions that are economically motivated, whereas the previous authors abstract away this

choice. In many settings, such as the ones considered in this paper, it is realistic to assume the

researcher has at least some knowledge of what constitutes a relevant loss, and thus what values

of the shape parameter are relevant. Ruling out economically uninteresting loss functions from

the general set of loss functions can improve test power. Second, our paper applies to scenarios

in which the loss function is not minimal at zero forecast error whereas the previous papers do

not. Such loss functions include, for instance, many utility functions as well as the Fissler and

Ziegel (2016) loss function for Value-at-Risk and Expected Shortfall.

We show via an extensive simulation study that the proposed testing methods have good size

and power properties in realistic sample sizes. These positive results stand in stark contrast to

the two most familar existing methods used to compare forecasts across a range of loss function

parameter values: we find that the Wald test has finite-sample size as high as 50% for a 5%

level test, while tests based on a Bonferroni correction suffer, unsurprisingly, from low power.

We consider three empirical applications of the proposed new tests. Firstly, in a compari-

son of expected utility of equal weighted and minimum-variance portfolio strategies (see, e.g.,

DeMiguel et al., 2007) we show that our tests are able to reject the null of equal average utility

when existing alternative methods cannot. Secondly, we consider a tests of portfolio quantile

forecasts generated by multivariate GARCH-DCC and RiskMetrics modelsand we find that our

tests again are able to detect violations of the null hypothesis where existing methods cannot.

Finally, we consider tests based on the Murphy diagrams for quantile forecasts generated by

GARCH and RiskMetrics models, an application where existing methods simply cannot be

applied due to the nature of the testing problem.

The remainder of the paper is structured as follows. In Section 2 we discuss our three

illustrative examples. In Section 3 we present the general testing framework and develop our

tests. In Section 4 we use Monte Carlo experiments to study the small sample properties of

our tests in settings close to our illustrative examples. In Section 5 we explore these settings

empirically. Section 6 concludes.
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2 Loss function shape parameters in practice

We consider three representative examples of forecast comparison scenarios. In all of these

examples we consider loss differences defined as

Lt�1�γ� � S�Yt�1, g
�1�
t �γ�;γ� � S�Yt�1, g

�2�
t �γ�;γ� (1)

where S is the loss function (or scoring rule), γ > Γ ` Rd is the shape parameter of the loss

function, Yt�1 is the target variable, and g
�i�
t �γ� is the forecast of Yt�1 made using model i,

which may depend on the shape parameter γ.

A test of uniform equal predictive accuracy across all values of the shape parameter is:

H0 � E �Lt�1�γ�� � 0 ¦ γ > Γ (2)

vs. H1 � E �Lt�1�γ�� x 0 for some γ > Γ (3)

We will also consider tests of uniform superior predictive ability, which consider the hypotheses:

H �

0 � E �Lt�1�γ�� B 0 ¦ γ > Γ (4)

vs. H �

1 � E �Lt�1�γ�� A 0 for some γ > Γ (5)

2.1 Comparisons based on expected utility

Two forecasting models each generate forecasts of optimal portfolio weights and we seek to

compare them in terms of out-of-sample average utility from the resulting portfolio returns.

The portfolio returns are obtained as Y �

t�1g
�i�
t �γ�, where Yt�1 is a vector of returns on the

underlying assets, and g
�i�
t �γ� is the forecasted optimal portfolio weights from model i assuming

a preference parameter γ, and per-period utility is computed using some utility function u��;γ�.
For instance, when u��;γ� is the exponential utility function γ denotes the (scalar) risk aversion

parameter, and Γ � �a, b�, for some 0 @ a @ b @ª. In this case we set

S�Yt�1, g
�i�
t �γ�;γ� � �u�Y �

t�1g
�i�
t �γ�;γ� (6)

so that lower values of the scoring rule indicate better performance.
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2.2 Multivariate forecast comparison based on portfolio characteristics

Let Yt�1 denote some vector of returns, and compute portfolio returns as Ỹt�1�γ� � γ�Yt�1

for some weight vector γ. We are interested in forecasting some statistic ψt of Ỹt�1�γ� for all

portfolio weights γ > Γ. When we consider all long-only portfolios with weights summing to one,

the parameter space Γ is the unit simplex. If we consider α-quantile forecasts of the portfolio

return, then we may use the “tick” loss function to measure forecast performance and so set

S�Yt�1, g
�i�
t �γ,α�;γ,α� � �1�γ�Yt�1 B g

�i�
t �γ,α�� � α��g�i�t �γ,α� � γ�Yt�1�. (7)

where 1�A� equals one if A is true and zero otherwise.

2.3 Forecast comparisons via Murphy diagrams

Let Yt�1 denote some scalar return, and let ξt denote some statistic of Yt�1, such as a mean or

quantile. If ξt is elicitable, see Gneiting (2011a), then there exists a family of scoring rules (loss

functions), S such that for any scoring rule S� > S it holds

E�S��Yt�1, ξt�� B E�S��Yt�1, x��, ¦x > X (8)

where X is the support of ξt. That is, ξt has lower expected loss than any other forecast, x,

for all scoring rules S� > S. The scoring rule S� is then said to be “consistent” for the statistic

ξt. Many statistics, such as the mean, quantile, and expectile, admit families of consistent

scoring functions, see Gneiting (2011a). For example, the mean is well-known to be elicitable

using the quadratic loss function, and more generally it is elicitable using any “Bregman” loss

function. The α-quantile is elicitable using the tick loss function in equation (7), and more

generally using any “generalized piecewise linear” (GPL) loss function, see Gneiting (2011b).

Comparisons of forecasts are usually done using a single consistent scoring rule (e.g., using

mean squared error to compare estimates of the mean), however Patton (2018) shows that in

the presence of parameter estimation error or misspecified models the ranking of forecasts can

be sensitive to the specific scoring rule used.

In a recent paper, Ehm et al. (2016) show that any scoring rule that is consistent for a
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quantile or an expectile (the latter nesting the mean as a special case) can be represented as:

S��Yt�1, x� � S ª

�ª

S̃�Yt�1, x;γ�dH�γ� (9)

for some non-negative measure H, and γ > Γ ` R, where S̃ is an “elementary” scoring rule,

defined below. A plot of the average elementary scores across all values of γ is called a “Murphy

diagram” by Ehm et al. (2016). If one forecast’s Murphy diagram lies below that of another

forecast for all values of γ, then it has lower average loss for any consistent scoring rule.

With the above representation of a consistent scoring rule as a mixture of elementary scoring

rules, we can consider rankings across all consistent scoring rules, overcoming the sensitivity

discussed in Patton (2018). For example, to compare α-quantile forecasts we set

S�Yt�1, g
�i�
t �α�;γ,α� � �1�Yt�1 @ g

�i�
t � � α��1�γ @ g

�i�
t �α�� � 1�γ @ Yt�1�� (10)

and then test for forecast equality/superiority across all γ > R. The right-hand side of the above

equation is the quantile elementary scoring rule from Ehm et al. (2016).

3 Forecast comparison tests in the presence of a loss function

shape parameter

Consider the stochastic process W � �Wt � Ω� RN�s, N > N�, s > N, t � 1,2, . . .� defined on a

complete probability space �Ω,F , P �. We partition the observed vector Wt as Wt � �Yt,Xt�,
where Yt � Ω� RN is a vector a variables of interest and Xt � Ω� Rs is a vector of explanatory

variables. We define Ft � σ�W1, . . . ,Wt�.
To fix notation, we let SAS � �tr�A�A��1~2

denote the Euclidean norm of a matrix A, and

YAYq � �ESASq�1~q denote the Lq norm of a random matrix. Finally,� denotes weak convergence

with respect to the uniform metric.

We denote the total sample size by T and the out-of-sample size by n. We consider moving

or fixed window forecasts generated with in-sample periods of size m, such that the forecast for

period t � 1 is obtained using observations at periods t �m � 1, . . . , t with the moving scheme,

and 1, . . . ,m with the fixed scheme, respectively.
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We consider some (scalar) measurable loss (difference)

Lt�1�γ� � L�Wt�1,Wt, . . . ,Wt�m�1;γ� (11)

that takes as arguments m � 1 @ ª elements of W and some parameter vector γ > Γ ` Rd

that is independent of W , with Γ a bounded set. As in Giacomini and White (2006), our

assumption that m @ª imposes a limited memory condition on the forecasting methods, which

precludes methods with model parameters estimated over expanding windows, but allows for

those estimated over fixed and moving windows of finite length.

Below we describe the two-sided tests of equal predictive accuracy, and the one-sided tests

of superior predictive accuracy.

3.1 Equal predictive ability tests

Here we consider tests of the following null and alternative hypotheses:

H0 � E �Lt�γ�� � 0 ¦ γ > Γ (12)

vs. H1 � UE �Lt�γ���U C ∆ A 0 for some γ� > Γ (13)

To develop a test of H0 we consider the Diebold and Mariano (1995) test statistic as a function

of γ > Γ:

tn�γ� �ºnL̄n�γ�
σ̂n�γ� , (14)

with L̄n�γ� � 1
n PT�1

t�m Lt�1�γ�, and σ̂2
n�γ� denoting a (strongly) consistent estimator of σ2�γ� �

E�Lt�1�γ�2�.
It should be noted that when autocorrelation is present in Lt�1�γ�, tn�γ� does not converge

in distribution to a standard normal limit, because σ̂2
n�γ� is not a heteroskedasticity and auto-

correlation consistent (HAC) estimator of the asymptotic covariance matrix of
º
nL̄n�γ�, see,

e.g. Newey and West (1987)). We are not aware of strong uniform law of large numbers results

for HAC estimators, which are required in our theoretical results below. As noted by Hansen

(2005), σ̂2
n�γ� is not required to be a consistent estimator of the variance of

º
nL̄n�γ�, because

the bootstrap accounts for time series features in the data to obtain critical values of our tests.

Indeed, in some scenarios it might be better not to studentize at all, and fix σ̂2
n�γ� � 1 instead.
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Such scenarios include those for which σ̂2
n�γ� may be close to zero in small samples.

To test H0 we employ the test statistics

sup t2n � sup
γ>Γ

t2n�γ� (15)

ave t2n � S
Γ
t2n�γ�dJ�γ� (16)

where J is a weight function on Γ. In the simplest case, we can set J to be uniform on Γ. Each

of the above test statistics can be written as functions v�tn�, where v maps functionals on Γ to

R and we write tn � �tn�γ� � γ > Γ� as a random function on Γ. Each function v is continuous

with respect to the uniform metric, monotonic in the sense that if Z1�γ� B Z2�γ� for all γ then

v�Z1� B v�Z2�, and has the property that if Z�γ��ª for γ for some subset of Γ with positive

mass under weight function J , then v�Z��ª.

We derive the asymptotic distribution of the test statistics above using the following as-

sumptions.

Assumption 1. �Wt� is stationary and β-mixing (absolutely regular), with β�t� � cβat, for

some finite constant cβ, and 0 @ a @ 1.

Assumption 2. E�supγ>Γ SLt�1S4r� @ª, for some r A 1, and for all t.

Assumption 3. YLt�1�γ��Lt�1�γ��Y4r B BSγ�γ�Sλ, for some B @ª, λ A 0, and for all γ, γ� > Γ,

and t.

Assumption 4. σ̂2
n�γ� a.s.

ÐÐ� σ2�γ� uniformly over γ > Γ. Moreover, infγ>Γ σ
2�γ� A 0.

The β-mixing condition in Assumption 1, which is stronger than α-mixing, but weaker

than φ-mixing, is usually assumed when deriving functional CLTs for time series data with

unbounded absolute moments. Bühlmann (1995) notes that the mixing rate is satisfied for

ARMA(p, q) processes with innovations dominated by the Lebesgue measure. Boussama et al.

(2011) provides conditions under which multivariate GARCH models satisfy geometric ergodic-

ity, and Bradley et al. (2005, Thm. 3.7) shows that geometric ergodicity implies β-mixing with

at least exponential rate, satisfying Assumption 1. Assumption 2 is a standard moment condi-

tion, and Assumption 3 requires a Lipschitz condition to hold for these moments. Assumption 4

requires that σ̂2
n��� satisfies a strong Uniform Law of Large Numbers (see, e.g., Andrews, 1992),

and also imposes uniform non-singularity of σ2���.
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Theorem 1. Let Assumptions 1 to 4 be satisfied. Under H0 it follows that
º
nL̄n��� � Z���,

for some Gaussian process Z��� with covariance kernel Σ��, �� � limn�ªCov�ºnL̄n���,ºnL̄n����.
Moreover, v�tn� d

Ð� v�t̃�, with t̃��� � Z���~σ���.
The following result establishes inference under the null and alternative hypotheses given in

equations (12) and (13) above.

Theorem 2. Let Assumptions 1 to 4 be satisfied, and let Σ��, �� be nondegenerate. Under H0

it follows that P �v�tn� A c�1 � α��� α � P �v�t̃� A c�1 � α��, where c�1�α� is chosen such that

P �v�t̃� A c�1 � α�� � α. Moreover, let Γ� � �γ � Sγ�γ�Sλ @ ∆~B� have positive J-measure. Under

H1 it follows that v�tn� d
Ð�ª, and P �v�tn� A c�1 � α��� 1.

We establish the consistency of the block bootstrap for general empirical processes of

Bühlmann (1995) for v�tn�. The block bootstrap was first studied by Künsch (1989) for general

stationary observations.

The bootstrap counterpart of
º
nL̄n�γ� is given by

º
nL̄�n�γ� �ºn 1

n

T�1

Q
t�m

�L�t�1�γ� � µ�n�γ��, (17)

where µ�n�γ� � 1
n�l�1 Pn�l�1

i�1
1
l Pm�i�l�1

t�m�i Lt�γ� denotes the expectation of 1
n PT�1

t�m L
�

t�1�γ� condi-

tional on the original sample, l denotes the block length, and L�t�1�γ� denotes the bootstrap

counterpart of Lt�1�γ�. Similarly, let t�n�γ� � ºnL̄�n�γ�~σ̂n�γ�, and let c�n�1 � α� denote the

α-quantile of t�n�γ�.
We impose the following condition on the rate that l � l�n��ª, as n�ª.

Assumption 5. The block length l satisfies l�n� � O�n1~2�ε�, for some 0 @ ε @ 1~2.

The following result establishes consistency of the bootstrap.

Theorem 3. Let Assumptions 1 to 5 be satisfied. Under H0 it follows that
º
nL̄�n��� � Z���

almost surely. Moreover, P �v�tn� A c�n�1 � α��� α.

Theorem 3 shows that we can estimate c�n�1�α� through simulation: let cBn �1�α� denote the

α � 100% percentile of the test statistics v�t��1�
n �γ��, . . . , v�t��B�

n �γ�� obtained from B bootstrap

samples. As B �ª, cBn �1 � α� becomes arbitrarily close to c�n�1 � α�.
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3.2 Superior predictive ability tests

The results of the previous section allow us to additionally consider tests of uniform superior

predictive ability, which consider the hypotheses:

H �

0 � E �Lt�1�γ�� B 0 ¦ γ > Γ (18)

vs. H �

1 � E �Lt�1�γ��� C ∆ A 0 for some γ� > Γ (19)

Notice that H0 in Equation (12) is the element of H �

0 least favorable to the alternative. We

can thus construct a valid test of H �

0 from

sup tn � sup
γ>Γ

tn�γ�. (20)

The results under H0 in Theorems 1, 2, and 3 hold for H �

0 for a demeaned version of sup tn,

defined as

sup τn �
º
n
L̄n�γ� �E�L̄n�γ��

σ̂n�γ� . (21)

We must use sup τn because H �

0 allows for E�L̄n�γ�� @ 0. Note that we can obtain valid critical

values under H �

0 from Theorem 3. Further, the result in Theorem 2 under H1 also holds under

H �

1 for sup tn (not just for sup τn), which implies that sup tn has asymptotic power against fixed

alternatives in this setting as well.

The above framework can also be used to derive a test based on inf tn. In this case the al-

ternative hypothesis is that the benchmark model is worse than the competing model uniformly

on Γ, i.e., under the alternative hypothesis the competing model dominates the benchmark

uniformly. We do not include this test here, but, related, below we consider a framework for

forecast dominance based on the employment of two one-sided tests.

3.3 Testing for forecast dominance

A rejection of the null hypothesis H �

0 in equation (18) constitutes evidence against the bench-

mark model at some values of γ in Γ. However, it may be that the benchmark model is superior

to the competing model for other points in Γ, and thus that neither model uniformly dominates

the other.
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To resolve this ambiguity we propose a framework using two one-sided tests in which we

switch the role of benchmark and competing models between tests. In the following we denote

the benchmark model as B and the competing model as A. The first test is standard and applies

to H �

0, whereas the second test is applied to the opposite null hypothesis

H
��

0 � E ��Lt�1�γ�� B 0 ¦ γ > Γ

and which is implemented simply by using test statistic sup tn.

Similar to forecast “encompassing” tests, see Chong and Hendry (1986), employing both

tests results in one of the following four outcomes:

1. Reject H �

0, fail to reject H
��

0 : A significantly beats B for some values of γ, and is not

significantly beaten by B for any γ. Thus A dominates B.

2. Fail to reject H �

0, reject H
��

0 . Similar to outcome 1, but B dominates A.

3. Fail to reject both H �

0 and H
��

0 . Neither model significantly beats the other for any value

of γ. Thus the models have statistically equal performance across γ.

4. Reject both H �

0 and H
��

0 : There are values of γ for which A significantly beats B, and

values for which B significantly beats A. Thus there is no ordering of the models across

all γ.

Outcomes 1 and 2 clearly reveal a preferred model. Outcome 3 indicates a lack of power

to distinguish between the competing models (or actual equality of forecast performance across

γ). Outcome 4 reveals an important sensitivity in the ranking of the models to the choice of

shape parameter.

3.4 Feasible implementation of the tests

When Γ > Rd contains infinitely many elements, as in our main examples, it is not possible to

evaluate the test statistics in equations (15), (16) and (20). Here we provide two numerical

approximations to these test statistics for which Theorems 1 and 2 remain valid.

We first consider discretizations of Γ that become increasingly dense. Consider a grid of Γ

with Kn elements Γin, such that supγ,γ�
>Γi

n
Sγ � γS @ δn, for all i � 1, . . . ,Kn, and let γn,i be some
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point in Γin. We have the following approximations to our test statistics:

Æave t2n �
Kn

Q
i�1

t2n�γn,i�S
Γi
n

dJ�γ�, (22)

Æsup t2n � max
i�1,...,Kn

t2n�γn,i�,and (23)

Æsup tn � max
i�1,...,Kn

tn�γn,i�. (24)

If Γ is a hyperrectangle in Rd, a particularly convenient choice of J , Kn, and �Γin�Kn
i�1 derives

from partitioning each dimension of Γ in vn equal parts, which results in Kn � v
d
n. Choosing J

to be uniform over Γ gives RΓi
n
dJ�γ� � v�dn , which is simple to implement. Other choices of J

may require more involved algebra or simulations to obtain RΓi
n
dJ�γ�.

The condition that δn � 0 implies that Kn grows quickly with large d. As a result the

calculation of Æave t2n, Æsup t2n, and Æsup tn becomes problematic for large d. In such cases one can

instead use Monte Carlo simulations from J to obtain approximations of the test statistics.

Consider Sn independent draws γ�i� from J , i � 1, . . . , Sn, and the approximations:

Ëave t2n �
1

Sn

Sn

Q
i�1

t2n�γ�i��, (25)

Ësup t2n � max
i�1,...,Sn

t2n�γ�i��,and (26)

Ësup tn � max
i�1,...,Sn

tn�γ�i��. (27)

Proposition 1. Let the assumptions of Theorem 1 hold. Moreover, let the weight function J

be absolutely continuous. For some Kn � ª, such that δn � 0, as n � ª, Åv�tn� p
Ð� v�tn�.

Moreover, Êv�tn� p
Ð� v�tn� for Sn �ª as n�ª.

3.5 Benchmark testing methods

For comparison with the proposed new tests, we consider standard joint Wald tests and the

Bonferroni multiple-comparison correction as benchmarks to the tests proposed above. It should

be noted that these tests can only be applied at a finite number of points, M , in Γ, and therefore

cannot generally test over all Γ.

Consider some discrete parameter set ΓM � �γ1, . . . , γM� ` Γ. We define the standard Wald
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test statistic as

Q̂hn � nL̃n�ΓM��Ω̂�1
M,nL̃n�ΓM�, (28)

where L̃n�ΓM� � �L̄n�γ1��, . . . , L̄n�γM����, and Ω̂M,n is some HAC estimator of the asymptotic

covariance matrix of
º
nL̃n�ΓM�, e.g., the estimator of Newey and West (1987).

A two-sided α-level test rejects the null hypothesis when Q̂hn A χ
2
M,1�α, where χ2

M,1�α denotes

the �1 � α�-quantile of a χ2 distribution with M degrees of freedom. As M increases Ω̂M,n

becomes near-singular, which can lead to erratic behavior in the test statistic; we observe such

behavior in our simulation study below.

A two-sided α-level test using the Bonferroni correction rejects the null hypothesis if, for at

least one γ > ΓM , we find nL̄2
n�γ�~σ̃2

n�γ� A χ2
1,1�α~M , with σ̃2

n�γ� a HAC asymptotic covariance

estimator of
º
nL̄n�γ�. Tests using the Bonferroni correction are conservative for large M , and

also whenever the test statistics are positively correlated.

A one-sided α-level test using the Bonferroni correction rejects the null hypothesis if, for at

least one γ > ΓM , we find nL̄n�γ�~σ̃n�γ� A z�1
1�α~M , with z�1

1�α~M denoting the �1�α~M�-quantile

of the standard normal distribution. As usual for Bonferroni-corrected tests, the critical value

is much larger than for the individual tests (z�1
1�α~M rather than z�1

1�α) which can lead to low

power; we observe this in our simulation study below. We do not consider one-sided Wald tests

as a benchmark here, although they may be constructed using the methods of Wolak (1989).

4 Simulation studies

In this section we evaluate the finite-sample performance of our proposed tests in the three

applications described in Section 2. In Sections 4.1–4.3 below we describe the simulation designs

for each of these applications, and in Section 4.4 we present the results.

4.1 Comparisons based on expected utility

We consider the difference in expected utility of two commonly-used portfolio management

strategies: the equal-weighted portfolio and the minimum-variance portfolio. For an in-depth

analysis of these and other portfolio strategies see DeMiguel et al. (2007). These strategies can
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be defined in terms of portfolio weight vectors:

weq
t�1 �

1

N
ι,

wmv
t�1 �

1

ι�Σ�1
t�1ι

Σ�1
t�1ι,

(29)

where Yt�1 is an �N � 1� vector of monthly excess returns with conditional covariance matrix

Σt�1, and ι is an �N � 1� vector of ones. Denote the portfolio returns as Y eq
t�1 � weq

t�1
�

Yt�1, and

Y mv
t�1 � wmv

t�1
�Yt�1. The feasible counterpart of wmv

t�1 depends on an estimate of Σt�1. In our

simulation study we consider a simple rolling window estimate of the covariance matrix based

on the most recent 120 observations, corresponding to 10 years of monthly returns data.

We test whether the equal weighted and minimum-variance portfolio returns have equivalent

expected utility across a range of levels of risk aversion. We model utility using the exponential

utility function u�y;γ� � �exp��γy�~γ. A wide range of values of the risk aversion parameter

have been reported in the literature, ranging from near zero to as high as 60, see Bliss and Pani-

girtzoglou (2004). These authors estimate this parameter as being between 2.98 to 10.56, while

DeMiguel et al. (2007) perform comparisons for investors with risk aversion ranging between 1

and 10. Based on this, we test for equal expected utility over Γ � �1,10�. We draw uniformly

over this range when implementing the ave-test.

We simulate excess returns Yt�1 according to a one-factor model, based on the DGP in the

simulation study of DeMiguel et al. (2007). Let Yt�1 � �Y f
t�1, Y1,t�1, . . . , YN�1,t�1��, where Y f

t�1

denotes the excess return on the factor portfolio and Yi,t�1 denotes the N � 1 excess returns,

generated as:

Yi,t�1 � αi � βiY
f
t�1 � ηi,t�1,

νi,t�1 � iidN �0, σ2
η,i�,

Y f
t�1 � iidN �µf , σ2

f�.
(30)

We follow the parameterization of DeMiguel et al. (2007), which resembles estimates that

are commonly found in empirical studies. We set αi � 0, and βi � 0.5 � �i � 1�~�N � 1�, for all

i � 1, . . . ,N � 1. Moreover, we set µf � 8%, and σf � 16%. Finally, we let the idiosyncratic

volatilities vary between 10% and 30%. However, unlike DeMiguel et al. (2007), who draw

from the uniform distribution on �10%,30%�, we opt for deterministic cross-sectional variation

between 10% and 30% by setting ση,i � 10%�20% � sin �π�i � 1�~�N � 1��. We do so to facilitate
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the approximation of E�Lt�1�γ��, which is required in the size experiment.

Given the portfolio strategies we consider, it is not generally possible to find a parameter-

ization that implies E�Lt�1�γ�� � 0 for all γ > Γ. In the size experiment we therefore test the

null hypothesis E�Lt�1�γ�� � ζm�γ� instead of zero, where ζm�γ� x 0 is the population value of

E�Lt�1�γ��, which we estimate using 100,000 simulations. The power experiment tests the null

hypothesis E�Lt�1�γ�� � 0 for all γ > Γ.

4.2 Forecast comparison via tail quantile forecasts of portfolio returns

We next study a scenario comparing quantile forecasts of portfolio returns implied by multivari-

ate forecasting models. We simulate returns data using a GARCH-DCC model (Engle, 2002)

with normal errors, parameterized to resemble the properties of daily asset returns.

We compare two widely-used models: (i) a GARCH-DCC model with normal errors, and

(ii) a multivariate normal distribution with the RiskMetrics covariance estimator (Riskmetrics,

1996). We let the N � 1 return vector Yt�1 follow a GARCH-DCC process

Yt�1 � µt�1 �H
1~2
t�1C

1~2
t�1νt�1,

νt�1 � �νt�1,1, . . . , νt�1,N�� � iidN�0, I�,
Ht�1 � diag �ht�1,1, . . . , ht�1,N� ,
ht�1,i � ω0 � ω1ht,i � ω2ht,iν

2
t,i,

Ct�1 � diag �C̃t�1��1~2
C̃t�1diag �C̃t�1��1~2

,

C̃t�1 � �1 � ξ1 � ξ2�C̄ � ξ1C̃t � ξ2νtν
�

t,

C̄ � �C̄�ij , where �C̄�ij � 1 �
Si � jS
N

.

(31)

We choose GARCH parameters ω0 � 0.05, ω1 � 0.10, ω2 � 0.85 and DCC parameters ξ1 �

0.025, ξ2 � 0.95, to match time-varying volatility and correlation patterns commonly found in

daily equity returns. We set µt�1 � 0 for simplicity. To fix the value of C̄ we use the covariance

matrix generated by a Bartlett kernel with bandwith set to N . This specification generates a

diverse set of correlations, and ensures positive definiteness of C̄.

We are interested in one-period-ahead α-quantile forecasts for portfolio returns Ỹt�1�γ� �
γ�Yt�1, with α � 5%, for a range of portfolio weights γ > Γ. The first forecast we consider is the
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optimal forecast, based on the GARCH-DCC model above. This forecast is given by

Q
�1�
t�1,α�γ� � Φ�1�α� � γ�H1~2

t�1Ct�1H
1~2
t�1γ, (32)

where Φ�1�α� denotes the α-quantile of the standard normal distribution.

The RiskMetrics forecast is

Q
�2�
t�1,α�γ� � Φ�1�α� � γ�Σ̂t�1γ, (33)

where Σ̂t�1 � cλ,m
m

Q
j�0

λj �Yt�j�1 � µ̂t� �Yt�j�1 � µ̂t�� (34)

where µ̂t �
1
m Pmj�1 Yt�j�1 and cλ,m is a constant that normalizes the summed weights Pmj�0 λ

j to

one. As is standard for the RiskMetrics approach using daily returns, we set λ � 0.94.

We obtain the scores (losses) S
�i�
t�1�γ� using the tick loss function, which is a consistent loss

function for the quantile, and is defined as

S
�i�
t�1�γ,α� � �1�Ỹ p

t�1�γ� @ Q�i�
t�1,α�γ�� � α��Q�i�

t�1,α�γ� � Ỹ p
t�1�γ��, (35)

and obtain loss differences Lt�1�γ� � S�2�
t�1�γ� � S�1�

t�1�γ�.
We consider all portfolio return vectors with positive weights summing to one, i.e. Γ � �γ �

γi C 0, i � 1, . . . ,N, PNi�1 γi � 1�. Γ is thus the �N � 1�-simplex, and drawing uniformly from Γ is

particularly easy using the Dirichlet distribution of order N with concentration parameters set

to one. See Kotz et al. (2000, Ch. 49) for an elaborate treatment of the Dirichlet distribution.

As in the previous example, to study the finite-sample size of this test we consider the null

hypothesis that E�Lt�1�γ�� � ζm�γ� instead of zero, where ζm�γ� x 0 is the population value of

E�Lt�1�γ��, which we estimate using 100,000 simulations. The power experiment tests the null

hypothesis E�Lt�1�γ�� � 0 for all γ > Γ.

4.3 Forecast comparison via Murphy diagrams of quantile forecasts

Under mild regularity conditions (see, e.g., Gneiting, 2011a) the α-quantile of a random variable

Yt�1 is elicitable using the “generalized piecewise linear” (GPL) class of scoring rules:

S�Yt�1, x;α, g� � �1�Yt�1 @ x� � α��g�x� � g�Yt�1��, (36)
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where g��� is a non-decreasing function. A commonly used member of this family is the tick

loss function, which sets g�z� � z, and which was used in the previous section. In this example

we test for differences in predictive ability of competing α-quantile forecasts across the set of

all consistent scoring rules for α-quantiles, denoted SαGPL, using the mixture representation for

this class of loss functions presented in Ehm et al. (2016):

S�Yt�1, x;α, g� � S ª

�ª

S̃�Yt�1, x;α, γ�dH�γ; g� (37)

where S̃�Yt�1, x;α, γ� � �1�Yt�1 @ x� � α��1�γ @ x� � 1�γ @ Yt�1��, (38)

where H��; g� some non-negative measure.

Consider two forecasts Q
�1�
t�1,α and Q

�2�
t�1,α. We say that Q

�2�
t�1,α dominates Q

�1�
t�1,α if

Et�L�Yt�1,Q
�1�
t�1,α,Q

�2�
t�1,α, α, g�� � Et�S�Yt�1,Q

�2�
t�1,α, α, g� � S�Yt�1,Q

�1�
t�1,α, α, g��

B 0 for all S > S
α
GPL

(39)

Corollary 1 in Ehm et al. (2016) establishes that Q
�2�
t�1,α dominating Q

�1�
t�1,α is implied by

Et�L̃�Yt�1,Q
�1�
t�1,α,Q

�2�
t�1,α, α, γ�� � Et�S̃�Yt�1,Q

�2�
t�1,α, α, γ� � S̃�Yt�1,Q

�1�
t�1,α, α, γ��

B 0 for all γ > R
(40)

We can therefore test for equal predictive ability by testing the above condition. It should be

noted that our theory requires the range of γ, denoted Γ, to be bounded, and so we cannot

test over all γ > R. However, in practice we can make Γ large enough to cover all relevant

parameter values, since S̃�Yt�1,Q
�2�
t�1,α;α, γ� � S̃�Yt�1,Q

�1�
t�1,α;α, γ� is known to be identically

zero for γ ¶ �min�Yt�1,Q
�1�
t�1,α,Q

�2�
t�1,α�,max�Yt�1,Q

�1�
t�1,α,Q

�2�
t�1,α��.

In small samples it can occur that S̃�Yt�1,Q
�2�
t�1,α;α, γ� � S̃�Yt�1,Q

�1�
t�1,α;α, γ� � 0 for all

observations in a given sample, for some values of γ. As a result, σ̂2
n�γ� � 0 for these values

of γ. To circumvent this we fix σ2
n�γ� � 1 for all γ > Γ, i.e. we consider sup- and ave-tests

based on tn�γ� � ºnL̄n�γ� instead of tn�γ� � ºn L̄n�γ�
σ̂n�γ� . The p-values remain valid under the

bootstrap. The HAC covariance estimators used in the calculation of the multivariate Wald

test and the Bonferroni-corrected test suffer from the same singularity. However, inference is no

longer valid for these tests, because the limit law of these test statistics is no longer standard

without studentization.
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We use the same quantile forecast models as in the simulation design in the previous section,

but set N � 1, so that the quantile forecasts defined in equations (32) and (33) are obtained

from a GARCH model instead of a GARCH-DCC model. For additional comparison, we also

consider a rolling window sample quantile estimated over the previous 250 days.

As in the previous examples, to study the finite-sample size of this test we consider the null

hypothesis that E�Lt�1�γ�� � ζm�γ� instead of zero, where ζm�γ� x 0 is the population value of

E�Lt�1�γ��, which we estimate using 100,000 simulations. The power experiment tests the null

hypothesis E�Lt�1�γ�� � 0 for all γ > Γ.

4.4 Simulation results

Table 1 presents rejection rates for the size and power experiments introduced in Section 4.1,

based on 1,000 Monte Carlo simulations. We consider out-of-sample period lengths n � 120

and 600 observations, corresponding to 10 and 50 years of monthly returns data. We consider

increasingly large grids of Γ, with the number of grid points set to Kn � 1,10,50,100, and 250.

We obtain critical values using B � 1,000 bootstrap samples.

From Panels A and B we observe that the (two-sided) sup-t2 and ave-t2 tests are somewhat

oversized for n � 120 out-of-sample observations, and appropriately sized for n � 600. The

one-sided sup-t test is also oversized for n � 120 but approximately correctly sized for n � 600.

Reassuringly, we observe that the sup-t2, ave-t2 and sup-t tests are stable in terms of rejection

rates once Kn is moderately large, indicating robustness to this tuning parameter.

The benchmark tests (based on a Wald test or a Bonferroni correction) perform poorly as

Kn increases, with the Wald test having large size distortions, and the Bonferroni-corrected

test becoming conservative. This sensitivity can be avoided by implementing these tests on just

a single value of γ, though of course in that case the conclusion of the test is sensitive to the

particular choice of γ.

Panels C and D shows rejection rates in the power experiment. We observe the sup- and ave-

test rejection probabilities being stable once the value of Kn is moderately large. In contrast,

but as anticipated, the Bonferroni-adjusted tests have power declining with Kn. The power of

the Wald test in this application also declines with Kn, and we note that this test cannot be

implemented when n � 120 and Kn � 250 as in that case the covariance matrix is singular.

[Table 1 about here.]
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Table 2 presents small sample rejection rates of the size and power experiments introduced

in Section 4.2, for portfolios composed of 30 assets. Results are presented for sample sizes of

n � 500 and 2,000 observations, corresponding approximately to two and eight years of daily

asset returns, and six sets of weight vectors, which are drawn as follows. We first consider a set

of 31 deterministic weight vectors: the equal weighted portfolio weights and the 30 basis vectors.

Subsequently we randomly draw Sn � 31 weight vectors from J , for Sn � 50,100,250,500 and

1,000. We use B � 1,000 bootstrap samples to obtain critical values.

Panels A and B provide rejection rates in the size experiment. We observe that the sup-t2,

ave-t2 and sup-t tests have reasonable size properties, although the tests are slightly conservative

for n �2,000 (rejection rates between 1-2%). The same holds for the Bonferroni-corrected tests

at all Sn. The benchmark Wald test is oversized for all Sn at n � 500, and for all Sn larger

than 31 at n � 2,000, illustrating the problems with this test as Sn grows. As in the previous

example, the rejection rates of the sup-t2, ave-t2 and sup-t tests are stable across Sn.

Panels C and D show rejection rates in the power experiment. As in the previous section, we

observe the sup- and ave-test rejection probabilities being stable across values of Sn. We again

observe the Bonferroni-adjusted tests having decreasing power as Sn increases. The power of

the Wald test in this application increases, driven by its failure to control size as Sn increases.

[Table 2 about here.]

Tables 3 and 4 provide small sample rejection rates of the tests in size and power experiments

introduced in Section 4.3. Table 3 compares GARCH forecasts with RiskMetrics forecasts, and

Table 4 compares GARCH forecasts with rolling window forecasts. The sample sizes considered

are n � 500 and n � 2,000, corresponding approximately to two and eight years of daily returns

data. We consider grids of Γ with Kn � 50,100, and 250 grid points equally spaced over the

interval ��20,0�. We select this interval because outside of it the elementary score differences

are equal to zero in almost all realizations. As we cannot always (across values of γ in the

elementary scores) compute the asymptotic covariance required to obtain the benchmark Wald

and Bonferroni-corrected tests, we do not implement those tests here. Instead, we present the

results of a standard Diebold-Mariano test based on the tick loss function as benchmark. These

are reported in the rows labeled “1”.

Panel A of Tables 3 and 4 provide rejection rates for the size experiments. In Table 3 we

compare the GARCH and RiskMetrics forecasts and we observe that the sup-t2 and ave-t2 tests
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are correctly sized at both out-of-sample period lengths considered (n � 500 and 2,000). The

one-sided sup-t test is slightly conservative at n � 500, but is close to nominal rates for n �

2,000. The benchmark Diebold-Mariano test using the tick loss function, is also approximately

correctly sized. The rejection rates of the sup- and ave-tests are stable across values Kn,

indicating robustness to this tuning parameter. Panel A of Table 4 provides rejection rates for

the size experiment where we compare the GARCH and the rolling window quantile forecasts.

We find that the two-sided Diebold-Mariano test and the ave-t2-test are oversized, whereas the

sup-t2 and sup-t tests have reasonable rejection rates.

Panel B of Table 3 provides rejection rates in the power experiment in which we compare

the GARCH and RiskMetrics forecasts. We observe that this particular alternative is not very

distant from the null, and the ave- and sup-tests have no power at n � 500. At n � 2,000 the

proposed tests have power against the alternative, but the benchmark test is more powerful.

Panel B of Table 4 provides rejection rates in the power experiment comparing the GARCH

and rolling window quantile forecasts. The sup- and ave-tests reject more often, and have power

properties similar to the benchmark Diebold-Mariano test.

[Table 3 about here.]

[Table 4 about here.]

5 Applications to equity return forecast environments

5.1 Comparing the utility of two portfolio strategies

In this section we compare equal weighted and minimum-variance portfolio strategies in terms

of average utility, across a range of levels of risk aversion. We use monthly returns data on 30

U.S. industry portfolios, from September 1926 to December 2017, a total of 1,098 observations.1

The minimum-variance portfolio weights are estimated over a rolling window of m � 120 months.

We use the exponential utility function u�y;γ� � �exp��γy�~γ, with γ > �1,10�, which covers

all risk aversion parameter values considered in DeMiguel et al. (2007).

Table 5 provides p-values for the proposed new tests, as well as the benchmark Wald and

Bonferroni-adjusted tests. The left panel presents results for tests of the null of equal predictive

ability for these two portfolio strategies, and the tests for both one-sided null hypotheses. The

1The returns can be obtained from the data library at http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html
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row labeled Kn � 1 tests the hypothesis of equal predictive ability for one particular value of

risk aversion γ � 2.5, while the remaining rows use Kn � 10,50,100,250 equally-spaced points

in �1,10�. We set B � 1,000.

In Panel A of Table 5 we consider Γ � �1,10�. When Kn � 1, the null of equal predictive

ability is rejected using all tests. We also find that the one-sided test rejects the null of weakly

greater utility from the minimum variance portfolio compared with the equal-weighted portfolio

and fails to reject the opposite null, indicating that the equal-weighted strategy dominates the

minimum variance portfolio for this particular risk aversion. When we increase Kn, and test

the hypothesis of equal average utility over the entirety of Γ, we find that the ave-t2 test fails

to reject the null, while the sup-t2 test continues to reject the null. The one-sided tests reveal

that the equal-weighted portfolio dominates the minimum variance portfolio across all values

for the risk aversion parameter.

Looking at the benchmark tests, the Bonferroni-corrected test fails to reject the null hypoth-

esis for larger values of Kn. This finding is consistent with the conservativeness of this test as

Kn increases documented in the simuation study in the previous section. The Wald test rejects

the null hypothesis for all values of Kn except Kn � 250, but since the simulation exercise shows

the test has severe size distortions, we should not rely on conclusions drawn form the Wald test.

Figure 1 shows the sample mean of expected utility differences and the pointwise 95%

confidence bounds for each γ > �1,10�. We observe that for γ less than about 3, the confidence

interval does not include zero, indicating that for lower levels of risk aversion the equal-weighted

portfolio significantly outperforms the minimum variance portfolio. For higher levels of risk

aversion, the pointwise confidence intervals either contain zero, or lie below zero. Since the sup-

t2 test considers the largest deviation from the zero line, while the ave-t2 considers (weighted)

averages of all deviations, it is intuitive that the ave-t2 test statistic indicates weaker evidence

against the null due to the large subinterval of Γ for which the mean utility differential is

insignificantly different from zero.

Panels B and C of Table 5 show results for Γ � �1,5� and Γ � �5,10�, to examine the

sensitivity of the conclusions of these tests to the range of values of risk aversion considered.

For less risk averse investors, with Γ � �1,5�, we see that the both the ave-t2 and the sup-t2

tests reject the null-hypothesis. If we consider more risk averse investors, with Γ � �5,10�, we

see that the null hypothesis cannot be rejected by either the ave- or the sup-tests. Conclusions

drawn from the Bonferroni-corrected tests do not change much, with this test failing to reject
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the null hypothesis for larger values of Kn. From the one-sided test results we observe that

the equal-weighted strategy dominates the minimum variance strategy over Γ � �1,5�, while we

cannot distinguish between the strategies over Γ � �5,10�.
[Figure 1 about here.]

[Table 5 about here.]

5.2 Quantile forecasts of portfolio returns from multivariate models

In this analysis we compare two multivariate volatility models, a GARCH-DCC model and

the RiskMetrics model, by the quality of their forecasts for the 5% Value-at-Risk (i.e., the 5%

quantile) of the returns on portfolios of the underlying assets. We use daily returns on the

same 30 U.S. industry portfolios as in the previous section, over the period January 1998 to

December 2017, a total of 5,032 observations. The GARCH-DCC model is estimated over a

rolling window of 1,000 observations. We set B � 1,000.

We consider the following sets of portfolios. For Sn � 1 we consider only the equal weighted

portfolio. For Sn � 31 we consider the equal weighted portfolio and all 30 single-asset port-

folios. For Sn A 31, we additionally consider Sn � 31 random weight vectors drawn from the

30-dimensional simplex.

Table 6 presents p-values of the tests of equal or superior predictive ability. We show results

for the full sample, as well as the first and second halves of the sample period. The results

for the full sample show that the models have approximately equal performance, since the null

hypotheses of equal predictive ability cannot be rejected. Similarly, the one-sided superior

predictive tests do not reject either null hypothesis, irrespective of which model is selected as

benchmark. We note that that the sup- and ave-tests generate p-values that are stable for larger

values of Sn, whereas the Bonferroni p-values approach one as Sn increases, consistent with the

conservativeness of this test found in the simulation study. The Wald tests are unreliable for

larger values Sn, as shown in the simulation exercises, and are not reported for Sn A 31.

In Panel B of Table 6 we find evidence against the null of equal predictive accuracy using the

sup-t test, with p-values around 0.04 to 0.06. The one-sided test taking the GARCH-DCC model

as benchmarks generates p-values of 0.02 to 0.04, indicating evidence that the RiskMetrics model

significantly outperforms the GARCH-DCC model for part of the shape parameter space (i.e.,

for some portfolio weight vectors). On the other hand, the one-sided test taking the RiskMetrics
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model as benchmark does not reject the null, indicating that the RiskMetrics model dominates

the GARCH-DCC model in this sub-sample. In the second sub-sample, similar to the full

sample, we cannot reject the hypotheses of equal or superior predictive ability using any test.

Figure 2 plots the sample mean of the tick loss differences and the 95% confidence bounds

for the first 100 portfolio weights that we draw, over the full sample and subsamples, and sorted

on mean tick loss difference. In the first half of the sample we indeed find that the RiskMetrics

forecasts perform better, although for only few portfolio vectors we observe (pointwise) confi-

dence intervals that exclude zero. The sup-tests detect the outperformance of the RiskMetrics

forecasts better than the ave-test as observed in Table 6. In the second half of the sample the

average tick loss differences are generally negative, which is in agreement with the null of weakly

better GARCH-DCC forecasts.

[Figure 2 about here.]

[Table 6 about here.]

5.3 Quantile forecast comparison via Murphy diagrams

Our final empirical analysis compares two forecast models for the 5% quantile (i.e., the 5%

Value-at-Risk) of a single asset. We compare three models: a GARCH(1,1) model (Bollerslev,

1986), the RiskMetrics model, and a simple rolling window sample quantile calculated over

the previous 250 days. We use the same data as the previous sub-section: daily returns on

30 U.S. industry portfolios, over the period January 1998 to December 2017, a total of 5,032

observations. The GARCH model is estimated over a rolling window of 1,000 observations. The

parameter space for the elemetary scoring rule shape parameter (see Section 4.3 for details) is

Γ � ��20,0�, and we consider an increasingly fine grid of equally-spaced points in this space

when implementing the new tests. We set B � 5,000.

We implement the tests for each of the 30 industry portfolio returns separately. In Table 7

we present detailed results for a single representative portfolio (the “Transportation” industry

portfolio), and in Table 8 we present a summary of the results across all 30 industry portfolios.

Panel A of Table 7 compares RiskMetrics and GARCH forecasts. We find that the sup-t2 test

rejects the null of equal predictive accuracy, with p-values between 0.01 and 0.02. The ave-t2 test

has p-values around 0.075, indicating weaker evidence against the null of equal accuracy. The

benchmark Diebold and Mariano (1995) test using the tick loss function fails to reject the null,
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with a p-value of 0.77. The one-sided sup-t tests reject the null of weakly superior GARCH

forecasts with p-values around 0.03, but do not reject in the opposite direction, indicating

that the RiskMetrics forecasts dominate the GARCH forecasts for the Transportation industry

portfolio.

The upper panel of Figure 3 shows the “Murphy diagram” for this comparison, applied to

the Transportation portfolio, and reveals that for most values of the elementary scoring rule

parameter the GARCH and RiskMetrics forecasts have similar average losses. For values of the

parameter around �1 the GARCH forecast significantly outperforms the RiskMetrics forecast,

with the pointwise confidence intervals being far from zero, whereas the RiskMetrics forecast

shows some (pointwise) significant outperformance for values of the parameter around �2. The

results of the tests in Table 7, however, indicate that the RiskMetrics forecasts dominate the

GARCH forecasts overall.

Panel B of Table 7 compares the GARCH forecast with the rolling window sample quantile

forecast. We find p-values for the tests of equal accuracy are zero to two decimal places,

indicating strong evidence against this null. The one-sided tests finds no evidence that the

rolling window sample quantile outperforms the GARCH forecast for any value of elementary

scoring rule parameter, whereas we do find evidence in the opposite direction, indicating that

the GARCH forecast dominates the rolling window forecasts for the Transportation industry

portfolio. The lower panel of Figure 3 shows that the difference in average loss is negative

almost everywhere, consistent with the tests in Table 7, and the pointwise confidence intervals

exclude zero for a large part of the parameter space.

Panel A of Table 8 compares Riskmetrics and GARCH forecasts across 30 industry portfolios

and reports the proportion of portfolios for which we can reject the null at the 5% level. We see

that the two-sided Diebold and Mariano (1995) test using the tick loss rejects the null of equal

predictive accuracy for none of the 30 portfolios, while the ave-t2 and sup-t2 tests reject for

around 23% and 10% of portfolios respectively. The right columns report forecast dominance

outcomes based on the one-sided sup-t tests discussed in Section 3.3. Focusing on the Kn �1,000

row, we see that for 17% of the 30 portfolios either the RiskMetrics model dominates (10%)

or the GARCH model dominates (7%), while for the remaining portfolios we are unable to

statistically distinguish the performance of these two models. Consistent with this, results for

the one-sided Diebold and Mariano (1995) tests using tick loss (not reported in the interests of

space) do not reject for any portfolio in any direction.
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Panel B of Table 8 reveals a clear ordering of the rolling window and GARCH forecasts. The

two-sided tests reject the null of equal accuracy for all 30 portfolios. The one-sided tests reveal

that the GARCH model provides uniformly superior forecasts to the rolling window model, for

all 30 portfolios. One-sided Diebold and Mariano (1995) tests using the tick loss function lead

to the same conclusion.

[Figure 3 about here.]

[Table 7 about here.]

[Table 8 about here.]

6 Concluding remarks

In many empirical applications, researchers are faced with the problem of comparing forecasts

using a loss function that contains a shape parameter; examples include comparisons using

average utility across a range of values for the level of risk aversion, and comparisons using

characteristics of a portfolio return across a range of values for the portfolio weight vector.

We propose new forecast comparison tests, in the spirit of Diebold and Mariano (1995) and

Giacomini and White (2006), that may be applied in such applications. We consider tests of the

null of equal forecast accuracy across all values of the shape parameter, against the alternative

of unequal forecast accuracy for some value of the shape parameter. We also consider one-sided

tests for superior forecast accuracy. The asymptotic properties of the test statistics are derived

using bootstrap theory for empirical processes, see Bühlmann (1995).

We show via an extensive simulation study that the tests have satisfactory finite-sample

properties, unlike the leading existing alternatives which break down when a large number of

values of the shape parameter is considered. We illustrate the new tests in three empirical

applications: comparing portfolio strategies using average utility across a range of levels of risk

aversion; comparing multivariate volatility models via their Value-at-Risk forecasts for portfolios

of the underlying assets across a range of values for the portfolio weight vector; and comparisons

using recently-proposed “Murphy diagrams” (Ehm et al., 2016) for classes of consistent scoring

rules for quantile forecasting.

26



References

Andrews, D. W. (1992). Generic Uniform Convergence. Econometric Theory, 8(2):241–257.

Andrews, D. W. (1994). Empirical Process Methods in Econometrics. In Engle, R. F. and

McFadden, D. L., editors, Handbook of Econometrics, Volume 4, pages 2247–2294. Elsevier.

Bliss, R. R. and Panigirtzoglou, N. (2004). Option-Implied Risk Aversion Estimates. Journal

of Finance, 59(1):407–446.

Boussama, F., Fuchs, F., and Stelzer, R. (2011). Stationarity and Geometric Ergodic-

ity of BEKK Multivariate GARCH Models. Stochastic Processes and their Applications,

121(10):2331–2360.

Bradley, R. C. et al. (2005). Basic Properties of Strong Mixing Conditions. A Survey and Some

Open Questions. Probability Surveys, 2:107–144.
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A Mathematical appendix

A.1 Proof of Theorem 1

Finite dimensional convergence of
º
nL̄n��� follows from a CLT for (centered) stationary mixing

sequences (e.g. Theorem 4 in Doukhan et al. (1994)), and the Crámer-Wold device (Proposition

5.1 in White (2001)), under Assumptions 1, 2, and 4. The mixing condition of Theorem 4 in

Doukhan et al. (1994)) is satisfied if limT�ªPTt�1 t
1~�r�1�α�t� @ ª. It is easy to see that this

holds for α�t� � O�t�A�, with A A r~�r�1�. Notice that β-mixing implies α-mixing, with relation

α�t� B 1
2β�t� between β-mixing and α-mixing coefficients (see, e.g., Doukhan et al. (1995, p.

397)). But under Assumption 1 β�t� diminishes at a faster, geometric rate, such that the mixing

condition is satisfied.

We apply Theorem 1 of Doukhan et al. (1995) to establish stochastic equicontinuity ofº
nL̄n���. First, notice from Application 1 in Doukhan et al. (1995) that the mixing condition

is satisfied if limT�ªPTt�1 t
1~�r�1�β�t� @ ª, which was established in the preceding. Second,

notice that under Assumption 2, the Lt�1��� belong to L2r, where L2r denotes the class of

functions satisfying YfY2r @ª. From Application 1 in Doukhan et al. (1995) we then find that

the entropy condition is satisfied if R 1
0

»
H���δ,Γ, Y � Y2r�du @ª, where H���δ,Γ, Y �Y2r� is defined

as the natural logarithm of the L2r bracketing numbers N���δ,Γ, Y � Y2r�.
We can always choose N points in Γ, denoted γk, for k � 1, . . . ,N , and collected in ΓN , such

that for each γ > Γ, mink Sγ � γkS @ GN�1~d, because Γ is a bounded subset of Rd.

Assumption 3 implies that YLt�1�γ� � Lt�1�γ��Y2r B YLt�1�γ� � Lt�1�γ��Y4r B B̄Sγ � γ�Sλ, for

all γ, γ� > Γ.

Setting N�δ� � δ�d~γGdB�d~λ, we therefore find that for all γ > Γ there exists a γk > ΓN such

that YLt�1�γ� �Lt�1�γk�Y2r B BSγ � γkSλ B BGλN�λ~d � δ. Hence, N�δ� � δ�d~λGdB̄�d~λ satisfies

the definition of the L2r-bracketing numbers. Moreover, the entropy condition R 1
0 H���δ,Γ, Y �

Y2r�du � R 1
0 log�Bd~λGdδ�d~λ�dδ � d log�B1~λG��R 1

0 δ
�d~λdδ � d log�B1~λG�� 1

2

»
πd~λ @ª holds.

It follows from Theorem 1 in Doukhan et al. (1995) that
º
nL̄n��� is stochastically equicon-

tinuous. Together with finite dimensional convergence this implies
º
nL̄n���� Z���, with Z���

a Gaussian process with covariance kernel Σ��, ��.
Note that σ2

n��� a.s
Ð� σ2��� uniformly over Γ under Assumption 4. That v�tn� d

Ð� v�tn� follows

by application of the Continuous Mapping Theorem.
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A.2 Proof of Theorem 2

The result under H0 follows from Theorem 1 and the distribution function of v�t̃� being abso-

lutely continuous on �0,ª�. The absolute continuity of the distribution function of v�t̃� follows

from Z��� having a nondegenerate covariance kernel, and thus t̃��� having nondegenerate covari-

ance kernel under Assumption 4, and the particular functional forms of v��� under consideration

(see Theorem 11.1 of Davydov et al. (1998)).

The result under H1 is established as follows. Under the assumptions of Theorem 1 it

follows that L̄n�γ� a.s
Ð� E �Lt�1�γ�� � ∆�γ�, uniformly over Γ. Now notice that, for any γ > Γ,

TE�Lt�1�γ���T � TE�Lt�1�γ�� �Lt�1�γ��T B TE�Lt�1�γ��T by the Triangle Inequality. Furthermore,

from Jensen’s Inequality, Hölder’s Inequality and under Assumption 3, it follows that

TE�Lt�1�γ�� �Lt�1�γ��T B E�TLt�1�γ�� �Lt�1�γ�T�
B ZLt�1�γ�� �Lt�1�γ�Z4r

B BSγ � γ�Sλ.

Hence, if Γ� � �γ � Sγ � γ�Sλ @ ∆~B� has positive J-measure, there exists a ∆� A 0 such that

SE �Lt�1�γ�� S � S∆�γ�S C ∆�, for all γ > Γ�. It follows that SL̄n�γ�S A ∆�, a.s., uniformly over Γ�.

Additionally, under Assumption 4 it follows that σ̂2
n�γ� a.s.

ÐÐ� σ2
m�γ� uniformly over γ > Γ,

and infγ>Γ σ
2�γ� A 0, such that there exists a ∆

��

A 0 so that n�1~2Stn�γ�S a.s.ÐÐ� n�1~2 SL̄n�γ�S
σ�γ� A ∆

��

,

a.s., uniformly over Γ�. By application of the Continuous Mapping Theorem it follows that,

a.s., n�1v�t2n� A 0. Hence, P �v�t2n� A c�� 1, for any constant c > R.

A.3 Proof of Theorem 3

That
º
nL̄�n���� Z��� almost surely follows from Theorem 1 in Bühlmann (1995). Assumption

A1, A2, and A3 in Bühlmann (1995) are satisfied under Assumptions 1, 2, and 5 respectively.

Finally, Assumption A4 in that paper is established in the proof of Theorem 1, since N�δ�
satisfies the definition of the L4r bracketing numbers, and N�δ� � δ�d~λGdB̄�d~λ, for all δ A 0.

Note that σ2
n��� a.s

Ð� σ2��� uniformly over Γ under Assumption 4, such that t�n��� � t̃���
almost surely under the Continuous Mapping Theorem.

That v�t�n� d
Ð� v�tn� in probability follows by application of a Continuous Mapping Theorem

for bootstrapped processes (see Theorem 10.8 in Kosorok (2008)), given that the bootstrap

is consistent in probability, which is implied by
º
nL̄�n��� � Z��� almost surely. The result

follows.
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A.4 Proof of Proposition 1

We show the result for ave t2n. The result for the other tests follows from similar steps. Part 1:

The weak convergence of t2n as established in Theorem 1 and the Continuous Mapping Theorem,

implies stochastic equicontinuity (see, e.g., Proposition 1 in Andrews (1994)), i.e., for all ε A 0,

lim
δ�0

lim sup
n�ª

P
�
� sup
Sγ�γ�S@δ

Tt2n�γ� � t2n�γ��T A ε�� � 0,

where we again use the Euclidean metric to metrize Γ.

From absolute continuity of J it follows that that RΓ dJ�γ� � PKn
i�1 RΓi

n
dJ�γ�. Hence,

WS
Γ
t2n�γ�dJ�γ� � Kn

Q
i�1

t2n�γn,i�S
Γi
n

dJ�γ�W B Kn

Q
i�1
S

Γi
n

Tt2n�γ� � t2n�γn,i�TdJ�γ�
B

Kn

Q
i�1

sup
γ>Γi

n

Tt2n�γ� � t2n�γn,i�TS
Γi
n

dJ�γ�
B sup

Sγ�γ�S@δn

Tt2n�γ� � t2n�γn,i�TKn

Q
i�1
S

Γi
n

dJ�γ�
� sup

Sγ�γ�S@δn

Tt2n�γ� � t2n�γn,i�T ,

For any ε A 0 there exists a δ A 0 (with δn @ δ eventually), such that

lim sup
n�ª

P �WS
Γ
t2n�γ�dJ�γ� � Kn

Q
i�1

t2n�γn,i�S
Γi
n

dJ�γ�W A ε�� B lim sup
n�ª

P
�
� sup
Sγ�γ�S@δn

Tt2n�γ� � t2n�γn,i�T A ε��
B lim sup

n�ª
P
�
� sup
Sγ�γ�S@δ

Tt2n�γ� � t2n�γn,i�T A ε��
@ ε,

where the last display follows from the stochastic equicontinuity of t2n�γ�. Because δ is arbitrary,

the result follows.

Part 2: We cover Γ with some hyperrectangle Γ̄, which we can do because Γ is a bounded

subset of Euclidian space. Consider the d-dimensional hyperrectangular grid of Γ̄ with K̄n

elements �Γ̄in�K̄n
i�1 , such that supγ,γ�

>Γ̄i
n
Sγ � γ�S @ δn, for all i � 1, . . . , K̄n.

Now let �Γni �Kn
i�1 be the Kn elements of �Γ̄in�K̄n

i�1 , such that Γni 9 Γ is nonempty, and choose

the γn,i such that γn,i > Γ.
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We can expand

Ëave t2n �
Æave t2n �

1

Sn

Sn

Q
j�1

t2n�γ�j�� � Kn

Q
i�1

t2n�γn,i�S
Γi
n

dJ�γ�
�

Kn

Q
i�1

t2n�γn,i�
¢̈̈¦̈̈¤

1

Sn

Sn

Q
j�1

1 �γ�j�
> Γni � � S

Γi
n

dJ�γ�£̈̈§̈̈¥
�

Kn

Q
i�1

1

Sn

Sn

Q
j�1

�t2n�γ�j�� � t2n�γn,i��1 �γ�j�
> Γni �

� An �Bn.

Notice that

SAnS B sup
γ>Γ

t2n�γ� � Kn

Q
i�1

U 1

Sn

Sn

Q
j�1

1�γ�j�
> Γni � � S

Γi
n

dJ�γ�U
BKn sup

γ>Γ
t2n�γ� sup

Γ�
`Γ
U 1

Sn

Sn

Q
j�1

1�γ�j�
> Γ�� � S

Γ�

dJ�γ�U
�KnOp�1�Cn,

where the last line follows from Theorem 1.

Furthermore, we can show that S
1~2�η
n Cn � op�1�, for any η > �0,1~2�, where the probability

statement now holds under the J-measure, by a CLT for iid empirical processes. Notice that

due to the hyperrectangular shape of the Γni , we have for each Γni ` Γ̄

1 �γ > Γni � � d

M
i�1

1 �γi B�γni �
d

M
i�1

�1 � 1�γi B γni ��, (41)

with γ̄ni denotes the maximum of the ith coordinate of all points in Γni , and with γn
i

denoting

the mininum.

Indicator functions such as the factors in (41) are type I(b) functions in the definition of

Andrews (1994), and by Theorem 3 in Andrews (1994) so is the product (41). A functional

CLT follows from Theorem 1 and 2 in Andrews (1994)), and by application of the Continu-

ous Mapping Theorem we find supΓ�
`Γ̄T 1

Sn
PSn
j�1 1 �γ�j� > Γ�� � RΓ� dJ�γ�T � Op�S�1~2

n �. Hence,

S
1~2�η
n Cn � Op�1�.
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Furthermore, notice that

SBnS B 1

Sn

Sn

Q
j�1

Kn

Q
i�1

Ut2n�γ�j�� � t2n�γn,i�U1 �γ�j�
> Γni �

B 2d
1

Sn

Sn

Q
j�1

sup
Sγ�j��γ�S@δn

Ut2n�γ�j�� � t2n�γ��U
B 2d sup

Sγ�γ�S@δn

Tt2n�γ� � t2n�γ��T � op�1�,

by the stochastic equicontinuity of t2n�γ� and where 2d equals the maximum number of vertices

shared amongst hyperrectangles in a hyperrectangular grid.

If we can choose Kn � o�S�1~2�η
n � then SAnS � Op�1�KnCn � Op�1�op�1� � op�1�. Hence,

SËave t2n �
Æave t2nS � op�1�. But we are free to choose the rate at which Kn �ª as n �ª, so the

result follows.
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Table 1: Small sample rejection rates of equal expected utility tests on equal weighted and
minimum-variance portfolio strategies

Two-sided tests One-sided tests

Kn Wald Bonferroni ave-t2 sup-t2 Bonferroni sup-t

Panel A: Size properties, n=120

n � 120

1 0.14 0.14 0.13 0.13 0.17 0.19

10 0.58 0.06 0.09 0.12 0.07 0.15

50 0.50 0.04 0.08 0.14 0.04 0.16

100 0.50 0.04 0.09 0.14 0.05 0.18

250 - 0.03 0.09 0.13 0.04 0.17

Panel B: Size properties, n=600

1 0.06 0.06 0.06 0.06 0.07 0.08

10 0.48 0.02 0.04 0.06 0.02 0.07

50 0.50 0.01 0.06 0.07 0.01 0.10

100 0.50 0.01 0.06 0.08 0.01 0.10

250 0.51 0.00 0.05 0.07 0.01 0.08

Panel C: Power properties, n=120

1 0.12 0.12 0.12 0.12 0.01 0.01

10 0.98 0.81 0.47 0.94 0.86 0.96

50 0.53 0.65 0.41 0.92 0.70 0.96

100 0.29 0.61 0.40 0.93 0.67 0.96

250 - 0.51 0.40 0.94 0.57 0.95

Panel D: Power properties, n=600

1 0.76 0.76 0.77 0.77 0.00 0.00

10 0.99 1.00 1.00 1.00 1.00 1.00

50 0.80 1.00 1.00 1.00 1.00 1.00

100 0.67 1.00 1.00 1.00 1.00 1.00

250 0.51 1.00 1.00 1.00 1.00 1.00

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and sup-
t2) and one-sided test (sup-t), as well as the benchmark tests (Wald and Bonferroni). The
data is generated according to equation (30), and the equal-weighed and minimum-variance
portfolio strategies are given in Equation (29). The minimum-variance portfolio weights
are estimated using a rolling window of m � 120 observations. The out-of-sample period
consists of n � 120, and 600 observations. We consider discrete grids of Γ � �1,10� formed
using Kn � 1,10,50,100, and 250 equally spaced grid points. Results for the multivariate
Wald test for �Kn, n� � �250,120� are not shown due to the singularity of the covariance
matrix.
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Table 2: Small sample rejection rates of quantile forecast tests, for differences between multi-
variate GARCH-DCC and RiskMetrics models

Two-sided tests One-sided tests

Sn Wald Bonferroni ave-t2 sup-t2 Bonferroni sup-t

Panel A: Size properties, n=500

31 0.36 0.03 0.03 0.05 0.01 0.01

50 0.93 0.03 0.03 0.04 0.01 0.01

100 1.00 0.02 0.03 0.04 0.00 0.01

250 1.00 0.01 0.03 0.04 0.00 0.01

500 - 0.01 0.03 0.04 0.00 0.01

1000 - 0.01 0.03 0.05 0.00 0.01

Panel B: Size properties, n=2,000

31 0.03 0.01 0.01 0.02 0.01 0.01

50 0.13 0.01 0.02 0.01 0.00 0.01

100 0.81 0.00 0.01 0.01 0.00 0.01

250 1.00 0.00 0.02 0.01 0.00 0.01

500 1.00 0.00 0.02 0.01 0.00 0.01

1000 1.00 0.00 0.02 0.01 0.00 0.01

Panel C: Power properties, n=500

31 0.42 0.10 0.20 0.11 0.16 0.15

50 0.91 0.07 0.16 0.10 0.11 0.14

100 1.00 0.05 0.13 0.10 0.07 0.14

250 1.00 0.03 0.11 0.10 0.04 0.14

500 - 0.02 0.12 0.10 0.03 0.14

1000 - 0.01 0.11 0.10 0.02 0.13

Panel D: Power properties, n=2,000

31 0.33 0.50 0.81 0.52 0.62 0.65

50 0.38 0.42 0.66 0.52 0.55 0.64

100 0.82 0.30 0.52 0.50 0.43 0.63

250 1.00 0.20 0.46 0.50 0.28 0.64

500 1.00 0.14 0.46 0.51 0.21 0.64

1000 1.00 0.09 0.43 0.49 0.15 0.64

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and
sup-t2) and one-sided test (sup-t), as well as the benchmark tests (Wald and Bonferroni).
The quantile forecasts for the portfolio returns from the GARCH-DCC and multivariate
RiskMetrics models are defined in equations (32) and (33). The data is generated as in
equation (31) with N � 30. We test at 31 fixed portfolio weight vector being the equal
weighted portfolio vector and the 30 basis vectors, as well as Sn � 31 weight vectors drawn
uniformly from the unit simplex. 36



Table 3: Small sample rejection rates of Murphy diagram tests, for quantile forecast differences
between GARCH and RiskMetrics models

Two-sided tests One-sided tests

Kn tick loss ave-t2 sup-t2 tick loss sup-t

Panel A: Size properties, n = 500

1 0.07 - - 0.04 -

50 - 0.04 0.04 - 0.03

100 - 0.03 0.03 - 0.02

250 - 0.02 0.02 - 0.01

Panel B: Size properties, n = 2,000

1 0.06 - - 0.04 -

50 - 0.04 0.05 - 0.03

100 - 0.05 0.05 - 0.04

250 - 0.04 0.04 - 0.04

Panel C: Power properties, n = 500

1 0.11 - - 0.19 -

50 - 0.04 0.04 - 0.06

100 - 0.04 0.04 - 0.06

250 - 0.03 0.03 - 0.04

Panel D: Power properties, n = 2,000

1 0.37 - - 0.49 -

50 - 0.10 0.08 - 0.14

100 - 0.10 0.08 - 0.13

250 - 0.12 0.10 - 0.15

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and
sup-t2) and one-sided test (sup-t), as well as the benchmark tests (Diebold-Mariano using
the tick loss function). The quantile forecasts from the GARCH and RiskMetrics models
are given in equations (32) and (33), with N � 1. We consider out-of-sample period lengths
n � 500, and 2,000, and discrete grids of Γ � ��20,0� with Kn � 50,100, and 250 equally
spaced grid points. The tick loss based tests use only a single loss function, and are reported
in the rows labeled Kn � 1.
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Table 4: Small sample rejection rates of Murphy diagram tests, for quantile forecast differences
between GARCH and rolling window models

Two-sided tests One-sided tests

Kn tick loss ave-t2 sup-t2 tick loss sup-t

Panel A: Size properties, n = 500

1 0.21 - - 0.05

50 - 0.14 0.12 - 0.07

100 - 0.14 0.10 - 0.09

250 - 0.15 0.09 - 0.08

Panel B: Size properties, n = 2,000

1 0.16 - - 0.06 -

50 - 0.11 0.08 - 0.05

100 - 0.13 0.09 - 0.08

250 - 0.14 0.07 - 0.06

Panel C: Power properties, n = 500

1 0.32 - - 0.45 -

50 - 0.26 0.27 - 0.36

100 - 0.33 0.30 - 0.39

250 - 0.30 0.27 - 0.36

Panel D: Power properties, n = 2,000

1 0.90 - - 0.95 -

50 - 0.76 0.72 - 0.81

100 - 0.85 0.77 - 0.85

250 - 0.89 0.82 - 0.88

Note: This table presents the rejection rates of the proposed two-sided tests (ave-t2 and
sup-t2) and one-sided test (sup-t), as well as the benchmark tests (Diebold-Mariano using
the tick loss function). The quantile forecasts from the GARCH model in equation (32) with
N � 1, and a rolling window forecast with window length 250. We consider out-of-sample
period lengths n � 500, and 2,000, and discrete grids of Γ � ��20,0� with Kn � 50,100, and
250 equally spaced grid points. The tick loss based tests use only a single loss function, and
are reported in the rows labeled Kn � 1.
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Table 5: p-values from tests of equal expected utility from equal-weighted and minimum-variance
portfolio strategies

Two-sided tests One-sided tests

H �

1: EW superior H
��

1 : MV superior

Kn Wald Bonf. ave-t2 sup-t2 Bonf. sup-t Bonf. sup-t

Panel A: Risk aversion in the range [1,10]

1 0.03 0.03 0.04 0.04 0.02 0.01 0.97 0.97

10 0.00 0.04 0.13 0.01 0.02 0.00 1.00 0.18

50 0.00 0.22 0.17 0.01 0.11 0.00 1.00 0.20

100 0.00 0.45 0.16 0.01 0.22 0.00 1.00 0.24

250 0.26 1.00 0.16 0.02 0.56 0.01 1.00 0.21

Panel B: Risk aversion in the range [1,5]

1 0.03 0.03 0.04 0.04 0.02 0.02 0.98 0.98

10 0.00 0.04 0.07 0.01 0.02 0.00 1.00 0.86

50 0.00 0.22 0.07 0.01 0.11 0.00 1.00 0.85

100 0.00 0.45 0.06 0.01 0.22 0.00 1.00 0.83

250 0.00 1.00 0.04 0.01 0.56 0.01 1.00 0.85

Panel C: Risk aversion in the range [5,10]

1 0.87 0.87 0.87 0.87 0.56 0.57 0.44 0.43

10 0.00 1.00 0.53 0.38 1.00 0.22 1.00 0.19

50 0.00 1.00 0.53 0.36 1.00 0.17 1.00 0.22

100 0.00 1.00 0.62 0.41 1.00 0.22 1.00 0.17

250 0.02 1.00 0.58 0.38 1.00 0.20 1.00 0.20

Note: This table presents p-values from tests for equal (two-sided) and superior (one-sided)
predictive accuracy. The equal-weighted and minimum-variance portfolio strategies are given
in equation (29). The data consists of monthly returns of 30 industry portfolios and runs
from September 1926 to December 2017. The three panels consider three ranges of values
for the risk aversion parameter. Kn indicates the number of (equally-spaced) grid points.
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Table 6: p-values of quantile forecast tests, for differences between multivariate GARCH-DCC
and RiskMetrics models

Two-sided tests One-sided tests

H �

1: RM superior H
��

1 : DCC superior

Sn Wald Bonf. ave-t2 sup-t2 Bonf. sup-t Bonf. sup-t

Panel A: Full sample

1 0.78 0.78 0.79 0.79 0.39 0.39 0.61 0.56

31 0.99 1.00 0.99 0.95 1.00 0.62 1.00 0.93

100 - 1.00 0.94 0.95 1.00 0.64 1.00 0.93

250 - 1.00 0.81 0.93 1.00 0.59 1.00 0.93

500 - 1.00 0.79 0.90 1.00 0.54 1.00 0.92

1000 - 1.00 0.74 0.90 1.00 0.58 1.00 0.93

Panel B: First sub-sample

1 0.30 0.30 0.30 0.30 0.15 0.15 0.85 0.85

31 0.01 0.05 0.04 0.04 0.02 0.02 1.00 0.99

100 - 0.16 0.22 0.05 0.08 0.03 1.00 1.00

250 - 0.40 0.23 0.05 0.20 0.03 1.00 1.00

500 - 0.80 0.24 0.06 0.40 0.04 1.00 1.00

1000 - 1.00 0.23 0.05 0.80 0.03 1.00 0.99

Panel C: Second sub-sample

1 0.32 0.32 0.34 0.34 0.84 0.85 0.16 0.11

31 0.33 0.35 0.22 0.17 1.00 0.87 0.17 0.08

100 - 1.00 0.28 0.16 1.00 0.90 0.56 0.09

250 - 1.00 0.28 0.18 1.00 0.91 1.00 0.09

500 - 1.00 0.30 0.18 1.00 0.90 1.00 0.09

1000 - 1.00 0.30 0.17 1.00 0.91 1.00 0.11

This table presents p-values from tests for equal (two-sided) and superior (one-sided) predic-
tive accuracy. The quantile forecasts for the portfolio returns from the GARCH-DCC and
multivariate RiskMetrics models are defined in equations (32) and (33). The data consists of
twenty years of daily returns of 30 industry portfolios and runs from January 1998 to Decem-
ber 2017. We consider Sn portfolio weight vectors. When Sn � 1 we use equal weights. For
Sn C 31 we test at 31 fixed portfolio weight vectors (the equal-weighted portfolio vector and
the 30 basis vectors) and Sn � 31 weight vectors drawn uniformly from the 30-dimensional
unit simplex.
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Table 7: Quantile forecast comparison tests for the Transportation industry portfolio

Two-sided tests One-sided tests

H �

1: Comp. superior H
��

1 : GARCH superior

Kn tick loss ave-t2 sup-t2 tick loss sup-t tick loss sup-t

Panel A: RiskMetrics vs. GARCH

1 0.77 - - 0.38 - 0.62 -

50 - 0.00 0.03 - 0.01 - 0.06

100 - 0.01 0.08 - 0.04 - 0.21

250 - 0.02 0.10 - 0.05 - 0.25

500 - 0.01 0.06 - 0.03 - 0.24

1000 - 0.01 0.07 - 0.04 - 0.24

Panel B: Rolling window vs. GARCH

1 0.00 - - 1.00 - 0.00 -

50 - 0.00 0.00 - 0.96 - 0.00

100 - 0.00 0.00 - 0.98 - 0.00

250 - 0.00 0.00 - 0.99 - 0.00

500 - 0.00 0.00 - 0.98 - 0.00

1000 - 0.00 0.00 - 0.99 - 0.00

Note: This table presents p-values from tests comparing the predictive accuracy of forecasts
of the 5% quantile for daily returns obtained from GARCH, RiskMetrics and rolling window
models. We consider one-sided and two-sided tests based on the elementary scoring rules
for the quantile, as well as benchmark tests using the tick loss function, applied to daily
returns on the Transportation industry portfolio. We consider equally-spaced discrete grids
of Γ � ��20,0� with Kn grid points. The tick loss based tests use only a single loss function,
and are reported in the rows labeled Kn � 1. The model referred to in the panel labeled
“Comp. superior” is RiskMetrics in Panel A and rolling window in Panel B.
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Table 8: Quantile forecast comparison test results across all 30 industry portfolios.

Two-sided tests Forecast dominance outcomes

(1) (2) (3) (4)

Comp. GARCH No No

Kn tick loss ave-t2 sup-t2 dominates dominates rejections ordering

Panel A: RiskMetrics vs. GARCH

1 0.00 - - - - - -

50 - 0.07 0.07 0.17 0.00 0.83 0.00

100 - 0.23 0.17 0.23 0.10 0.67 0.00

250 - 0.20 0.07 0.10 0.03 0.83 0.03

500 - 0.27 0.10 0.10 0.07 0.80 0.03

1000 - 0.23 0.10 0.10 0.07 0.83 0.00

Panel B: Rolling window vs. GARCH

1 1.00 - - - - - -

50 - 1.00 1.00 0.00 1.00 0.00 0.00

100 - 1.00 1.00 0.00 1.00 0.00 0.00

250 - 1.00 1.00 0.00 1.00 0.00 0.00

500 - 1.00 1.00 0.00 1.00 0.00 0.00

1000 - 1.00 1.00 0.00 1.00 0.00 0.00

Note: This table presents rejection rates, across 30 industry portfolios, using tests compar-
ing the predictive accuracy of forecasts of the 5% quantile for daily returns obtained from
GARCH, RiskMetrics and rolling window models. We consider one-sided and two-sided tests
based on the elementary scoring rules for the quantile, as well as benchmark tests using the
tick loss function. We consider equally-spaced discrete grids of Γ � ��20,0� with Kn grid
points. The tick loss based tests use only a single loss function, and are reported in the rows
labeled Kn � 1. The forecast dominance results in the final four columns are based on the
decision rule described in Section 3.3. The model referred to in the column labeled “Comp.
dominates” is RiskMetrics in Panel A and rolling window in Panel B.
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Figure 1: Utility differential of equal weighted and minimum-variance portfolio strategies
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Note: This figure plots the the sample mean of utility from the equal-weighted portfolio strategy
minus the sample mean of utility derived from the minimum-variance portfolio strategies. The
strategies are given equation (29). The data consists of monthly returns of 30 industry portfolios
and runs from September 1926 to December 2017. We consider risk aversion, γ, in the range�1,10�.
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Figure 2: Tick-loss differential for tail quantile forecasts generated by the multivariate GARCH-
DCC and RiskMetrics models
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(a) Full sample
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(b) First sub-sample
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(c) Second sub-sample

Note: This figure plots the sample average of the tick loss from the GARCH-DCC forecasts
minus the sample mean tick loss of the RiskMetrics forecasts. The forecasts are defined in
equations (32) and (33). The mean tick loss differences are shown for Sn � 100 portfolio
weight vectors, with 31 of these being the equal weighted portfolio vector and the 30 single-
asset portfolio vectors, and the rest drawn uniformly from the 30-dimensional simplex. The
portfolios are presented sorted on mean tick loss difference. The data consists of daily returns
for 30 Industry portfolios and runs from January 1998 to December 2017.
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Figure 3: Murphy diagrams for quantile forecasts for the Transportation portfolio returns
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(a) GARCH vs. RiskMetrics
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Note: This figure plots the sample mean of the elementary scoring rule of the GARCH forecasts
minus the sample mean of the elementary scoring rule of the RiskMetrics forecasts. The forecasts
are 5% quantile forecasts for daily returns of the US Transportation industry index from January
1998 to December 2017. The elementary scoring rules are indexed by the scalar parameter
γ > ��10,0�.
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