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a b s t r a c t

We rely on newly-developed realized semicorrelations constructed from high-frequency returns
together with hierarchical clustering and cross-validation techniques to identify groups of individual
stocks that share common features. Implementing the new procedures based on intraday data for the
S&P 100 constituents spanning 2019-2020, we uncover distinct changes in the ‘‘optimal’’ groupings of
the stocks coincident with the onset of the COVID-19 pandemic. Many of the clusters estimated with
data post-January 2020 evidence clear differences from conventional industry type classifications. They
also differ from the clusters estimated with standard realized correlations, underscoring the advantages
of ‘‘looking inside’’ the correlation matrix through the lens of the new realized semicorrelations.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The realized volatility concept, and empirical applications
hereof, based on the use of intraday returns for the construc-
ion of more accurate ex-post volatility measurements, easily
anks among the most active areas of research in econometrics
ver the past two decades (the introductory chapter in An-
ersen and Bollerslev, 2018 provides a review). Extending the
asic multivariate realized volatility concept, Bollerslev et al.
2020) (henceforth BLPQ) recently proposed a decomposition of
he realized covariance matrix into separate so-called ‘‘realized
emicovariances’’ based on the signs of the high-frequency re-
urns. In this paper, we show how the corresponding realized
emicorrelations may be used for timely and meaningful cluster-
ng of individual stocks into groups that react similarly to new
nformation.

Our empirical analysis is based on high-frequency intraday
eturns for the S&P 100 constituents spanning January 2019 to
ecember 2020. We rely on hierarchical clustering methods for
rouping each of the stocks into clusters based on the similarities
n their daily realized semicorrelations, together with a novel

✩ We thank Jia Li and George Tauchen and other participants in the Duke
Financial Econometrics workshop for helpful comments.

∗ Correspondence to: Department of Economics, Duke University, 213 Social
ciences Building, Box 90097, Durham, NC 27708-0097, United States.

E-mail address: boller@duke.edu (T. Bollerslev).
ttps://doi.org/10.1016/j.econlet.2021.110245
165-1765/© 2021 Elsevier B.V. All rights reserved.
cross-validation procedure for determining the number of clus-
ters and the single break date that allows for the lowest overall
cluster assignment errors. Our analysis points to January 31, 2020
as the ‘‘optimal’’ break date, coincident with the World Health
Organization (WHO) first declaring the coronavirus outbreak a
health emergency of international concern. Three distinct new
clusters of ‘‘Good Covid’’, ‘‘Bad Covid’’ and ‘‘Very Bad Covid’’ stocks
also emerge at that time, with each of the clusters comprised of
stocks from very different industries.

Our use of clustering methods for categorizing individual
stocks is not new to the literature. Ahn et al. (2009) have pre-
viously relied on clustering methods based on rolling sample
correlations from monthly returns for sorting stocks into portfo-
lios. A series of more recent papers, as exemplified by Patton and
Weller (2021), Lucas et al. (2020), Jensen et al. (2021) and Lums-
daine et al. (2021), also rely on clustering techniques to help
better understand various commonalities in equity returns. To
the best of our knowledge, however, clustering techniques have
not hitherto been used in conjunction with high-frequency-based
realized volatility measures, let alone the realized semicorrelation
measures that we rely on here.

Our paper is also related to the rapidly-growing recent lit-
erature on the economic impact of the COVID-19 pandemic, on
the cross-section of stock returns in particular. This includes
the work by Bretscher et al. (2020) on stock returns and lo-
cal COVID-19 transmission rates, Albuquerque et al. (2020) on
the effect of firms’ ESG ratings, Ding et al. (2021) on corporate

https://doi.org/10.1016/j.econlet.2021.110245
http://www.elsevier.com/locate/ecolet
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mmunity, Papanikolaou and Schmidt (2021) on industry-level
xposures to COVID-19, and Pagano et al. (2021) on compa-
ies’ resilience to social distancing.1 In contrast to all of these
tudies, however, which rely on daily or more coarsely-sampled
eturns together with additional information cleaned from other
ources, we demonstrate how the information inherent in the
igh-frequency-based realized semicorrelation measures may be
ffectively used for assessing changes in the cross-sectional de-
endencies observed as a results of the pandemic.
The rest of the paper is organized as follows. Section 2 formally

efines the realized semicorrelation measures, Section 3 provides
brief overview of the clustering and cross-validation procedures
hat we use in our empirical analyses, Section 4 presents our key
mpirical findings, Section 5 concludes.

. Realized semicorrelations

The traditional realized covariance matrix (e.g., Barndorff-
ielsen and Shephard, 2004), defined by the summation of
quares or cross-products of finely sampled returns within a
ixed time-interval, is effectively ‘‘blind’’ to the sign of the un-
erlying returns. The realized semicovariance measures recently
roposed by BLPQ extend the basic measures to distinguish be-
ween ‘‘good’’ and ‘‘bad’’ covariation by conditioning on the signs
f the high-frequency returns.
Formally, let Xt,i = (X1,t,i, . . . , Xk,t,i)⊤ denote the log-price

vector for all of the k stocks in the sample measured at time i on
day t . For simplicity, assume that prices are observed n times each
day on a regular time grid of width ∆ = 1/(n−1). Denote the ith
return vector on day t by ∆n

i Xt ≡ Xt,i∆n − Xt,(i−1)∆n . Further, let
p (x) ≡ max {x, 0} and n (x) ≡ min {x, 0} denote the component-
wise positive and negative elements of the vector x. The positive,
negative, and mixed realized semicovariance matrices are then
defined as,2

Pt ≡

1/∆n∑
i=1

p
(
∆n

i Xt
)
p
(
∆n

i Xt
)⊤

, N̂t ≡

1/∆n∑
i=1

n
(
∆n

i Xt
)
n
(
∆n

i Xt
)⊤

,

M̂t ≡

1/∆n∑
i=1

(
p
(
∆n

i Xt
)
n
(
∆n

i Xt
)⊤

+ n
(
∆n

i Xt
)
p
(
∆n

i Xt
)⊤

)
.

(1)

Note, the traditional realized covariance matrix is simply ob-
tained as Ĉt ≡ P̂t + N̂t + M̂t . The relative magnitudes of the two
concordant P̂t and N̂t semicovariance matrices and the discordant
M̂t semicovariance matrix are directly related to the strength
of the association between the stocks. In particular, one might
naturally expect the relative importance of P̂t + N̂t versus M̂t
to increase during times of market turmoil and stronger overall
cross-stock linkages. The in-fill asymptotic theory developed in
BLPQ further identifies three distinct channels through which dif-
ferences in P̂t and N̂t can occur, namely common jumps, common
drifts and/or a dynamic leverage effect. It is not our goal to sep-
arately identify these channels. Instead, we seek to demonstrate
how the information in each of these effects, as captured by the
new realized semicovariance measures, can help clarify the way
in which different stocks respond to new information and in turn
solicit groups of stocks that share similar features.

1 In addition to these specific studies, several special journal issues devoted
o the financial impact of COVID-19 have also appeared, including Review of
sset Pricing Studies, Vol. 10, No. 4, 2020, and Review of Financial Studies, Vol.

34, No. 11, 2021.
2 The ‘‘mixed’’ semicovariance matrix is comprised of two components.

However, since the ordering of the individual stocks is arbitrary, it is natural to
sum the two components, as in Eq. (1).
 a

2

To facilitate this clustering, rather than working with the
measures defined in (1), it is more convenient to work with
the scale-invariant realized semicorrelation matrices obtained
by scaling the original measures by the realized volatilities. In
particular, we define the positive realized semicorrelation matrix
as R̂P

t ≡ dg(v̂t )−1
· P̂t · dg(v̂t )−1, where dg(v̂t ) denotes a diagonal

matrix with the square-root of the diagonal elements in Ĉt along
the diagonal. The negative and mixed semicorrelation matrices,
RN
t and R̂M

t , are defined analogously. While R̂P
t and R̂N

t are both
guaranteed to be positive semidefinite, the mixed R̂M

t semico-
variance matrix has diagonal elements identically equal to zero
and so is necessarily indefinite. The use of an indefinite ‘‘feature
matrix’’ presents a problem for some clustering algorithms. How-
ever, the approach discussed next that we adopt here does not
require the feature matrices to possess any special properties.3

3. Hierarchical clustering and cross-validation

The increased availability of ‘‘big data’’ in many areas of eco-
nomics combined with increased computing power have spurred
a rapid growth in the use of machine learning techniques in
economics (see, e.g., the review in Athey and Imbens, 2019). This
includes so-called unsupervised learning procedures designed to
partition a given sample into subsamples, or clusters, comprised
of members that share similar features.

The specific hierarchical clustering algorithm that we rely on
here traces back to Ward (1963). To convey the main intuition, let
Ŝt,i denote the vector of day t realized semicorrelations for stock i
with all of the other stocks in the sample; i.e., the ith rows in the
above-defined R̂P

t , R̂
N
t and R̂M

t matrices. Let the cluster assignment
of stock i be γi ∈ {1, 2, . . . ,G}, where G denotes the number of
clusters and Ng ≡

∑
i 1(γi = g) the number of members in cluster

g . Starting with each stock in a cluster of its own, the algorithm
works by iteratively merging the two closest clusters, with the
distance between clusters g and h defined as,

∆(g, h) ≡

∑
t

∑
i

1(γi ∈ {g, h})

· d

⎛⎝Ŝt,i,
1

Ng + Nh

∑
j

1(γj ∈ {g, h})Ŝt,j

⎞⎠
−

∑
t

⎡⎣∑
i

1(γi = g) · d

⎛⎝Ŝt,i,
1
Ng

∑
j

1(γj = g)Ŝt,j

⎞⎠
+

∑
i

1(γi = h) · d

⎛⎝Ŝt,i,
1
Nh

∑
j

1(γj = h)Ŝt,j

⎞⎠⎤⎦ ,

where d(·, ·) refers to the usual Euclidean distance between two
vectors.

While this provides an unambiguous sequential approach for
grouping the stocks, the algorithm remains silent about the num-
ber of clusters and when to halt the iterations. This is a common
difficulty shared by most clustering procedures. Correspondingly,
in many economic applications the number of clusters is sim-
ply chosen a priori based on some heuristic arguments. Instead,
we rely on a data-driven approach, in which we utilize the
time-series dimension of the data, exploiting the fact that the es-
timation error in realized measures is serially independent across
days. Specifically, splitting the sample into odd and even days,
we generate separate assignments for each of the two samples
(Jegadeesh et al., 2019 employ a similar odd-even months sample

3 More traditional principal components-based procedures and factor
nalysis, of course, also require the input matrices to be positive definite.
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Fig. 1. Intraday returns. The figure shows the intraday (normalized to zero at the beginning of the day) logarithmic prices at five-minute intervals on July 7, 2020
top panels) and December 12, 2019 (bottom panels) for each of the stocks included in the ‘‘Good Covid’’, ‘‘Bad Covid’’ and ‘‘Very Bad Covid’’ clusters. The scales of
he y-axes for a given date are all the same.
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plit in empirical asset pricing). We then use the odd (even)
ays to generate one-day-ahead forecasts for the even (odd) days
ased on the average within-cluster semicorrelations. Concretely,
he forecast for stock i on day t + 1 is Ŝt+1|t,i ≡ N−1

γi

∑
j 1(γj =

i)Ŝt,j. Averaging the resulting prediction errors d(Ŝt+1|t,i, Ŝt+1,i)
over all of the days and stocks in the sample, we determine the
number of clusters that minimizes this overall predictive loss.
This approach amounts to a two-fold cross-validation procedure
with the odd and even days alternating between being in- and
out-of-sample (see, e.g., the review in Arlot and Celisse, 2010).

We further utilize this same idea to search for a possible
break date in the sample. Assuming day t∗ to be a break day,
we estimate separate cluster assignments for the t ≤ t∗ and
t > t∗ samples, relying on the same cross-validation approach
for each of the two periods. Mirroring traditional structural break
procedures (e.g., Chow, 1960 and Bai, 1997), we then determine
the optimal break point as the day t∗ that minimizes the com-
bined pre- and post-break predictive losses (see also the related
discussion in Lumsdaine et al., 2021).

4. Covid clusters of stocks

Our empirical analysis is based on data for the S&P 100 con-
stituents over the period from January 2, 2019 to December
31, 2020, obtained from the New York Stock Exchange’s Trades
and Quotes (TAQ) database.4 The 2019–2020 sample period was
deliberately chosen to study changes in the dependencies around
the onset of the pandemic. To help mitigate the effect of asyn-
chronous trading and market microstructure noise, we follow
common practice in the literature (see, e.g., Liu et al., 2015) and
compute the daily realized measures at a five-minute sampling
frequency. To enhance the efficiency of the five-minute esti-
mates, we follow Zhang et al. (2005) in applying a subsampling
approach, whereby we calculate the realized measures starting
at five different one-minute marks, averaging the resulting five
measures to obtain our final daily realized measures.

4 We rely on the procedures of Barndorff-Nielsen et al. (2009) to clean the
ata. We leave out DowDuPont (DOW), which completed its split into three
eparate companies on June 1, 2019.
 r

3

Our hierarchical clustering procedure based on daily real-
ized semicorrelations together with our odd-even-day cross-
validation technique indicates a structural break in the cluster
assignments on January 31, 2020. Interestingly, this day coin-
cides with the World Health Organization (WHO) first declaring
the coronavirus outbreak a health emergency of international
concern.5 By comparison, applying the same clustering and struc-
tural break approach based on the conventional daily realized
correlations R̂t ≡ R̂P

t + R̂N
t + R̂M

t , the break date for the cluster
ssignments does not occur until March 18, 2020, following the
recipitous decline in the overall market from early February
hrough mid-March 2020.

Looking at the estimated cluster assignments for the pre-Covid
eriod, reported in the top panel of Table 1, along with the cor-
esponding Global Industry Classification Standard (GICS) codes,
he clusters labelled A–D are naturally identified as financials
GIC 40), consumer staples (30), health care (35), and information
echnology (45). The rest of the clusters are somewhat more
ixed. However, each of the clusters are still mostly comprised
f stocks from a few specific sectors, with E containing mostly
ndustrials (20) and information technology stocks (45), F mostly
onsumer discretionary (25) and communication services stocks
50), G primarily energy stocks (10), and H mostly utilities (55).

Turning to the post-Covid clusters, reported in the bottom
anel of Table 1, our cross-validation procedure suggests the need
or one additional cluster to best accommodate the cross-stock
ommonalities in the semicorrelations. Interestingly, even though
he specific clusters labelled A–D for the post-Covid period ob-
iously differ from the similar named pre-Covid clusters, the
ominant sectors for each of the identical named clusters remain
he same. Also, the post-Covid E cluster is mostly comprised of
ndustrials, while the F cluster contains mostly consumer dis-
retionary and information technology stocks. Meanwhile, three
istinct new clusters also emerge: a ‘‘Good Covid’’, ‘‘Bad Covid’’
nd ‘‘Very Bad Covid’’ cluster of stocks. In contrast to clusters A–
, which seem to adhere fairly closely to traditional industry type
lassifications, these three new clusters defy such identification.

5 World Health Organization, ‘‘Novel Coronavirus (2019-nCoV): situation
eport’’, 11, January 31, 2020.
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tock Clusters. The top (bottom) panel reports the cluster assignments of the S&P 100 stocks before (after) the January 31, 2020 break date. GICS sector codes are
iven in parentheses.
Pre-Covid

A B C D E F G H

1 AIG (40) CL (30) ABBV (35) ACN (45) AAPL (45) BA (20) COP (10) AMT (60)
2 BAC (40) KO (30) ABT (35) ADBE (45) ALL (40) BKNG (25) CVS (35) DUK (55)
3 BK (40) MCD (25) AMGN (35) CRM (45) AMZN (25) CHTR (50) CVX (10) EXC (55)
4 BLK (40) MDLZ (30) BIIB (35) MA (45) AXP (40) CMCS (50) DD (15) NEE (55)
5 C (40) MO (30) BMY (35) MSFT (45) BRK (40) COST (30) F (25) SO (55)
6 COF (40) PEP (30) DHR (35) PYPL (45) CAT (20) DIS (50) GM (25) SPG (60)
7 GS (40) PG (30) GILD (35) V (45) CSCO (45) FB (50) KHC (30)
8 JPM (40) PM (30) JNJ (35) EMR (20) GE (20) KMI (10)
9 MET (40) SBUX (25) LLY (35) FDX (20) HD (25) SLB (10)

10 MS (40) T (50) MDT (35) GD (20) LOW (25) WBA (30)
11 USB (40) VZ (50) MRK (35) GOOG (50) NFLX (50) XOM (10)
12 WFC (40) PFE (35) HON (20) QCOM (45)
13 TMO (35) IBM (45) TGT (25)
14 UNH (35) INTC (45) TSLA (25)
15 LMT (20) WMT (30)
16 MMM (20)
17 NKE (25)
18 NVDA (45)
19 ORCL (45)
20 RTX (20)
21 TXN (45)
22 UNP (20)
23 UPS (20)

Post-Covid

Good Covid Bad Covid Very Bad Covid A B C D E F

1 BIIB (35) AIG (40) SLB (10) AXP (40) CL (30) ABBV (35) AAPL (45) ALL (40) ACN (45)
2 BKNG (25) BA (20) SPG (60) BAC (40) CMCS (50) ABT (35) ADBE (45) BLK (40) CSCO (45)
3 CHTR (50) COP (10) BK (40) DUK (55) AMGN (35) AMZN (25) BRK (40) DIS (50)
4 GILD (35) CVX (10) C (40) EXC (55) AMT (60) CRM (45) CAT (20) HD (25)
5 NFLX (50) DD (15) COF (40) KO (30) BMY (35) FB (50) EMR (20) INTC (45)
6 TSLA (25) F (25) GS (40) MDLZ (30) COST (30) GOOG (50) FDX (20) LOW (25)
7 GE (20) JPM (40) MO (30) CVS (35) MSFT (45) GD (20) MA (45)
8 GM (25) MET (40) PEP (30) DHR (35) NVDA (45) HON (20) MCD (25)
9 KMI (10) MS (40) PG (30) JNJ (35) PYPL (45) IBM (45) NKE (25)

10 RTX (20) USB (40) PM (30) KHC (30) LMT (20) ORCL (45)
11 XOM (10) WFC (40) SO (55) LLY (35) MMM (20) QCOM (45)
12 T (50) MDT (35) UNP (20) SBUX (25)
13 VZ (50) MRK (35) UPS (20) TXN (45)
14 NEE (55) V (45)
15 PFE (35)
16 TGT (25)
17 TMO (35)
18 UNH (35)
19 WBA (30)
20 WMT (30)
The ‘‘Good Covid’’ cluster, for instance, contains three ‘‘online’’
companies (Netflix (NFLX), Booking.com (BKNG) and Spectrum
(CHTR)), an electronic car maker (Tesla (TSLA)), together with
two pharmaceutical companies (Biogen (BIIB) and Gilead (GILD)).
Three of these stocks (NFLX, CHTR and TSLA) performed very
well in 2020, easily beating the S&P 500 for the year, while
the annual returns on the three other stocks (BKNG, BIIB and
GILD) all fell short of the S&P 500. Instead, what sets these six
stocks apart from the other stocks in the S&P 100 are their
dynamic co-dependencies, and the similar ways in which they
responded to news about the pandemic, as imbued in the realized
semicorrelation measures.

To further illustrate this point, the top panel in Fig. 1 shows
he within day five-minute logarithmic prices (normalized to zero
t the beginning of the day) on July 9, 2020, for each of the stocks
n the three different ‘‘covid clusters’’. That particular trading
ay began with reports of sharply increasing coronavirus cases
n many parts of the U.S., followed by a report later in the day
f falling unemployment insurance claims, which in turn may
ave helped alleviate some of the worst fears about the adverse
conomic consequences of the pandemic. The similarities in the
ntraday price paths for the otherwise very different companies
4

included in each of the three clusters, together with the cross-
cluster differences, are quite striking. While all of the stocks
performed poorly over the earlier part of the day, the ‘‘Good
Covid’’ stocks ended up with fairly modest losses for the day,
while the ‘‘Bad Covid’’ stocks, and the ‘‘Very Bad Covid’’ stocks,
in particular, all experienced substantial end-of-day losses.

For comparison, the bottom three panels in Fig. 1 show the
intraday price paths for the same three ‘‘covid clusters’’ of stocks
on December 11, 2019, before there was any awareness of the
impending pandemic. On that day the Federal Reserve announced
its intention to keep interest rates at current levels. As a result
most, albeit not all, stocks ended up higher for the day. However,
in sharp contrast to the prices on July 9, 2020, depicted in the top
three panels, where the worst performing stocks are all from the
two ‘‘bad’’ covid clusters, there is no such differentiation evident
for the December 11, 2019 daily returns. Moreover, some of the
December 11, 2019 intraday price paths for the stocks included
in the same ‘‘covid cluster’’ also appear quite disparate. Of course,
the ‘‘covid clusters’’ did not manifest until the end of January,
2020, and as such it is not necessarily surprising that some of
the different stocks only subsequently grouped together as either
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Fig. 2. Principal component analysis. The figure shows the estimated loadings for the first and second principal components for each of the stocks in the S&P 100.
The left (right) panel shows the estimates based on 15-minute returns before (after) January 31, 2020.
‘‘good’’ or ‘‘bad’’ covid stocks reacted very differently to economic
news before the pandemic.

To alternatively illuminate these changes, we apply Principal
omponent Analysis (PCA) directly to the high-frequency returns
sed in the construction of the realized measures (Aït-Sahalia and
iu, 2019). PCA, of course, is primarily designed for dimension
eduction and does not in and of itself provide for any cluster-
ng, let alone the identification of structural breaks in cluster
ssignments. As such, we rely on the January 31, 2020 break
ate identified by the semicorrelation-based clustering for the
stimation of separate pre- and post-covid Principal Components
PCs). Fig. 2 shows the resulting biplots of the loadings for the first
wo PCs. Looking first at the right panel pertaining to the post-
ovid sample, there is a clear tendency for the ‘‘bad’’ covid stocks
o load strongly on the first PC, which tend to mimic the return
n the aggregate market, and load negatively on the second PC.
n the other hand, the ‘‘good’’ covid stocks load strongly on
he second PC, and (with the exception of TSLA) are much less
ffected by the first PC. By contrast, looking at the results in
he left panel pertaining to the PCA for the pre-covid sample, no
bvious such patterns seem to exist for the ‘‘bad’’ versus ‘‘good’’
tocks. Taken together this points to the possible emergence of a
ew systematic risk factor around the time of the structural break
n the clusters identified by the realized semicorrelations. Relying
n very different procedures involving the pricing of disaster risk
nd measures of firms’ resilience to social distancing, Pagano et al.
2021) have also recently argued for the emergence of a new
andemic-related priced risk factor.

. Conclusion

We demonstrate how new ‘‘directional’’ realized semicorrela-
ion measures, constructed from high-frequency intraday returns,
ay be used for grouping individual stocks into clusters of stocks

hat respond similarly to new information. Our empirical re-
ults indicate the emergence of new and distinct ‘‘covid clusters’’
f stocks at the onset of the pandemic. It would be interest-
ng to further explore the economic mechanisms behind these
ew clusters, and whether they may be traced to a new priced
andemic-risk factor. Relatedly, it would be interesting to more
horoughly assess the economic gains that may be available from
ses of the semicorrelation-based clusters for better asset pricing,
nvestment and risk management decisions. It would also be
nteresting to extend the clustering procedures developed here to
xplicitly allow for the possibility of more than one break point.
e leave further work along these lines for future research.
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