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Abstract

We propose a new decomposition of the traditional market beta into four semibetas that

depend on the signed covariation between the market and individual asset returns. We

show that semibetas stemming from negative market and negative asset return covaria-

tion predict significantly higher future returns, while semibetas attributable to negative

market and positive asset return covariation predict significantly lower future returns.

The two semibetas associated with positive market return variation do not appear to be

priced. The results are consistent with the pricing implications from a mean-semivariance

framework combined with arbitrage risk driving a wedge between the risk premiums for

long and short positions. We conclude that rather than betting against the traditional

market beta, it is better to bet on and against the “right” semibetas.
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1. Introduction

The Capital Asset Pricing Model (CAPM) reigns supreme as the most widely-studied

and practically-used model for valuing speculative assets. In its basic form the model pre-

dicts a simple linear relationship between the expected excess return on an asset and the

beta of that asset with respect to the aggregate market portfolio. While early empirical

evidence largely corroborated this prediction (e.g., Fama, Fisher, Jensen and Roll, 1969;

Blume, 1970), an extensive subsequent literature has called into question the ability of

the standard market beta to satisfactorily explain the cross-sectional variation in returns,

with the estimated risk premiums being too low, often insignificant, and sometimes even

negative (e.g., Roll, 1977; Bhandari, 1988; Fama and French, 1992). Numerous expla-

nations have been put forth to explain these findings, ranging from measurement errors

(e.g., Shanken, 1992; Hollstein, Prokopczuk and Simen, 2019), to agency problems (Baker,

Bradley and Wurgler, 2011), to the need for separate betas associated with cash-flow and

discount rate news (Campbell and Vuolteenaho, 2004), to leverage constraints (Frazzini

and Pedersen, 2014) and the need for separate liquidity and fundamental betas (Acharya

and Pedersen, 2005), to name but a few.

These “rescue attempts” notwithstanding, another strand of literature, tracing back

to the early work by Roy (1952), Markowitz (1959), Hogan and Warren (1972, 1974)

and Bawa and Lindenberg (1977), posits that the mean-variance, or quadratic utility,

framework underlying the basic CAPM and the resulting security market line and linear

beta pricing relationship is too simplistic. If investors are averse to volatility only when

it leads to losses, not gains, then the relevant measure of risk is not (total) variance but

rather the semivariance of negative returns.1 Intuitively, if investors only care about

downside variation, then the covariation associated with a positive aggregate market

return should not be priced in equilibrium. These same pricing implications also arise in

1This same basic idea also underlies the notion of loss aversion and the prospect theory pioneered
by Kahneman and Tversky (1979), as supported by an extensive subsequent experimental literature and
other empirical evidence.
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a setting with disappointment aversion preferences as in Gul (1991), and its generalization

in Routledge and Zin (2010), recently explored by Farago and Tedongap (2018).2

Consistent with these ideas, Ang, Chen and Xing (2006a) find that the downside beta

version of the CAPM does a better job than the traditional CAPM in terms of explaining

the cross-sectional variation in U.S. equity returns. The study by Post and van Vliet

(2004) reaches the same conclusion, and Lettau, Maggiori and Weber (2014) similarly

finds that a downside beta version of the CAPM better explains the variation in the

returns across other asset classes. In contrast, recent work by Atilgan, Bali, Demirtas and

Gunaydin (2018) has called into question the ability of downside betas to satisfactorily

explain the cross-sectional variation in more recent U.S. and international equity returns.

Levi and Welch (2020) also concludes that downside betas do not provide superior cross-

sectional return predictions compared to the predictability afforded by traditional betas.

Set against this background, we propose a new four-way decomposition of the tradi-

tional market beta into four semibetas. Our decomposition relies on the newly-developed

semicovariance concept of Bollerslev, Li, Patton and Quaedvlieg (2020a). Letting r and

f denote the returns on some risky asset and the aggregate market portfolio, respectively,

the four semibetas are then defined as

β ≡ Cov(r, f)

V ar(f)
=
N + P +M+ +M−

V ar(f)
≡ βN + βP − βM+ − βM− . (1)

The N , P , M+ and M− semicovariance components refer to the respective portions of

total covariation Cov(r, f) defined by both returns being positive (the “P” state), both

returns being negative (“N”), mixed sign with positive market return (“M+”), and mixed

sign with negative market return (“M−”). Since the mixed-sign semicovariances are

always weakly negative numbers, with lower values indicating stronger covariation, to ease

the interpretation of the risk premium estimates in our empirical analyses, we purposely

define the mixed-sign semibetas as βM
+ ≡ −M+/V ar(f) and βM

− ≡ −M−/V ar(f).

2As shown by Anthonisz (2012), they may also be cast in a more traditional stochastic discount factor
pricing framework assuming a “kinked” pricing kernel.
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The traditional CAPM, of course, does not differentiate between any of the four

covariation components (N , P , M+ and M−), combining them into a single market

β and a single risk premium. The downside version of the CAPM, investigated in the

aforementioned studies, effectively combines the pricing of the two negative-market-return

covariation components (N and M−) into a single downside beta and the two positive-

market-return covariation components (P and M+) into a single upside beta, each with

their own individual risk premiums.3 Anticipating our empirical results, we strongly

reject these pricing restrictions in the data.

In a frictionless financial market, the risks associated with N and M− (P and M+)

should be priced the same, as a short position in an asset simply switches the signs of

the corresponding semicovariation components. However, as forcefully argued by Pon-

tiff (1996) and Schleifer and Vishny (1997), legal constraints and charters impede many

institutional investors from short-selling, and many individual investors are simply reluc-

tant to sell short, effectively creating limits-to-arbitrage and arbitrage risk (see also the

discussion in Hong and Sraer, 2016). This arbitrage risk in turn induces a wedge between

the pricing of the N and M− (P and M+) semicovariation components, and the risk

premiums associated with the βN and βM
−

(βP and βM
+

) semibetas. Intuitively, assets

that covary positively with the market when the market is performing poorly will ex-

acerbate downside return variation, while assets that covary negatively with the market

when the market is performing poorly help mitigate downside risk. Correspondingly, we

find that the former types of assets command higher risk premiums.

True betas and semibetas, of course, are not directly observable. However, as demon-

strated in the burgeoning realized volatility literature, the advent of high-frequency in-

traday data allows for the construction of much more accurate risk measures compared

with measures calculated using daily or monthly data. In particular, as formally shown

by Barndorff-Nielsen and Shephard (2004), the traditional market beta of an asset may

3As discussed further below, the scaling of the up and downside betas employed in some of the
aforementioned empirical studies differ from the scaling of the semibetas employed here. However, the
resulting cross-sectional fits are not affected by these differences in the scaling.
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be consistently (for increasingly finer sampled data) estimated by the so-called realized

beta, defined as the ratio between the realized covariance of the asset and the market and

the realized variance of the market.4 Similarly, relying on the infill asymptotic results

pertaining to realized semicovariances in Bollerslev, Li, Patton and Quaedvlieg (2020a),

the new semibetas defined here may be consistently estimated by their corresponding re-

alized semibeta counterparts, defined as the ratios of the relevant realized semicovariance

components and the realized market variance. We discuss this further in Section 2.

Building on these new measures, we offer three main empirical contributions. Our first

empirical investigations use daily realized semibetas based on high-frequency intraday

data for all of the S&P 500 constituent stocks over the 1993-2014 sample period. The

estimated semibetas clearly reveal the existence of asymmetric dependencies between the

individual stocks and the market beyond those of the linear dependencies captured by the

traditional market beta. More importantly, our results strongly support the hypothesis

that these non-linear dependencies are priced differently: stocks with higher βN are

associated with significantly higher subsequent daily returns; stocks with higher βM
−

are

associated with significantly lower subsequent daily returns; while neither βP nor βM
+

appear to carry a significant risk premium. Corroborating the thesis that the difference

in the risk premiums for βN and −βM− may be attributed to market frictions and limits-

to-arbitrage, we show that the rejection of the hypothesis that the two risk premiums are

identical is stronger for portfolios made up of stocks with higher arbitrage risk, as proxied

by the level of idiosyncratic volatility (e.g., Pontiff, 1996; Stambaugh, Yu and Yuan, 2015),

and stocks that are more difficult to value, as proxied by the rate of turnover (e.g., Harris

and Raviv, 1993; Blume, Easley and O’Hara, 1994; Kumar, 2009).

Further underscoring the significance of this difference in the pricing of the semibetas,

the two-way decomposition of the traditional market beta into separate up and downside

betas previously explored in the literature is also strongly rejected against the four-way

4For additional discussion of the realized beta concept along with empirical applications, see also
Andersen, Bollerslev, Diebold and Wu (2006) and Patton and Verardo (2012).
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semibeta decomposition proposed here. These same findings for the daily realized semi-

betas and future daily returns carry over to longer weekly and monthly return horizons.

They also remain robust to the inclusion of a long list of other return predictor variables

previously analyzed in the literature.

This prima facie evidence notwithstanding, the requirement of intraday high-frequency

data for accurately estimating the realized semibetas limits the time span and number of

stocks underlying our analyses. To expand the scope of our analyses, our second empirical

contribution constructs monthly semibetas from daily returns for a much broader cross-

section of stocks over a longer 1963-2017 sample period. Using this broader and longer

sample we arrive at the same conclusions: βN and −βM− are priced differently, with

estimated annualized risk premiums of 10.43% and 6.42% respectively, while the estimated

risk premiums for βP and βM
+

are both statistically insignificant at conventional levels.

By comparison, the estimated risk premium for the traditional market beta is 4.10%.

Finally, we investigate whether these statistically significant differences in the com-

pensation for the different semibetas also translate into “economically significant” differ-

ences in the performance of simple portfolio strategies. We find that a long-short semibeta

strategy generates average annual excess returns of 9.8%, and an annualized Sharpe ra-

tio of 1.05. By comparison, similar portfolio strategies based on the standard CAPM

betas and the Ang, Chen and Xing (2006a) downside betas generate excess returns of

5.0% and 7.5%, respectively, with Sharpe ratios of only 0.30 and 0.48. Using the four-

and five-factor models of Carhart (1997) and Fama and French (1993, 2015) to assess

the risk-adjusted performance, we find annualized alphas of 8.4% and 9.7% respectively,

and overwhelmingly significant t-statistics. By comparison, the traditional beta and the

downside beta portfolios produce much smaller and at best only borderline significant al-

phas. Hence, adding to the recent literature and debate about betting on or against beta

(see, e.g., Frazzini and Pedersen, 2014; Cederburgh and O’Doherty, 2016; Bali, Brown,

Murray and Tang, 2017; Novy-Marx and Velikov, 2018; Schneider, Wagner and Zechner,

2020), we conclude that it is better to bet on and against the “right” semibetas.
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In addition to the previous studies on downside risk noted above, our empirical find-

ings are also related to the vast existing literature on asymmetric dependencies in stock

returns, including among others Longin and Solnik (2001), Ang and Chen (2002), Patton

(2004), Hong, Tu and Zhou (2006), Elkamhi and Stefanova (2014) and Engle and Mistry

(2014). They are also related to the more recent and rapidly growing literature on the

pricing of downside tail, or crash, risk, including Bali, Demirtas and Levy (2009), Boller-

slev and Todorov (2011), Kelly and Jiang (2014), Cremers, Halling and Weinbaum (2015)

Bollerslev, Li and Todorov (2016), Chabi-Yo, Ruenzi and Weigert (2018), Farago and

Tedongap (2018), Barunik and Nevrla (2019), Bondarenko and Bernard (2020), Chabi-

Yo, Huggenberger and Weigert (2019), Lu and Murray (2019) and Orlowski, Schneider

and Trojani (2019). In contrast to all of these studies, however, which rely on the use of

options and/or non-linear procedures for assessing the asymmetric joint tail dependencies

and the pricing thereof, we maintain a simple linear pricing relationship together with a

simple-to-implement additive decomposition of the traditional market beta into the four

semibeta components. Our new semibeta measures are also distinctly different from, and

much simpler to implement than, the entropy approach of Jiang, Wu and Zhou (2018)

designed to measure asymmetries in up and downside comovements.

The semibetas, and the joint dependencies captured by them, are also related to

the notion of coskewness originally proposed by Kraus and Litzenberger (1976), and

the corresponding notion of cokurtosis, as investigated empirically by Harvey and Sid-

dique (2000), Dittmar (2002), Conrad, Dittmar and Ghysels (2013), Langlois (2020) and

Schneider, Wagner and Zechner (2020), among others. We find that the semibetas remain

highly significant for explaining the cross-sectional variation controlling for coskewness

and cokurtosis, while both of these co-dependency measures are rendered insignificant

by the inclusion of the proposed semibeta measures. Our reliance on the new semico-

variance concept for decomposing the systematic market risk and defining the semibetas

also sets our analysis apart from other recent studies based on the semivariance con-

cept for defining and empirically investigating asset specific “good” and “bad” volatility
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measures and the separate pricing thereof, as in, e.g., Feunou, Jahan-Parver and Okou

(2018), Bollerslev, Li and Zhao (2020b) and Feunou and Okou (2019).

The remainder of the paper is structured as follows. We begin in Section 2 by dis-

cussing our construction of the daily realized semibetas and the theory underpinning

their consistent estimation, along with a brief summary of their empirical distributional

features. Section 3 presents our key empirical findings related to the pricing of the daily

realized semibetas based on firm level cross-sectional regressions. Section 4 discusses

our results based on monthly semibetas estimated from daily data across a much broader

cross-section of stocks and over a longer time period. Section 5 considers the performance

of simple semibeta-based portfolio strategies, along with comparisons to other similarly

constructed beta-based portfolios. Section 6 concludes. Additional empirical results and

robustness checks are detailed in a Supplemental Appendix.

2. Realized Semibetas

We begin by formally defining realized semibetas. We then briefly discuss the high-

frequency data that we use in our main empirical investigations, followed by a summary

of the salient distributional features of the resulting daily realized semibeta estimates.

2.1. Definitions

Let rt,k,i denote the return on asset i over the kth intradaily time interval on day t,

with the concurrent return for the aggregate market denoted by ft,k. Define the signed

high-frequency asset returns by r+
t,k,i ≡ max(rt,k,i, 0) and r−t,k,i ≡ min(rt,k,i, 0), with the

signed high-frequency market returns defined analogously. The realized semibetas are

then defined by:

β̂Nt,i ≡
∑m

k=1 r
−
t,k,if

−
t,k∑m

k=1 f
2
t,k

, β̂Pt,i ≡
∑m

k=1 r
+
t,k,if

+
t,k∑m

k=1 f
2
t,k

,

β̂M
−

t,i ≡
−
∑m

k=1 r
+
t,k,if

−
t,k∑m

k=1 f
2
t,k

, β̂M
+

t,i ≡
−
∑m

k=1 r
−
t,k,if

+
t,k∑m

k=1 f
2
t,k

,

(2)
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where m denotes the number of high-frequency return intervals each day. The semibetas

provide an exact four-way decomposition of the traditional realized market beta:

β̂t,i ≡
∑m

k=1 rt,k,ift,k∑m
k=1 f

2
t,k

= β̂Nt,i + β̂Pt,i − β̂M
+

t,i − β̂M
−

t,i . (3)

As previously noted, we purposely change the sign on the two mixed semibetas, to make

them positive, thereby allowing for an easier interpretation of the correspondingly de-

composed risk premium estimates.

Let RV t and COV t,i denote the latent true daily variation of the return on the market

and the covariation between the market return and the return on the individual asset

i, with the corresponding true semicovariation measures denoted by Pt,i, Nt,i, M+
t,i and

M−
t,i, respectively. Barndorff-Nielsen and Shephard (2004) show that, for increasingly

finely-sampled high-frequency returns, or m → ∞, realized betas consistently estimate

the true latent betas:

β̂t,i
p−→ COV t,i
RV t

. (4)

Similarly, the in-fill asymptotic theory in Bollerslev, Li, Patton and Quaedvlieg (2020a)

pertaining to realized semicovariances imply that the realized semibetas consistently es-

timate the true semibetas:

β̂Nt,i
p−→ Nt,i
RV t

, β̂Pt,i
p−→ Pt,i
RV t

, β̂M
+

t,i

p−→
−M+

t,i

RV t
, β̂M

−

t,i

p−→
−M−

t,i

RV t
. (5)

For ease of notation, in the remainder when not necessary we will drop the subscripts

and hats, and refer to these realized (semi)beta measures simply as β, βN , etc.

If the market and individual asset returns were jointly Normally distributed, the four

semibetas would convey no new information over and above the conventional market beta.

In particular, utilizing the distributional results in Bollerslev, Li, Patton and Quaedvlieg
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(2020a) it follows that under joint Normality:

βN = βP =
1

2π

( √
σ2
r

σ2
f

− β2 + β arccos

(
−σf
σr
β

) )
,

βM
+

= βM
−

=
1

2π

( √
σ2
r

σ2
f

− β2 − β arccos

(
σf
σr
β

) )
.

If the market and individual asset returns are not Normally distributed, the concordant

semibetas (βN and βP) and the disconcordant semibetas (βM
+

and βM
−

) will generally

differ, and each of the four semibetas may convey additional useful information to that of

the standard market beta. As such, each of the semibetas may also be priced differently.

2.2. Data and Summary Statistics

Our primary empirical investigations rely on high-frequency data obtained from the

Trades and Quotes (TAQ) database. We include all of the S&P 500 constituent stocks

during the January 1993 to December 2014 sample period, resulting in a total of 5,541

trading days and 1,049 unique securities. We adopt a 15-minute sampling scheme, or m =

26 return observations per day, in our calculations of the realized semibeta measures. This

choice strikes a judicious balance between biases induced by market microstructure effects

when sampling too finely versus the theoretical continuous-time arguments underlying the

consistency of the realized semicovariance measures that formally hinges on increasingly

finer sampled intraday returns.5

We further match the intraday TAQ data and sample of stocks to the Center for

Research in Securities Prices (CRSP) database to obtain the full-day returns for each of

the stocks. All of our subsequent asset pricing investigations are based on these full-day

5Although a finer 5-minute sampling frequency has often been used in the realized volatility literature
for the calculation of univariate realized volatility measures (see, e.g., Liu, Patton and Sheppard, 2015,
and the many references therein), market microstructure effects are further compounded in a multivari-
ate setting by the so-called Epps (1979) effect, which leads to a downward bias in realized covariation
measures stemming from asynchronous prices. Correspondingly, we resort to a coarser 15-minute sam-
pling frequency, also used by Bollerslev, Li, Patton and Quaedvlieg (2020a) in their analysis of realized
semicovariances for a similar sample of individual stocks.
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Table 1: Summary Statistics. The top panel reports the time series averages of the cross-sectional
means, medians and standard deviations of the daily realized semibetas constructed from fifteen minutes
intraday returns. The bottom panel reports the time series averages of the cross-sectional correlations.
The sample consists of all S&P 500 constituent stocks from January 1993 to December 2014.

β βN βP βM
+

βM
−

Mean 0.92 0.68 0.72 0.27 0.25
Median 0.83 0.57 0.61 0.16 0.15
St.Dev. 1.06 0.47 0.49 0.36 0.34

β 1.00 0.66 0.67 -0.33 -0.33
βN 1.00 0.44 0.19 0.06
βP 1.00 0.06 0.18

βM
+

1.00 0.38

βM
−

1.00

and resulting longer weekly and monthly returns.6 We also rely on the daily market cap-

italization for each of the individual stocks from the CRSP database in our construction

of the high-frequency value-weighted market index.

Turning to the resulting daily realized (semi)beta estimates, the top panel of Table

1 reports the time series averages of the cross-sectional means, medians and standard

deviations averaged across all of the stocks in the sample. The bottom panel gives the

time series averages of the cross-sectional correlations. Consistent with on average positive

dependencies between the market and each of the individual stocks, the two concordant

semibetas (βP and βN ) on average far exceed the two discordant semibetas (βM
+

and

βM
−

). The two concordant semibetas also correlated more strongly with the traditional

market beta (β), and more so than with each other. Nonetheless, the correlations with the

traditional beta are still far below unity, suggesting that the semibetas do convey different,

and potentially useful, information over and above that of the traditional market beta.7

To help visualize the differences in the betas, Panel A of Figure 1 depicts the uncondi-

tional distributions of each of the daily realized betas and semibetas across all of the days

6As discussed in Bollerslev, Li and Zhao (2020b), this matching of the TAQ intraday data with the
daily returns from CRSP also ensures proper handling of stock splits and dividends.

7To further highlight the additional information about asymmetric dependencies conveyed by the
semibetas, Appendix A compares the realized semibeta estimates to the limiting values that would
obtain if the individual stock and market returns were jointly Normally distributed.
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Figure 1: Unconditional Distributions and Autocorrelations. Panel A displays kernel density
estimates of the unconditional distribution of the daily realized beta and semibetas averaged across
time and stocks. Panel B reports the average autocorrelation functions for the daily realized beta and
semibetas averaged across stocks. The sample consists of all of the S&P 500 constituent stocks from
January 1993 to December 2014.

β βP βN βM+ βM− 
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A
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F

Lag

and stocks in the sample. The distribution of the conventional betas is centered around

one, as expected, and appears close to symmetric. Meanwhile, the realized semibetas

are all weakly positive by construction, and thus unsurprisingly their distributions are

all right-skewed. Further echoing the summary statistics in Table 1, the semibeta dis-

tributions are all centered below unity. Also, the unconditional distributions of the two

concordant semibetas (βP and βN ) are almost indistinguishable, as are the distributions

of the two discordant semibetas (βM
+

and βM
−

).

The average autocorrelation functions shown in Panel B of Figure 1 indicate a strong

degree of persistence for all of the semibetas, with the autocorrelations remaining in ex-

cess of 0.6 even at the 40th lag.8 Underpinning the cross-sectional return predictability

regressions that we rely on in our asset pricing investigations, the high first-order au-

tocorrelations of around 0.9 for each of the semibetas, also imply that today’s realized

semibetas for a given stock provide accurate predictions of tomorrow’s semibetas for that

same stock.

8We rely on the instrumental variable approach of Hansen and Lunde (2014), using lags 4 through
10 as instruments, to adjust for measurement errors in the realized betas, thereby allowing for more
meaningful comparisons of the autocorrelation functions across the different betas.
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We turn next to our main empirical analysis pertaining to the pricing of the non-linear

dependencies encoded in these new realized semibeta measures.

3. Semibetas and the Cross-Section of Expected Returns

We begin our empirical investigations by presenting the results from standard Fama

and MacBeth (1973) type cross-sectional predictive regressions. These regressions conve-

niently allow for the simultaneous estimation of separate risk premiums for each of the

semibetas. In particular, for each day t = 1, ..., T − 1, and all of the stocks i = 1, ..., Nt,

available on day t and t+1, we first estimate the day t+1 lambdas from the cross-sectional

regression:

rt+1,i = λ0,t+1 + λNt+1β̂
N
t,i + λPt+1β̂

P
t,i + λM

+

t+1 β̂
M+

t,i + λM
−

t+1 β̂
M−
t,i + εt+1,i. (6)

Based on these T − 1 cross-sectional estimates, we then estimate the risk premiums

associated with each of the semibetas by the time series averages of the lambdas over all

of the days in the sample:

λ̂j =
1

T − 1

T∑
t=2

λ̂jt , j = N ,P ,M+,M−. (7)

The resulting annualized estimates, along with their t-statistics based on Newey-

West robust standard errors (using 21 lags), together with the time-series average of the

R2s from the first-stage cross-sectional regressions in equation (6), are reported in the

second row of Table 2. As a benchmark, the first row of the table reports the estimated

risk premium for the traditional realized beta. Consistent with the basic mean-variance

framework, the traditional beta carries a statistically significant risk premium of 4.58%

per year. This estimated risk premium is somewhat below the average annual equity risk

premium of 8.56% observed over the sample, corroborating the basic intuition underlying

the “betting against beta” idea (Frazzini and Pedersen, 2014).
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Table 2: Fama-Macbeth Regressions on Semibetas The table reports the estimated annualized risk
premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional predictive regres-
sions. The daily semibetas are calculated from fifteen-minute intraday data. All of the control variables
are measured prior to the daily returns, as detailed in Appendix B. The estimates are based on all of
the S&P 500 constituent stocks and days in the January 1993 to December 2014 sample.

β βN βP βM
+

βM
−

ME BM MOM REV IVOL ILLIQ R2

4.58 2.70
3.04

22.54 -1.58 -4.29 -8.48 5.43
5.62 -0.52 -0.86 -2.02

22.47 -5.67 -2.90 -12.20 -2.23 -1.77 0.11 8.23
5.75 -2.02 -0.65 -3.14 -3.83 -1.95 3.47

20.36 -2.91 1.68 -6.15 -7.42 -1.65 0.09 -0.55 -3.07 -4.88 10.32
5.44 -1.08 0.41 -1.68 -7.71 -1.87 2.55 -5.82 -3.56 -6.42

Meanwhile, the cross-sectional fit, reported in the final column, rises from 2.70% when

using the CAPM beta to 5.43% when using semibetas. We can formally test whether

this gain in R2 is statistically significant by noting that the semibeta-based pricing model

reduces to the traditional CAPM model if the semibeta risk premiums satisfy:

HCAPM
0,t : λNt = λPt = −λM+

t = −λM−t . (8)

We reject this restriction at the 5% level for 68% of the 5, 541 days in our sample,

representing a strong rejection of the traditional one-beta model in favor of a model that

exploits the additional information contained in the semibetas.

The risk premium estimates reported in the second row of Table 2 highlight the

richer pricing implications of the mean-semivariance framework: βN and βM
−

are both

associated with large and statistically significant risk premiums, while βP and βM
+

do

not appear to be associated with any significant differences in returns across stocks.

Underscoring not just the statistical significance of the estimated risk premiums, but also

the economic significance, a one standard deviation increase in βN relative to its cross-

sectional mean is associated with an increase in the expected annual return of 10.59%.
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Figure 2: Hypothetical Return Distributions. The figure presents isoprobability contours of the
bivariate PDFs for four hypothetical return distributions, all of which have standard Normal marginal
distributions and all of which imply a CAPM beta of one.
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Meanwhile a one standard deviation increase in βM
−

relative to its’ cross-sectional mean

lowers the expected return by 2.88%. Both of these changes are economically significant

given the average market return is 8.56% over our sample period.

To help further intuit the estimated risk premiums associated with different semi-

betas, Figure 2 presents bivariate contour plots for the returns on the market and four

hypothetical assets, each of which have traditional CAPM beta equal to one.9 Since

9The contours are generated using standard Normal marginal distributions with dependence between
the two variables captured by either a Normal copula or one of three different “Clayton” copulas, see
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the CAPM betas are the same, the CAPM predicts identical expected returns of 8.34%

for all four assets. Meanwhile, consider the asset in Panel A, which is jointly Normally

distributed with the market, and the asset in Panel B, which (contrary to most equity

returns) has less correlation during market downturns and greater correlation during

market upturns (βN < βP). The semibeta model estimates in Table 2 imply an annual

expected excess return for asset A of 7.95%, and only 4.82% for asset B, a finding that is

consistent with investors being particularly averse to downside risk, and thus willing to

accept lower expected returns for an asset displaying the desirable dependence featured

in Panel B. On the other hand, the asset depicted in Panel C, which is more strongly

correlated with the market during downturns than upturns (βN > βP) and as such less

desirable from a mean-semivariance perspective, has an annual expected excess return of

10.86%. This represents an increase in expected return of nearly 3% relative to asset A,

and over 6% relative to asset B, two assets with the exact same market beta as asset C,

highlighting the economic significance of the differences in the estimated semibeta risk

premiums. Finally, consider the asset in Panel D. Similar to asset C, asset D is more

strongly correlated with the market during downturns than upturns (βN > βP), but its

asymmetric mixed semicovariation (βM
−
> βM

+
) imbue asset D with superior hedging

benefits relative to asset C, and thus a lower expected excess return of 9.90%.

3.1. Standard Risk Factors and Controls

A plethora of other risk factors and firm characteristics constructed from lower fre-

quency daily or monthly data have, of course, been put forth in the literature as significant

drivers of the cross-sectional variation in equity returns; see, e.g., the recent account by

Harvey, Liu and Zhu (2016). We focus on a subset of the more prominent variables that

have received the most attention in the literature, namely size (ME) (Banz, 1981), book-

to-market (BM) (Fama and French, 1993), momentum (MOM) (Jegadeesh and Titman,

1993), return reversals (REV) (Jegadeesh, 1990), idiosyncratic volatility (IVOL) (Ang,

Nelsen (2006). Using values for market volatility and average firm volatility from our data, 0.92% and
2.26% respectively, a beta of 1 implies a linear correlation of 0.41, which is used in all four panels.
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Hodrick, Xing and Zhang, 2006b), and illiquidity (ILLIQ) (Amihud, 2002); further details

concerning the construction of each of these variables are given in Appendix B.

The third row of Table 2 reports the average risk premium estimates from the cross-

sectional regressions that in addition to the semibetas include ME, BM and MOM, mim-

icking the popular Fama-French-Carhart four factor (FFC4) model. Consistent with the

extant literature, the estimated risk premiums for ME and MOM are both strongly sig-

nificant, while the premium for BM is only marginally significant at conventional levels.

Correspondingly, the inclusion of the three additional risk factors also increases the aver-

age cross-sectional R2 from 5.43% for the regressions based solely on the four semibetas

to 8.23% for the semibeta+FFC-based model. Importantly, the risk premiums associated

with βN and βM
−

remain highly statistically significant.

The bottom row of Table 2 further incorporates REV, IVOL and ILLIQ as controls,

which increases the average cross-sectional R2 to 10.32%. Again, the inclusion of the

additional controls does not meaningfully alter the large and highly significant t-statistic

associated with βN . Also, even though the t-statistic for βM
−

is somewhat diminished

compared to some of the earlier regressions, the risk premium estimates for βN and

βM
−

are both remarkably similar to the estimates obtained without the inclusion of any

controls reported in the second row, underscoring the robustness of the semibeta pricing.

3.2. Arbitrage Risk and Semibeta Pricing

The semibeta risk premium estimates discussed above are based on the traditional

Fama-MacBeth cross-sectional regression approach involving the returns on long positions

in each of the individual stocks. It follows readily from the definition of the semibetas in

equation (2) that β̂Nt,i (β̂Pt,i) for a long position in stock i equals −β̂M−t,i (−β̂M+

t,i ) for a short

position in that same stock i. Hence, in a frictionless market, in which the expected return

on a short position is equal to the negative of the expected return on a long position,

the risk premium associated with β̂Nt,i (β̂Pt,i) should be equal to the negative of the risk

premium associated with β̂M
−

t,i (β̂M
+

t,i ). To facilitate a test of each of these restrictions, it
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is useful to reparameterize the cross-sectional regression in (6) as:

rt+1,i = λ0,t+1 +λNt+1(β̂Nt,i− β̂M
−

t,i )+λPt+1(β̂Pt,i− β̂M
+

t,i )+δM
+

t+1 β̂
M+

t,i +δM
−

t+1 β̂
M−
t,i + εt+1,i. (9)

This reparameterization does not change the fit of the regression, nor the estimates for

λNt+1 and λPt+1. However, it allows for the construction of a simple t-test for the hypothesis

that the risk premiums for βN and −βM− (βP and −βM+) are the same based on the

time series average of the T − 1 delta estimates:

δ̂j =
1

T − 1

T∑
t=2

δ̂jt , j ∈ {M+,M−}. (10)

The resulting t-statistic for testing δM
−

t+1 = 0, reported in the top row in Table 3, reveals

that βN and −βM− risks are priced differently in the cross-section. Also, consistent with

the finding that neither βP nor −βM+ risk appear to be priced, the t-statistic on δM
+

= 0

is insignificant. This naturally raises the question of what causes the risk premiums for

the two downside semibetas to differ?

Most large cap stocks, like the S&P 500 constituents underlying our risk premium

estimates, can be easily and cheaply borrowed, see, e.g., the detailed analysis in D’Avolio

(2002) considering both the level of institutional ownership and the direct lending fees

associated with shorting, as well as the more recent analysis in Henderson, Jostova and

Philipov (2019). Hence, the difference in the risk premiums cannot simply be attributed

to “hard” short-sales constraints. Instead, as argued by Pontiff (1996) and Schleifer

and Vishny (1997), with legal restrictions and charters impeding many institutional in-

vestors from short-selling, and many individual investors simply reluctant to sell short,

this effectively creates “soft” limits-to-arbitrage and related arbitrage risks (see also the

discussion in Hong and Sraer, 2016). This arbitrage risk in turn may cause systematic

risks associated with long and short positions to be priced differently.10

10Flights to liquidity and accompanying downward liquidity spirals, as discussed by Brunnermeier
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To corroborate this conjecture, we follow the literature (e.g., Pontiff, 1996; Stambaugh,

Yu and Yuan, 2015) in using idiosyncratic volatility (IVOL) as a proxy for arbitrage risk.

Intuitively, if arbitrageurs are able to neutralize their exposure to benchmark risks, then

IVOL, as opposed to total volatility, can be used as a measure of arbitrage risk, with

higher IVOL implying greater impediment to price-correcting arbitrage. We follow Ang,

Hodrick, Xing and Zhang (2006b) and calculate the daily IVOL for each of the stocks

in the sample as the residual standard deviation from rolling three factor Fama-French

regressions based on daily returns over the past twenty days; see Appendix B for a more

detailed discussion. Each day, using the IVOL estimates for the previous day, we then

split the cross-section into two separate groups comprised of the stocks with the 50%

highest and lowest IVOLs, respectively. The resulting semibeta risk premium estimates

for each of the two cross-sections are reported in Panel B of Table 3. Consistent with the

thesis that the different risk premiums for βN and −βM− may be attributed to arbitrage

risk, the t-statistic on δM
−

is 4.73 for the high IVOL group, strongly rejecting the null,

compared with an insignificant t-statistic of 0.72 for the low IVOL group.11

To further buttress the role played by arbitrage risk and valuation uncertainty, we also

consider grouped estimates based on turnover. Turnover tends to be higher for stocks

that are more difficult to value and subject to greater investor disagreement (e.g., Harris

and Raviv, 1993; Blume, Easley and O’Hara, 1994), and thus exhibit greater arbitrage

price discrepancies (e.g, Kumar, 2009, among others). We calculate the monthly daily

volume turnover ratio (TO) for each of the individual stocks as the ratio of the number

of shares traded during the day divided by the number of shares outstanding. We then

split the cross-section into two groups comprised of the 50% of the stocks with highest

and lowest turnover ratios, respectively, relying on the previous day’s TO estimates for

and Pedersen (2009) and Anthonisz and Putnins (2017), might also further exacerbate these pricing
differences.

11The coefficients on βN and βP in Panel A of Table 3 are identical to those in the second row of
Table 2, but the parameter δM− (δM+) differs slightly from the simple sum of the coefficients on βN

and βM− (βP and βM+) due to the geometric compounding used in annualizing the daily risk premium
estimates. This is only a reporting issue; the fits of the models are identical.

19



Table 3: Semibeta Pricing and Arbitrage Risk The table reports the estimated annualized risk
premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional predictive regres-
sions for firms with below and above median arbitrage risk, proxied by Idiosyncratic Volatility (IVOL)
and Turnover (TO). The daily semibetas are calculated from fifteen-minute intraday data. The control
variables are measured prior to the daily returns, as detailed in Appendix B. The estimates are based
on all of the S&P 500 constituent stocks and days in the January 1993 to December 2014 sample.

βN βP δM− δM+ βN βP δM− δM+ R2

Panel A: Full-Sample Estimates

22.54 -1.58 12.16 -5.81 5.43
5.62 -0.52 2.22 -0.93

Panel B: Sorting on Arbitrage Risk
Below Median Above Median

IVOL 22.29 -0.10 3.99 -3.41 17.43 -4.63 34.81 10.19 6.62
5.45 -0.03 0.72 -0.52 4.03 -1.52 4.73 1.33

TO 22.23 -12.64 -2.10 -9.54 19.57 1.69 8.06 -5.13 6.93
5.42 -4.40 -0.34 -1.37 4.66 0.50 2.27 -0.76

the group assignments. The resulting estimates, reported in Panel B of in Table 3, tell

the same story as the IVOL groupings: the t-statistic on δM
−

is 2.27 for the high TO

group comprised of stocks that are more difficult to value, compared to -0.34 for the low

TO group of stocks subject to less arbitrage risk.

3.3. Upside and Downside Betas

In addition to the standard set of predictor variables included in Table 2, other beta

decompositions have previously been found to improve upon the traditional CAPM. Most

closely related to the present analysis are the up and downside betas advocated in the

widely-cited study by Ang, Chen and Xing (2006a). High-frequency versions of the upside

and downside betas advocated in that study are naturally defined as:

β̂+
t,i ≡

∑m
k=1 rt,k,if

+
t,k∑m

k=1(f+
t,k)

2
, β̂−t,i ≡

∑m
k=1 rt,k,if

−
t,k∑m

k=1(f−t,k)
2
. (11)
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In contrast to the semibetas proposed here, which account for joint asymmetric depen-

dencies by conditioning the covariation on both the signed market and individual asset

returns, the upside and downside betas condition only on the sign of the market return.

For ease of comparison, the first row in Table 4 repeats the baseline results for semi-

betas from Table 2. The second row in Table 4 reports the estimated average risk premi-

ums associated with the upside and downside betas. The results are broadly consistent

with the previous findings of Ang, Chen and Xing (2006a) in that only β− carries a

significant risk premium. The results are also in line with the estimated risk premiums

for the semibetas presented in the top row, which show that only βN and βM
−

, which

account for negative market comovements, are associated with significant risk premiums.

To more directly compare and contrast the pricing of the semibetas with the pricing

of the up and downside betas, the third row in Table 4 reports the estimates obtained by

including all of the six betas in the same cross-sectional regressions. Despite the relatively

high correlation between the semibetas and the up/downside betas,12 the estimated risk

premium for βN clearly stands out as the most significant with a t-statistic of 3.86,

followed by the premium for βM
−

with a t-statistic of -1.79. Meanwhile, the risk premium

for β− has a t-statistic of only 0.82, suggesting that the information contained in semibetas

effectively subsumes the information in the downside beta in terms of explaining the cross-

sectional variation in the returns. A joint test that all coefficients on semibetas are zero,

leaving only the up and downside betas with nonzero coefficients, also rejects the null

with a p-value of less than 0.01. In contrast, a joint test that both coefficients on up

and downside betas are zero, leaving only the semibetas with nonzero coefficients, fails

to reject the null, with a p-value of 0.13.

To facilitate a more direct test of whether the semibetas provide superior cross-

sectional pricing predictions compared to the up and downside betas, notice that the

12Correlations between all of the semibetas and the up/downside betas, along with the other controls,
are presented in Appendix C. The time series averages of the cross-sectional correlations between β+

and βP , and β− and βN , in particular, are as high as 0.81, thus hindering a precise estimation of each
of the individual risk premiums.
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latter can be obtained as a weighted sum of the former:

β̂+
t,i = (β̂Pt,i − β̂M

+

t,i )

∑m
k=1 f

2
t,k∑m

k=1(f+
t,k)

2
, (12)

β̂−t,i = (β̂Nt,i − β̂M
−

t,i )

∑m
k=1 f

2
t,k∑m

k=1(f−t,k)
2
. (13)

Since the weights on the semibetas only involve functions of market returns, they do not

vary in the cross-section. Accordingly, the semibeta model proposed here reduces to the

up and downside beta model of Ang, Chen and Xing (2006a) if the following restrictions

hold on a per period basis:

HUP+DOWN
0,t : λNt = −λM−t ∩ λPt = −λM+

t . (14)

We find that this hypothesis is rejected at the 5% level for 58% of the 5, 541 daily cross-

sectional regressions (recall that the stricter CAPM restrictions in (8) were rejected at

the 5% level for 68% of the days in the sample). Going one step further, we can also test

the stronger hypothesis that only downside beta risk is priced:

HDOWN
0,t : λNt = −λM−t ∩ λPt = −λM+

t = 0, (15)

and we find this is rejected at the 5% level for an impressive 70% of days in the sample.

The period-by-period restrictions in (14) and (15) obviously imply that the same re-

strictions must hold on average. The t-statistic for testing the hypothesis that λN =

−λM− based on the δM
−

estimate from equations (9) and (10) discussed in Section 3.2

above already rejected this weaker hypothesis. The additional empirical results discussed

in that section also pointed to arbitrage risk as the likely culprit behind the rejection.

In other words, the presence of market frictions and limits-to-arbitrage implies that con-

sidering only downside betas entails a significant loss of information relative to a model

based on downside semibetas.
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Table 4: Fama-Macbeth Regressions on Other Measures The table reports the estimated annual-
ized risk premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional predictive
regressions. The daily semibetas, up and downside betas, and coskewness and cokurtosis measures are
calculated from fifteen-minute intraday data based on all of the S&P 500 constituent stocks and days in
the January 1993 to December 2014 sample.

βN βP βM
+

βM
−

β+ β− CSK CKT R2

22.54 -1.58 -4.29 -8.48 5.43
5.62 -0.52 -0.86 -2.02

-1.17 6.88 3.70
-1.11 5.54

17.31 -8.10 -12.66 -3.86 -2.40 7.90 6.61
3.86 -0.13 0.03 -1.79 -1.67 0.82

-4.40 0.81 1.52
-1.55 0.76

30.92 -3.79 -3.89 -16.33 10.09 -3.59 6.26
6.20 -1.12 -0.76 -3.69 2.66 -3.22

3.4. Coskewness and Cokurtosis

The semibetas account for non-Normally distributed systematic risks by conditioning

on the signed returns. A number of other measures have been explored in the literature

as a way to capture non-Normal asymmetric joint return dependencies and the possible

pricing thereof, most notably the notion of coskewness originally proposed by Kraus and

Litzenberger (1976), and analyzed more extensively by Harvey and Siddique (2000) and

Christoffersen, Honarvar and Ornthanalai (2017) among others. Other studies have sim-

ilarly argued that cokurtosis appears to be priced in the cross-section; see, e.g., Dittmar

(2002) and Ang, Chen and Xing (2006a). Directly following these studies, we define the

daily coskewness and cokurtosis measures for stock i by:

CSKt,i =
1
m

∑m
k=1(rt,k,i−r̄t,i)(ft,k−f̄t)2√

1
m

∑m
k=1(rt,k,i−r̄t,i)2 1

m

∑m
j=1(ft,k−f̄t)2

, (16)

CKTt,i =
1
m

∑m
k=1(rt,k,i−r̄t,i)(ft,k−f̄t)3√

1
m

∑m
k=1(rt,k,i−r̄t,i)2 ( 1

m

∑m
k=1(ft,k−f̄t)2)

3/2 , (17)

where f̄t and r̄t,i denote the average daily return on the market and stock i respectively.
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Comparing the top row with the penultimate row of Table 4 we see that the semibeta

model fits the data much better than the coskewness/cokurtosis model, with an average

R2 of 5.43% compared to 1.52%. Combining all six measures in a single model, as in the

bottom row of Table 4, we see the fit improves slightly, to 6.26%. The relatively high

contemporaneous correlation between the realized semibetas and the CSK and CKT

measures (see Appendix C) makes precise estimation of the magnitudes of the risk

premiums associated with each of the individual measures challenging. Nonetheless, the

regression reported in the last row of Table 4, which incorporates all six measures, shows

that the t-statistic associated with βN is by far the largest, followed by that of βM
−

,

supporting the idea that the priced non-Normal systematic risks is best captured by

these two semibetas.

Interestingly, joint tests that the semibeta coefficients, or the coskewness/cokurtosis

coefficients, are zero can be rejected at the 5% level in both cases. This indicates that

while coskewness and cokurtosis have substantially less explanatory power than the semi-

betas, as evidenced by the R2 values in the first and fourth rows of Table 4, they do contain

additional information not accounted for by the semibetas. This is perhaps unsurprising,

as coskewness and cokurtosis primarily capture information about the tails, and several

recent studies have argued that systematic tail risks appear to be priced differently from

more “normal” risks (see, e.g., Kelly and Jiang, 2014; Bollerslev, Li and Todorov, 2016;

Orlowski, Schneider and Trojani, 2019). By contrast, the semibetas rely on a simple de-

composition of the standard covariation with the market and “normal” systematic risks.

3.5. Longer Investment Horizons

The strong relationship between the daily realized semibetas and the cross-sectional

variation in the subsequent daily returns naturally raises the question of whether this

same predictive relationship carry over to longer investment horizons. To investigate

this, we rely on the identical day t realized semibetas and cross-sectional regression in

(6) in which we replace the left-hand-side daily returns with the cumulative returns from
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day t+ 1 to day t+h with h = 5 and h = 20, corresponding to a “week” and a “month,”

respectively.13 This effectively amounts to using the daily semibetas to predict multiple

daily returns, and the sum thereof, further into the future, and as such one might naturally

expect the longer horizon results to be weaker than the one-day-ahead return predictions.

Despite this, the results reported in Table 5 are consistent with the daily findings

reported above: the estimated risk premiums for βN and βM
−

are both highly statistically

significant, while neither βP nor βM
+

appear to be priced. When we test the restrictions

implied by the CAPM, given as HCAPM
0,t in equation (8), we are able to reject the null

at the 5% significance level for 65% and 62% of the weekly and monthly specifications

respectively. Thus even when aggregating returns to the monthly frequency, we are able

to reject this restriction for nearly two-thirds of the months in the sample. Testing

the symmetric pricing restriction, given as HSYM
0,t in equation (14), as also implied by

the up and downside beta pricing framework of Ang, Chen and Xing (2006a), we are

able to reject the null at the 5% level for 56.0% and 53.6% of the weekly and monthly

specifications. This is strong evidence in favor of the proposed semibeta model. Moreover,

the joint hypothesis that the risk premiums for βN and βM
−

are the same and that the

risk premiums for βP and βM
+

are both equal to zero, as stipulated by the HDOWN
0,t

hypothesis in equation (15), is rejected at the 5% level for 66% and 64% of the weekly

and monthly regressions, respectively.

Further corroborating the previous findings based on a shorter daily investment hori-

zon, both the weekly and the monthly λN and λM
−

estimates remain statistically sig-

nificant after including the same control variables as in Table 2. At the same time,

comparing the magnitudes of the risk premium estimates, the (annualized) monthly es-

timates are naturally smaller than the (annualized) weekly estimates, as the strength of

the predictability afforded by the daily semibetas diminishes with the return horizon.14

13We purposely rely on overlapping return windows and appropriately adjusted standard errors and
t-statistics to enhance the efficiency of our inference, but qualitatively similar findings are obtained with
non-overlapping return windows.

14Conversely, the pairwise correlations between the concordant (βN and βP) and discordant (βM
+
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Table 5: Weekly and Monthly Investment Horizons. The table reports the estimated annualized
risk premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional regressions for
predicting the future weekly (5-days) and monthly (20-days) returns. The daily semibetas are calculated
from fifteen-minute intraday data on the last day preceding the return window. All of the control variables
are measured prior to the daily returns. The estimates are based on all of the S&P 500 constituent stocks
and days in the January 1993 to December 2014 sample.

β βN βP βM
+

βM
−

ME BM MOM REV IVOL ILLIQ R2

Panel A: Weekly

4.69 2.37
3.72

14.58 0.96 5.20 -13.80 5.07
5.90 0.50 1.87 -3.71

10.85 -0.52 3.67 -13.58 -6.36 -1.94 0.08 -0.35 -1.06 -3.63 10.83
5.92 -0.38 1.76 -5.03 -7.50 -2.30 2.54 -4.39 -1.40 -5.77

Panel B: Monthly

2.93 1.90
2.71

8.70 1.67 3.51 -3.36 4.45
4.39 1.15 1.55 -1.30

4.42 -0.57 -0.65 -6.41 -4.89 -1.86 0.08 -0.25 0.98 -2.27 10.79
3.55 -0.58 -0.44 -3.34 -7.06 -2.58 2.64 -4.15 1.56 -4.60

4. Daily Data and Monthly Semibetas

The theory underlying the realized semibetas and the consistent estimation of the

latent priced covariation components formally hinges on the use of ever finer sampled

data, which motivates our analysis above based on high-frequency intraday data for the

estimation of daily realized semibetas. Meanwhile, reliable high-frequency data is only

available for a select set of stocks over a fairly recent sample period. In this section we

extend our previous analysis, and investigate monthly semibetas constructed from daily

data for a broader set of stocks over a longer sample period.

Specifically, we employ the CRSP daily database, expanding our sample period to

and βM
−

) semibetas generally increase with the horizon over which they are calculated; for additional
details see the Supplemental Appendix.
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Table 6: Monthly Fama-Macbeth Regressions on Semibetas. The table reports the estimated
annualized risk premia and Newey-West robust t-statistics from overlapping monthly Fama-MacBeth
cross-sectional predictive regressions. The monthly semibetas are calculated from daily data. All of the
control variables are measured on the day prior to the monthly returns. The estimates are based on all
of the common, non-penny, stocks in the CRSP data base from January 1963 to December 2017.

β βN βP βM
+

βM
−

ME BM MOM REV IVOL ILLIQ R2

4.10 2.36
3.77

10.43 1.40 4.15 -6.42 5.22
4.46 0.87 1.15 -2.03

8.66 -0.66 5.60 -14.09 -2.55 -0.47 0.06 10.70
3.56 -0.43 1.42 -3.72 -4.93 -0.40 2.14

6.59 -1.90 6.33 -15.59 -2.08 -0.75 0.07 -0.12 -1.60 2.40 13.38
2.85 -1.06 1.50 -3.82 -4.22 -0.66 2.61 -1.97 -1.48 2.44

January 1963 until December 2017, and include all common publicly traded stocks.15

Armed with this expanded data set, we then calculate monthly semibetas by replicating

the sums over the intraday returns in equation (2) with the corresponding sums over the

daily returns within the month. All in all, this provides us with 262,308 firm-month obser-

vations. We similarly calculate monthly up and downside betas, and monthly coskewness

and cokurtosis measures by replacing the intraday sums in equations (11), (16) and (17),

respectively, with the corresponding daily sums.

Putting these results further into perspective, it is well established that monthly

returns are generally closer to being Normally distributed than daily returns (see, e.g.,

Campbell, Lo and MacKinlay, 1997; Engle, 2011). At longer monthly investment horizons,

we are therefore less likely to find significant gains from the semibeta pricing framework,

as under Normality it collapses to the traditional CAPM. Moreover, the use of daily

returns in the estimation of monthly semibetas invariably blurs some of the asymmetric

dependencies captured by the daily realized semibetas. Table 6, however, shows that

the pricing relationships documented for the high-frequency-based daily semibetas are

15Specifically, we consider all stocks with CRSP codes 10 and 11. In line with previous work, we
remove all “penny stocks,” those with prices less than five dollars, to help alleviate biases arising from
price discreteness; see, e.g., Harris (1994) and Amihud (2002).
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also present in the monthly semibetas. In particular, in direct parallel to the second row

of Table 2, only the risk premiums for βN and βM
−

in the second row of Table 6 are

significant. Further, mirroring the earlier high-frequency-based results, the explanatory

power of the semibeta model is more than double that of the traditional CAPM reported

in the top row, with an average cross-sectional R2 of 5.22% compared with 2.36%.16 The

bottom two rows of Table 6 show that these results remain robust to the inclusion of the

same set of controls used in Section 3. In short, our finding of differing risk prices for

exposure to different semibetas is not specific to high-frequency data in a recent sample

period; it holds true more generally for a much larger sample of stocks over a much longer

sample period.

Table 7 additionally shows that the inclusion of the monthly up and downside betas

and the monthly coskewness and cokurtosis measures do not affect this conclusion. In

particular, consistent with Ang, Chen and Xing (2006a), the estimates in the second row

imply that only downside beta risk is priced. Meanwhile, the inclusion of the semibetas

in the cross-sectional regressions, reported in the third row of the table, renders the

estimated risk premiums for both β+ and β− insignificant.17 In line with the earlier

findings of Harvey and Siddique (2000) and others, the estimated risk premiums for the

monthly CSK and CKT measures, reported in the fourth row of Table 7, are also both

significant.18 Importantly, however, the inclusion of the semibetas, as in the last row of

Table 7, substantially increases the average monthly cross-sectional R2 from 1.69% to

6.49%. The estimated risk premiums for βN and βM
−

are also both strongly significant

in the cross-sectional regressions that include CSK and CKT.

16Tests of the restriction that the risk premiums associated with the four semibetas are indeed the
same, corresponding to the CAPM null hypothesis in equation (8), are rejected at the 5% level for 45%
of the 659 months in the sample.

17The higher correlations between the monthly semibetas and the monthly up and downside betas
result in less stable risk premium point estimates; summary statistics for the monthly betas and controls
are provided in Appendix C. Nonetheless, the restrictions in equation (14), corresponding to symmetric
pricing of semibetas, is rejected at the 5% level for 34% of the 659 monthly cross-sectional regressions,
and the restrictions in equation (15), corresponding to only downside beta risk being priced, is rejected
at the 5% level for 47% of the monthly regressions.

18The significance of the monthly CSK and CKT measures contrasts with the results in Table 4, and
the lack of significance of the corresponding high-frequency-based daily measures.
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Table 7: Monthly Fama-Macbeth Regressions and Other Measures. The table reports the
estimated annualized risk premia and Newey-West robust t-statistics from overlapping monthly Fama-
MacBeth cross-sectional predictive regressions. The monthly semibetas, up and downside betas, coskew-
ness and cokurtosis measures are calculated from daily data. The estimates are based on all of the
common, non-penny, stocks in the CRSP data base from January 1963 to December 2017.

βN βP βM
+

βM
−

β+ β− CSK CKT R2

10.43 1.40 4.15 -6.42 5.22
4.46 0.87 1.15 -2.03

1.06 3.16 3.42
1.61 3.74

12.37 2.90 2.41 -7.56 -6.64 -0.90 5.57
4.97 1.03 1.20 -2.48 -0.95 -0.28

5.00 1.98 1.69
2.81 2.57

18.11 -2.27 2.87 -12.09 12.10 -2.80 6.49
4.98 -1.04 0.81 -3.40 4.26 -3.43

The next section demonstrates how these cross-sectional pricing relations may used in

the formulation of superior investment strategies by betting on βN and betting against

βM
−

.

5. Betting On, and Against, Semibetas

In this section we investigate trading strategies based on betas and semibetas. In the

mean-semivariance framework, only βN and βM
−

are priced, with the former carrying a

positive risk premium and the latter a negative risk premium. Given this, we implement

a semibeta strategy by considering the performance of an equal-weighted combination of

“betting on βN” and “betting against βM
−

” portfolios. We also examine the performance

of each of these portfolios separately, as well as that of a long-short strategy based on

the traditional market beta.19

19The Supplemental Appendix contains additional results for a portfolio which takes long positions in
high βN stocks and short positions in high βM

−
stocks, and a portfolio based on long positions in low

βM
−

stocks and short positions in low βN stocks. The performance of these two additional betting on
and against semibeta portfolios are qualitatively similar to that of the semibeta portfolio presented here.
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To avoid the critiques of Novy-Marx and Velikov (2018), we form the long-short

portfolios using well-established methods. Firstly, we estimate betas and semibetas using

standard, if modern, methods from high frequency econometrics, as described in Section

2 above. We then take a value-weighted long position in the top quintile and a value-

weighted short position in the bottom quintile of stocks, rebalanced daily, to obtain zero-

cost portfolios. We rely on continuously-compounded, as opposed to arithmetic, returns

to facilitate the calculation of the cumulative portfolio returns over longer holding periods.

We restrict the sample of stocks to the constituents of the S&P 500 index, thus explicitly

excluding small, and potentially difficult to short micro-cap stocks. We use the popular

four-factor model of Fama and French (1993) and Carhart (1997) (FFC4) and the five-

factor model of Fama and French (2015) (FF5) to assess the risk-adjusted performance

of the portfolios and estimate the corresponding alphas.

The top panel of Table 8, reports the average returns, standard deviations and an-

nualized Sharpe ratios for the long-short portfolios. The average return on the semibeta

portfolio is nearly double that of the beta portfolio, while the volatility is just over half

that of the beta portfolio, combining to yield a Sharpe ratio of 1.05 compared with 0.30

for the traditional market beta portfolio.20 The latter two columns show that both the

long and the short leg of the semibeta portfolio contribute to this superior performance:

the βN portfolio generates much higher returns and comparable volatility to the stan-

dard beta portfolio, while the βM
−

portfolio generates somewhat higher returns with

much lower volatility.

The lower panel of Table 8 reports the estimated FFC4 and FF5 alphas and factor

loadings of the different portfolios. The traditional beta strategy generates an annualized

alpha of 4.17% according to the FF5 factor model, with a t-statistic of just 1.77. The

beta strategy generates no significant alpha according to the FFC4 factor model. In

contrast, the semibeta strategy, and both of its underlying components, generate large

20Identical rankings of the four portfolios are obtained when using the sample mean of the squared
demeaned negative daily returns in place of the daily sample variance in the calculation of downside
Sharpe type ratios. Further details of these additional results are available in the Supplemental Appendix.
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Table 8: Betting On and Against Semibetas. The top panel reports annualized descriptive statistics
of the betting on and against (semi)beta strategies. All of the portfolios are self-financing based on value-
weighted long-short positions rebalanced daily. The bottom panel reports the time-series regression
estimates and Newey-West robust t-statistics for the FFC4 and FF5 factor models, along with the
corresponding alphas in annualized percentage terms. The estimates are based on all of the S&P 500
constituent stocks and days in the 1993-2014 sample.

β Semi β βN βM
−

Avg ret 4.98 9.76 10.98 7.66
Std dev 16.57 9.30 16.89 8.00
Sharpe 0.30 1.05 0.65 0.96

α 2.19 4.17 8.35 9.68 8.05 10.62 7.76 7.88
0.87 1.77 6.32 7.38 3.36 4.58 4.17 4.19

βMKT 0.59 0.51 0.30 0.25 0.61 0.52 -0.02 -0.03
67.61 55.78 64.70 47.90 73.15 56.89 -2.34 -3.44

βSMB 0.30 0.12 0.30 0.21 0.40 0.22 0.20 0.20
18.10 7.36 33.91 22.61 25.00 13.49 16.08 14.98

βHML -0.02 0.18 -0.01 0.11 -0.08 0.13 0.05 0.08
-1.24 10.58 -1.61 11.10 -4.75 7.57 3.82 6.08

βMOM -0.24 -0.14 -0.22 -0.07
-19.53 -22.46 -19.01 -7.31

βRMW -0.50 -0.28 -0.53 -0.04
-22.15 -22.56 -23.70 -2.28

βCMA -0.35 -0.28 -0.44 -0.13
-13.21 -19.09 -16.74 -5.95

R2 58.15 60.26 55.92 59.55 60.59 64.38 6.72 7.42

and significant alphas, according to both the FFC4 and FF5 factor models. Annualized

alphas range from 7.76% to 10.62%, with the corresponding t-statistics between 3.36 and

7.38.21 These alphas will, of course, be reduced when accounting for transactions costs,

21The inclusion of a betting against beta (BAB) factor in the FF3 model results in an even larger
alpha of 10.39% for the Semi β strategy, with a corresponding t-statistic of 8.44. To guard against
potential biases in the unconditional alphas arising from temporal variation in conditional betas (see,
e.g., Jagannathan and Wang (1996) and Lewellen and Nagel (2006)), we also calculate conditional al-
phas following the approach of Cederburgh and O’Doherty (2016) (cf. Section II.B). The same general
conclusions remain true: the semibeta portfolios result in highly significant positive conditional alphas,
while the conditional alphas for the standard beta portfolios are always insignificant. The magnitudes
of the average conditional alphas for the Semi β and βN portfolios are also very similar to the values
reported in Table 8, while the average conditional alphas for the βM

−
portfolios are marginally lower.

Further details of these additional results are available in the Supplemental Appendix.
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and we analyze this in more detail below.

Looking at the estimated factor loadings, the conventional long-short β portfolio and

the βN portfolio exhibit fairly similar FFC4 and FF5 systematic risk exposures. Mean-

while, the estimated factor loadings for the βM
−

portfolio are markedly different. In

contrast to the other portfolios, the βM
−

portfolio is close to market neutral. The FFC4

estimates further suggest that the portfolio contains a higher proportion of value stocks

than the other portfolios, while the FF5 estimates point to decidedly lower exposures

to the profitability and investment factors than any of the other portfolios. The com-

bined semi β strategy naturally reflects these different risk profiles of the βN and βM
−

portfolios.22

5.1. Betting On the Competition

To further buttress the superiority of the semibeta portfolio, Table 9 reports the re-

sults from analogously constructed up and downside beta, and coskewness and cokurtosis

portfolios. Given the pertinent discussion in Ang, Chen and Xing (2006a) and Harvey

and Siddique (2000), we consider value-weighted long-short positions based on the top

and bottom quintiles betting on β−, against β+, against CSK, and on CKT . In parallel

to the semibeta portfolios discussed above, we also consider equal-weighted combinations

of the two respective pairs of measures, denoted “β− − β+” and “CKT − CSK” in the

table.23

The top panel reveals that only the β− and the combined up and downside beta

portfolios have Sharpe ratios in excess of the conventional beta sorted portfolio, equal to

22To further explore these differences in risk profiles, we also calculated industry concentrations. The β
and βN portfolios again appear fairly similar along that dimension. Most noticeably, the βM

−
portfolio

on average invest less in HiTech firms and more in Non-durables than the other two portfolios. Moreover,
it is generally less concentrated with lower overall industry exposures. Further details are available in
the Supplemental Appendix.

23Ang, Chen and Xing (2006a) note that β+ tends to be positively correlated with β, leading to an
ambiguous prediction for the sign of the relationship between β+ and expected returns. To overcome
this, they suggest sorting on the “relative” β+, defined as β − β+. We also implemented this approach
and found that the resulting portfolio did indeed have a higher Sharpe ratio than the portfolio based
solely on β+. However, the FFC4 and FF5 alphas were small and statistically insignificant. We omit
these results in the interests of space.

32



0.54 and 0.48, respectively, compared to 0.30 for the traditional beta portfolio. The β+

and the CSK and CKT portfolios all have small, or even negative Sharpe ratios. Even

the two highest Sharpe ratios, however, are substantially below those for the various

semibeta-based strategies, presented in Table 8, which range from 0.65 to 1.05.

The lower panel of Table 9 further shows that the FFC4 and FF5 alphas for the CSK

and CKT portfolios are all small and statistically insignificant. Only the β− portfolio

and the combined β− − β+ portfolio result in significant alphas, ranging from 2.56% to

6.80%, with t-statistics between 1.90 and 2.76. As one might expect, the estimated risk

exposures for the β− portfolio are fairly similar to the estimates for the semibeta portfolio

reported in Table 8. However, in spite of these similarities in risk profiles, the annualized

FFC4 and FF5 alphas for the combined semibeta portfolio are both larger and much more

strongly significant than the alphas for the β− portfolio, again highlighting the superior

performance of the betting on and against semibeta strategy.

5.2. Longer Holding Periods

The daily rebalancing of the long-short (semi)beta strategies considered in Table 8

may be difficult to implement in practice. Instead, we now consider the performance of

the same portfolio strategies based on less frequent weekly and monthly rebalancing, or

equivalently longer weekly and monthly holding periods.

Table 10, in particular, shows that moving to weekly rebalancing badly affects the

traditional beta strategy, with the the Sharpe ratio falling markedly from 0.30 to 0.08.

Moreover, the FF5 alpha that was borderline significant with daily rebalancing becomes

small and insignificant. By contrast, the semibeta strategy reported in the second set

of columns continues to outperform. The semibeta Sharpe ratio does fall from 1.05 to

0.63, and the annualized alphas are also somewhat lower than the alphas obtained with

more frequent daily rebalacing. However, both the FFC4 and FF5 alphas remain strongly

significant, with t-statistics of 3.45 and 4.35, respectively.

Table 11 presents the corresponding results based on even less frequent monthly port-
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Table 10: Betting On and Against Semibetas, Weekly Rebalancing. The top panel reports
annualized descriptive statistics of the betting on and against (semi)beta strategies. All of the portfolios
are self-financing based on value-weighted long-short positions rebalanced weekly. The bottom panel
reports the time-series regression estimates and Newey-West robust t-statistics for the FFC4 and FF5
factor models, along with the corresponding alphas in annualized percentage terms. The estimates are
based on all of the S&P 500 constituent stocks and days in the 1993-2014 sample.

β Semi β βN βM
−

Avg ret 1.18 5.47 7.76 2.40
Std dev 15.30 8.64 15.50 7.52
Sharpe 0.08 0.63 0.50 0.32

α -1.11 0.71 4.37 5.66 5.54 7.71 2.40 2.84
-0.46 0.31 3.45 4.35 2.52 3.46 1.46 1.72

βMKT 0.52 0.44 0.25 0.20 0.51 0.43 -0.02 -0.04
60.65 48.93 55.60 38.70 66.56 49.31 -3.40 -5.54

βSMB 0.30 0.13 0.30 0.22 0.39 0.23 0.21 0.21
18.43 7.83 35.58 23.57 26.64 14.41 19.12 17.76

βHML -0.08 0.08 -0.06 0.02 -0.12 0.05 0.00 -0.01
-4.68 4.54 -7.02 2.26 -8.05 2.96 -0.10 -0.55

βMOM -0.20 -0.11 -0.20 -0.01
-17.14 -17.93 -19.12 -1.85

βRMW -0.47 -0.26 -0.48 -0.05
-21.38 -21.18 -22.57 -3.05

βCMA -0.26 -0.22 -0.35 -0.08
-9.80 -14.89 -14.07 -4.48

R2 51.93 54.10 47.31 51.03 53.19 56.27 7.21 8.44

folio rebalancing. The Sharpe ratio for the traditional beta strategy falls even further to

-0.04, and the corresponding FFC4 and FF5 alphas are both negative, albeit not statisti-

cally significantly so. The semibeta portfolio, on the other hand, retains its appeal. The

Sharpe ratio of 0.48 is obviously lower than the ratios obtained with daily and weekly re-

balancing, and the annualized alphas are also both less than the daily and weekly alphas.

Still, both of the alphas remain statistically significant, consistent with the analysis in

Section 3.5, and the relationship between semibetas and expected returns holding true

at daily, weekly, and monthly horizons.
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Table 11: Betting On and Against Semibetas, Monthly Rebalancing. The top panel reports
annualized descriptive statistics of the betting on and against (semi)beta strategies. All of the portfolios
are self-financing based on value-weighted long-short positions rebalanced monthly. The bottom panel
reports the time-series regression estimates and Newey-West robust t-statistics for the FFC4 and FF5
factor models, along with the corresponding alphas in annualized percentage terms. The estimates are
based on all of the S&P 500 constituent stocks and days in the 1993-2014 sample.

β Semi β βN βM
−

Avg ret -0.64 4.04 3.10 4.33
Std dev 14.43 8.39 14.72 7.18
Sharpe -0.04 0.48 0.21 0.60

α -2.48 -1.34 2.96 4.22 1.17 2.85 4.09 4.94
-1.17 -0.64 2.30 3.24 0.55 1.34 2.83 3.42

βMKT 0.46 0.41 0.23 0.19 0.46 0.39 0.00 -0.02
62.38 50.99 51.68 36.54 62.55 47.54 0.90 -4.01

βSMB 0.26 0.11 0.31 0.23 0.38 0.23 0.24 0.23
18.67 7.27 36.10 24.59 26.93 14.85 25.18 22.62

βHML -0.08 0.05 -0.06 0.01 -0.08 0.08 -0.04 -0.06
-5.79 3.22 -6.46 1.06 -5.48 5.15 -3.64 -5.76

βMOM -0.21 -0.10 -0.22 0.02
-20.65 -16.43 -21.44 2.22

βRMW -0.42 -0.26 -0.45 -0.08
-21.18 -21.10 -21.89 -5.86

βCMA -0.17 -0.19 -0.30 -0.08
-7.03 -12.88 -12.57 -4.91

R2 49.21 49.52 46.76 50.29 50.83 52.42 11.71 13.32

5.3. Transaction Costs

The results above pertaining to the profitability of the betting on and against semibeta

strategy did not take into account the cost of actually implementing the portfolio posi-

tions. Such costs are clearly of practical importance. Hence, in this section we explicitly

consider the impact of transaction costs.

To better replicate empirical practice we focus on the semibeta portfolio with monthly

rebalancing. In parallel to existing work (e.g., Han, 2006; DeMiguel, Garlappi and Uppal,

2009; Liu, 2009), we assume that the transaction costs are proportional to the turnover of

the portfolio, with the portfolio turnover computed simply as the sum of the turnover of
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the long and short legs of the portfolio. Consistent with the total roundtrip transaction

cost estimates for large U.S. stocks reported in the literature (see, e.g., the estimates in

Novy-Marx and Velikov, 2016), we consider costs of 0.5% and 1%, with 1% providing a

conservative upper bound.

Rather than simply trading all the way to the positions that would be “optimal” in the

absence of transaction costs, several practically-oriented procedures have been developed

in the literature to help mitigate trading costs (e.g., Bertsimas and Lo, 1998; Engle and

Ferstenberg, 2007; Obizhaeva and Wang, 2013). These procedures are typically geared

towards the specific setting and strategy at hand and can be difficult to realistically

implement. Instead, we follow the simple-to-implement idea of Garleanu and Pedersen

(2013) of only partially adjusting the portfolio weights each period.

Specifically, let ωFt denote the vector of (fully-adjusted) semibeta portfolio weights in

month t. The partially-adjusted portfolio weights for month t are then obtained as:24

ωPt = λωPt−1 + (1− λ)ωFt , (18)

where the scalar parameter 0 < λ < 1 governs the speed of adjustment. While such a

partial-adjustment approach will help mitigate turnover, it will generally also dampen the

signal. As such, the benefits will depend in a complicated way on the interaction between

the particular strategy and the transaction costs that are incurred, and the best choice of

λ must be determined on a case-by-case basis. We will not attempt to do so here. Instead,

in line with similar uses of moving average filters in other situations, volatility estimation

included, we simply set λ = 0.95 and initialize the weights by setting ωP1 ≡ ωF1 .25

Table 12 summarizes the performance of the resulting partially adjusted semibeta

24This same approach has also recently been implemented by Bollerslev, Hood, Huss and Pedersen
(2018). Garleanu and Pedersen (2013) further suggest changing the “target portfolio” to one that is
part-way between the currently fully-adjusted optimal portfolio and the best estimate of next period’s
optimal portfolio. We have not attempted to implement this additional refinement here.

25The Supplemental Appendix contains additional results for alternative choices of λ, further high-
lighting the trade-off in signal retention and transaction cost reduction. It also contains additional results
for alternative, more involved, procedures based on smoothing the semibeta estimates.
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Table 12: Betting On and Against Semibetas with Transaction Costs. The top panel reports
annualized descriptive statistics for the semibeta portfolios. The bottom panel reports the time-series
regression estimates and Newey-West robust t-statistics for the FFC4 and FF5 factor models, along with
the corresponding alphas in annualized percentage terms. All of the portfolios are self-financing based on
value-weighted long-short positions determined by the combined semibeta strategy rebalanced monthly.
T-cost refers to the roundtrip transaction costs. The left panel is identical to the second panel in Table
11 and fully adjusted portfolio weights. The right three panels report the results based on partially-
adjusted portfolio weights, as discussed in the main text. The estimates are based on all of the S&P 500
constituent stocks and days in the 1993-2014 sample.

T-cost 0% 0% 0.5% 1.0%
Adjustment Full Partial Partial Partial

Avg ret 4.04 4.62 4.32 4.02
Std dev 8.39 7.77 7.77 7.77
Sharpe 0.48 0.59 0.56 0.52

α 2.96 4.22 3.09 5.31 2.79 5.01 2.49 4.71
2.30 3.24 3.05 5.33 2.76 5.03 2.46 4.72

βMKT 0.23 0.19 0.25 0.17 0.25 0.17 0.25 0.17
51.68 36.54 69.25 44.87 69.23 44.85 69.18 44.81

βSMB 0.31 0.23 0.27 0.20 0.27 0.20 0.27 0.20
36.10 24.59 40.61 27.95 40.58 27.93 40.54 27.89

βHML -0.06 0.01 -0.13 -0.11 -0.13 -0.11 -0.13 -0.11
-6.46 1.06 -18.72 -14.51 -18.69 -14.49 -18.66 -14.46

βMOM -0.10 0.01 0.01 0.01
-16.43 2.59 2.59 2.59

βRMW -0.26 -0.26 -0.26 -0.26
-21.10 -27.01 -27.01 -27.00

βCMA -0.19 -0.20 -0.20 -0.20
-12.88 -18.16 -18.15 -18.13

R2 46.76 50.29 52.20 58.90 52.19 58.90 52.16 58.87

portfolios. For ease of comparison, the left-most panel presents the results using fully-

adjusted portfolio weights with zero transaction costs, corresponding to the second panel

in Table 11. The second panel in Table 12 presents the results for the partially-adjusted

portfolio also in the absence of transaction costs. As the numbers show, partial adjust-

ment of the weights slightly improves the performance, even before transaction costs: the

average return is slightly higher, the volatility is slightly lower, leading to an increase in

the Sharpe ratio from 0.48 to 0.59. Likewise, the FFC4 and FF5 alphas are both slightly
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Figure 3: Cumulative Returns for Beta and Semibeta Long-Short Portfolio Strategies. The
figure plots the cumulative percentage returns of long-short strategies based on beta and semibeta sorted
value-weighted quintile portfolios. The shaded region represents NBER recession periods. The beta
estimates and portfolio returns are based on all of the S&P 500 constituent stocks and days in the
1993-2014 sample.
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higher for the portfolio based on partially-adjusted weights. Thus, the partial adjustment

not only reduces turnover, it also appears to reduce the “noise” in the semibeta estimates,

thereby strengthening the signal, in turn resulting in an overall slightly better performing

semibeta portfolio.

The results in the third and fourth panels show the results for the same partially-

adjusted semibeta portfolio subject to round-trip transaction costs of 0.5% and 1%, re-

spectively.26 The addition of transaction costs naturally lowers the average returns and

Sharpe ratios. However, even with 1.0% roundtrip transaction costs, the Sharpe ratio of

the partially-adjusted semibeta portfolio remains as high as 0.52. The FFC4 and FF5

alphas are also both economically large and statistically significant, with t-statistics of

2.46 and 4.72, respectively.

26The fully-adjusted semibeta portfolio performs very poorly in the presence of non-trivial transaction
costs. With round-trip transaction costs of 1.0%, in particular, the Sharpe ratio equals -0.93, while the
FFC4 and FF5 alphas equal -9.56% and -8.26%, respectively. Further details pertaining to this and other
portfolios and transaction cost assumptions are presented in the Supplemental Appendix.
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To visualize the timing of the returns, and more clearly contrast the performance of

the semibeta strategy with the returns based on a traditional long-short beta strategy,

Figure 3 plots the cumulative returns from both, where in both cases we rely on the

partially-adjusted portfolio weights. The solid lines depict the cumulative returns ignoring

transaction costs. The dashed lines show the returns that incorporate 1.0% roundtrip

transaction costs. As the figure shows, the semibeta strategy performs well throughout

most of the sample period, resulting in quite high cumulative returns at the end of

the sample, even after incorporating 1% transaction costs. By contrast, and consistent

with the idea of “betting against beta” advocated by Frazzini and Pedersen (2014),

the traditional beta strategy performs poorly over much of the sample period, resulting

in negative cumulative returns by the end of the sample, even without incorporating

transaction costs.

6. Conclusion

We propose a new additive decomposition of the traditional market beta into four

semibetas defined by the signed covariation between the market and individual asset

returns: β = βN + βP − βM+ − βM− . Consistent with the implications from a setup in

which investors only care about downside risk, we find that only the two semibetas asso-

ciated with negative market return variation are priced. At the same time, we strongly

reject that the risk premiums for βN and −βM− are the same, as is implied by a tra-

ditional downside beta model. We attribute this difference to arbitrage risk driving a

wedge between the compensation for long versus short positions.

The results from a variety of specifications and empirical analyzes, involving different

sampling frequencies, prediction horizons and a long list of additional controls, reveal that

the annualized risk premium for βN is around 23%, while the annualized risk premium

for βM
−

is around -9%. By comparison the risk premium for the traditional market

β is around 4%. We further establish that simple trading strategies that bet on βN

and against βM
−

leads to Sharpe ratios that are more than double that of the market.
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Accounting for transaction costs, these same long-short semibeta strategies continue to

produce economically large and strongly statistically significant risk adjusted alphas.

In conclusion: do not bet on or against beta, bet on and against the “right” semibetas.
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Appendix A. Asymmetric Dependencies

To help gauge whether the semibetas convey potentially useful additional informa-

tion about asymmetric dependencies, it is instructive to compare the realized semibeta

estimates to the limiting values that would obtain if the individual stock and aggregate

market returns were jointly Normally distributed.

To that end, Figure A.1 reports the differences between the observed realized semi-

betas and the theoretical values that would hold under joint Normality, with positive

values indicating greater correlation than under Normality. To facilitate the interpreta-

tion and more clearly highlight the differences, we report the results as a function of the

daily realized correlations, averaged across all of the stocks and days in the sample.27

The top panel reveals that realized negative semibetas are generally higher than they

would be if returns were jointly Normally distributed, particularly for relatively highly

correlated assets (e.g., for correlations between 0.4 and 0.9), where the confidence interval

clearly excludes zero. Similarly, the realized positive semibetas are lower than would be

expected under joint Normality. For the discordant semibetas, we find a similar story:

βM− is significantly larger (in magnitude) than would be expected under joint Normality,

particularly for negatively correlated assets, while the opposite is true for βM+. Taken

together, these findings are consistent with the stylized fact that asset return dependence

is stronger in downturns than upturns.

27More specifically, for each day and stock in the sample, we standardize all of the intraday returns
to have unit daily variance. We then compute the daily realized covariance (correlation) and the four
semibetas, averaging the estimates within correlation bins of width 0.01. Finally, we use a spline to
smooth the differences from their implied Gaussian values.
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Figure A.1: Asymmetric Dependencies The figure plots the deviations of the daily realized semibetas
from their Gaussian limits as a function of the daily correlations between the individual stocks and the
market, along with pointwise 99% confidence intervals. The estimates are averaged across all of the S&P
500 constituent stocks and days in the January 1993 to December 2014 sample.
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Appendix B. Additional Control Variables

� Size (ME). Following Fama and French (1993), a firm’s size is measured by its

market value of equity: the product of closing price and the number of shares

outstanding. Market equity is updated daily, we use its natural logarithm to reduce

skewness.

� Book-to-Market (BM). Following Fama and French (1992), Book-to-Market is com-

puted in June of year t, as the ratio of book value of common equity in fiscal year

t− 1 to the market value of equity in December of year t− 1. Book value of equity

is defined as book value of stockholder’ equity (SEQ), plus balance-sheet deferred

taxes (TXDB) and investment tax credit (ITCB, if available), minus book value of

preferred stock (PSTK).

� Momentum (MOM). Following Jegadeesh and Titman (1993), momentum is the

compound gross return from day t − 252 through day t − 21; i.e. skipping the

short-term reversal month. The measure is computed only if a minimum of 100

days is available.

� Reversal (REV). As in Jegadeesh (1990) and Lehmann (1990), the short-term re-

versal is the return on days t− 20 to t− 1.

� Idiosyncratic Volatility (IVOL). Following Ang, Hodrick, Xing and Zhang (2006b),

this is calculated as the daily updated standard deviation of the day t− 20 to t− 1

residuals from the daily return regression:

rt,i − rft = αi + βi(ft − rft,i) + γiSMBt,i + φiHMLt,i + εt,i,

where rt,i and ft denote the daily stock and market return, rft denotes the risk free

rate, and SMBt,i and HMLt,i denote the daily size and value factors for stock i.
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� Illiquidity (ILLIQ). Following Amihud (2002), illiquidity for stock i is defined as:

ILLIQt,i =
1

20

20∑
j=1

(
|rt−j,i|

volumet−j,i × pricet−j,i

)

We take the natural logarithm to reduce the skewness and the impact of outliers.

� Turnover (TO). Following Kumar (2009), we calculate turnover as the previous

day’s volume divided by shares outstanding.
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Appendix C. Summary Statistics

Table C.1: Descriptive Statistics TAQ Sample. Panel A reports the time series averages of the

cross-sectional means, medians and standard deviations. Panel B reports the time series averages of

the cross-sectional correlations. The daily realized semibetas, up and donwside betas, coskewness and

cokurtosis measures are all constructed from fifteen minutes intraday returns. The sample consists of all

S&P 500 constituent stocks from January 1993 to December 2014.

Panel A: Cross-Sectional Summary Statistics

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV IVOL ILLIQ

Mean 0.92 0.72 0.68 0.27 0.25 0.92 0.90 0.00 1.40 15.51 0.50 17.58 1.46 1.63 -16.94

Median 0.83 0.61 0.57 0.16 0.15 0.81 0.80 0.00 1.48 15.51 0.42 11.79 1.09 1.38 -17.06

StDev 1.06 0.49 0.47 0.36 0.34 1.32 1.40 0.40 1.28 1.34 1.09 43.05 9.90 1.01 1.61

Panel B: Cross-Sectional Correlations

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV IVOL ILLIQ

β 1.00 0.67 0.66 -0.33 -0.33 0.78 0.77 0.00 0.65 0.05 -0.02 0.04 -0.01 0.13 -0.06

βP 1.00 0.44 0.06 0.18 0.82 0.29 0.30 0.32 -0.12 -0.03 0.02 0.04 0.34 0.10

βN 1.00 0.19 0.06 0.28 0.82 -0.30 0.32 -0.13 -0.03 0.02 -0.08 0.36 0.10

βM
+

1.00 0.38 -0.49 -0.05 -0.16 -0.41 -0.29 -0.01 -0.03 -0.08 0.36 0.26

βM
−

1.00 -0.05 -0.49 0.16 -0.41 -0.27 -0.01 -0.03 0.04 0.34 0.26

β+ 1.00 0.29 0.33 0.49 0.05 -0.02 0.03 0.07 0.11 -0.05

β− 1.00 -0.34 0.49 0.03 -0.02 0.03 -0.09 0.12 -0.05

CSK 1.00 -0.01 0.00 0.00 -0.01 0.02 0.00 0.00

CKT 1.00 0.22 -0.03 0.03 0.00 -0.12 -0.20

ME 1.00 -0.09 0.07 0.03 -0.35 -0.88

BM 1.00 -0.03 0.00 -0.05 0.09

MOM 1.00 0.03 0.00 -0.11

REV 1.00 0.06 -0.03

IVOL 1.00 0.27

ILLIQ 1.00
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Table C.2: Descriptive Statistics CRSP Sample. Panel A reports the time series averages of the

cross-sectional means, medians and standard deviations. Panel B reports the time series averages of

the cross-sectional correlations. The daily realized semibetas, up and donwside betas, coskewness and

cokurtosis measures are all constructed from fifteen minutes intraday returns. The sample consists of all

of the common, non-penny, stocks in the CRSP database from January 1963 to December 2017.

Panel A: Cross-Sectional Summary Statistics

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV IVOL ILLIQ

Mean 0.98 0.75 0.60 0.21 0.16 1.00 0.96 -0.03 1.28 14.23 0.73 15.00 1.46 1.51 -3.26

Median 0.91 0.67 0.54 0.15 0.10 0.90 0.90 -0.03 1.34 14.15 0.66 11.11 0.99 1.32 -3.27

StDev 0.75 0.45 0.35 0.20 0.17 0.96 1.06 0.29 0.82 1.32 0.49 31.97 8.61 0.81 0.79

Panel B: Cross-Sectional Correlations

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV IVOL ILLIQ

β 1.00 0.79 0.72 -0.30 -0.29 0.83 0.75 0.04 0.65 0.01 -0.08 0.06 -0.01 0.27 0.27

βP 1.00 0.43 -0.08 0.06 0.92 0.34 0.30 0.39 -0.08 -0.08 0.05 -0.04 0.48 0.39

βN 1.00 0.09 -0.09 0.34 0.90 -0.28 0.41 -0.11 -0.08 0.05 0.02 0.44 0.40

βM
+

1.00 0.23 -0.46 -0.02 -0.13 -0.44 -0.26 -0.01 -0.01 -0.01 0.48 0.35

βM
−

1.00 -0.04 -0.50 0.12 -0.44 -0.22 0.01 -0.01 -0.03 0.46 0.30

β+ 1.00 0.31 0.31 0.52 0.03 -0.06 0.05 -0.04 0.24 0.21

β− 1.00 -0.30 0.54 0.00 -0.07 0.05 0.03 0.18 0.22

CSK 1.00 0.03 0.01 -0.01 -0.02 -0.03 -0.01 0.00

CKT 1.00 0.23 -0.06 0.04 0.01 -0.22 -0.12

ME 1.00 -0.22 0.07 0.02 -0.36 -0.59

BM 1.00 0.00 0.01 -0.04 0.14

MOM 1.00 -0.01 0.00 -0.18

REV 1.00 -0.03 -0.09

IVOL 1.00 0.64

ILLIQ 1.00
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