
Supplemental Appendix to:

Realized SemiCovariances: Looking for Signs of

Direction Inside the Covariance Matrix

This version: September 22, 2017

Tim Bollerslev, Andrew Patton and Rogier Quaedvlieg

This supplemental appendix contains additional, more detailed, simulation and

empirical results for Bollerslev, Patton, and Quaedvlieg (2017).

• Section S1 expands on the simulation results in Section 2.3, by providing

rejection rates for additional parameter choices, as well as simulations which

incorporate a diurnal pattern in the spot-volatility. In addition to the more

detailed results for the test of P = N , we also provide additional results

pertaining to the test of M+ =M−.

• Section S2 elaborates on the test results in Section 3.2, by providing an

expanded list of events associated with high rejection rates. It also further

compares the statistical tests for equality between semicovariances to other

existing high-frequency measures and tests.

• Section S3 expands on the results in Section 3.3, by providing additional

summary statistics and test results related to the time-series dynamics of

the various semicovariance components.

• Section S4 expands on the results in Section 3.4, by providing more de-

tailed univariate portfolio forecasting results, as well as results pertaining to

multivariate covariance matrix forecasting.
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S1. Additional Simulation Results

This section contains a number of additional simulation results. Table S.1

expands on Table 1 in the main text, by including additional values of m and

ρ. Table S.2 provides the same results for the test of M+ = M−. Table S.3

presents simulations under the null in the presence of time-varying spot volatility

as captured by a diurnal pattern, defined as

ςu = C + Ae−au +Be−b(1−u), (S1.1)

where, following Andersen, Dobrev, and Schaumburg (2012), we set the periodicity

parameters to A = 0.75, B = 0.25, C = 0.88929198, and a = b = 10, respectively.

The results in Tables S.1 and S.3 are in line with those in the main text.

The additional sampling frequency, m = 390, exhibits more accurate size and

more powerful tests. Time-varying spot-volatility has no real impact on the finite-

sample properties of the test, as indeed, it does not violate any assumptions of

the theory.

Table S.2 presents additional results for M+ = M−, where the estimator of

the asymptotic variance is again based on (23), and denoted π̃. The results are

qualitatively similar to those of the tests for P = N , with overall accurate size and

good power. The main difference is evident for small sample sizes: whereas the

properties of the test for P = N improve when the correlation increases, the prop-

erties of the test forM+ =M− slightly worsen, which is most evident for m = 26

at the 1% level. The intuition is straightforward; when the correlation is high more

observations fall within the concordant quadrants, and P and N can be estimated

more precisely, while the opposite holds for the mixed-sign semicovariances which

are increasingly imprecise for high correlations.
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Table S.1: Additional Simulation Results for Testing P = N

m ρ π(m) π
(m)
Tr

10% 5% 1% 10% 5% 1%
H0

390 0 0.100 0.047 0.010 0.118 0.061 0.012
390 0.5 0.104 0.054 0.010 0.138 0.076 0.022
390 0.7 0.100 0.052 0.010 0.137 0.080 0.023

78 0 0.108 0.053 0.009 0.130 0.070 0.018
78 0.5 0.099 0.048 0.009 0.153 0.092 0.028
78 0.7 0.104 0.052 0.009 0.159 0.097 0.028

26 0 0.116 0.052 0.006 0.144 0.083 0.027
26 0.5 0.116 0.056 0.010 0.180 0.113 0.046
26 0.7 0.114 0.058 0.010 0.181 0.115 0.047

HA: Cojumps

390 0 0.000 0.000 0.000 0.999 0.999 0.998
390 0.5 0.000 0.000 0.000 0.999 0.998 0.997
390 0.7 0.000 0.000 0.000 0.998 0.997 0.995

78 0 0.001 0.001 0.000 0.992 0.990 0.984
78 0.5 0.006 0.001 0.000 0.973 0.962 0.928
78 0.7 0.009 0.002 0.000 0.953 0.939 0.893

26 0 0.010 0.003 0.000 0.936 0.920 0.885
26 0.5 0.028 0.008 0.001 0.848 0.807 0.722
26 0.7 0.034 0.010 0.002 0.802 0.753 0.652

HA: Asymmetric Correlations

390 0 0.964 0.933 0.810 0.970 0.939 0.829
390 0.5 0.931 0.874 0.697 0.942 0.897 0.757
390 0.7 0.909 0.850 0.656 0.933 0.890 0.743

78 0 0.960 0.920 0.755 0.960 0.925 0.782
78 0.5 0.915 0.855 0.644 0.934 0.887 0.725
78 0.7 0.900 0.826 0.602 0.922 0.870 0.702

26 0 0.944 0.870 0.553 0.944 0.877 0.584
26 0.5 0.898 0.804 0.493 0.914 0.838 0.557
26 0.7 0.880 0.781 0.478 0.903 0.820 0.549

Note: The table reports the rejection frequencies for testing the “daily” P = N based

on 10,000 replications. The π(m) and π
(m)
Tr versions of the tests rely on the standard

and truncated variance for normalizing the difference. The data are generated from a
continuous price process dPu = σudWu aggregated to the one, five, and fifteen “minute”
frequency, corresponding to m = 390, m = 78, and m = 26 observation per “day.” The
H0 hypothesis postulates a constant spot covariance matrix, σuσ′u ≡ [(1− ρ)I2 + ρJ′2]

for all u. The first HA alternative add cojumps of random size N(8/
√

78, 2/
√

78) at a
single random time each “day.” The second HA alternative have dynamically varying
spot correlations, determined by [(1 − (ρ + 0.05))I2 + (ρ + 0.05)J2] if Wu,1 < 0, and
[(1− (ρ− 0.05))I2 + (ρ− 0.05)J2] if Wu,1 > 0.
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Table S.2: Additional Simulation Results for Testing M+ =M−

m ρ π̃(m) π̃
(m)
Tr

10% 5% 1% 10% 5% 1%
H0

390 0 0.099 0.049 0.009 0.113 0.059 0.014
390 0.5 0.099 0.048 0.010 0.100 0.049 0.009
390 0.7 0.102 0.051 0.010 0.100 0.051 0.010

78 0 0.108 0.049 0.008 0.125 0.070 0.017
78 0.5 0.104 0.047 0.005 0.108 0.051 0.008
78 0.7 0.105 0.045 0.005 0.109 0.047 0.005

26 0 0.116 0.055 0.007 0.142 0.076 0.026
26 0.5 0.116 0.042 0.003 0.118 0.047 0.005
26 0.7 0.096 0.030 0.001 0.099 0.031 0.001

HA: Cojumps

390 0 0.101 0.050 0.009 0.111 0.057 0.012
390 0.5 0.100 0.052 0.009 0.103 0.052 0.009
390 0.7 0.104 0.050 0.009 0.106 0.053 0.010

78 0 0.107 0.051 0.009 0.116 0.059 0.012
78 0.5 0.106 0.050 0.006 0.108 0.050 0.007
78 0.7 0.102 0.045 0.005 0.110 0.050 0.007

26 0 0.123 0.054 0.008 0.128 0.064 0.014
26 0.5 0.107 0.040 0.003 0.110 0.040 0.004
26 0.7 0.089 0.028 0.002 0.102 0.033 0.002

HA: Asymmetric Correlations

390 0 0.965 0.935 0.806 0.971 0.941 0.837
390 0.5 0.995 0.987 0.939 0.995 0.988 0.945
390 0.7 0.999 0.997 0.985 0.999 0.997 0.984

78 0 0.959 0.921 0.751 0.964 0.928 0.786
78 0.5 0.992 0.976 0.884 0.991 0.978 0.894
78 0.7 0.998 0.994 0.944 0.999 0.995 0.945

26 0 0.943 0.866 0.549 0.950 0.882 0.586
26 0.5 0.979 0.922 0.602 0.978 0.927 0.621
26 0.7 0.986 0.939 0.655 0.989 0.945 0.656

Note: The table reports the rejection frequencies for testing the “daily” M+ = M−
based on 10,000 replications. See Table S.1 for details.
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Table S.3: Additional Simulation Results Including Diurnal Patterns

10% 5% 1% 10% 5% 1%

m ρ P = N M+ =M−
390 0 0.102 0.053 0.011 0.100 0.056 0.011
390 0.5 0.099 0.050 0.008 0.104 0.052 0.012
390 0.7 0.096 0.046 0.010 0.102 0.048 0.013

78 0 0.104 0.050 0.008 0.109 0.053 0.008
78 0.5 0.105 0.053 0.008 0.109 0.049 0.006
78 0.7 0.106 0.053 0.011 0.106 0.047 0.005

26 0 0.114 0.051 0.006 0.112 0.050 0.006
26 0.5 0.119 0.055 0.009 0.104 0.040 0.002
26 0.7 0.119 0.057 0.011 0.092 0.028 0.002

Note: See Tables S.1 and S.2. The table reports the rejection frequencies for testing the
“daily” P = N andM+ =M−, using π(m). The results are based on 10,000 replications
under the H0 hypothesis that σuσ′u ≡ ςu[(1− ρ)I2 + ρJ2], with the ςu diurnal pattern
as in Andersen, Dobrev, and Schaumburg (2012).
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S2. Economic Content Semicovariance Inequality

S2.1. Additional Event Study Results

Table S.4 provides more detailed information on the events coinciding with

high rejection frequencies of semicovariance equality, which are presented in Table

2 in the main text. Here we provide the top 5 rejection days in each direction

for the three version of the tests. The top panel uses “raw” returns only, and

rejection may be due to either jumps or asymmetric correlations. The middle

panel improves this test’s properties by using the jump-robust estimator of the

asymptotic variance, based on truncated returns. The bottom panel uses jump-

robust estimators of the asymptotic variance as well as the semicovariances, such

that rejection is due to asymmetric correlations.

First, as discussed in the main text, the rejection dates based on Π
(m)
Tr are

typically associated with clear marcoeconomic news announcements, whereas the

results based on Π(m) tend to coincide with ‘softer’ news. This remains mostly

true for the expanded set of events associated with a large fraction of rejections

presented in this table. However, the double truncated test introduced here offers

even stronger evidence of that tendency.

In particular, the double truncated test in the bottom panel helps distinct

which events are likely associated with price jumps, and which events are likely

associated with asymmetry in correlations. Indeed, events which lead to rejections

in the double truncated tests are unlikely due surely due to up- and downside

correlation asymmetry, such that the remaining events in the two top panels are

most likely associated with price jumps. The double truncated version tends to

reject on days associated with these ‘softer’ events, while the remaining event days

are almost all associated with Federal Reserve announcements.
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Table S.4: Additional Top Rejection Days

Date % Event

Results based on P(m), N (m) and π(m)

P > N
26-11-2008 62 Bank of America acquisition of Merill Lynch approval
07-07-2010 62 Greek parliament passes pension reform
13-06-2013 55 US retail sales higher than expected
04-10-2011 51 Dexia Bank ’teetered on the brink of collapse’, talk of haircut Greek debt
20-07-2010 49 Federal Reserve announces reduction of Asset Buying Program
N > P
25-02-2013 69 Italian elections
21-06-2012 68 Rumors of Moody’s downgrade for global banks
01-06-2011 65 Moody’s cut Greece’s bond rating by three notches
03-02-2014 64 Janet Yellen sworn in as new Fed chair
21-09-2011 60 IMF Global Financial Stability Reports European countries must be ready to recapitalize

their banks. Moody’s cut Bank of America’s rating by two notches.

Results based on P(m), N (m) and π
(m)
Tr

P > N
18-12-2013 94 Federal Reserve announces reduction of Asset Buying Program
18-09-2013 85 Federal Reserve announces sustaining Asset Buying Program
18-09-2007 84 Federal Reserve lowers rate in response to housing ’correction’
13-09-2012 80 Federal Reserve continues buying Mortgage Backed Securities
04-10-2011 78 Dexia Bank ’teetered on the brink of collapse’, talk of haircut Greek debt
N > P
11-12-2007 93 Federal Reserve drops rate by 25 basis points.
19-06-2013 89 Federal Reserve continues buying Mortgage Backed Securities
27-10-1997 85 Mini-crash and NYSE circuit breaker trading halt
25-02-2013 81 Italian elections
21-06-2012 81 Rumors of Moody’s downgrade for global banks

Results based on P(m)
Tr , N (m)

Tr and π
(m)
Tr

P > N
07-07-2010 59 Greek parliament passes pension reform
26-11-2008 56 Bank of America acquisition of Merill Lynch approval
23-03-2009 54 Treasury announces plan to buy up billions in bad bank assets
13-06-2013 52 US retail sales higher than expected
23-08-2011 47 Gaddafi overthrown. ’Things are so bad people expect Bernanke to step in later this week’
N > P
25-02-2013 63 Italian elections
03-02-2014 52 Janet Yellen sworn in as new Fed chair
01-06-2011 58 Moody’s cut Greece’s bond rating by three notches
04-08-2011 54 Credit downgrade of US debt from AAA to AA+
21-06-2012 51 Rumors of Moody’s downgrade for global banks

Note: The table reports the five days of most one-sided rejections for the test of Pij = Nij in either direction

based on three different combinations of estimators. P(m),N (m) and π(m) are the standard estimators while,

P(m)
Tr ,N (m)

Tr and π
(m)
Tr are based on truncated returns, leading to different degrees of jump-robustness. The

first column provides the date, the second column provides the fraction of pairs where equality is rejected in
that direction. The final column provides a description of the event.
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S2.2. Tests for P = N and Other High-Frequency Measures

In order to highlight the uniqueness of the events that semicovariances un-

cover, we analyze rejection frequencies conditional on some other high-frequency

measures. In particular we consider the events where one, or both of the stocks

jump, as well as days where the SPY index jumps. We conduct daily jump tests

using the MaxLog version of the Barndorff-Nielsen and Shephard (2006) test using

MedRV and MedRQ to estimate continuous variation and integrated quarticity,

and set the level of the test at 1%. Next, we check whether rejections are more

likely in high volatility periods, governed by the distribution of RV . Finally, we

take the related measure of Signed Jump Variation (SJV) introduced by Patton

and Sheppard (2015), which is the difference between the positive and negative

semivariance. We consider various quantiles of its distribution, as well as tests of

the SJV being equal to zero, using the result in Equation (17).

We perform a simple non-parametric analysis in Table S.5 where we report the

rejection frequencies of P = N conditional on the various measures. Note that

due to the large amount of observations all differences are statistically significant,

but the differences are not necessarily large in terms of increasing the probability

of rejection. As stated before, unconditionally we reject equality in about 9% of

the pair-days. Rejections are actually less frequent on days where either of the

stocks or the market jumps. We do see a slightly larger amount of rejections on

high volatility pair-days, but the result is not particularly striking as the rejection

frequencies increases to a mere 11% for the top percentile of pair-days, clearly

not explaining rejection of equality. Finally, consider the rejection frequencies

conditional on Signed Jump Variation, which is a significant sorting variable. In

particular, on days where both SJVs are either significantly positive or negative, we

also reject equality of the semicovariances in around 80% of the cases. Obviously,

SJV is closely related to P = N as the semicovariances are a function of the

semivariances. On pair-days where both positive semivariances are significantly

higher than the negative semivariances, we would expect the semicovariances to

also differ, unless the semicorrelation drops proportionally.
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Table S.5: Conditional Rejection Frequencies

P > N N > P Either

Unconditional 0.045 0.045 0.090

Jump tests
One Jump 0.039 0.038 0.077
Both Jump 0.030 0.028 0.058
Market Jump 0.051 0.031 0.082

RV distribution
RV < 01% Quantile 0.051 0.030 0.080
RV < 10% Quantile 0.052 0.036 0.088
RV < 25% Quantile 0.051 0.040 0.091
RV < 50% Quantile 0.048 0.043 0.091
RV > 50% Quantile 0.042 0.047 0.089
RV > 75% Quantile 0.042 0.048 0.090
RV > 90% Quantile 0.044 0.049 0.094
RV > 99% Quantile 0.050 0.059 0.108

SJV tests
Both SJV < 0 0.000 0.827 0.827
One SJV < 0 0.000 0.284 0.284
Both SJV = 0 0.025 0.027 0.053
Opposing SJV 0.017 0.021 0.038
One SJV > 0 0.261 0.000 0.262
Both SJV > 0 0.787 0.000 0.787

SJV distribution
SJV < 01% Quantile 0.003 0.202 0.204
SJV < 10% Quantile 0.005 0.133 0.138
SJV < 25% Quantile 0.006 0.116 0.121
SJV < 50% Quantile 0.008 0.082 0.090
SJV > 50% Quantile 0.082 0.008 0.091
SJV > 75% Quantile 0.108 0.007 0.115
SJV > 90% Quantile 0.122 0.006 0.128
SJV > 99% Quantile 0.184 0.003 0.187

Note: This table provides rejection frequencies of the null that P = N ,
conditional on a number of events. Jump tests are based on the MaxLog
version of the jump test proposed in Barndorff-Nielsen and Shephard (2006).
The quantiles of RV are quantiles of the average realized variance of the pair-
day. The SJV tests panel is based on rejection of the semivariances being
equal at the 5% level. The quantiles of SJV are quantiles of the average
SJV of the pair-day.
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S3. More results on semicovariance dynamics

S3.1. Unadjusted Autocorrelation Functions

Figure S.1 provides the empirical autocorrelation function of the semicovari-

ances. This figure is the analogue to Figure 4 in the main text, but ignoring the

fact that the semicovariances are measured with error. Interestingly, the realized

variance appears more persistent than the semivariances. Obviously, the variance

uses twice the number of observations the semivariances use, and the results in

the paper suggest that this difference in persistence is due to differences in mea-

surement error, and therefore spurious. The results for the semicovariances on the

other hand, are mostly in line with those in the paper.

Figure S.1: Unadjusted Autocorrelations
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Note: The graph plots the empirical autocorrelation functions for each of the individual elements of the semi-
covariance matrix. The autocorrelations are averaged over 1,000 random pairs of stocks.
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S3.2. Formal tests of semicovariance block structure.

Here, we present results for formal tests of the possible ‘block structures’ in

the vector HAR model for [P ,N ,M] uncovered in Table 3 in the main text. First,

we test in-sample significance of the parameters using standard F-tests (at 99%

level) with Newey and West (1987) standard errors. For each hypothesis, we test

whether the parameters on the daily, weekly, and monthly lags of the relevant

semicovariances are jointly significant. Then, we consider a small out-of-sample

analysis, where we compare the out-of-sample performance of the restricted and

unrestricted models using Diebold and Mariano (1995) tests of forecasts based on

rolling windows containing 1,000 observations. Analogous to the in-sample tests,

we perform one-sided tests, where the alternative is that the unrestricted model’s

out-of-sample mean square error is lower than that of the restricted model, again

at the 99% level.

We consider a total of thirteen restrictions, described in Table S.6. The last

two columns present the in- and out-of-sample rejection frequencies. The in-

sample tests typically reject the null hypotheses, indicating that the apparent

block structures in the parameter estimates are not formally supported by the

data from a statistical perspective. However, the tests are based on large samples,

and as such the power is likely very high, meaning that small deviations from the

block structure may be sufficient to reject the null. While most of the rejection

frequencies are above 0.9, the hypotheses related to the significance of P are

rejected less frequently than all others, suggesting that P plays a less important

role for describing the dynamic dependencies in the covariances. In contrast to

the in-sample tests, the out-of-sample tests almost never reject the parameter

restrictions leading to the block structure. This is consistent with the idea that

more parsimonious models tend to perform well out-of-sample.
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Table S.6: Testing model restrictions

LHS Restriction on RHS In-Sample Rej. Out-of-Sample Rej.

H1: Pij,t Pij = 0 0.786 0.002
H2: Pij,t Mij = 0 0.852 0.004
H3: Pij,t Pij = Mij =0 0.976 0.004
H4: Nij,t Mij = 0 0.764 0.002
H5: Nij,t Pij = 0 0.832 0.002
H6: Nij,t Pij = Mij = 0 0.960 0.002
H7: Mij,t Pij = 0 0.596 0.000
H8: Mij,t Nij = 0 0.924 0.192
H9: Mij,t Pij = Nij = 0 0.994 0.198
H10: Pij,t, Nij,t, Mij,t The block structure holds 1.000 0.054
H11: RCOVij,t Pij = 0 0.724 0.002
H12: RCOVij,t Mij = 0 0.904 0.000
H13: RCOVij,t Pij = Mij = 0 0.954 0.002

Note: This table tests hypothesis on restrictions in the model (25) of the main text. Each hypothesis states in
which equation the restriction is tested, along with the restriction. Each restriction implies a zero coefficient on
the daily, weekly and monthly lag. The in-sample 1%-level rejection frequencies are based on an F-test. The
out-of-sample rejections are based on a Diebold-Mariano test at 1% where rejection means the unrestricted
models’ forecasts are better.

S.12



S4. Semicovariances and Volatility Forecasting

S4.1. More Detailed Univariate Forecasting Results

In this section we provide more details on the univariate portfolio forecasting

results of Section 2.1 in the main paper. We expand the set of models under

consideration, provide detailed results on more portfolio sizes and use the Model

Confidence Set of Hansen et al. (2011) to assess statistical significance of the

improvements in forecasting precision.

For notational simplicity, let RVd ≡ RVt−1, RVw ≡ RVt−2|t−5 and RVm ≡
RVt−6|t−22, respectively, with similar definitions applied for the realized semico-

variance measures.

We consider the following set of models for forecasting RV p, succinctly ex-

pressed as functions of the specific realized measures used in the construction of

the forecasts:

1a) RV p
t+1|t = f(RV p

d , RV
p
w , RV

p
m)

1b) RV p
t+1|t = f(V+,p

d ,V−,pd , RV p
w , RV

p
m)

2)a RV p
t+1|t = f(Ppd ,N

p
d ,M

p
d, RV

p
w , RV

p
m)

3)a RV p
t+1|t = f(Ppd ,Ppw,Ppm,N

p
d ,N p

w,N p
m,M

p
d,Mp

w,Mp
m)

4)a RV p
t+1|t = f(N p

d ,N p
w,N p

m,M
p
d,Mp

w,Mp
m)

5)a RV p
t+1|t = f(N p

d ,N p
w,N p

m,Mp
m)

6)a RV p
t+1|t = f(N p

d ,N p
w,N p

m)

In addition to the models for directly forecasting RV p, we also consider a model

in which we construct separate forecasts for Pp, N p, and Mp, and then add up

the forecasts to arrive at a forecast for RV .

7)a RV p
t+1|t = fP(Ppd ,Ppw,Ppm) + fN (N p

d ,N p
w,N p

m) + fM(Mp
d,Mp

w,Mp
m)

where fP , fN , and fM are models analogous to those in models (1a) to (6) above,

but with the dependent variable set to Pp, N p, and Mp respectively.

Models 1a, 1b, 3, and 5 are referred to as HAR, SHAR, SCHAR and SCHAR-r

respectively in the main paper.

We follow the forecasting set-up discussed in the main paper. The detailed

results for portfolios of size N = 1, 2, 5, 10, 50, 100 are reported in Table S.7. The

first column pertaining to each of the different loss functions reports the average

loss across time and across sets of stocks. For each of the 500 samples, we also

compute the ratio of each model’s average loss to that of the standard HAR; the
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baseline Model 1. The second column pertaining to each of the loss functions

presents the average of these ratios over all of the random samples. Finally, the

third column presents the fraction of samples for which each of the models were

included in the 80% Model Confidence Set (MCS) of Hansen, Lunde, and Nason

(2011). For each of the columns and each matrix size N we report the best model

in boldface. For the two loss columns this is the lowest number, for the MCS this

is the highest number. For the univariate case, M is always zero and P and N
are simply the semivariances, so we only report the loss based on Models 1a, 1b,

6 and 7.

The table clearly shows that for portfolios comprised of a large number of

stocks, utilizing the information in the realized semicovariances can result in sig-

nificantly better performance than the benchmark models that only use realized

variances (or realized semivariances) estimated from the univariate portfolio re-

turns. For N ≥ 50, the best-performing model under both MSE and QLIKE

loss is Model 5 (labelled ”SCHAR-r” in the main paper) which uses all three lags

(daily, weekly and monthly) of N p and Mp, but excludes lags of Ppt altogether.

For N between 2 and 10 the best-performing model under MSE loss is a more

parsimonious version of that model, which includes all three lags of N p, but only

the monthly lag ofMp, while under QLIKE the preferred model is Model 2, which

only decomposes the daily lag of RCOV . Consistent with the results in Patton

and Sheppard (2015), the SHAR model (Model 1b) performs the best among the

models that do not use any cross-sectional information (N = 1).

Second, the Model Confidence Set approach generally exhibits quite low power,

failing to distinguish models in a large fraction of the cases. However, the fact

that for almost all randomly selected collections of assets model 5 ends up in the

MCS suggests this model provides the best forecasts out of those considered. It

is natural that the parsimonious specifications 5 and 6 should do so well, but

the results indicate that the monthly lag of the mixed-sign semicovariance M
truly helps in predicting future volatility, consistent with its strong persistence

documented in Figure 4.
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Table S.7: Portfolio RV p forecasts

MSE QLIKE

Model Average Ratio MCS Average Ratio MCS

N = 1

1a 35.112 1.000 0.886 0.239 1.000 0.728
1b 34.981 0.997 0.914 0.238 0.998 0.864
6 35.209 1.001 0.882 0.243 1.022 0.250
7 35.326 1.020 0.740 0.247 1.036 0.034

N = 2

1a 8.094 1.000 0.760 0.184 1.000 0.652
1b 7.951 0.988 0.868 0.184 0.998 0.656
2 7.946 0.986 0.914 0.183 0.995 0.880
3 8.009 0.998 0.854 0.446 1.165 0.372
4 7.899 0.982 0.892 0.191 1.056 0.376
5 7.833 0.972 0.910 0.188 1.043 0.442
6 7.800 0.966 0.962 0.185 1.005 0.650
7 8.064 1.012 0.714 0.187 1.020 0.138

N = 5

1a 3.014 1.000 0.466 0.151 1.000 0.544
1b 2.815 0.966 0.698 0.150 0.994 0.582
2 2.804 0.958 0.828 0.150 0.994 0.736
3 2.810 0.969 0.770 0.206 1.322 0.360
4 2.721 0.934 0.806 0.153 1.014 0.516
5 2.679 0.922 0.848 0.156 1.034 0.654
6 2.662 0.916 0.962 0.151 1.003 0.704
7 2.935 1.010 0.408 0.154 1.021 0.194

N = 10

1a 1.849 1.000 0.306 0.141 1.000 0.442
1b 1.671 0.966 0.554 0.139 0.986 0.612
2 1.662 0.949 0.700 0.142 0.994 0.686
3 1.643 0.955 0.690 0.210 1.318 0.402
4 1.602 0.922 0.760 0.141 0.996 0.604
5 1.567 0.908 0.862 0.139 0.979 0.816
6 1.560 0.911 0.892 0.141 1.021 0.714
7 1.778 1.025 0.228 0.145 1.033 0.172

N = 50

1a 0.335 1.000 0.254 0.130 1.000 0.462
1b 0.284 0.951 0.428 0.125 0.963 0.788
2 0.288 0.954 0.566 0.133 1.021 0.638
3 0.284 0.944 0.674 0.140 1.087 0.682
4 0.284 0.933 0.600 0.135 1.135 0.750
5 0.273 0.878 0.986 0.121 0.931 0.990
6 0.272 0.885 0.896 0.126 0.963 0.822
7 0.312 1.050 0.134 0.136 1.049 0.240

N = 100

1a 0.048 1.000 0.282 0.119 1.000 0.492
1b 0.045 0.935 0.550 0.115 0.957 0.806
2 0.047 0.964 0.538 0.125 1.041 0.552
3 0.045 0.976 0.538 0.236 1.495 0.766
4 0.045 0.960 0.458 0.155 1.677 0.798
5 0.041 0.862 0.988 0.111 0.925 0.994
6 0.042 0.866 0.934 0.112 0.933 0.862
7 0.050 1.056 0.130 0.126 1.055 0.286

Note: This table provides aggregate forecasting results for portfolio variance, resulting from
portfolios sized N = 1, ..., 100. Each number is based on 500 randomly selected sets out of
the 749 S&P500 stocks. The Average column provides the average loss over time and sets
of series. The Ratio column provides the average over all sets of stocks of the ratio of time-
averaged loss of model k relative to model 1. Finally, the MCS column provides the fraction
of sets each respective model was part of the 80% Model Confidence Set. Boldface denotes
the best model per dimension N and column.
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S4.1.1. Univariate Forecasting: Including the overnight return

All the results in the paper are based on open-to-close return variation. In

this section we present the results of portfolio RV p prediction when the realized

measures are based on close-to-close returns. Figure S.2 presents the analogue to

Figure 5 in the main paper, while Table S.8 is the analogue to S.7 of this Appendix.

The results for both the figure and the table are qualitatively similar to those

excluding the overnight return. As Table S.8 demonstrates, the absolute loss

is typically higher. This is in line with earlier work that demonstrates that the

overnight variation is difficult to predict (see e.g. Andersen, Bollerslev, and Huang,

2011, who treat the overnight returns as jumps, requiring a separate specification).

The ranking, as well as the relative improvements, of the various models are almost

identical to the results which exclude the overnight.

Figure S.2: Median Loss Ratios: RV p prediction, overnight included
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Note: The graph plots the median loss ratios as a function of the number
of stocks in the portfolio, N . The ratio is calculated as the average loss of
the models divided by the average loss of of the standard HAR, based on 500
random samples of N stocks.
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Table S.8: Portfolio RV p forecasts, overnight included

MSE QLIKE

Model Average Ratio MCS Average Ratio MCS

N = 1

1a 36.422 1.000 0.912 0.239 1.000 0.750
1b 36.265 0.996 0.906 0.238 0.997 0.932
6 36.449 1.004 0.894 0.243 1.024 0.320
7 36.686 1.032 0.722 0.246 1.040 0.024

N = 2

1a 8.896 1.000 0.804 0.183 1.000 0.612
1b 8.713 0.980 0.862 0.183 0.996 0.658
2 8.716 0.979 0.904 0.182 0.993 0.886
3 8.748 0.982 0.912 0.199 1.081 0.444
4 8.626 0.968 0.908 0.187 1.018 0.514
5 8.540 0.960 0.924 0.184 1.003 0.568
6 8.499 0.956 0.984 0.182 0.995 0.800
7 8.865 0.998 0.768 0.186 1.016 0.182

N = 5

1a 3.258 1.000 0.462 0.146 1.000 0.448
1b 3.027 0.955 0.704 0.144 0.989 0.586
2 3.012 0.948 0.840 0.144 0.984 0.760
3 3.008 0.951 0.790 0.186 1.232 0.444
4 2.930 0.932 0.852 0.146 0.995 0.624
5 2.883 0.921 0.884 0.144 0.985 0.778
6 2.869 0.919 0.968 0.143 0.980 0.808
7 3.177 0.996 0.398 0.148 1.017 0.262

N = 10

1a 1.847 1.000 0.324 0.137 1.000 0.428
1b 1.673 0.948 0.608 0.136 0.990 0.590
2 1.670 0.936 0.750 0.134 0.981 0.644
3 1.643 0.931 0.730 0.172 1.216 0.422
4 1.608 0.915 0.818 0.135 0.981 0.644
5 1.575 0.900 0.906 0.132 0.963 0.876
6 1.569 0.905 0.884 0.135 0.983 0.702
7 1.786 1.008 0.252 0.140 1.028 0.248

N = 50

1a 0.441 1.000 0.230 0.126 1.000 0.374
1b 0.365 0.940 0.446 0.121 0.954 0.808
2 0.369 0.952 0.582 0.126 0.999 0.670
3 0.352 0.939 0.698 0.151 1.195 0.752
4 0.358 0.929 0.642 0.130 1.047 0.772
5 0.353 0.871 0.984 0.117 0.922 0.984
6 0.351 0.879 0.922 0.120 0.944 0.874
7 0.412 1.047 0.152 0.133 1.052 0.208

N = 100

1a 0.061 1.000 0.246 0.115 1.000 0.430
1b 0.057 0.927 0.622 0.109 0.947 0.840
2 0.058 0.963 0.612 0.117 1.020 0.652
3 0.056 0.984 0.542 0.155 1.396 0.794
4 0.056 0.963 0.492 0.148 1.331 0.838
5 0.052 0.860 0.986 0.105 0.916 0.986
6 0.052 0.865 0.966 0.106 0.921 0.900
7 0.063 1.061 0.140 0.122 1.060 0.258

Note: This table provides aggregate forecasting results for portfolio variance (including
overnight variation), resulting from portfolios sized N = 1, ..., 100. Each number is based
on 500 randomly selected sets out of the 749 S&P500 stocks. The Average column provides
the average loss over time and sets of series. The Ratio column provides the average over all
sets of stocks of the ratio of time-averaged loss of model k relative to model 1. Finally, the
MCS column provides the fraction of sets each respective model was part of the 80% Model
Confidence Set. Boldface denotes the best model per dimension N and column.
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S4.2. Multivariate Forecasting

In this section our aim is to forecast the full (N ×N) realized covariance

matrix, rather than the portfolio variance considered in the main paper.

We consider a set of seven different models. All of the models rely on standard

HAR-type specifications, along the lines of the vech-HAR model of Chiriac and

Voev (2011), in which we estimate scalar autoregressive coefficients, but individual

constant terms, based on standard OLS procedures. That is, each individual

element has identical dynamics, but different unconditional means.

1) RCOVt+1|t = f(RCOVd,RCOVw,RCOVm)

2) RCOVt+1|t = f(Pd,Nd,Md,RCOVw,RCOVm)

3) RCOVt+1|t = f(Pd,Pw,Pm,Nd,Nw,Nm,Md,Mw,Mm)

4) RCOVt+1|t = f(Nd,Nw,Nm,Md,Mw,Mm)

5) RCOVt+1|t = f(Nd,Nw,Nm,Mm)

6) RCOVt+1|t = f(Nd,Nw,Nm)

In parallel to the univariate case, as a final model we also consider the sum of the

forecasts from three separate vech-HAR models for P, N, and M.

7) RCOVt+1|t = fP(Pd,Pw,Pm) + fN(Nd,Nw,Nm) + fM(Md,Mw,Mm)

Similar to the univariate case, for each N , ranging from 2 to 100, we take 500 ran-

dom sets of stocks, and compute the semicovariances on their overlapping sample.

We evaluate the performance of the forecasts using the multivariate analogues to

MSE and QLIKE:

Frobenius(Ht,Σt) = Tr((Σt −Ht)
′(Σt −Ht))/N

2 (S4.1)

QLIKE(Ht,Σt, Σ̃t) = Tr(H−1
t Σt)− log |H−1

t Σ̃t| −N (S4.2)

where Ht refers to the forecast, and Σt denotes the ex-post estimate of the covari-

ance matrix. In the results reported on below, we use RCOVt as our proxy for

Σt.

The QLIKE loss function in equation (S4.2) is a modification of the original

QLIKE loss function, also known as James and Stein (1961) loss, which is obtained

if Σ̃t = Σt. The original loss function is not well defined if Σt is only positive

semidefinite. We define Σ̃t as:
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Σ̃t ≡ (1− λt) Σ∗t + λtDiag {Σ∗t} (S4.3)

where λt = arg min(λ ∈ {0, 0.1, ..., 1} : |Σ̃t| > 0) (S4.4)

and Σ∗t ≡ IN �max {Σt, 0.001 · JN}+ (JN − IN)�Σt (S4.5)

In words, equations (S4.3)-(S4.4) shrink the off-diagonal elements of the matrix

towards zero, and equation (S4.5) ensures that the diagonals are at least 0.001.

This modification affects only the normalization of this loss function, not the

ranking of competing forecasts.

The results for matrices of size N = 1, 2, 5, 10, 50, 100 are reported in Table S.9,

in the same format as Table S.7. In the univariate case (N = 1) the models based

on semivariances fail to significantly improve on the standard HAR model. For

N ≥ 2, however, the standard HAR model is never preferred under Frobenius loss,

while under QLIKE loss it is never preferred for N ≥ 10. In vast dimensions (N =

100), Model 2 (where the daily lag of RCOV is decomposed into semicovariances)

and Model 3 (where all lags of RCOV are decomposed into semicovariances)

almost always outperform the other models. Whereas in the univariate setting

parsimonious specifications appear to be preferred, in the multivariate setting the

large cross-section allows us to pin down the parameters precisely, and the large

models utilizing the full decomposition lead to the best forecasts.

While the reductions in loss reported in Table S.9 may appear numerically

small, especially compared to those in the univariate case, they are statistically

significant.28 In particular, for N = 100 the best models are in the MCS 93% and

85% of the samples for Frobenius and QLIKE loss, respectively. The next best

model is part of the MCS for only 38% and 21% of the samples, respectively.

To help visualize the performance of the models across different matrix dimen-

sions, Figure S.3 provides the multivariate analogue to Figure 5 in the main paper.

It plots the median loss ratios across the 500 samples for N ranging from 1 to 100.

To avoid cluttering the figure we only include the results for Models 1, 2 and 3.

In addition, to illustrate the cross-sectional variation in out-performance, we also

include the cross-sectional 10% and 90% quantiles of loss ratios for Model 3. The

figure reveals that the gains in forecast performance obtained from decomposing

28The estimation error in the realized covariances also means that the reductions are un-
derestimated numerically. Andersen, Bollerslev, and Meddahi (2005) show how to correct this
underestimation in univariate applications. And a similar correction could in principle be em-
ployed here, although it would not affect the relative ordering of the models.
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Table S.9: RCOV forecasts

Frobenius QLIKE

Model Average Ratio MCS Average Ratio MCS

N = 1

1 35.112 1.000 0.870 0.239 1.000 0.970
6 35.209 1.001 0.874 0.243 1.022 0.342
7 35.326 1.021 0.686 0.247 1.037 0.022

N = 2

1 18.087 1.000 0.882 0.581 1.000 0.928
2 17.971 0.995 0.924 0.584 1.005 0.576
3 17.983 0.996 0.918 0.590 1.017 0.416
4 18.111 1.001 0.794 0.599 1.032 0.032
5 18.104 1.001 0.800 0.599 1.031 0.038
6 18.310 1.013 0.166 0.627 1.080 0.006
7 18.206 1.017 0.696 0.595 1.025 0.038

N = 5

1 9.546 1.000 0.586 2.154 1.000 0.738
2 9.397 0.988 0.852 2.161 1.004 0.420
3 9.367 0.985 0.948 2.166 1.005 0.482
4 9.417 0.992 0.656 2.202 1.023 0.022
5 9.433 0.993 0.620 2.210 1.026 0.020
6 9.818 1.047 0.062 2.777 1.283 0.014
7 9.563 1.010 0.572 2.169 1.008 0.314

N = 10

1 5.943 1.000 0.280 6.333 1.000 0.386
2 5.815 0.986 0.678 6.329 1.000 0.384
3 5.786 0.982 0.952 6.327 0.999 0.572
4 5.806 0.992 0.454 6.424 1.015 0.006
5 5.815 0.994 0.406 6.443 1.018 0.002
6 6.222 1.151 0.020 8.382 1.508 0.006
7 5.926 1.005 0.380 6.328 0.999 0.456

N = 50

1 1.372 1.000 0.026 155.347 1.000 0.096
2 1.347 0.988 0.424 154.762 0.996 0.820
3 1.351 0.984 0.986 154.842 0.997 0.460
4 1.337 0.994 0.138 155.535 1.002 0.002
5 1.341 0.996 0.124 155.831 1.002 0.002
6 1.575 1.307 0.006 169.305 1.106 0.014
7 1.363 1.000 0.038 155.506 1.001 0.010

N = 100

1 0.677 1.000 0.116 431.189 1.000 0.260
2 0.674 0.994 0.398 430.952 0.999 0.804
3 0.671 0.990 0.928 433.053 1.002 0.224
4 0.704 1.041 0.086 444.891 1.082 0.008
5 0.744 1.099 0.044 449.751 1.055 0.016
6 0.948 1.419 0.004 440.220 1.023 0.014
7 0.679 1.002 0.066 433.445 1.006 0.000

Note: This table provides aggregate forecasting results for covariance matrices of size N =
1, ..., 100. Each number is based on 500 randomly selected sets out of the 749 S&P500 stocks.
We report the results for the models (1) to (7) defined above. The Average column provides
the average loss over time and sets of series. The Ratio column provides the average over all
sets of stocks of the ratio of time-averaged loss of model k relative to model 1. Finally, the
MCS column provides the fraction of sets each respective model was part of the 80% Model
Confidence Set. Boldface denotes the best model per dimension N and column.
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Figure S.3: Median loss ratios: RCOV prediction
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Note: The graph plots the median loss ratios for two of the best performing model as a function of the size of
the covariance matrix, N . The ratio is calculated as the average loss of the models divided by the average loss of
the standard HAR (Model 1). The medians are based on 500 random samples of stocks.

the realized covariance matrix into its semicovariance components appear even for

relatively small values of N . Interestingly, the gains remain roughly constant for N

ranging between 20 and 100. The 10% and 90% quantiles further show that these

gains are present for almost all samples: under Frobenius loss, the 90% quantile

is below one for all N ≥ 5, while for QLIKE it is below one for N between 30 and

80.
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