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1. Introduction

The covariance matrix of asset returns is a crucial input to portfolio and risk

management decisions. There is a substantial literature on the practical esti-

mation, modeling, and prediction of these covariance matrices dating back more

than half a century (e.g., Kendall (1953), Elton and Gruber (1973), and Bauwens,

Laurent, and Rombouts (2006)). More recent developments have included the

use of high-frequency data for more reliable estimation of lower-frequency real-

ized return covariances (e.g., Andersen, Bollerlsev, Diebold, and Labys (2003),

Barndorff-Nielsen and Shephard (2004a), and Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2011)); new methods for capturing dynamics in conditional covari-

ance matrices (e.g., Engle (2002) and Bollerslev, Patton, and Quaedvlieg (2016));

and the estimation of covariance matrices in “vast” dimensions (e.g., Fan, Li, and

Yu (2012), Hautsch, Kyj, and Malec (2015), and Aı̈t-Sahalia and Xiu (2015)).

Building on this existing literature, we propose a new decomposition of the re-

alized covariance matrix into four unique additive “realized semicovariance” com-

ponents depending upon the signs of the underlying high-frequency returns. The

realized semicovariance matrices may be seen as a high-frequency based multi-

variate extension of semivariances, which have a long history in finance (e.g.,

Markowitz (1959), Mao (1970), Hogan and Warren (1972, 1974), and Fishburn

(1977)).1 They also naturally extend the realized semivariances originally pro-

posed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010) to a multivariate

context.

We derive the limiting distribution of the new realized semicovariance matri-

ces under the assumption of a continuous multivariate semimartingale and stan-

dard infill asymptotics. A small Monte Carlo simulation experiment corroborates

the reliability of our asymptotic approximations. In addition to establishing the

theoretical properties of the realized semicovariance matrices, we employ high-

frequency data for a large cross-section U.S. equities spanning more than a decade

to cast light on their empirical properties.

We find that the realized semicovariances have different dynamic dependencies

from the usual realized covariances, with the semicovariances based on discordant

returns (i.e., returns of opposite signs) exhibiting the strongest memory. These

differences in the persistence of the different semicovariance components suggest

1Hogan and Warren (1974), in particular, first introduced the notion of the gains “cosemi-
variance” which is related to, though distinctly different from, the semicovariances we propose
here.
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that they may contain additional useful information about asset return dependen-

cies over and above that embedded in the usual covariance matrix. Corroborating

this idea, we find that out-of-sample forecasts of portfolio return variances may be

significantly improved relative to existing procedures that “only” rely on realized

variances (e.g., Corsi, 2009) or realized semivariances (e.g., Patton and Sheppard,

2015), by “looking inside” the covariance matrix and separately utilizing the new

semicovariance measures. Moreover, the relative gains from doing so increase

monotonically with the dimension of the portfolio, although in line with the gains

from näıve diversification they also tend to reach somewhat of an asymptote for

increasingly large portfolios.2

The improved forecasting performance of models based on the new semico-

variance measures may be attributed to the different information content that

reside in the different components. This is naturally linked to work on the asym-

metric reaction of volatility and covariances to news (e.g., Kroner and Ng (1998)

and Cappiello, Engle, and Sheppard (2006)). Alternatively, the forecast improve-

ments may be understood by interpreting the semicovariance-based models as

time-varying parameter versions of conventional models. Using this interpreta-

tion, the semicovariance-based models place substantially more weight on more

recent information than conventional models, thereby allowing the models to re-

act more quickly to new information. Interestingly, while the erratic nature of

volatility during the financial crisis typically leads conventional volatility forecast-

ing models to reduce the weight on recent observations, the semicovariance-based

models actually increase the weight, primarily due to an increase in the short-run

importance of the negative semicovariance component.

Our asymptotic distributional results also facilitate the construction of tests

of hypotheses involving the semicovariance components. For example, one might

test whether the realized semicovariances for pairwise positive returns are equal

to the semicovariances for pairwise negative returns, a hypothesis we find strong

evidence against in our data. These tests are related to asymmetric dependence

tests that have appeared in the literature (e.g., Longin and Solnik (2001), Ang

and Chen (2002) and Hong, Tu, and Zhou (2007)). They are also related to

empirical work on the correlations between asset returns in “bear” and “bull”

markets and asymmetric tail dependencies (e.g., Patton (2004), Poon, Rockinger,

and Tawn (2004), and Tjøsthem and Hufthammer (2013)), as well as recent work

on high-frequency based empirical measures of co-skewness and co-kurtosis (e.g.,

2Similar gains may naturally be obtained for forecasts of multivariate covariance matrices;
these additional results are reported in the Supplemental Appendix.
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Neuberger (2012) and Amaya, Christoffersen, Jacobs, and Vasquez (2015)), and

jumps and co-jumps (e.g., Das and Uppal (2004), Bollerslev, Law, and Tauchen

(2008), Lee and Mykland (2008), Mancini and Gobbi (2012), Jacod and Todorov

(2009), and Li, Todorov, and Tauchen (2017)). In contrast to these existing stud-

ies, we retain the covariance matrix as the summary measure of dependence, and

instead use information from “bull,” “bear” and “mixed” high-frequency returns

to “look inside” the realized covariance matrix as way to reveal additional infor-

mation about the inherent dependencies.

The remainder of the paper is organized as follows. Section 2 formally defines

the realized semicovariance measures, derives their asymptotic properties, and

presents simulation results on their finite-sample behavior. Section 3 discusses

the empirical properties of realized semicovariances based on high-frequency data

for more than seven hundred U.S. equities over the period 1993 to 2014. Sec-

tion 4 concludes. A technical Appendix contains all proofs, and a Supplemental

Appendix contains additional empirical results.

2. Realized Semicovariances

Our decomposition of the realized covariance matrix into its four unique “real-

ized semicovariance” components parallels the decomposition of the realized vari-

ance into its two unique realized semivariance components.

2.1. Definitions and Basic Properties

To set out the main idea, let rt,k,i denote the return over the kth intradaily

time on day t for asset i. Further, denote the corresponding N × 1 vector of

returns, over equally-spaced intra-daily intervals, for the set of N assets by rt,k ≡
[rt,k,1, ..., rt,k,N ]′. The standard N × N daily realized covariance matrix is then

defined by the summation,

RCOV
(m)
t ≡

m∑
k=1

rt,kr
′
t,k, (1)

where m signifies the total number of intradaily return observations available per

day.

Now define the N × 1 vectors of signed high-frequency returns,

r+
t,k ≡ rt,k � 1, {rt,k > 0} , (2)

r−t,k ≡ rt,k � 1, {rt,k ≤ 0} , (3)
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where 1 {rt,k > 0} ≡ [1 {rt,k,1 > 0} , ...,1 {rt,k,N > 0}]′ denotes the element-wise

indicator function equal to 0 or 1 depending on the sign of the kth intradaily return

for each of the N assets, with 1 {rt,k ≤ 0} defined analogously. The standard

realized covariance matrix may then be decomposed into four separate “realized

semicovariance matrices,”

P
(m)
t ≡

m∑
k=1

r+
t,k r+′

t,k, M
(m)+
t ≡

m∑
k=1

r+
t,k r−′t,k ,

M
(m)−
t ≡

m∑
k=1

r−t,k r+′
t,k, N

(m)
t ≡

m∑
k=1

r−t,k r−′t,k ,

(4)

where P, N, and M stand for “positive,” “negative,” and “mixed,” respectively,

referring to the signs of the underlying return vectors. It follows readily that,

RCOV
(m)
t = P

(m)
t + N

(m)
t + M

(m)+
t + M

(m)−
t , (5)

for all m. Since RCOV
(m)
t , P

(m)
t , and N

(m)
t are all defined as sums of vector outer-

products, these matrices are all positive semidefinite. On the other hand, since

the diagonal elements of M
(m)+
t and M

(m)−
t are identically zero by construction,

these matrices are necessarily indefinite.3

In some applications there is a clear ordering of the assets, endowing the M
(m)+
t

and M
(m)−
t realized semicovariances with different economic interpretations.4 In

other situations, the ordering of the assets is arbitrary, and one might expect

M
(m)+
t and M

(m)−
t to convey the same information. In those situations the two

mixed terms are naturally combined into a single realized semicovariance matrix,

M
(m)
t ≡M

(m)+
t + M

(m)−
t , (6)

thus decomposing the standard realized covariance matrix into just three terms,

the positive, negative, and mixed realized semicovariances: P
(m)
t , N

(m)
t , and M

(m)
t .

The diagonal elements of P
(m)
t and N

(m)
t correspond to the positive and neg-

ative realized semivariances for each of the i = 1, 2, ..., N assets, denoted V(m)+
i,t

and V(m)−
i,t respectively. The off-diagonal elements of these (symmetric) matrices

correspond to the positive, negative realized semicovariances, and we denote the

3This means that while the positive and negative “realized semicorrelation” matrices are
straightforwardly defined, the “mixed” case is not. We focus on realized semicovariance matrices
in this paper.

4For example, if one of the assets is an aggregate market portfolio, while the remaining

N − 1 assets are individual stocks, the interpretation of the elements in M
(m)+
t and M

(m)−
t will

naturally differ.
5



(i, j) elements of these matrices (for i 6= j) as P(m)
ij,t and N (m)

ij,t . In particular, for

N = 2,

P
(m)
t =

[
V(m)+

1,t P(m)
12,t

• V(m)+
2,t

]
, N

(m)
t =

[
V(m)−

1,t N (m)
12,t

• V(m)−
2,t

]
, M

(m)
t =

[
0 M(m)

12,t

• 0

]
.

(7)

For simplicity, we will drop the “ij” subscripts on P(m)
t , N (m)

t , and M(m)
t when

they are not needed. Equation (7) emphasizes that the novel components of the

realized semicovariance matrices proposed here are their off-diagonal elements.

These elements contain different, potentially richer, information to that afforded

by the decomposition of variances into semivariances.

To illustrate, Figure 1 plots the off-diagonal elements of the daily realized

semicovariance matrices averaged across 500 randomly-selected pairs of S&P 500

stocks over the 1993–2014 period.5 The mixedMt component is, of course, always

negative, while Pt + Nt is always positive. The “concordant” (Pt + Nt) and

“discordant” (Mt) terms are typically fairly similar in magnitude. In periods of

high volatility, however, Pt + Nt increases substantially more than Mt declines,

in line with the widely held belief that during periods of financial market stress

correlations and tail dependencies among most financial assets tend to increase.

Correspondingly, the off-diagonal element of RCOVt (denoted RCOVt) is almost

exclusively determined by the two concordant realized semicovariance components

in high volatility periods. Further corroborating the idea that the concordant

semicovariances are related to notions of market stress, we find that the average

correlation of Pt and Nt with the V IX volatility index, popularly interpreted as

a market “fear gauge,” equal 0.484 and 0.477, respectively, compared to 0.285 for

RCOVt.

To provide some intuition for the new measures, consider the case ofm = 1; i.e.,

using only one return per day. (For notational simplicity below, we suppress the

dependence on m.) Further assume that the daily returns are normally distributed

with zero mean, unit variance, and cross-asset correlation ρ, so that the expected

covariation equals,

E(RCOVt) = IN + (JN − IN)ρ, (8)

where IN denotes the N ×N identity matrix, and JN is an N ×N matrix of ones.

5More detailed descriptions of the data and the procedures used in calculating the realized
semicovariances are provided in Section 3.1 below. To avoid cluttering the figure, we combine
Pt and Nt into a single term, and smooth the daily measures using a [t − 25 : t + 25] moving
average.
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Figure 1: RCOV decomposition
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Note: The figure plots the (smoothed) daily realized semicovariances av-
eraged across 1,000 random pairs of S&P 500 stocks over the 1993–2014
period.

,

It follows then by standard arguments pertaining to the normal distribution6 that,

E(Pt) = E(Nt) =
1

2
IN + (JN − IN)×

√
1− ρ2 + ρ arccos (−ρ)

2π
, (9)

while,

E(M+
t ) = E(M−

t ) = (JN − IN)× ρ arccos ρ−
√

1− ρ2

2π
. (10)

The off-diagonal elements of the right-hand-side matrices are plotted in Figure

2 as a function of ρ. With perfect negative correlation, the returns are always of

opposite sign, and so Pt and Nt are both trivially equal zero, while the expecta-

tions of M+
t and M−

t both equal -0.5. With perfect positive correlation, the two

asset returns always have the same sign, which is positive or negative with equal

probability, and as a result Pt and Nt both equal 0.5 in expectation, while M+
t

and M−
t are both trivially equal to zero. For ρ = 0 the off-diagonal elements of

E(RCOVt) = E(Pt + Nt + M+
t + M−

t ) obviously equal zero; the expectations

of the off-diagonal elements Pt and Nt equal 1/2π, and the expectations of the

off-diagonal elementsM+
t andM−

t equal −1/2π. As the figure shows, for all other

values of ρ the expectations of all the semicovariances differ from zero.

6Let ri denote the daily return on asset i. The off-diagonal elements in E(Pt) and E(Nt)
then equal E [rirj1 {ri > 0, rj > 0}], while the off-diagonal elements in E(M+

t ) and E(M−t ) equal
E [rirj1 {ri > 0, rj ≤ 0}].
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Figure 2: Semicovariances
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Note: The graph plots the expected semicovariances for a standard normal distri-
bution with correlation ρ, or equivalently the limiting semicovariances under the
assumption of a standard Brownian motion with a time-invariant instantaneous
correlation ρ and unit variance.

The main idea behind the new realized semicovariance measures, of course,

rests on the use of many high-frequency intradaily returns, not the m = 1 case

considered here. The next section formally establishes that the same right-hand-

side expressions for E(Pt), E(Nt), E(M+
t ), and E(M−

t ) in (9) and (10) illustrated

in Figure 2 obtain as the limiting values of the realized measures for m → ∞
under the assumption that the underlying price process follows a continuous semi-

martingale with unit volatility and instantaneous correlation ρ. Most importantly,

the asymptotic results presented in the next section extend this illustrative setup to

allow for more general, and empirically realistic, dynamic dependencies, including

stochastic instantaneous volatilities and correlations.

2.2. Asymptotic Theory

Without loss of generality, we will consider the bivariate case, N = 2, with

quantities defined over the unit time interval. Suppressing the time t subscript,

the unique elements in the four 2 × 2-dimensional realized semicovariance matri-

ces, P
(m)
t , N

(m)
t , M

(m)+
t and M

(m)−
t , may then be gathered in the 8-dimensional

random vector process,
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V(m) ≡



V(m)+
1

V(m)−
1

V(m)+
2

V(m)−
2

P(m)

N (m)

M(m)+

M(m)−


=

m∑
k=1



r2
k,1I{rk,1≥0}

r2
k,1I{rk,1<0}

r2
k,2I{rk,2≥0}

r2
k,2I{rk,2<0}

rk,1rk,2I{rk,1≥0,rk,2≥0}

rk,1rk,2I{rk,1<0,rk,2<0}

rk,1rk,2I{rk,1≥0,rk,2<0}

rk,1rk,2I{rk,1<0,rk,2≥0}


≡

m∑
k=1

g(rk,1, rk,2). (11)

The first four elements correspond to the positive and negative semivariances of

the two assets, while the last four elements refer to the off-diagonal elements in the

semicovariance matrices. The following proposition provides the limiting value of

V (m) for m→∞ under the assumption that the underlying price process follows

a continuous semimartingale.

Proposition 1 (Semicovariance Limit) Assume that the bivariate log-price pro-

cess evolves continuously through time according to the semimartingale,

pt = p0 +

∫ t

0

µudu+

∫ t

0

σudWu, 0 ≤ t ≤ 1, (12)

where Wu denotes a 2-dimensional Brownian motion, µu is a 2-dimensional locally

bounded predictable drift process, and σu is a R2×2-valued càdlàg volatility process.

Then for rk,i ≡ pk/m,i − p(k−1)/m,i, and m→∞,

V(m) p−→
∫ 1

0



σ2
u,1

2
σ2
u,1

2
σ2
u,2

2
σ2
u,2

2
σu,1σu,2

2π

(
ρu arccos(−ρu) +

√
1− ρ2

u

)
σu,1σu,2

2π

(
ρu arccos(−ρu) +

√
1− ρ2

u

)
σu,1σu,2

2π

(
ρu arccos ρu −

√
1− ρ2

u

)
σu,1σu,2

2π

(
ρu arccos ρu −

√
1− ρ2

u

)



du ≡ V, (13)

where the convergence holds locally uniform in time, σ2
u,i denotes the spot variance

of asset i, and ρu denotes the spot correlation between the two assets.

The proof of the proposition builds extensively on Barndorff-Nielsen, Graversen,
9



Jacod, Podolskij, and Shephard (2006) and the extensions thereof in Kinnebrock

and Podolskij (2008). Details are provided in the Appendix.

The expectations illustrated in Figure 2 discussed in the previous section cor-

respond to the limiting values that would obtain for σu,1 = σu,2 = 1 and ρu = ρ, or

equivalently a standard time-invariant Brownian motion with unit variance and

constant instantaneous correlation ρ. However, as Proposition 1 shows, these same

expressions appear in the more general limiting values of the new semicovariance

measures.

The proposition above also encompasses the result of Barndorff-Nielsen, Kin-

nebrock, and Shephard (2010), showing that in the absence of jumps the positive

and negative realized semivariance measures each converge in probability to one-

half times the integrated variance,

V(m)+
i , V(m)−

i

p−→ 1

2

∫ 1

0

σ2
u,idu.

Correspondingly, large differences between the two realized semivariance measures,

V(m)+
i −V(m)−

i , are naturally interpreted as evidence for discontinuities, or jumps,

in the price process for the specific asset i.

Differences in the values of P(m) and N (m) may similarly be attributed to

the presence of discontinuities occurring at the same time in the two assets, or

so-called cojumps, which could affect the measures differently. Of course, differ-

ences in the P(m) and N (m) realized semicovariance measures may also arise from

asymmetries in correlations between positive and negative returns. The following

proposition provides a framework for more formally analyzing these differences,

under the additional simplifying assumptions of no leverage effects nor volatility

jumps. As is standard in the in-fill asymptotic high-frequency data setting, the

limiting distribution is random, so that its variance depends on the realization of

the underlying process (see, e.g., Mykland and Zhang, 2009).

Proposition 2 (Semicovariance CLT) Assume that the bivariate log-price pro-

cess evolves continuously through time according to (12), with the σt volatility

process determined by,

σt = σ0 +

∫ t

0

ν ′udW
∗
u, (14)

where ν ′u is an adapted càdlàg process, and the 2×2-dimensional Brownian motion

W∗
u is independent of Wu. Then for m→∞,

√
m(V(m) −V)

Dst−→
∫ 1

0

αudWu +

∫ 1

0

βudW̃u ≡ U, (15)

10



where
Dst−→ denotes stable convergence in distribution, the 2-dimensional Brownian

motion W̃u is independent of Wu and W∗
u, and the 8× 2-dimensional αu and βu

processes are defined in the Appendix.

Proof: See Appendix.

Proposition 2 encompasses a number of results in the existing literature as spe-

cial cases. In particular, utilizing the identityRCOV (m) = (0, 0, 0, 0, 1, 1, 1, 1)V(m),

it follows from the definitions of the αu and βu processes that

√
m

[
RCOV (m) −

∫ 1

0

ρuσu,1σu,2du

]
Dst→ MN

(
0,

∫ 1

0

(1 + ρu)σ
2
u,1σ

2
u,2dW

′
u

)
, (16)

which corresponds to the well-known result of Barndorff-Nielsen and Shephard

(2004a). Considering the linear combination V(m)+
1 −V(m)−

1 = (1,−1, 0, 0, 0, 0, 0, 0)V(m),

the proposition also implies that,

√
m(V(m)+

1 − V(m)−
1 )

Dst→ MN

(
0, 3

∫ 1

0

σ4
u,1du

)
, (17)

consistent with the results of Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

Of course, Proposition 2 further extends the results in the existing literature

to allow for the characterization of the asymptotic distributions of other func-

tionals of the new realized semicovariance measures. Specifically, consider the

difference between the two conforming semicovariance components P(m)−N (m) =

(0, 0, 0, 0, 1,−1, 0, 0)V(m). It follows that

√
m(P(m)−N (m))

Dst→ MN

(
0,

∫ 1

0

σ2
u,1σ

2
u,2

π

(
(1 + 2ρ2

u) arccos(−ρu) + 3ρu
√

1− ρ2
u

)
du

)
.

(18)

Similarly, for the realized semicovariance components of opposite signs, their dif-

ferenceM(m)+−M(m)− = (0, 0, 0, 0, 0, 0, 1,−1)V(m) is asymptotically distributed

as,

√
m(M(m)+ −M(m)−)

Dst→ MN

(
0,

∫ 1

0

σ2
u,1σ

2
u,2

π

(
(1 + 2ρ2

u) arccos(−ρu)− 3ρu
√

1− ρ2
u

)
du

)
.

(19)

The mutually exclusive indicator functions underlying the definitions of the differ-

ent semicovariance components, further implies that P(m) − N (m) and M(m)+ −
M(m)− are asymptotically independent. Correspondingly, the distributions of

these quantities may be used in the formulation of asymptotically independent

tests for equality of the respective semicovariance components.
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Of course, the actual empirical implementation of the mixed-normal distribu-

tions in (18) and (19) also necessitates a way to quantify the asymptotic variances.

More generally, the implementation of any distributional results based on Propo-

sition 2 and the result in (15), requires a way to estimate the elements in the

asymptotic covariance matrix,

Π ≡ V ar(U) =

∫ 1

0

(αuα
′
u + βuβ

′
u)du. (20)

The following proposition provides a general framework for doing so.

Proposition 3 (Feasible CLT) Under the same assumptions as for Proposition

2, and for m→∞,

Π(m) p−→ Π, (21)

and

{Π(m)}−1/2
√
m(V(m) −V)

D−→ N(0, I), (22)

where the (a, b)th element in the Π(m) matrix is given by,

Π
(m)
a,b ≡ m

m∑
k=1

ga(rk,1, rk,2)gb(rk,1, rk,2)−
m∑
k=1

ga(rk,1, rk,2)
m∑
k=1

gb(rk,1, rk,2), (23)

and ga refers to the ath element in the vector-function g defined in (11).

Proof: See Appendix.

To illustrate, consider the test for P = N based on the mixed-normal distri-

bution in (18). Proposition 3 implies that
√
m(P(m) −N (m)) divided by,

π(m) ≡ m
m∑
k=1

[
r2
k,1r

2
k,2I{rk,1≥0,rk,2≥0} + r2

k,1r
2
k,2I{rk,1<0,rk,2<0}

]
−(P(m)−N (m))2, (24)

is asymptotically standard normally distributed. As such, this allows for the

construction of an easy-to-calculate test statistic for testing the hypothesis that

P = N .7 A similar approach and feasible expression may be obtained for testing

the equality of M+ and M−.

The consistency of the simple variance estimator π(m) defined above relies

on the semimartingale assumption and would otherwise diverge in the presence

7General nonparametric procedures, like the two-scales observed asymptotic variance recently
developed by Mykland and Zhang (2017), or a bootstrap type approach, as in Goncalves and
Meddahi (2009), might alternatively be used for calculating asymptotically valid standard errors.
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of cojumps. Correspondingly, the test statistic obtained using this estimator to

normalize
√
m(P(m)−N (m)) will only be consistent for detecting differences in P

and N stemming from continuous prices moves and asymmetries in correlations.

To obtain power against cojumps, one can follow Mancini (2009) and truncate

the high-frequency returns used in the calculation of the asymptotic variance, and

the construction of second version of the test using this jump-robust estimator,

denoted π
(m)
Tr , to normalize the difference.8 In the simulation and empirical results

discussed below, we rely on the same dynamic threshold advocated by Bollerslev

and Todorov (2011a,b) based on three times the trailing scaled bipower variation,

further adjusted for the strong intraday periodicity in the volatility.9

We turn next to a discussion of a small scale Monte Carlo simulation study

designed to investigate the accuracy of these feasible approximations to the asymp-

totic distributional results in Propositions 1-3, and the power of the two different

versions of the test for P = N to detect cojumps and/or asymmetries in correla-

tions, in particular.

2.3. Finite Sample Simulations

We begin by considering the simulations from a simple bivariate price process

dpu = σudWu, with constant diffusive volatility matrix σuσ
′
u ≡ (1− ρ)I2 + ρJ2,

where I2 is the 2 × 2 identity matrix and J2 is a 2 × 2 matrix of ones. This

parallels the illustrative example discussed in Section 2.1, with the limiting values

for the different semicovariances depicted in Figure 2. This simple simulation setup

obviously adheres to the assumptions underlying Propositions 1-3, and as such

speaks to the size of the tests based on these propositions. Following the discussion

in the previous section, we consider two versions of the test: one using the “raw”

asymptotic variance estimator to normalize the P − N difference, and another

using the jump-robust truncated variance estimator. The data are generated using

a standard Euler discretization scheme based on 23,400 observations per “day,”

corresponding to one-second sampling in a 6.5 hour market, like the U.S. equity

market data analyzed below.

The top panel in Table 1 reports the rejection frequencies averaged across

10,000 replications for different significance levels (10%, 5%, and 1%), sampling

8This mirrors the arguments of Barndorff-Nielsen and Shephard (2004b, 2006) and the need
to normalize the difference between the realized variance and the bipower variation by a jump-
robust variance estimator to ensure power against individual asset specific jumps.

9Thus π
(m)
Tr is based on equation (24) but using truncated returns r̃t,k,i =

rt,k,i1
{
|rt,k,i| ≤ αt,k,i∆

0.49
}

, where αt,k,i = 3
√
BPVt−1,i × TODk,i; see Bollerslev and Todorov

(2011b) for details.
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frequencies m (78 and 26, corresponding to 5 and 15-minute returns, respectively),

and correlations ρ (0.0 and 0.5).10 As is evident, the simple version of the test

based on π(m) is generally well sized. Meanwhile, since the truncation invariably

reduces the magnitude of the normalizing variance, there is a tendency for the test

that relies on the jump-robust π
(m)
Tr estimator to over-reject, especially for coarser

sampling frequencies and higher correlations, albeit not dramatically so.

To investigate the power of the tests, the middle panel of Table 1 shows the

rejection frequencies from a simulation with cojumps.11 In particular, following

the simulation setup of Caporin, Kolokolov, and Renò (2017), we add randomly

distributed jumps of size N(8/
√

78, 2/
√

78) to each of the two series at a single

random point each “day.” As expected, the test based on π(m) deteriorates and

almost never rejects in this situation. On the other hand, the use of π
(m)
Tr for the

normalization leads to a very powerful test, with rejection frequencies close to

unity at all of the three different nominal levels.

Differences in the concordant semicovariance elements and violations of the

asymptotic distributional results may, of course, also arise from dynamic leverage

effects and asymmetries in correlations.12 The final panel of the table reports on

the power of the tests to detect these types of deviations from the null. Specifically,

depending on whether the simulated dWs,1 price increment for the first asset is

positive/negative, we decrease/increase the instantaneous correlation ρ by 0.05.13

In contrast to the previous cojump alternative, the two different versions of the

test both exhibit good power in this situation. This suggest that by comparing

the outcome of the π(m) and π
(m)
Tr based tests it may be possible to differentiate

between alternate influences and types of economic events that cause P and N
to differ. We will briefly return to this in our discussion of the actual empirical

application of these tests below.

10Results for other sampling frequencies and correlations are available in the Supplemental
Appendix, as are the results for testing M+ =M−. We also considered a setup with σuσ

′
u ≡

ςu[(1− ρ)I2 + ρJ2], with the same ςu diurnal pattern as in Andersen, Dobrev, and Schaumburg
(2012). The results from these additional simulations are almost identical to the ones reported
here; further details are again available in the Supplementary Appendix.

11There is ample empirical evidence that most asset prices occasionally jump, and that jumps
often occur at the same time for multiple assets; see, e.g., Bollerslev, Law, and Tauchen (2008),
Jacod and Todorov (2009), Lahaye, Laurent, and Neely (2011), and Aı̈t-Sahalia and Xiu (2016).

12As noted above, there is ample empirical evidence of asymmetries in return correlations; see,
e.g., Longin and Solnik (2001), Ang and Chen (2002), and Poon, Rockinger, and Tawn (2004).

13This asymmetric correlation process is related to the “Tanaka equation,” and it violates the
càdlàg assumption of Proposition 1, as the process is not Lipschitz continuous. Alternatively, it
may interpreted as an approximation to an infinite activity jump volatility process. However,
given the set-up the limits of P and M+ clearly converge to their standard limits with ρ+ =
ρ+ 0.05, while N and M− converge to limits with ρ− = ρ− 0.05.
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Table 1: Simulation Results

m ρ π(m) π
(m)
Tr

10% 5% 1% 10% 5% 1%
H0

78 0 0.108 0.053 0.009 0.130 0.070 0.018
78 0.5 0.099 0.048 0.009 0.153 0.092 0.028

26 0 0.116 0.052 0.006 0.144 0.083 0.027
26 0.5 0.116 0.056 0.010 0.180 0.113 0.046

HA: Cojumps

78 0 0.001 0.001 0.000 0.992 0.990 0.984
78 0.5 0.006 0.001 0.000 0.973 0.962 0.928

26 0 0.010 0.003 0.000 0.936 0.920 0.885
26 0.5 0.028 0.008 0.001 0.848 0.807 0.722

HA: Asymmetric Correlations

78 0 0.960 0.920 0.755 0.960 0.925 0.782
78 0.5 0.915 0.855 0.644 0.934 0.887 0.725

26 0 0.944 0.870 0.553 0.944 0.877 0.584
26 0.5 0.898 0.804 0.493 0.914 0.838 0.557

Note: The table reports the rejection frequencies for testing the “daily”
P = N based on 10,000 replications. The π(m) and π

(m)
Tr versions of

the tests rely on the standard and truncated variance for normalizing
the difference. The data are generated from a continuous price process
dPu = σudWu aggregated to the five and fifteen “minute” frequency,
corresponding to m = 78 and m = 26 observation per “day.” The null
hypothesis (H0) postulates a constant spot covariance matrix, σuσ

′
u ≡

[(1 − ρ)I2 + ρJ2] for all u. The first alternative hypothesis (HA) adds
cojumps of random size N(8/

√
78, 2/

√
78) at a single random time each

“day.” The second alternative hypothesis (HA) has dynamically varying
spot correlations, determined by [(1 − (ρ + 0.05))I2 + (ρ + 0.05)J2] if
Ws,1 < 0, and [(1− (ρ− 0.05))I2 + (ρ− 0.05)J2] if Ws,1 > 0.

Overall, the simulation results clearly corroborate the accuracy of the asymp-

totic results for making valid finite-sample inference, and the practical usefulness

of the tests for detecting significant differences in the concordant semicovariance

elements, whether due to cojumps and/or asymmetric dynamically varying corre-

lations.14

14The two versions of the test analyzed here afford a distinction between cojumps and asym-
15



3. Empirical Analysis of Realized Semicovariances

This section highlights some of the key distributional features and information

conveyed by the new realized semicovariance measures. Before doing so, however,

we briefly discuss the data and practical implementation underlying our empirical

investigations.

3.1. Data

Our analysis relies on high-frequency intradaily equity prices obtained from

the Trades and Quotes (TAQ) database. We restrict our sample to the S&P 500

constituent stocks with at least 2,000 daily observations during our January 1993

to December 2014 sample period, for a total of 749 unique stocks. The asymptotic

results pertaining to the new realized semicovariance measures discussed in the

previous section formally rely on m → ∞, or the notion of ever finer sampled

high-frequency returns. In practice, a host of market microstructure complica-

tions prevent us from sampling too frequently, while maintaining the fundamental

no-arbitrage semimartingale assumption (see, e.g., the discussion in Hansen and

Lunde (2006), and Jacod, Li, and Zheng (2017)). In the multivariate context these

complications are compounded by non-synchronous prices and the so-called Epps

(1979) effect. In an effort to strike a reasonable balance between these conflict-

ing goals of sampling as frequently as possible on the one hand, and maintaining

the martingale assumption as a sensible approximation on the other, we rely on

a 15-minute sampling frequency, or m = 26 observations per trade day; a simi-

lar choice, and a more detailed justification thereof, was adopted by Bollerslev,

Law, and Tauchen (2008).15 Like much past work in volatility forecasting (e.g.,

Aı̈t-Sahalia and Xiu (2017), Hansen, Huang, and Shek (2012), and Noureldin,

Shephard, and Sheppard (2012)) we focus only on the intra-daily period in our

analyses, and exclude overnight returns.16

metric correlations without jumps. To further differentiate between asymmetric correlations with
or without cojumps, a second truncated version of the test in which the realized semicovariance
measures themselves are constructed from truncated high-frequency returns could be used. Ad-
ditional simulation results for this third version of the test are available in the Supplemental
Appendix.

15This particular choice of m, of course, also mirrors the sampling frequency analyzed in the
simulations discussed in the previous section.

16The Supplemental Appendix contains additional empirical results including the overnight
returns. All of the key findings discussed below remain intact, and if anything some of the
forecasting results are even stronger.
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Figure 3: Tests for Semicovariance Equality
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Note: The figure shows the rejection frequencies for testing the hypotheses that
P > N and P < N at the 5% level for 1,000 randomly selected pairs of stocks
for each of the days in the 1993-2014 sample. The top panel is based on the non-
jump robust variance estimator π(m), while the bottom panel uses the truncated
variance estimator π

(m)
Tr to normalize the difference.

3.2. Tests for the Equality of Semicovariances

We begin by testing equality of positive and negative semicovariances (P and

N ) using the two different versions of the test analyzed in the simulations in

Section 2.3. Specifically, selecting 1,000 random pairs of stocks, Figure 3 graphs

the resulting rejection frequencies for testing P > N and P < N at the 5% level

for each of the 5,541 days in the sample. The top panel gives the results for

the version of the test based on the simple π(m) estimator, while the tests in the

bottom panel rely on the truncated π
(m)
Tr estimator to normalize the difference.

Looking at the top panel, the unconditional rejection frequencies appear fairly

close to the nominal size of the test. However, the rejections that do occur clearly

cluster in time, and tend to increase during periods of high volatility and market

turmoil. Also, even though the rejection frequencies for P < N appear slightly

large than those for P > N on a few select days, especially over the last few years

of the sample, the two rejection frequencies are almost the same when averaged

over the full sample.
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Turning to the bottom panel and the tests based on π
(m)
Tr , the figure obviously

indicate many more rejections on average, with roughly the same number of re-

jections in either direction. The rejection frequencies also appear more evenly

distributed through time, than do the tests based on π(m) in the top panel. The

on average higher number of rejections is, of course, to be expected as the trun-

cated version of the test not only exhibits power against asymmetric correlations

but also cojumps. The finding that the rejection frequencies for the π
(m)
Tr -based

tests appear much more evenly distributed over the full sample is also in line with

Aı̈t-Sahalia and Xiu (2016), who report that the relative contribution to the real-

ized covariation stemming from cojumps versus diffusive price moves seems fairly

stable through time.

To help understand what drive these differences, Table 2 reports the five days

on which the two different versions of the test reject the most. In addition to

the date and the rejection frequencies, we also note the most important economic

events that occurred on each of the days.Interestingly, the days with the most

rejections for the test based on π(m) are typically associated with “soft,” or diffu-

sive and difficult to interpret information, like the outcome of the Italian Election

or the start of Janet Yellen’s tenure as chair of the Federal Reserve Board. By

contrast, all but one of the top rejection days for the π
(m)
Tr -based test are read-

ily associated with macroeconomic news announcements in the form of FOMC

statements or rate decisions. Putting these results further into perspective, indi-

vidual jump tests, corresponding to significant differences between positive and

negative semivariances (V+ and V−), have previously been associated with either

macroeconomic news announcements or firm specific news events (e.g., Lee and

Mykland (2008) and Lee (2012)), while tests for cojumps, or significant differences

between semicovariances (P and N ), are naturally associated with only economy

wide news that affect all assets (e.g., Bollerslev, Law, and Tauchen (2008) and La-

haye, Laurent, and Neely (2011)). We will not pursue this event type analysis any

further here, turning instead to a discussion of the general dynamic dependencies

inherent in each of the different realized semicovariance measures.17

3.3. Dynamic Dependencies

The previously discussed Figure 1 showing the time series of realized semico-

variances clearly suggests very different dynamic dependencies in the concordant

17The Supplemental Appendix contains a table with additional rejection days to extend Table
2, as well as the results for the double-truncated version of the tests discussed in Footnote
14 above. Also presented are results comparing the rejection frequencies with those of other
univariate jump tests and volatility measurement procedures.
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Table 2: Top Rejection Days

Date Direction % Event

π(m)

25-02-2013 N > P 69 Italian elections
21-06-2012 N > P 68 Rumors of Moody downgrade for global banks
01-06-2011 N > P 65 Moody’s cut Greece’s bond rating by three notches
03-02-2014 N > P 64 Janet Yellen sworn in as new Fed chair
26-11-2008 P > N 62 Bank of America acquisition of Merill Lynch ap-

proval

π
(m)
Tr

18-12-2013 P > N 94 Fed reduction of Asset Buying Program
11-12-2007 N > P 93 Fed drops rate by 25 basis points
19-06-2013 N > P 89 Announcement that Fed will continue buying

Mortgage Backed Securities
27-10-1997 P > N 85 Mini-crash and NYSE circuit breaker trading halt
18-09-2013 P > N 85 Announcement that Fed will sustain Asset Buying

Program

Note: The table reports the five days of most one-sided rejections for the test
of Pij = Nij. The first column gives the date, the second provides the direction
in which the rejections occurred, and the third column provides the fraction of
pairs where equality is rejected in that direction. The final column provides a
description of the event. The top panel is based on a non-jump robust variance
estimator Π(m), while the bottom panel uses the truncated variance estimator
Π

(m)
Tr to normalize the difference.

(Pt and Nt) and discordant (Mt) elements. In Figure 4 we present autocorre-

lations, computed using the estimator of Hansen and Lunde (2014) to account

for measurement errors, averaged across 1,000 randomly selected pairs of stocks.

Whereas the autocorrelations for the realized variances (RVt) and the positive and

negative realized semivariances (V+
t and V−t ) shown in the left panel are almost

indistinguishable,18 there is a clear ordering in the rate of decay of the autocor-

relations for the realized semicovariance elements shown in the right panel. Most

noticeably, the autocorrelations for RCOVt are systematically below those for the

three realized semicovariance elements, with the mixed Mt term exhibiting the

highest overall persistence, and Pt and Nt decaying very similarly.19

18This contrasts with Patton and Sheppard (2015), who found the negative realized semivari-
ances to be more persistent than the realized variances. However the results presented here
differ in that they are based on a wider sample of stocks and use the autocorrelation estimator
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Figure 4: Autocorrelations
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Note: The graph plots the autocorrelation functions for the different realized
semicovariance elements. All of the estimates are averaged across 1,000 randomly
selected pairs of stocks, and bias adjusted following the approach of Hansen and
Lunde (2014).

These marked differences in the serial dependencies imply that different uni-

variate time series models would be required for satisfactorily modeling each of

the different realized semicovariance elements. Importantly, they also suggest that

more accurate volatility and covariance matrix forecasts may be obtained by “look-

ing inside” the covariance matrix and separately modeling and forecasting the Pt,
Nt, and Mt components that make up RCOVt.

In order to more explicitly investigate this conjecture and further characterize

the dynamic dependencies inherent in the semicovariances, we estimate a vector

version of the popular HAR model of Corsi (2009), in which each of the elements

in the realized semicovariance matrix are allowed to depend on its own “daily,”

“weekly,” and “monthly” lags, as well as the lags of the other realized semicovari-

ance components. That is,

 Pij,tNij,t
Mij,t

 =

φPijφN ij

φMij

+Φij,D

 Pij,t−1

Nij,t−1

Mij,t−1

+Φij,W

 Pij,t−2:t−5

Nij,t−2:t−5

Mij,t−2:t−5

+Φij,M

 Pij,t−6:t−22

Nij,t−6:t−22

Mij,t−6:t−22

+

 ε
Pij
t

εN ijt

εMij
t

 ,
(25)

of Hansen and Lunde (2014).
19In the presence of jumps, and in particular co-jumps, Pt, Nt and Mt will all depend on

the continuous variation in returns, while only Pt and Nt will be affected by (co-)jumps. Jump
variation is generally thought to be less persistent than continuous variation (see, e.g., the
theoretical pricing models in Duffie, Pan, and Singleton (2000) and the empirical evidence in
Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and Renò (2010)), and as such one
may naturally expect Mt to be the more persistent component.
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Table 3: Semicovariance HAR Estimates

Pij,t Nij,t Mij,t RCOVij,t
Pij,t−1 -0.038* -0.050* -0.035* -0.052**
Pij,t−2:t−5 -0.004 -0.057 -0.002 -0.059
Pij,t−6:t−22 -0.074 -0.023 -0.099 -0.048

Nij,t−1 -0.248** -0.192** -0.096** -0.344**
Nij,t−2:t−5 -0.312** -0.250** -0.090* -0.472**
Nij,t−6:t−22 -0.349** -0.206* -0.021 -0.534**

Mij,t−1 -0.075* -0.072* -0.141** -0.006
Mij,t−2:t−5 -0.044 -0.049 -0.209** -0.116
Mij,t−6:t−22 -0.028 -0.020 -0.409** -0.417**

Note: The table reports the average parameter estimates for the vector HAR
model in (25) averaged across 500 randomly selected pairs of stocks. The first
three columns reports results for the unrestricted models. The last column
reports the estimates that restricts the rows of ΦD, ΦW and ΦM to be the
same, corresponding to a model for RCOVij,t. ** and * signify that the
estimates for that coefficient are significant at the 5% level for 75% and 50%
of the randomly selected pairs of stocks, respectively.

where Pij,t−l:t−k ≡ 1
k−l+1

∑k
s=l Pij,t−s, with the other terms defined analogously.20

The first three columns of Table 3 report the OLS-based parameter estimates

averaged across 500 randomly selected pairs of stocks. To aid interpretation,

we also include stars to signify the proportion of the coefficient estimates across

the 500 random pairs of stocks that are significant at the usual 5% level. The

table reveals a clear block structure in the coefficients for the general specification

reported in the first three columns. Most notably, the dynamic dependencies in

Pt and Nt are almost exclusively driven by the lagged Nt terms. By contrast, the

dynamics of the mixed Mt elements are primarily determined by their own lags,

with the monthly lag receiving by far the largest weight.

The last column of Table 3 reports the parameter estimates from regressing

RCOVt on the lagged realized semicovariances, or equivalently a HAR model as

in (25) in which the rows of ΦD, ΦW and ΦM are restricted to be the same. As

is evident, the same block structure remains, with the three lags of Nt and the

monthly lag ofMt constituting the main drivers of RCOVt. Putting the estimates

further into perspective, on average Pt/RCOVt = 0.837,Nt/RCOVt = 0.847 and

Mt/RCOVt = −0.684, so that normalizing each of the explanatory variables,

20Note that the “weekly” variable excludes the daily lag, and the “monthly” variable excludes
the daily and weekly lags. This aids interpretation but does not affect the fit of the model.
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the semicovariance-based HAR models effectively put a weight of approximately

0.339 on lagged daily information. By comparison, the average estimates for a

standard HAR model for RCOVt equal 0.184, 0.305 and 0.304 for the daily, weekly

and monthly lag, respectively, leading to a more muted reaction to new daily

information.

The distinct dynamic dependencies revealed in the realized semicovariance

components suggest that covariance matrix forecasting models may be improved

by using these components separately, rather than relying solely on realized covari-

ance measures. Empirical results reported in the Supplemental Appendix thor-

oughly corroborate this in applications to covariance matrix forecasts ranging from

bivariate to 100-dimensional. Going one step further, we next demonstrate how

realized semicovariance measures may also be used in the construction of improved

univariate portfolio volatility forecasts by “looking inside” the covariance matrix

of the assets that make up the portfolio.

3.4. Semicovariances and Portfolio Volatility Forecasting

As discussed in Barndorff-Nielsen, Kinnebrock, and Shephard (2010) and Pat-

ton and Sheppard (2015), the realized variance of a portfolio may be decomposed

into the positive and negative realized semivariances based on high-frequency

portfolio returns. Given high-frequency returns for all of the constituent as-

sets of the portfolio, the portfolio realized variance can also be decomposed into

three separate semicovariance components. In particular, utilizing the identity

RCOVt = Pt+Nt+Mt, it follows readily that for any vector of portfolio weights,

say w,

RV p
t ≡ w′RCOVtw

= w′Ptw + w′Ntw + w′Mtw (26)

≡ Ppt + N p
t + Mp

t ,

where the p superscript indicates the relevant univariate portfolio quantities. Note

that the Ppt and N p
t portfolio semicovariance measures are distinctly different from

the corresponding univariate portfolio semivariances, as the latter depend only on

the aggregate portfolio return and its sign, whereas the former use returns on all

of the constituents stocks in the portfolio. The results in the previous section sug-

gest that lagged values of the Ppt , N p
t and Mp

t realized portfolio semicovariance

measures may convey different information about future realized portfolio vari-

ances. We next explore this empirically by comparing the forecasts form a series

of competing forecasting models.
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3.4.1. Forecast Comparisons

The simple and easy-to-implement HAR model of Corsi (2009) has arguably

emerged as the benchmark model for judging alternative realized volatility-based

forecasting procedures. One-day-ahead forecasts for the portfolio return variance

from the model are constructed as,

RV p
t+1|t = φ0 + φdRV

p
t + φwRV

p
t−1:t−4 + φmRV

p
t−5:t−21. (27)

In addition to this commonly used benchmark, we also consider the forecasts

from the Semivariance HAR (SHAR) model of Patton and Sheppard (2015), in

which the daily realized variance is decomposed into its realized semivariance

components,

RV p
t+1|t = φ0 + φd,+V+p

t + φd,−V−pt + φwRV
p
t−1:t−4 + φmRV

p
t−5:t−21. (28)

This model has been found to perform particularly well from the perspective of

portfolio variance forecasting, performing on par with or better than the forecasts

from other HAR-style models.21

To investigate the benefit of decomposing not only the realized variance, but

also the realized covariance, we extend the SHAR model to allow the forecasts to

depend on each of the realized portfolio semicovariance components,

RV p
t+1|t = φ0 + φd,PPpt + φw,PPpt−1:t−4 + φm,PPpt−5:t−21

+ φd,NN p
t + φw,NN p

t−1:t−4 + φm,NN p
t−5:t−21 (29)

+ φd,MMp
t + φw,MMp

t−1:t−4 + φm,MMp
t−5:t−21.

We will refer to the corresponding model as the SemiCovariance HAR (SCHAR)

model. The SCHAR model is obviously quite richly parameterized. Hence, moti-

vated by the distinct dynamic dependencies in the different realized semicovariance

components documented in the previous section, we also consider a restricted ver-

sion, in which we only include the daily, weekly and monthly lags of N p, together

with the monthly lag of Mp; i.e, we fix φd,P = φw,P = φm,P = φd,M = φw,M = 0.

We will refer to the forecasts from this restricted specification as SCHAR-r for

short.

21Bollerslev, Patton, and Quaedvlieg (2016) provide a recent detailed empirical forecast com-
parison of the SHAR model with a list of other univariate HAR models, including the HARQ
model and models that explicitly allow for jumps.
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We consider portfolios comprised of between N = 1 and N = 100 individual

stocks. For each portfolio dimension N , we randomly select 500 stocks, restricting

the selected stocks to contain an overlap of at least 1,100 daily observations.

We then construct rolling out-of-sample forecasts based on each of the different

models, in which all of the model parameters are re-estimated (by least-squares)

daily using the most recent 1,000 daily observations. We rely on the commonly-

used MSE and QLIKE loss functions to evaluate the performance of the resulting

RV p
t+1|t forecasts vis-a-vis the actual realized portfolio volatilities RV p

t+1.22

Table 4 reports the results for N = 1, 10 and 100. The first column in each

panel reports the loss averaged across time and stocks. For each of the 500 samples,

we also compute the ratio of each model’s average loss relative to the standard

HAR model. The second column in each panel reports the average of these ratios

over all of the random samples.23

For the univariate case, N = 1, we find results that are consistent with those

of Patton and Sheppard (2015): the SHAR-based forecasts outperform the stan-

dard HAR-based forecasts, albeit not by much in our sample.24 Meanwhile, for

larger values of N and portfolios comprised of more than one stock, utilizing the

information in the realized semicovariances can result in quite substantial improve-

ments in the accuracy of the forecasts compared to the HAR and SHAR-based

forecasts that only rely on the realized portfolio (semi)variances. The results for

the QLIKE loss function, in particular, also clearly highlight the advantages of the

SCHAR-r specification compared to the forecasts from the unrestricted SCHAR

model that entail a large number of freely estimated parameters. The fact that the

restricted SCHAR-r model performs the best from a forecasting perspective is, of

course, entirely consistent with the extensive evidence in the forecasting literature

emphasizing the importance of parsimony (see, e.g., Zellner (1992)).

To further visualize these findings, Figure 5 plots the median loss ratios for

the HAR, SHAR and SCHAR-r models for additional values of N ranging from 1

to 100, together with the 10% and 90% cross-sectional quantiles for the SCHAR-

r forecasts. With the exception of QLIKE for N = 2, the median loss ratios

for the SCHAR-r model are systematically below those of the other two models.

22Both of these loss functions may be formally justified for the purpose of volatility model
forecast evaluation based on imperfect ex-post volatility proxies; see Patton (2011).

23The Supplemental Appendix reports the results from a series of additional forecasting models
together with a more formal statistical comparison based on the Model Confidence Set (MCS)
approach of Hansen, Lunde, and Nason (2011).

24Note that in the univariate case the positive and negative realized portfolio semicovariances
coincide with the realized portfolio semivariances, so we do not consider the SCHAR model
separately from the SHAR model.
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Table 4: Portfolio Variance Forecasts

MSE QLIKE
Model Average Ratio Average Ratio

N = 1

HAR 35.112 1.000 0.239 1.000
SHAR 34.981 0.997 0.238 0.998

N = 10

HAR 1.849 1.000 0.141 1.000
SHAR 1.671 0.966 0.139 0.986
SCHAR 1.643 0.955 0.210 1.318
SCHAR-r 1.567 0.908 0.139 0.979

N = 100

HAR 0.048 1.000 0.119 1.000
SHAR 0.045 0.935 0.115 0.957
SCHAR 0.045 0.976 0.236 1.495
SCHAR-r 0.041 0.862 0.111 0.925

Note: The table reports the loss for forecasting the portfolio variance for
portfolios of size N = 1, 10 and 100 for each of the different forecasting
models. The reported numbers are based on 500 randomly selected sets of
stocks. The Average column provides the average loss over time and all
sets of stocks. The Ratio column gives the time-average ratio over all sets
of stocks relative to the HAR model.

Moreover, the gains from using the information in the realized semicovariances

accrue relatively quickly as the number of stocks in the portfolio N increases,

and for the QLIKE loss in particular appear to reach somewhat of a plateau for

N ≈ 30.25

3.4.2. A Time-Varying Parameter Interpretation

To help illuminate where the improvements in forecast accuracy are com-

ing from, it is instructive to think about the forecasts that utilize the realized

semicovariances as equivalent to the forecasts from a standard HAR-type model

with time-varying parameters. To illustrate, consider the forecasts from a simple

25This is in line with the finding that the benefits to näıve diversification from the inclusion
of randomly selected stocks in an all equity portfolio is close to exhausted at around 30 stocks;
see, e.g., Campbell, Lettau, Malkiel, and Xu (2001).
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Figure 5: Median Loss Ratios
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Note: The graph plots the median loss ratios as a function of the number
of stocks in the portfolio, N . The ratio is calculated as the average loss of
the models divided by the average loss of of the standard HAR, based on 500
random samples of N stocks.

SCHAR-type model based on the lagged daily variables only,

RV p
t+1|t = φ0 + φd,PPpt + φd,NN p

t + φd,MMp
t

= φ0 +

(
φd,P

Ppt
RV p

t

+ φd,N
N p
t

RV p
t

+ φd,M
Mp

t

RV p
t

)
RV p

t

≡ φ0 + φd,tRV
p
t .

As the last equation shows, even though the φd,P , φd,N and φd,M parameters in

the original representation are all constant, this model may alternatively be inter-

preted as first-order autoregression for RV p
t+1 with a time-varying autoregressive

parameter. This same idea obviously generalizes to the more complicated SCHAR-

type forecasts, in which the parameters associated with the weekly and monthly

lags in the implied HAR-type representations would be time-varying as well.

To this end, Figure 6 plots the implied daily, weekly and monthly HAR param-

eters for the SHAR and SCHAR-r variance forecasts for of a portfolio comprised

of five stocks, or N = 5, averaged across 500 randomly selected such five-stock

portfolios. In contrast to the out-of-sample forecasting results in Table 4, which
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Figure 6: Implied HAR Parameters
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Note: The figure plots the implied HAR-type parameters for predicting the vari-
ance of a five-stock portfolio, averaged across 500 randomly selected portfolios.
The models are estimated over the full sample period.

are based on a rolling estimation scheme, the figure plots the implied parameter

estimates obtained over the full sample period.26 In addition to the implied daily,

weekly and monthly parameters, the last panel reports their sum as a measure of

the overall persistence of the different models.

The parameters for the HAR model are constant by construction, with an

average implied persistence of around 0.94. By comparison, the implied daily

parameter estimates for the SHAR model vary slightly above the constant daily

HAR parameter, while the constant weekly parameter for the SHAR model is

slightly below that of the HAR model. As such, the overall persistence of the

SHAR-based forecasts are generally very close to that of the standard HAR-based

forecasts. By contrast, the implied time-varying daily and weekly parameter es-

timates for the SCHAR-r model far exceed those of the HAR model, especially

26Requiring observations to be available over the full sample reduces the number of stocks to
121. To avoid “contaminating” the results by a few influential outliers, we exclude any portfolios
for which the maximum Pp

t /RV
p
t , Pp

t /RV
p
t and Pp

t /RV
p
t ratios exceed ten, and further smooth

the implied parameters using a [t− 25 : t+ 25] moving average.

27



over the earlier part of the sample. On the other hand, the implied time-varying

monthly parameters for the SCHAR-r model are typically less than for the HAR

and SHAR models. Correspondingly, the sum of the three implied parameters for

the SCHAR model are typically greater than for the other two models.27 Thus,

not only does the superior realized semicovariance-based forecasts respond more

quickly to new information, the forecasts are typically also more persistent and

slower to mean-revert.

4. Conclusion

We propose a new decomposition of the realized covariance matrix based on

the signs of the underlying high-frequency returns. This generates four “realized

semicovariance” matrices according to whether the returns were both positive,

both negative, or had mixed signs. We derive the asymptotic distribution of

the new measures under the standard assumption of a continuous multivariate

semimartingale and the use of ever finer sampled high-frequency returns in their

estimation. Relying on actual high-frequency data for a large cross-section of U.S.

equities, we find that the realized semicovariances have distinctly different dynamic

dependencies from the usual realized covariances, with the semicovariances based

on discordant returns (i.e., returns of opposite signs) exhibiting the strongest

memory. These differences in turn translate into superior forecast performance

for models designed to “look inside” the covariance matrix and explicitly utilize

the semicovariance measures.

Our work leaves open several interesting avenues for further research. One

obvious direction entails the study of the asymptotic properties of the realized

semicovariances in the presence of jumps, co-jumps, and dynamic leverage effects.

Along these lines, it would be interesting to empirically investigate the economic

drivers that cause the actual estimated semicovariance components to differ from

their respective asymptotic limits. The small scale event-type study included

in the paper provides a first step in that direction. All of the empirical results

discussed in the paper are based on individual equities, effectively rendering the

two discordant semicovariance components observational equivalent. It would be

interesting to study the behavior of the realized semicovariances when one of the

27Even though the sum of the autoregressive coefficients for the SCHAR model occasionally
exceeds unity, this does not necessarily imply non-stationary, as the temporal variation in the
realized semicovariance measures may induce stationarity; see Conley, Hansen, Luttmer, and
Scheinkman (1997) and Nielsen and Rahbek (2014) for a discussion of volatility induced station-
arity.
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assets is a market portfolio, or other systematic risk factor. This naturally links to

earlier work on “asymmetric betas,” and raises the tantalizing possibility of more

accurate asset pricing models by decomposing conventional realized covariance-

based betas into “realized semibetas.” We leave all of these issues for future

research.
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Appendix A. Proofs of Propositions

To simplify the exposition, let U = [U (1), U (2)] denote a bivariate standard

normal random variable, f be a real-valued function on R2, and define

ρσ(f) ≡ E[f(σU)], (A.1)

ρ(k)
σ (f) ≡ E[f(σU)U (k)], (A.2)

for k = 1, 2.

Proof of Proposition 1: Given the assumptions in equations (12) and (14),

coupled with the fact that the 8 × 1 vector function g defined in equation (11)

is continuously differentiable and of polynomial growth, the limit of V(m) can

be derived using the theory of Kinnebrock and Podolskij (2008). In particular,

applying their Theorem 1 to V(m) in equation (11) it follows that,

V(m) P→ V =

∫ 1

0

ρσu(g)du. (A.3)

Let Z = σuU be bivariate normal with mean zero and covariance matrix,

σuσ
′
u =

[
σ2
u,1 ρu

ρu σ2
u,2

]
, (A.4)

we obtain the following expressions for ρσu(gi), for i = 1, 2, ..., 8,

ρσu(g1) = ρσu(g2) = E
[
Z2

1I{Z1≥0}
]

=
σ2
u,1

2

ρσu(g3) = ρσu(g4) = E
[
Z2

2I{Z2≥0}
]

=
σ2
u,2

2

ρσu(g5) = ρσu(g6) = E
[
Z1Z2I{Z1≥0,Z2≥0}

]
=
σu,1σu,2

(
ρu arccos(−ρu) +

√
1− ρ2

u

)
2π

ρσu(g7) = ρσu(g8) = E
[
Z1Z2I{Z1≥0,Z2<0}

]
=
σu,1σu,2

(
ρu arccos ρu −

√
1− ρ2

u

)
2π

,

which completes the proof. 2
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Proof of Proposition 2: Under Assumption (14), Theorem 2 of Kinnebrock

and Podolskij (2008) implies the following CLT for V(m),

√
m(V(m) −V)

Dst−→
∫ 1

0

αudWu +

∫ 1

0

βudW̃u, (A.5)

where
Dst→ denotes stable convergence, αu, βu are 8× 2-dimensional processes, W̃

is a two-dimensional Brownian motion independent of the W and W∗ Brownian

motions in (12) and (14). Elementwise, αu and βu are defined as follows,

α(a,b)
u = ρ(b)

σu
(ga), (A.6)

with

βuβ
′
u = Au −αuα

′
u, (A.7)

where Au is the 8× 8 matrix with elements,

A(a,b)
u = ρσu(gagb)− ρσu(ga)ρσu(gb). (A.8)

The following equations provide the requisite expressions for the elements of ρσu ,

ρσu((g1)2) = ρσu((g2)2) =
3σ4

u,1

2

ρσu((g3)2) = ρσu((g4)2) =
3σ4

u,2

2

ρσu((g5)2) = ρσu((g6)2) =
σ2
u,1σ

2
u,2

2π

[
(1 + 2ρ2

u) arccos(−ρu) + 3ρu
√

1− ρ2
u

]
ρσu((g7)2) = ρσu((g8)2) =

σ2
u,1σ

2
u,2

2π

[
(1 + 2ρ2

u) arccos(ρu)− 3ρu
√

1− ρ2
u

]

ρσu(g1g3) = ρσu(g2g4) = ρσu((g5)2)

ρσu(g1g4) = ρσu(g2g3) = ρσu((g7)2)

ρσu(g1g5) = ρσu(g2g6) =
σ3
u,1σu,2

2π

[
3ρu arccos(−ρu) + (2 + ρ2

u)
√

1− ρ2
u

]
ρσu(g1g7) = ρσu(g2g8) =

σ3
u,1σu,2

2π

[
3ρu arccos(ρu)− (2 + ρ2

u)
√

1− ρ2
u

]
ρσu(g3g5) = ρσu(g4g6) =

σu,1σ
3
u,2

2π

[
3ρu arccos(−ρu) + (2 + ρ2

u)
√

1− ρ2
u

]
ρσu(g3g8) = ρσu(g4g7) =

σu,1σ
3
u,2

2π

[
3ρu arccos(ρu)− (2 + ρ2

u)
√

1− ρ2
u

]
,

36



with all other elements ρσu(gagb) = 0, as the relevant events are mutually exclusive.

Finally, the elements of ρ
(k)
σu are given by,

ρ(1)
σu

(g1) = −ρ(1)
σu

(g2) =
2σ2

u,1√
2π

ρ(1)
σu

(g3) = −ρ(1)
σu

(g4) =
2ρuσ

2
u,2√

2π

ρ(2)
σu

(g1) = −ρ(2)
σu

(g2) =
2ρuσ

2
u,1√

2π

ρ(2)
σu

(g3) = −ρ(2)
σu

(g4) =
2σ2

u,2√
2π

ρ(1)
σu

(g5) = −ρ(1)
σu

(g6) = ρ(2)
σu

(g5) = −ρ(2)
σu

(g6) =
σu,1σu,2(ρu + 1)2

2
√

2π

ρ(1)
σu

(g7) = −ρ(1)
σu

(g8) = −ρ(2)
σu

(g7) = ρ(2)
σu

(g8) = −σu,1σu,2(ρu − 1)2

2
√

2π
,

which completes the proof. 2

Proof of Proposition 3: The consistency of Π(m) for Π, and in turn the

asymptotic distribution of the normalized estimator, follows directly from Corol-

lary 1 in Kinnebrock and Podolskij (2008). 2
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