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S1 Cross-validation procedure
In this appendix we formally describe the cross-validation (CV) procedure that we rely on in

choosing the thresholds. All of our forecasting models can be written as:

RVt = xt−1(q)
′φ+ εt,

where xt−1(q) includes the constant and the additional regressors. Note that the regressors, and

thus the forecasts, depend on the chosen quantile q. Let Q be the set potential values of q.

Furthermore, let V ⊆ {1, . . . , T} denote the indices of the observations in the validation set,

and T ⊆ {1, ..., T} denote the indices of the observations in the training set. Often, but not

always, T := Vc. Let θ̂T(q) be the parameter estimate based on the training data T using the

quantile q ∈ Λ×Q. For each q let

CV (q,V) =
∑
t∈V

[
RVt − x′t−1θ̂T(q)

]2
,

denote the corresponding prediction error over the validation set V. Let V = {V1, . . . ,VB} be

a user specified collection of validation sets (with corresponding training sets {T1, . . . ,TB}).

The cross validation error for the q is then calculated as

CV (q) =
B∑
i=1

CV (q,Vi),

resulting in the quantile choice,

q̂ ∈ arg min
q∈Q

CV (q).

The final parameter estimate is then found as β̂(q̂) based on all observations 1, . . . , T .

Turning to the choice of B and the corresponding {V1, . . . ,VB}, there are two standard
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ways to split the sample: exhaustive and non-exhaustive CV. For the exhaustive class of CV

methods, leave-v-out CV is the one most commonly used. The idea is to use v observations

as the validation set, using the remaining observations to estimate the parameters of the model.

This is done for all possible ways of choosing v observations out of T . Thus, B =
(
T
v

)
with

each Vi having cardinality v in the above general setting. Ti = Vci , i = 1, ..., B. A popular

choice is to set v = 1, such that B = T and Vi = {i}. This is known as the leave-one-out CV.

Exhaustive CV is computationally very intensive as it performs cross-validation over many

sample splits. A remedy to the computational intensity is to use non-exhaustive CV methods.

Among these, B-fold CV is the most popular. In B-fold CV, the sample {RVt,xt−1(q)}Tt=1 is

(randomly) partitioned into B subsamples with “approximately” the same number of observa-

tions. Thus, V1, . . . ,VB have roughly the same cardinality. In fact, one typically chooses each

Vi to have T/B observations (up to rounding) such that max1≤i≤j≤B
∣∣|Vi| − |Vj|

∣∣ ≤ 1. In many

implementations the B validation groups are disjoint, such that each observation belongs to one

group only. Again, Ti = Vci , i = 1, ..., B. Setting B equal to 5 or 10 are typical choices. We

rely B=5 in the paper.
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S2 QLIKE based cross-validation
In this appendix we report the forecasting results for univariate models when we select the

number and location of thresholds by minimizing cross-validated QLIKE loss, rather than MSE

loss. Table S.1 reports the forecasting performance of the different models, directly mirroring

the MSE-based results in Table 1 in the main part of the paper. The relative performance of the

models does not substantially change, but the PV(G)-HAR forecasts tend to be slightly worse,

even when considering QLIKE loss.
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Table S.1: Univariate Models: Unconditional Forecasting performance based on QLIKE-CV
RV SV PV(2) PV(3) PV(G∗)

Panel A: S&P500

MSE 2.5186 2.4345 2.4359 2.4059 2.3927
p-val. dmRV 0.164 0.166 0.109 0.101
p-val. dmSV 0.669 0.013 0.025
p-val. MCS 0.298 0.108 0.108 0.298 1.000

QLIKE 0.1387 0.1361 0.1362 0.1346 0.1349
p-val. dmRV 0.005 0.007 0.000 0.001
p-val. dmSV 0.594 0.040 0.080
p-val. MCS 0.008 0.178 0.178 1.000 0.229

Panel B: Individual Stocks

MSE 14.982 14.886 14.888 14.416 14.420
#sig. dmRV 10 11 23 22
#sig. dmSV 2 22 22
#sig. MCS 10 11 12 27 22

QLIKE 0.1547 0.1532 0.1530 0.1497 0.1499
#sig. dmRV 18 19 23 23
#sig. dmSV 7 21 20
#sig. MCS 5 6 7 26 20

Note: The table reports the forecasting performance of the different models, where the PV(G) thresh-
olds are obtained by cross-validation minimizing QLIKE, rather than MSE. The top panel shows the
results for the S&P 500. The bottom panel reports the average loss and 5% rejection frequencies of
the Diebold and Mariano (1995) tests for each of the individual stocks. The one-sided tests between
PV-HAR against RV-HAR and SV-HAR are denoted by dmRV and dmSV , respectively. MCS denotes
the p-value of that model being in the Model Confidence Set (Hansen et al. (2011)), or the number of
times that model is in the 80% Model Confidence Set. PV(G∗) dynamically chooses the best among
the RV-HAR, SV-HAR and HAR-PV(G) models with 2, 3 or 4 thresholds.
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S3 The relative importance of partial (co)variances

We present in-sample estimation results for the various models based on the SPY below in Table

S.1. Since the average values of the partial variances may differ greatly, we standardize all right-

hand side variables to be mean zero, variance one, such that we can directly compare all the

coefficients. We focus our discussion on the parameters for the daily lag, which is 0.44 for the

base HAR model. For the SV-HAR we find the common result that the negative semivariance

carries most of the information, with the positive semivariance’s impact being roughly one-tenth

of the positive semivariance. The three remaining columns provide the PV(G)-HAR estimates.

We focus on the SPY, but the selected quantiles are representative for those most commonly

selected across the individual stocks as well. For the single-threshold partial-variance model,

full-sample cross-validation finds a threshold of 0.9, selecting a term related to large positive

returns, which carries an insignificant negative coefficient. The remaining variation obtains the

largest positive coefficient across all models. The preferred PV(3)-HAR model, selects one low

and one quantile. The variation in the middle of the distribution (captured by PV (2)
t−1) appears to

be the most important, with the variation stemming from large negative returns obtaining a sec-

ondary role, while the large positive returns are again insignificant. The three threshold model

(PV(4)) selects the median and two tail quantiles. Unsurprisingly, the component associated

with large negative returns has a high loading. More surprising is the fact that the above median

partial variance is the other important component, while the below median partial variance is

insignificant. In general, the model is highly impacted by small changes in the quantiles, in line

with the poor out-of-sample performance previously documented in Table 1 of the main part of

the paper.

We next assess the relative importance of the multivariate partial covariances. We consider

random portfolios of cross-sectional dimension N = 10, and fix one of two thresholds to either

the zero threshold, or the utmost left, and right quantile, q = 0.1 or q = 0.9. We vary the second
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Table S.1: Univariate Models: Parameter Estimates
RV SV PV(2) PV(3) PV(4)

Selected Quantiles 0.95 0.05 0.15
0.75 0.50

0.85

RVt−1 0.444
(0.021)

SV −t−1 0.384
(0.017)

SV +
t−1 0.040

(0.020)
PV

(1)
t−1 0.545 0.045 0.159

(0.022) (0.021) (0.024)
PV

(2)
t−1 -0.066 0.417 -0.026

(0.018) (0.026) (0.027)
PV

(3)
t−1 -0.001 0.325

(0.019) (0.029)
PV

(4)
t−1 -0.008

(0.023)
RVt−1|t−5 0.326 0.365 0.333 0.332 0.337

(0.028) (0.028) (0.027) (0.028) (0.028)
RVt−1|t−22 0.168 0.162 0.156 0.160 0.164

(0.021) (0.021) (0.020) (0.020) (0.020)

Note: The table reports the full-sample parameter estimates for the S&P
500, with all of the right-hand-side explanatory variables standardized
to have mean zero and unit variance. An intercept is included in all
models but is not reported here in the interests of space. Heteroskedas-
ticty robust standard errors are reported in parentheses.

threshold across the range of quantiles, sufficiently far from the first to avoid ill-behaved, near

empty, partial covariances. In order for the coefficients to be comparable across quantiles, we

first standardize all right-hand side variables to be mean zero and variance one. The resulting

average parameter estimates for each of the six partial covariance matrices are presented in

Figure S.1.

While the figures summarize a large number of PCOV(3)-HAR models, let us start with a
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Figure S.1: Multivariate Models: Parameter Estimates.
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Note: We plot average parameter estimates over 100 random portfolios of size N = 10, for the
PCOV(3)-HAR model, as a function of quantile selection. The right-hand side variables were
first standardized to mean zero, variance one. For each of the three line-types, the first threshold
is fixed, while the x-axis of the graphs denotes the second quantile. Each panel refers to one of
the six partial covariances.

general overview, and than delve into some special cases. First, it is clear that the ‘concordant’

partial covariances play a central role. PCOV (1,1)
t , which is related to the most negative

returns, generally has the highest standardized coefficient, followed by the positive component

PCOV
(3,3)
t , and finally the variation stemming from returns in the center PCOV (2,2)

t . The

mixed components typically have negative coefficients.

A number of highlights emerge from the figure. First, consider the dotted lines, where one

threshold is fixed at qg = 0.9. This is the model that was found to be important in the univariate

case. Here, we see that as the second quantile converges towards the left-tail, the coefficient on

the (3,3) element remains mostly constant, while the coefficient on (2,2) increases and that of
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(1,1) decreases, signifying that the variation coming from large negative returns has moderate

predictive content, while the variation stemming from below median returns less far into the

tail plays an important role. A similar, but less pronounced version, holds for the reverse case,

based on the solid line, where we keep one quantile fixed at 0.1. The center (2,2) component

becomes more important when the second quantile goes deeper into the tail. The dashed line,

where the first threshold is fixed at zero again corroborates this story. The predictive content is

in large, but not extremely large returns. When the second quantile goes deeper into the tails, the

(1,1) and (3,3) importance diminishes, while the center (2,2) increases in importance. The most

prevalent combination of thresholds, SCOV+ with the second threshold at 0.1, correspond to

the point where the dashed line meets the y-axis. Interestingly, the middle component receives

close to zero loading. The left-tail component, while typically small in magnitude plays an

important role, indicating that the majority of the predictability comes from variation related to

joint positive returns.
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S4 Forecasting industry covariance matrices

The main paper showed that the PCOV(G∗)-HAR model converges to the SCOV+ model when

the dimension increases. For small dimensions, we select the complete range of thresholds,

while for N = 50, we always select the same model. This suggests that there is variability

in the optimal threshold across stocks, which are unlikely to coincide in any given random

portfolio, resulting in the ‘robust’ zero threshhold. To corroborate this conjecture, we form

portfolios of similar stocks based on Kenneth French’s Industry classification.1

We consider a forecasting exercise where we use covariance matrices for stocks within a

single industry. To ensure we have a sufficiently long sample period, we consider a subset of

stocks that have traded continuously over the sample period, resulting in 121 different stocks.

We then form industry portfolios, ranging in size from 2 to 22. The resulting forecasting per-

formance is provided in Table S.1. The table shows more convincing forecasting improvements

relative to the scenario of random portfolios. Based on MSE, the Diebold-Mariano test of equal

forecasting performance for the SCOV and PCOV(G) model is rejected in favor of the PCOV(G)

for all portfolios except the remaining set of ‘Energy’ firms, where the standard SCOV model

is actually selected.

1We use the 10-industry classification provided in Kenneth French’s Data Library, and add a separate class for
Financial firms (SIC codes 6000-6800).
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Table S.1: Industry forecasting performance
PCOV MSE QLIKE

#Stocks Thresholds RCOV SCOV PCOV(G) RCOV SCOV PCOV(G)

NoDur 9 0.1, 0.9 1.75 1.70 1.67** 3.10 3.27 2.84**
Durbl 2 0.1 7.93 7.81 7.67* 0.38 0.38 0.36*
Manuf 22 SCOV, 0.1 4.46 4.11 4.00** 10.86 11.35 10.14**
Enrgy 8 SCOV 7.35 6.00 6.00 2.23 2.21 2.21
HiTec 20 SCOV, 0.9 4.92 4.80 4.65** 9.16 8.54 8.74
Telcm 3 SCOV, 0.1 3.12 3.11 3.07** 4.18 4.18 4.13*
Shops 15 SCOV, 0.1 4.24 4.12 3.99** 5.58 5.62 5.22**
Hlth 10 SCOV, 0.1 3.23 3.05 2.83** 4.92 5.12 4.80**
Utils 11 SCOV, 0.1 2.94 2.94 2.71** 4.15 4.12 3.75**
Finance 13 0.1, 0.9 8.74 8.68 8.44** 6.59 6.75 6.54**
Others 8 0.1, 0.9 10.55 10.55 10.29* 2.49 2.20 1.97**

Note: The table shows the average loss of industry covariance matrix forecasts. ** and * denote
significance of a Diebold and Mariano (1995) test of PCOV(G)-HAR against SCOV-HAR at the 1%
and 5% significance level respectively.
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S5 Forecasting portfolio variance

In addition to forecasting the covariance of a portfolio, the realized partial covariances may be

used in forecasting the variance of a portfolio. Let w denote the set of portfolio weights. The

realized variance of the portfolio returns, rpt,k = w′rt,k, may then be decomposed into realized

partial covariances as:

RV p
t ≡ w

′
RCOVtw =

G∑
g=1

G∑
g′=g

w
′
PCOV

(g,g′)

t w ≡
G∑
g=1

G∑
g′=g

PV
p(g,g′)
t (S5.1)

where PV p(g,g′)
t refers to the (scalar) realized partial variance of the portfolio formed using

weight vector w. The G(G + 1)/2 scalar portfolio partial variances, associated with each of

the partial covariances, are obviously distinct from any quantity that may be computed directly

from the portfolio returns. As such, this representation of the portfolio variance in terms of

the portfolio partial variances allows for an additional information on where the previously

documented multivariate forecast improvements for the PCOV models stem from.

For simplicity of exposition, consider an ‘AR(1)’ forecasting model for the portfolio vari-

ance based on all of the portfolio partial variances, as defined in equation (S5.1) above.2 Since

the partial variances represent a complete decomposition of the portfolio variance, this extended

representation may be rewritten as:

RV p
t = φ0 +

G∑
g=1

G∑
g′=g

φ
(g,g′)
1 PV

p(g,g′)
t + εt

= φ0 +

 G∑
g=1

G∑
g′=g

φ
(g,g′)
1

PV
p(g,g′)
t−1

RV p
t−1


︸ ︷︷ ︸

φ1,t

RV p
t−1 + εt,

(S5.2)

2Of course, since we use Multivariate Kernel estimates on the left-hand side and sub-sampled partial covariance
estimates on the right-hand side, the model is not strictly autoregressive.
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Figure S.1: Portfolio Variance Models: Implied time-varying parameter
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Note: The figure plots the implied time-varying parameter for predicting the variance of ran-
dom portfolios of dimension N = 10. The figure shows the average across 100 random
portfolios, further smoothed by a [t − 100 : t + 100]-moving average. The top panel shows
the daily lag, while the bottom panel provides the sum of the daily, weekly and monthly
coefficients. The models are estimated on the full out-of-sample period.

thus affording a simple time-varying parameter interpretation of the more general model.3 Cor-

respondingly, the implied time series estimates for φ1,t, augmented with a measure of the long-

run persistence obtained by adding the weekly and monthly HAR coefficients, provide a simple

visual for understanding the differences between the various HAR models. We consider four

models: the RCOV-HAR, SCOV-HAR, and two different PCOV-HAR models motivated by

the results in Figure 3 in the main part of the paper. The first combines SCOV with the 0.1

3This interpretation naturally extends to the HAR model, with the weekly and monthly lags added, although in
all models considered in this paper those coefficients are constant.
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quantile (denoted “SCOV+) and the second employs the 0.1 and 0.9 quantiles. We estimate

each of the models for 100 randomly selected equally weighted portfolios of size N = 10 (i.e.,

w = ιN/10).

The top panel in Figure S.1 plots the average parameter estimates for each of the different

models, and shows that all of the SCOV and PCOV models put higher weight on the daily

lag than the RCOV model. While the RCOV model has a coefficient of 0.410, the three other

models have average daily coefficients between 0.545 and 0.565, with the PCOV(0.1,0.9) model

having the highest value. The bottom panel shows that the total persistence of the PCOV models

also fairly closely mirrors that of the SCOV model, with the exception of the SCOV+(0.1)

model, which is generally less persistent. Overall, however, the semi- and partial covariance-

based models clearly allow for faster incorporation of new information and more persistent

longer-run dynamic dependence than the traditional RV-HAR forecasting models.

Next, we presents forecasting results for the portfolio variance. We use the three HAR-

based models (RVp, SVp, PVp), paralleling those in Section 4 of the main paper. A summary

of the results is reported in Table S.1. The MSE of the PVp(G∗) model is consistently lower

than that of the other two models. The improvements over the SVp HAR are diminishing in

N , while the improvements over RVp are increasing in N . The Model Confidence Set (Hansen

et al. (2011)) fails to really separate the two decomposed models however. The results based on

QLIKE are more mixed, and the decomposed variance models fail to consistently improve over

the RV-HAR model.
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Table S.1: Multivariate Models: Portfolio Variance Forecasting Results
MSE QLIKE

N RVp SVp PVp(G∗) RVp SVp PVp(G∗)

2 6.986 6.682 6.575 0.128 0.129 0.128
(0.63) (0.82) (0.96) (0.57) (0.44) (0.74)

5 2.404 2.223 2.113 0.106 0.110 0.103
(0.84) (0.89) (1.00) (0.34) (0.30) (0.87)

10 1.895 1.644 1.540 0.118 0.112 0.113
(0.86) (0.92) (1.00) (0.55) (0.82) (0.75)

20 1.445 1.225 1.197 0.124 0.116 0.114
(0.35) (1.00) (1.00) (0.25) (0.84) (0.92)

50 1.353 1.105 1.086 0.124 0.121 0.124
(0.12) (1.00) (1.00) (0.78) (1.00) (0.52)

Note: The table provides the MSE and QLIKE for the three HAR-based models for the port-
folio variance, for various cross-sectional dimensions N . The reported number is the average
loss over 100 random portfolios, while the number in brackets presents the fraction of portfo-
lios for which the model is included in the 80% Model Confidence Set.
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S6 Conditional Superior Predictive Ability of the Partial Co-

variance Models

In order to gain a deeper understanding of the performance of the PV(G)-HAR model and how

it interplays with jumps, we apply the Conditional Superior Predictive Ability (CSPA) test of

Li, Liao and Quaedvlieg (2020). The CSPA null hypothesis posits that

H0 : E[Lj,t − L0,t|Xt = x] ≥ 0 ∀ x ∈ X , 1 ≤ j ≤ J,

where L0,t is the time-t loss of the benchmark model, Lj,t the loss of a set of alternative models,

and Xt the conditioning variable. This test compliments the unconditional predictive perfor-

mance comparisons presented in Table 1 in the main part of the paper. A failure to reject the

null indicates that the benchmark model is not dominated in any of the states dictated by the

conditioning variable. This testing procedure also provides an estimate of the above conditional

expectation function, which allows us to easily visualize the models’ performance as function

of the conditioning variable. We focus on lagged realized jump variation as a conditioning

variable.4

Figure S.2 provides the output of the CSPA test for the MSE loss of SPY forecasts. For

simplicity we only consider the RV-, SV- and PV(3)-HAR models. The left panel uses HAR as

the benchmark, and from the curves associated with the two competing models we see that the

PV(3)-HAR model outperforms the HAR model for all values of jump variation, with greater

outperformance when jump variation is higher. The SV-HAR model outperforms HAR only

when jump variation is high or low; for intermediate values it underperforms HAR. A formal test

of whether the minimum of the two curves is always positive fails to reject the null, indicating

4To identify jump returns, we employ the dynamic threshold of Mancini (2009) and Bollerslev and Todorov
(2011a,b) based on three times the trailing scaled bipower variation, adjusted for intraday periodicity in the volatil-
ity. See Bollerslev and Todorov (2011b) for additional details.
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Figure S.2: Univariate Models: Conditional Superior Predictive Ability for SPY
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Note: The figure shows the conditional expected loss differential functions, based on the CSPA
test of Li et al. (2020), using jump variation as the conditioning variables. The left and right
panels show results using RV-HAR and PV(3)-HAR as the benchmark model respectively.

that the HAR model is not uniformly significantly outperformed by the two competing models.

In the right panel we set the PV(3)-HAR model as the benchmark, and we observe that it

underperforms SV-HAR for very low values of jump variation, but outperforms for all other

values. Again, a formal test of whether the minimum of the two curves is always positive

fails to reject the null, indicating that the PV(3)-HAR model is not uniformly significantly

outperformed by the two competing models.

We apply the CSPA tests to all 28 individual stocks, and report the number of times the null

is rejected in Table S.2. We find that based using MSE loss, both RV and SV-HAR models are

beaten by either the PV(3) or PV(G)-HAR models for about half the stocks, while these two PV

models are only rejected with respect to the SV-HAR in one or two cases. The joint test against

all competing models is only rejected for two or three stocks. Rejections based on QLIKE loss

are more frequent, with both RV and SV-HAR CSPA hypothesis being rejected for all stocks,
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Table S.2: Univariate Models: Conditional Superior Predictive Ability
MSE QLIKE

RV SV PV(3) PV(G∗) RV SV PV(3) PV(G∗)

Panel A: One-versus-one CSPA tests against competing models

RV 3 0 0 6 3 2
SV 5 2 1 19 5 5
PV(2) 11 3 0 0 17 9 6 3
PV(3) 13 14 0 27 25 0
PV(4) 0 0 0 0 3 2 0 0
PV(G) 12 13 0 27 25 0

Panel B: One-versus-all CSPA tests against competing models

16 14 3 2 28 28 6 6
Note: This table reports the rejection frequencies of the CSPA test using lagged jump-
variation as the conditioning variable. Each entry represents the number of stocks for which
the column-model fails the CSPA null against the row model.

and the PV(G)-HAR models surviving the test for all but six of the series.
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