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S1. Additional theoretical results

S1.1. Joint convergence of realized semicovariance matrices

Theorem 2 in the main text is restricted to the joint stable convergence of P̂12 and

N̂12. In this appendix, we describe the joint convergence of all components of the realized

semicovariance measures in the bivariate setting (i.e., d = 2). Since M̂11 = M̂22 = 0 by

construction, it suffices to study the following 7-dimensional statistic:

Ŝ ≡
(
P̂11, P̂12, P̂22, N̂11, N̂12, N̂22, M̂12

)
.

From Theorem 1 of the main text, we recall that the probability limit of Ŝ is

S ≡ (P11, P12, P22, N11, N12, N22,M12) .

The proof for this general setting follows essentially the same steps as that of Theorem

2, but it is far more tedious because of the increased number of asymptotic covariances

between these statistics. For brevity, we only describe the theorem.

We define various components in the limit theorem following the same structure of

Section 2.2. It is convenient to define a few functions. Recall from the main text that

ψ (ρ) ≡ ρ arccos (−ρ) +
√

1− ρ2

2π
,

Ψ (ρ) ≡ 3ρ
√

1− ρ2 + (1 + 2ρ2) arccos (−ρ)

2π
.

Here, we also define

Ξ (ρ) ≡ (3 + 2ρ2)
√

1− ρ2 + 5ρ arccos (−ρ)

4π
,

Φ (ρ) ≡ 2ρ arccos (ρ)− (1 + ρ2)
√

1− ρ2

2π
.

We now define the limiting components in turn.

Bias components due to price drift, B. This bias term is given by

B ≡ (B11, B12, B22,−B11,−B12,−B22, 0)> ,
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where

B11 ≡
√

2

π

∫ T

0

b1,sv1,sds, B22 ≡
√

2

π

∫ T

0

b2,sv2,sds,

B12 ≡
1

2
√

2π

∫ T

0

(b1,sv2,s + b2,sv1,s) (1 + ρs) ds.

Bias components due to continuous price-volatility covariation, L. We denote for

x ∈ R2,

f11(x) ≡ 2 max{x1, 0}, f22 (x) ≡ 2 max{x2, 0}.

f121 (x) ≡ 1{x1≥0}max{x2, 0}, f122 (x) = max{x1, 0}1{x2≥0}

and then denote, for any 2× 2 matrix A,

F11 (A) ≡ E
[
f11 (AW1)

∫ 1

0

WsdW
>
s

]
,

F22 (A) = E
[
f22 (AW1)

∫ 1

0

WsdW
>
s

]
,

F12j (A) = E
[
f12j (AW1)

∫ 1

0

WsdW
>
s

]
, j = 1, 2.

The bias term L is defined as (L11, L12, L22,−L11,−L12,−L22, 0)>, where

L11 ≡
∫ T

0

Trace [σ̃1,sF11 (σs)] ds,

L22 ≡
∫ T

0

Trace [σ̃2,sF22 (σs)] ds,

L12 ≡
2∑
j=1

∫ T

0

Trace [σ̃j,sF12j (σs)] ds.

Diffusive sampling error spanned by price risk, ζ. We set

γ11,t ≡
√

2

π
v2

1,t

(
v1,t

ρtv2,t

)
, γ22,t ≡

√
2

π
v2

2,t

(
ρtv1,t

v2,t

)
,

γ12,t ≡
(1 + ρt)

2 v1,tv2,t

2
√

2π

(
v1,t

v2,t

)
,

We then set, for (j, k) ∈ {(1, 1) , (1, 2) , (2, 2)},

ζjk ≡
∫ T

0

(
c−1
s γjk,t

)>
(σsdWs) .
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We then set ζ ≡ (ζ11, ζ12, ζ22,−ζ11,−ζ12,−ζ22, 0)>. The quadratic covariation matrix of

the local martingale ζ equals
∫ T

0
Γsds, where

Γt =

 Γ∗t −Γ∗t 0

−Γ∗t Γ∗t 0

0 0 0

 ,

and Γ∗t is a symmetric matrix process given by

Γ∗t ≡

 γ>11,tc
−1
t γ11,t γ>11,tc

−1
t γ12,t γ>11,tc

−1
t γ22,t

• γ>12,tc
−1
t γ12,t γ>12,tc

−1
t γ22,t

• • γ>22,tc
−1
t γ22,t

 .

Diffusive sampling error orthogonal to price risk, ζ̃. This limit variable may be rep-

resented by its F -conditional distribution as

ζ̃ =

∫ T

0

γ1/2
s dW̃s,

where W̃ is a 7-dimensional standard Brownian motion that is independent of the σ-field

F , and the γ process is defined by

γt ≡ Γt − Γt,

where

Γt ≡

 A1,t A2,t A3,t

A2,t A1,t A3,t

A>3,t A>3,t A4,t

 ,

and

A1,t ≡


5
4
v4

1,t v3
1,tv2,tΞ (ρt) v2

1,tv
2
2,t

(
Ψ (ρt)− 1

4

)
• v2

1,tv
2
2,t

(
Ψ (ρt)− ψ (ρt)

2) v1,tv
3
2,tΞ (ρt)

• • 5
4
v4

2,t

 ,

A2,t ≡

 −
1
4
v4

1,t −1
2
v3

1,tv2,tψ (ρt) v2
1,tv

2
2,t

(
Ψ (−ρt)− 1

4

)
• −v2

1,tv
2
2,tψ (ρt)

2 −1
2
v1,tv

3
2,tψ (ρt)

• • −1
4
v4

2,t

 ,

A3,t ≡

 Φ (ρt) v
3
1,tv2,t

2v2
1,tv

2
2,tψ (ρt)ψ (−ρt)

Φ (ρt) v1,tv
3
2,t

 , A4,t ≡ v2
1,tv

2
2,t

[
2Ψ (−ρt)− 4ψ (−ρt)2] .

Jump-induced sampling error, ξ. For ease of discussion, we recall some notations from
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the main text. Let Tj for j ∈ {1, 2} denote the collection of jump times of (Xj,t)t∈[0,T ],

with the corresponding “signed” subsets denoted by

Tj+ ≡ {τ ∈ Tj : ∆Xj,τ > 0}, Tj− ≡ {τ ∈ Tj : ∆Xj,τ < 0}.

For each τ ∈ T1 ∪ T2 associate the variables (κτ , ξ̃τ−, ξ̃τ+) that are, conditionally on F ,

mutually independent with the following conditional distributions: κτ ∼ Uniform[0, 1],

ξ̃τ− ∼MN (0, cτ−), and ξ̃τ+ ∼MN (0, cτ ). Further define η̃τ = (η̃1,τ , η̃2,τ )
> ≡ √κτ ξ̃τ−+

√
1− κτ ξ̃τ+. The limiting variable ξ has the form

ξ = (ξP,11, ξP,12, ξP,22, ξN,11, ξN,12, ξN,22, ξM,12) ,

where, for j ∈ {1, 2},

ξP,jj ≡
∑
τ∈Tj+

2∆Xj,τ η̃j,τ , ξN,jj ≡
∑
τ∈Tj−

2∆Xj,τ η̃j,τ ,

ξP,12 ≡
∑

τ∈T1+∩T2+

(∆X1,τ η̃2,τ + ∆X2,τ η̃1,τ )

+
∑

τ∈T1+\T2

∆X1,τp (η̃2,τ ) +
∑

τ∈T2+\T1

∆X2,τp (η̃1,τ ) ,

ξN,12 ≡
∑

τ∈T1−∩T2−

(∆X1,τ η̃2,τ + ∆X2,τ η̃1,τ )

+
∑

τ∈T1−\T2

∆X1,τn (η̃2,τ ) +
∑

τ∈T2−\T1

∆X2,τn (η̃1,τ ) ,

ξM,12 ≡
∑

τ∈(T1+∩T2−)∪(T1−∩T2+)

(∆X1,τ η̃2,τ + ∆X2,τ η̃1,τ )

+
∑

τ∈T1+\T2

∆X1,τn (η̃2,τ ) +
∑

τ∈T2−\T1

∆X2,τp (η̃1,τ )

+
∑

τ∈T1−\T2

∆X1,τp (η̃2,τ ) +
∑

τ∈T2+\T1

∆X2,τn (η̃1,τ ) .

We are now ready to state the extension of Theorem 2 for all realized semicovariance

components.

Theorem 1 Under the same conditions as Theorem 2,

∆−1/2
n

(
Ŝ − S

)
L-s−→ B +L+ ζ + ζ̃ + ξ.

S1.2. Comparison with prior results on semivariances

Theorem 1 extends the theory of Barndorff-Nielsen, Kinnebrock, and Shephard (2010)

to a bivariate case while allowing for general price and volatility jumps. Below, we special-
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ize Theorem 1 to the univariate case and describe the stable convergence of ∆
−1/2
n (P̂11 −

P11, N̂11 −N11).

In the univariate case, v1,t = σt and we can compute the function F11 (·) explicitly.

By Itô’s formula,
∫ 1

0
WsdWs = (W 2

1 − 1)/2. Then, by direct integration,

F11 (a) = E
[
max{aW1, 0}

(
W 2

1 − 1
)]

=
a√
2π
.

Then it is easy to see that

B11 =

√
2

π

∫ T

0

b1,sσsds, L11 =
1√
2π

∫ T

0

σ̃sσsds,

γ11,t =

√
2

π
σ3
t , ζ11 =

√
2

π

∫ T

0

σ2
sdWs,

Γ∗t =
2

π
σ4
t , Γt =

2

π
σ4
t

(
1 −1

−1 1

)
,

A1,t =
5

4
σ4
t , A2,t = −1

4
σ4
t , Γt =

1

4
σ4
t

(
5 −1

−1 5

)
,

ξP,11 ≡
∑
τ∈T1+

2∆X1,τ η̃1,τ , ξN,11 ≡
∑
τ∈T1−

2∆X1,τ η̃1,τ .

Consequently, Theorem 1 implies that ∆
−1/2
n (P̂11 − P11, N̂11 −N11)> converges stably in

law to,

1√
2π

∫ T

0

(2b1,sσs + σ̃sσs) ds

(
1

−1

)
+

√
2

π

∫ T

0

σ2
sdWs

(
1

−1

)

+

∫ T

0

γ1/2
s dW̃s +

( ∑
τ∈T1+ 2∆X1,τ η̃1,τ∑
τ∈T1− 2∆X1,τ η̃1,τ

)

where

γt = Γt − Γt = σ4
t

(
5
4
− 2

π
−1

4
+ 2

π

−1
4

+ 2
π

5
4
− 2

π

)
.

In the case without price jumps (i.e., ∆X1 = 0), the limiting variable coincides with that

in Proposition 2 of Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

S2. Monte Carlo simulations

In this appendix, we examine finite-sample properties of the JCSD and DCSD tests

using simulated data. Our data generating process is based on the one-factor stochastic

volatility model used in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), aug-
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mented with intraday volatility periodicity and jumps. We generate the price process

Xt = (X1,t, X2,t) for the two assets according to the following jump-diffusion model:

dXj,s = bjds+ dVj,s + dFj,s + dJj,s, (S2.1)

dVj,s =
√

1− ρ σj,sdBj,s,

dFj,s =
√
ρσj,sdWs,

where B1, B2, and W are independent Brownian motions, Fj is the diffusive factor com-

ponent of asset j, and Jj is a pure-jump process. Note that the spot correlation co-

efficient between the two assets is ρ. We consider ρ ∈ {0, 0.5, 0.7} in our experiments

below. The spot volatility process σj,t is generated as σj,s = ςs exp(β0 + β1%j,s), with

d%j,s = α%j,sds + dBj,s, and ςs = C + Ae−ps + Be−q(1−s). The latter ς process captures

the the diurnal volatility pattern of Andersen, Dobrev, and Schaumburg (2012). We cal-

ibrate the parameters (β0, β1, α) at (−5/16, 1/8,−1/40) as in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2011), and (A,B,C, p, q) at (0.75, 0.25, 0.88929198, 10, 10) as in

Andersen, Dobrev, and Schaumburg (2012).

The stationary distribution %(0) ∼ N(0, (−2α)−1) is used to start the process in each

simulation. The parameter choice ensures that E[
∫ 1

0
σ2
j,sds] = 1. Returns are generated

at the 1-second frequency using a standard Euler discretization scheme, and aggregated

to the 1-minute frequency (∆n = 1/390), to match the empirical setup of Section 3.

As in the main text, we follow Bollerslev and Todorov (2011a,b) to adjust for intraday

periodicity in the jump detection. In order to estimate the time-of-day effect in our

simulations, for each iteration we generate 1,000 days of data which are exclusively used

to estimate the truncation threshold. In particular, from these days we nonparametrically

estimate a time-of-day (TOD) factor as well as the average bi-power variation BPV .

Subsequently these estimates are used to to determine the truncation threshold as un =

3×BPV × TODn∆0.49
n .1

To examine the size and power properties of the JCSD test, we set bj = 0 and simulate

the jumps as follows. For the ease of interpretation, we deterministically add positive

co-jumps of size 5∆
1/2
n to observation 130 of both the series, which roughly corresponds to

5 local standard deviations of the diffusive returns. On observation 260, we add negative

jumps of size 5ϑ∆
1/2
n , with ϑ ∈ {1, 1.5, 2}. Note that the ϑ = 1 case corresponds to the

JCSD null hypothesis P † = N †. When ϑ > 1, we obtain the alternative P † < N †.

Table S.1 reports the rejection rates of the JCSD test based on 10,000 Monte Carlo

replications. Results with and without adjusting for the intraday periodicity are reported

on the left and right panels, respectively. The first row of the table reports the rejection

rates under the null hypothesis. With the periodicity adjustment, the size of the test

1In the empirical section we use the full history of a stock to estimate the TOD, and replace BPV
with BPVt−1, as in Bollerslev and Todorov (2011a,b).
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Table S.1: Rejection Frequencies of the JCSD Test

Periodicity Adjusted Periodicity Unadjusted
ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0 ρ = 0.5 ρ = 0.7

ϑ = 1.0 0.053 0.060 0.063 0.067 0.085 0.102
ϑ = 1.5 0.872 0.786 0.775 0.877 0.793 0.774
ϑ = 2.0 0.986 0.977 0.969 0.988 0.972 0.958

Note: The table reports the rejection frequencies of the JCSD test at 5% nom-
inal level, based on 10,000 Monte Carlo replications. The data are generated
according to (S2.1), aggregated to one-minute frequency, for various levels of
ρ. The negative co-jump is ϑ times the magnitude of the positive co-jump.
The ϑ = 1 case and the ϑ > 1 cases correspond to the null and alternative
hypotheses, respectively. The intraday volatility periodicity is adjusted using
the method of Bollerslev and Todorov (2011a,b).

is quite close to the 5% nominal level. At the same time, we observe some non-trivial

overrejection when the intraday periodicity is unadjusted, especially when the correlation

between the two assets is high. This comparison highlights the importance of taking into

account the intraday volatility pattern. Under the alternative (i.e., ϑ > 1), the JCSD

test rejects the null with high probabilities, which approach 1 as ϑ increases. The power

of the test is higher when the two assets are less correlated.

We next turn to the DCSD detection (recall Algorithm 2). As explained in main

text, we interpret the DCSD t-statistic as a signal-to-noise ratio in the general case.

To complement the empirical findings in Table 1 and Figure 3, here, we examine how

the DCSD detection depends on assets’ drift, which has a clear economic interpretation

through the lens of Kyle’s model. To this end, we set ϑ = 1 and consider bj = b with

b ∈ [0, 5] and report the detection rate of large DCSD (i.e., P̂ ? − N̂?) in Figure S.1, with

or without adjusting for intraday periodicity of volatility. From the figure, we see that

as the co-drift effect (parameterized by b) becomes stronger, the detection rate increases

from around 5% to close to 100%. Like in the JCSD test, the detection rates decreases

when the correlation ρ is large.

Overall, the simulation results clearly corroborate the validity of the asymptotic re-

sults for making finite-sample inference, and the practical usefulness of the tests for

detecting significant differences in the concordant semicovariance elements.

S3. JCSD and DCSD events

This section plots the cumulative intraday returns of the 30 DJIA stocks for all of the

most significant event days listed in Table 1 of the main text. Figure S.2 and Figure S.3

show the results for JCSD and DCSD events, respectively.
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Figure S.1: DCSD Detection Frequencies
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Note: The figure plots DCSD detection rates at the 5% level, based on 10,000 Monte
Carlo Replications. The data are generated according to (S2.1), aggregated to one-minute
frequency, for various levels of the correlation ρ, and drift bj = b. The left-panel estimates
the periodicity for jump-detection, while the right hand panel disregards the periodicity.
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Figure S.2: DJIA Cumulative Returns on Jump CSD Event Days
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Note: The figure plots the cumulative returns of the 30 DJIA stocks on the nine jump
CSD event days listed in Panel A of Table 1.

Figure S.3: DJIA Cumulative Returns on Diffusive CSD Event Days
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Note: The figure plots the cumulative returns of the 30 DJIA stocks on the nine diffusive
CSD event days listed in Panel B of Table 1.

S.9



S4. Semicovariance dynamics

As noted in the main text, the within day differences in the price dynamics on DCSD

and JCSD event days, also translate into different dynamic dependencies in the semico-

variance components across days. To illustrate, Table S.2 reports for each pair of stocks,

the average first-order autocorrelation between the realized semicovariance measures on

day t+ 1 and day t, conditional on the DCSD or JCSD tests being significant on day t.

Table S.2: Conditional First-Order Autocorrelations

Conditioning Information

Unconditional P̂ ?
jk � N̂?

jk P̂ ?
jk � N̂?

jk P̂ †jk � N̂ †jk P̂ †jk � N̂ †jk

Ĉjk 0.641 0.732 0.757 0.642 0.687

P̂jk 0.510 0.769 0.574 0.536 0.560

N̂jk 0.658 0.608 0.773 0.659 0.704

M̂jk 0.407 0.447 0.451 0.444 0.410

Note: The table reports the autocorrelations between the realized measures at time
t+ 1 and t, conditional on the rejection of CSD-based tests at time t. The first column
presents the unconditional autocorrelations, while columns two and three (resp. four
and five) report the autocorrelations conditional on the DCSD (resp. JCSD) test, where
we use the � and � symbols to denote statistically significant inequalities.

Looking first at the unconditional autocorrelations reported in the first column, we

see that M̂ has the weakest unconditional autocorrelation (0.41), followed by positive

semicovariance, P̂ , (0.51), and negative semicovariance, N̂ , has the strongest uncondi-

tional autocorrelation (0.66). This is a multivariate equivalent of the univariate result of

Patton and Sheppard (2015) that negative realized semivariances tend to be more persis-

tent than their positive counterparts. The mixed semicovariance term has no univariate

analog, and so its relative lack of persistence cannot be foreshadowed in univariate work.

Meanwhile, conditioning on the outcome of the CSD-based tests can lead to notably

different autocorrelations. In particular, Ĉ generally appears to be more persistent after

a (positive or negative) diffusive event detected by the DCSD algorithm, with autocor-

relation rising from 0.64 unconditionally to around 0.75 following a diffusive event. The

effect of co-jumps detected using the JCSD test is smaller and depends on the direction

of the rejection: persistence is slightly higher after negative co-jumps.

The impact of the CSD-based tests on the realized semicovariance dynamics is some-

what more complex. The persistence of P̂ , in particular, is higher following a positive

DCSD event on the previous day, with a much smaller increase after a negative DCSD

event. Mirroring this, the persistence of N̂ is higher following a negative DCSD event

on the previous day, with a much smaller increase after a positive DCSD event. This is

consistent with the idea that certain types of “soft” news is processed over multiple days.

By comparison, the dynamic dependency after a JCSD jump event shows a different
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pattern: the persistence of both the positive and the negative realized semicovariances

slightly increases only after negative co-jumps; the effect of positive co-jumps is small.

S5. Unadjusted autocorrelograms

The magnitude and ordering of the first-order autocorrelations for the 1,000 randomly

selected pairs of S&P 500 stocks shown in the main text differ somewhat from the results

for the 30 DJIA stocks reported in the first column in the previous Table S.2. These dif-

ferences are mostly driven by the instrumental variable approach of Hansen and Lunde

(2014) that corrects for the inherent measurement error, and not by the expansion of

the dataset from the 30 DJIA stocks to the broader set of S&P 500 constituent stocks.

To underscore this, Figure S.4 shows the standard unadjusted empirical autocorrelation

functions averaged across the S&P 500 stocks. The realized variance now appears more

persistent than the semivariances. However, the calculation of the realized variances ob-

viously also rely on twice as many observations as the semivariances, thus resulting in

less downward-biased autocorrelation estimates. The ordering of the realized semicovari-

ances is more or less in line with Figure 4 in the main text, albeit more erratic, but the

magnitudes of the autocorrelations are obviously lower.

Figure S.4: Unadjusted Autocorrelations
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Note: The graph plots the empirical autocorrelation functions for each of the individual
elements of the realized semicovariance matrix. The autocorrelations are averaged over
1,000 random pairs of S&P 500 stocks.
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S6. Semicovariances and volatility forecasting

S6.1. Model confidence sets

In order to assess whether the differences in forecast loss for the models discussed in

Section 4.2 of the main text are statistically significant, Table S.3 below reports additional

results from implementing the Model Confidence Set (MCS) of Hansen, Lunde, and Nason

(2011), for each horizon considered in the main paper (i.e., 1, 5 and 22 days). The MCS

procedure selects a set of models that contains the best model with a certain probability,

here set to 80%. As the results in the tables below show, the SCHAR-r model is included

in the MCS with a very high degree of confidence for both the daily, weekly and monthly

forecasts.

The final column presents the results of the multi-horizon uMCS of Quaedvlieg (2020).

This version of the MCS selects a set of models that have superior predictive ability across

all horizons individually, rather than just on average. Correspondingly, the uMCS is

applied to quadratic variation forecast paths, that is, RVt+h, with h = 1, ..., 22. A model

that is removed from the set has significantly worse forecasting performance than one of

the remaining models for at least one horizon. This more stringent criterion naturally

decreases the size of the uMCS relative to each of the MCS. Most notably, the relative

performance of the unrestricted SCHAR model deteriorates relative to the single-horizon

MCS results. The restricted SCHAR-r is again included in the uMCS for the vast majority

of randomly formed portfolios.

S6.2. Alternative forecasting models

This section complements the univariate portfolio forecasting results of Section 4.2 in

the main text by including the results from a set of alternative specifications. We consider

the following set of models for forecasting RV w (i.e., the portfolio realized variance),

succinctly expressed as functions of the specific realized measures used in the construction

of the forecasts:

(1a) RV w
t+1|t = f(R̂V

w

t , R̂V
w

t−1:t−4, R̂V
w

t−5:t−21)

(1b) RV w
t+1|t = f(P̂SV t, N̂SV t, R̂V

w

t−1:t−4, R̂V
w

t−5:t−21)

(2)a RV w
t+1|t = f(P̂w

t , N̂
w
t , M̂

w
t , R̂V

w

t−1:t−4, R̂V
w

t−5:t−21)

(3)aRV w
t+1|t = f(P̂w

t , P̂
w
t−1:t−4, P̂

w
t−5:t−21, N̂

w
t , N̂

w
t−1:t−4, N̂

w
t−5:t−21, M̂

w
t , M̂

w
t−1:t−4, M̂

w
t−5:t−21)

(4)a RV w
t+1|t = f(N̂w

t , N̂
w
t−1:t−4, N̂

w
t−5:t−21, M̂

w
t , M̂

w
t−1:t−4, M̂

w
t−5:t−21)

(5)a RV w
t+1|t = f(N̂w

t , N̂
w
t−1:t−4, N̂

w
t−5:t−21, M̂

w
t−5:t−21)

(6)a RV w
t+1|t = f(N̂w

t , N̂
w
t−1:t−4, N̂

w
t−5:t−21).

Models 1a, 1b, 3, and 5 are referred to as HAR, SHAR, SCHAR and SCHAR-r, respec-

tively, in the main paper. In addition to the models for directly forecasting RV w, we
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Table S.3: Formal Statistical Comparison of Forecasting Models.

Daily Horizon Weekly Horizon Monthly Horizon Path
Avg Ratio MCS Avg Ratio MCS Avg Ratio MCS uMCS

Panel A. MSE Small Portfolio Case (d = 10)

HAR 1.849 1.000 0.296 1.314 1.000 0.268 1.407 1.000 0.192 0.246
SHAR 1.671 0.966 0.568 1.222 0.958 0.354 1.372 0.982 0.202 0.240
SCHAR 1.643 0.955 0.692 1.075 0.900 0.760 1.121 0.906 0.624 0.228
SCHAR-r 1.567 0.908 0.996 1.062 0.874 0.948 1.135 0.867 0.868 0.902

Panel B. QLIKE Small Portfolio Case (d = 10)

HAR 0.141 1.000 0.420 0.086 1.000 0.238 0.108 1.000 0.166 0.322
SHAR 0.139 0.986 0.642 0.083 0.967 0.548 0.106 0.982 0.334 0.408
SCHAR 0.210 1.318 0.402 0.151 1.596 0.466 0.160 1.339 0.494 0.236
SCHAR-r 0.139 0.979 0.910 0.085 0.974 0.860 0.111 1.000 0.788 0.824

Panel C. MSE Large Portfolio Case (d = 100)

HAR 0.048 1.000 0.188 0.028 1.000 0.422 0.031 1.000 0.246 0.408
SHAR 0.045 0.935 0.480 0.026 0.917 0.486 0.030 0.954 0.264 0.412
SCHAR 0.045 0.976 0.454 0.024 0.881 0.782 0.028 0.926 0.498 0.314
SCHAR-r 0.041 0.862 0.990 0.023 0.823 0.982 0.025 0.816 0.934 0.938

Panel D. QLIKE Large Portfolio Case (d = 100)

HAR 0.119 1.000 0.390 0.070 1.000 0.536 0.071 1.000 0.240 0.430
SHAR 0.115 0.957 0.754 0.065 0.936 0.712 0.068 0.956 0.256 0.516
SCHAR 0.236 1.495 0.678 0.068 0.981 0.800 0.060 0.859 0.740 0.504
SCHAR-r 0.111 0.925 0.996 0.062 0.884 0.982 0.058 0.837 0.804 0.876

Note: The table reports the loss for forecasting the portfolio variance for portfolios of size
d = 10 and d = 100, for the daily, weekly and monthly horizons, corresponding 1, 5 and 22
days, respectively. The reported numbers are based on 500 randomly selected portfolios. The
Average column provides the average loss over time and all portfolios. The Ratio column gives
the time-average ratio of losses across all sets of portfolios relative to the HAR model. The
MCS column gives the fraction of pairs for which the model is in the 80% Model Confidence
Set Hansen, Lunde, and Nason (2011). The final column presents the fraction of times the
model is in the multi-horizon uniform Model Confidence Set of Quaedvlieg (2020), based on
spot-volatility paths from h = 1 to 22 days ahead.
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also consider a model in which we construct separate forecasts for P̂w, N̂w, and M̂w, and

then add up the forecasts to arrive at a forecast for RV w, that is,

(7) RV w
t+1|t = fP (P̂w

t , P̂
w
t−1:t−4, P̂

w
t−5:t−21)

+fN(N̂w
t , N̂

w
t−1:t−4, N̂

w
t−5:t−21) + fM(M̂w

t , M̂
w
t−1:t−4, M̂

w
t−5:t−21)

where fP , fN , and fM are models analogous to those in Models 1a to 6 above, but with

the dependent variable set to P̂w, N̂w, and M̂w, respectively.

We follow the forecasting setup discussed in the main text. To help assess statistical

significance, we also include the results from implementing the 80% MCS of Hansen,

Lunde, and Nason (2011). The detailed results for portfolios of size d = 1, 2, 5, 10, 50, 100

are reported in Table S.4. For each of the columns and each value of d we report the

best model in boldface, corresponding to the smallest loss and/or the highest frequency

of being in the MCS. For the univariate case, M̂ is always zero and P̂ and N̂ are simply

the realized semivariances, so for d = 1 we only report the loss based on Models 1a, 1b,

6 and 7.

The table clearly shows that for portfolios comprised of a large number of stocks,

utilizing the information in the realized semicovariances can result in significantly better

performance than the benchmark models that only use realized variances (or realized

semivariances) estimated from the univariate portfolio returns. For d ≥ 50, the best-

performing model under both MSE and QLIKE loss is always Model 5 (the SCHAR-r

model) which uses all three lags (daily, weekly and monthly) of N̂w, but only the monthly

lag of M̂w, and excludes all lags of P̂w
t altogether. For d between 2 and 10 the best-

performing model under MSE loss is a more parsimonious version of that model, which

includes only the three lags of N̂w, while under QLIKE the preferred model is Model 2,

which only decomposes the daily lag of Ĉw.

The MCS approach generally exhibits quite low power, failing to distinguish among

the models in many of the cases. That being said, Model 5 (the SCHAR-r model) ends

up in the MCS for almost all of the randomly selected collections of assets, suggesting

that this model does indeed provide the best overall forecasting scheme. It is natural that

the parsimonious specifications of Model 5 and 6 both do well, but the results indicate

that the monthly lag of the mixed realized semicovariance M̂w truly helps in predicting

the future volatility, consistent with its strong persistence documented in Figure 4.

S6.3. Overnight returns

All of the results in the paper are based on open-to-close returns only. This section

presents the results for predicting the portfolio return variance including the overnight

variation. Although the actual values of the losses that include the overnight variation
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Table S.4: Additional Portfolio Variance Forecasting Models

MSE QLIKE

Model Average Ratio MCS Average Ratio MCS

d = 1

1a 35.112 1.000 0.886 0.239 1.000 0.728
1b 34.981 0.997 0.914 0.238 0.998 0.864
6 35.209 1.001 0.882 0.243 1.022 0.250
7 35.326 1.020 0.740 0.247 1.036 0.034

d = 2

1a 8.094 1.000 0.760 0.184 1.000 0.652
1b 7.951 0.988 0.868 0.184 0.998 0.656
2 7.946 0.986 0.914 0.183 0.995 0.880
3 8.009 0.998 0.854 0.446 1.165 0.372
4 7.899 0.982 0.892 0.191 1.056 0.376
5 7.833 0.972 0.910 0.188 1.043 0.442
6 7.800 0.966 0.962 0.185 1.005 0.650
7 8.064 1.012 0.714 0.187 1.020 0.138

d = 5

1a 3.014 1.000 0.466 0.151 1.000 0.544
1b 2.815 0.966 0.698 0.150 0.994 0.582
2 2.804 0.958 0.828 0.150 0.994 0.736
3 2.810 0.969 0.770 0.206 1.322 0.360
4 2.721 0.934 0.806 0.153 1.014 0.516
5 2.679 0.922 0.848 0.156 1.034 0.654
6 2.662 0.916 0.962 0.151 1.003 0.704
7 2.935 1.010 0.408 0.154 1.021 0.194

d = 10

1a 1.849 1.000 0.306 0.141 1.000 0.442
1b 1.671 0.966 0.554 0.139 0.986 0.612
2 1.662 0.949 0.700 0.142 0.994 0.686
3 1.643 0.955 0.690 0.210 1.318 0.402
4 1.602 0.922 0.760 0.141 0.996 0.604
5 1.567 0.908 0.862 0.139 0.979 0.816
6 1.560 0.911 0.892 0.141 1.021 0.714
7 1.778 1.025 0.228 0.145 1.033 0.172

d = 50

1a 0.335 1.000 0.254 0.130 1.000 0.462
1b 0.284 0.951 0.428 0.125 0.963 0.788
2 0.288 0.954 0.566 0.133 1.021 0.638
3 0.284 0.944 0.674 0.140 1.087 0.682
4 0.284 0.933 0.600 0.135 1.135 0.750
5 0.273 0.878 0.986 0.121 0.931 0.990
6 0.272 0.885 0.896 0.126 0.963 0.822
7 0.312 1.050 0.134 0.136 1.049 0.240

d = 100

1a 0.048 1.000 0.282 0.119 1.000 0.492
1b 0.045 0.935 0.550 0.115 0.957 0.806
2 0.047 0.964 0.538 0.125 1.041 0.552
3 0.045 0.976 0.538 0.236 1.495 0.766
4 0.045 0.960 0.458 0.155 1.677 0.798
5 0.041 0.862 0.988 0.111 0.925 0.994
6 0.042 0.866 0.934 0.112 0.933 0.862
7 0.050 1.056 0.130 0.126 1.055 0.286

Note: This table provides aggregate forecasting results for the portfolio variance for random selected
equally weighted portfolios of size d = 1, ..., 100. Each number is based on 500 randomly selected sets
of S&P500 stocks. The Average column provides the average loss over time and sets of series. The
Ratio column provides the average over all sets of stocks of the ratio of time-averaged loss of model
k relative to model 1. Finally, the MCS column provides the fraction of sets each respective model
was part of the 80% Model Confidence Set. Boldface denotes the best model per dimension d and
column.
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are somewhat higher,2 the relative losses depicted in Figure S.5 confirms the findings in

Figure 5 in the main part of the paper: the SCHAR-r model systematically outperform

the other models for all portfolio dimensions d.

Figure S.5: Median Loss Ratios, Overnight Returns Included
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Note: The graph plots the median loss ratios as a function of the number of stocks in
the portfolio, d. The ratio is calculated as the average loss of the models divided by
the average loss of of the standard HAR, based on 500 random samples of d stocks.

S6.4. Multivariate Forecasting

In this section we forecast the full (d× d) realized covariance matrix, rather than

the portfolio variance considered in the main paper. We consider a set of seven different

models. All of the models rely on standard HAR-type specifications, along the lines of the

vech-HAR model of Chiriac and Voev (2011), in which we estimate scalar autoregressive

coefficients, but individual constant terms, based on standard OLS procedures. That is,

each individual element has identical dynamics, but different unconditional means. The

models mimic the extended set of portfolio variance model of Section S6.2.

2This is in line with earlier work that demonstrates that the overnight variation is difficult to predict;
see, for example, Andersen, Bollerslev, and Huang (2011), who treat the overnight returns as jumps,
requiring a separate specification.
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1) Ĉt+1|t = f(Ĉd, Ĉw, Ĉm)

2) Ĉt+1|t = f(P̂d, N̂d, M̂d, Ĉw, Ĉm)

3) Ĉt+1|t = f(P̂d, P̂w, P̂m, N̂d, N̂w, N̂m, M̂d, M̂w, M̂m)

4) Ĉt+1|t = f(N̂d, N̂w, N̂m, M̂d, M̂w, M̂m)

5) Ĉt+1|t = f(N̂d, N̂w, N̂m, M̂m)

6) Ĉt+1|t = f(N̂d, N̂w, N̂m)

As a final model we also consider the sum of the forecasts from three separate vech-HAR

models for P̂ , N̂ , and M̂ .

7) Ĉt+1|t = fP̂ (P̂d, P̂w, P̂m) + fN̂(N̂d, N̂w, N̂m) + fM̂(M̂d, M̂w, M̂m)

Similar to the univariate case, for each d, ranging from 2 to 100, we take 500 random sets

of stocks, and compute the semicovariances on their overlapping sample. We evaluate

the performance of the forecasts using the multivariate analogs to MSE and QLIKE (see

Laurent, Rombouts, and Violante, 2013):

Frobenius(Ĥt, Ĉt) = Tr((Ĉt − Ĥt)
′(Ĉt − Ĥt))/d

2 (S6.2)

QLIKE(Ĥt, Ĉt, C̃t) = Tr(Ĥ−1
t Ĉt)− log |Ĥ−1

t C̃t| − d (S6.3)

where Ĥt refers to the forecast, and Ĉt denotes the ex-post Realized Covariance estimate.

The QLIKE loss function in equation (S6.3) is a modification of the original QLIKE

loss function, also known as James and Stein (1961) loss, which is obtained if C̃t = Ĉt.

The original loss function is not well defined if Ĉt is only positive semidefinite. We define

C̃t as:

C̃t ≡ (1− λt)C∗t + λtDiag {C∗t } (S6.4)

where λt = arg min(λ ∈ {0, 0.1, ..., 1} : |C̃t| > 0) (S6.5)

and C∗t ≡ Id �max
{
Ĉt, 0.001 · Jd

}
+ (Jd − Id)� Ĉt (S6.6)

In words, equations (S6.4)-(S6.5) shrink the off-diagonal elements of the matrix towards

zero, and equation (S6.6) ensures that the diagonals are at least 0.001. This modification

affects only the normalization of this loss function, not the ranking of competing forecasts.

The results for matrices of size d = 2, 5, 10, 50, 100 are reported in Table S.5, in the

same format as Table S.4. For all dimensions d, the standard HAR model is never pre-

ferred under Frobenius loss, while under QLIKE loss it is never preferred for d ≥ 10. In

vast dimensions (d = 100), Model 2 (where the daily lag of Ĉ is decomposed into semico-

variances) and Model 3 (where all lags of Ĉ are decomposed into semicovariances) almost

always outperform the other models. Whereas in the univariate setting parsimonious

specifications appear to be preferred, in the multivariate setting the large cross-section
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Table S.5: Performance Comparison for Covariance Forecasts

Frobenius QLIKE

Model Average Ratio MCS Average Ratio MCS

d = 2

1 18.087 1.000 0.882 0.581 1.000 0.928
2 17.971 0.995 0.924 0.584 1.005 0.576
3 17.983 0.996 0.918 0.590 1.017 0.416
4 18.111 1.001 0.794 0.599 1.032 0.032
5 18.104 1.001 0.800 0.599 1.031 0.038
6 18.310 1.013 0.166 0.627 1.080 0.006
7 18.206 1.017 0.696 0.595 1.025 0.038

d = 5

1 9.546 1.000 0.586 2.154 1.000 0.738
2 9.397 0.988 0.852 2.161 1.004 0.420
3 9.367 0.985 0.948 2.166 1.005 0.482
4 9.417 0.992 0.656 2.202 1.023 0.022
5 9.433 0.993 0.620 2.210 1.026 0.020
6 9.818 1.047 0.062 2.777 1.283 0.014
7 9.563 1.010 0.572 2.169 1.008 0.314

d = 10

1 5.943 1.000 0.280 6.333 1.000 0.386
2 5.815 0.986 0.678 6.329 1.000 0.384
3 5.786 0.982 0.952 6.327 0.999 0.572
4 5.806 0.992 0.454 6.424 1.015 0.006
5 5.815 0.994 0.406 6.443 1.018 0.002
6 6.222 1.151 0.020 8.382 1.508 0.006
7 5.926 1.005 0.380 6.328 0.999 0.456

d = 50

1 1.372 1.000 0.026 155.347 1.000 0.096
2 1.347 0.988 0.424 154.762 0.996 0.820
3 1.351 0.984 0.986 154.842 0.997 0.460
4 1.337 0.994 0.138 155.535 1.002 0.002
5 1.341 0.996 0.124 155.831 1.002 0.002
6 1.575 1.307 0.006 169.305 1.106 0.014
7 1.363 1.000 0.038 155.506 1.001 0.010

d = 100

1 0.677 1.000 0.116 431.189 1.000 0.260
2 0.674 0.994 0.398 430.952 0.999 0.804
3 0.671 0.990 0.928 433.053 1.002 0.224
4 0.704 1.041 0.086 444.891 1.082 0.008
5 0.744 1.099 0.044 449.751 1.055 0.016
6 0.948 1.419 0.004 440.220 1.023 0.014
7 0.679 1.002 0.066 433.445 1.006 0.000

Note: This table provides aggregate forecasting results for covariance matrices of size d = 1, ..., 100.
Each number is based on 500 randomly selected sets out of the 749 S&P500 stocks. We report the
results for the models (1) to (7) defined above. The Average column provides the average loss over
time and sets of series. The Ratio column provides the average over all sets of stocks of the ratio of
time-averaged loss of model k relative to model 1. Finally, the MCS column provides the fraction
of sets each respective model was part of the 80% Model Confidence Set. Boldface denotes the best
model per dimension d and column.
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Figure S.6: Median loss ratios: Covariance prediction
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Note: The graph plots the median loss ratios as a function of the number of stocks in
the portfolio, d. The ratio is calculated as the average loss of the models divided by
the average loss of of the standard HAR, based on 500 random samples of d stocks.

allows us to pin down the parameters precisely, and the large models utilizing the full

decomposition lead to the best forecasts.

While the reductions in loss reported in Table S.5 may appear numerically small,

especially compared to those in the univariate case, they are statistically significant.3 In

particular, for d = 100 the best models are in the MCS 93% and 85% of the samples for

Frobenius and QLIKE loss, respectively. The next best model is part of the MCS for

only 38% and 21% of the samples, respectively.

To help visualize the performance of the models across different matrix dimensions,

Figure S.6 provides the multivariate analogue to Figure 5 in the main paper. It plots

the median loss ratios across the 500 samples for d ranging from 2 to 100. To avoid

cluttering the figure we only include the results for Models 1, 2 and 3. In addition,

to illustrate the cross-sectional variation in out-performance, we also include the cross-

sectional 10% and 90% quantiles of loss ratios for Model 3. The figure reveals that

3The estimation error in the realized covariances used in computing average losses means that the
reductions in average loss are underestimated. Andersen, Bollerslev, and Meddahi (2005) show how
to correct this underestimation in univariate applications. A similar correction could in principle be
employed here, although it would not affect the relative ordering of the models.
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the gains in forecast performance obtained from decomposing the realized covariance

matrix into its semicovariance components appear even for relatively small values of d.

Interestingly, the gains remain roughly constant for d ranging between 20 and 100. The

10% and 90% quantiles further show that these gains are present for almost all samples:

under Frobenius loss, the 90% quantile is below one for all d ≥ 5, while for QLIKE it is

below one for d between 30 and 80.

S7. Multi-step forecast results

Table S.6 below complements the results in Table 3 and Figure 5 of the main paper by

showing results for 5-day and 22-day ahead forecasts, corresponding to forecast horizons

of one week and one month. For simplicity we rely on “direct” forecasts constructed by

simply replacing the left-hand-side variable in the estimation of the different models with

the realized portfolio variance over the relevant horizon.4 As the table shows, if anything

the forecast improvements obtained by the SCHAR-r model vis-a-vis the standard HAR

model appear even larger over longer forecast horizons; as a case in point the 18.4%

relative improvement (measured by MSE) for the large portfolio at the monthly horizon

is especially impressive.

S8. Realized semicovariances and market microstructure noise

We report signature plots of semicovariance estimates at different frequencies in Fig-

ures S.7. The top two plots show the variance and covariance estimates for the sample

of 30 Dow Jones stocks over the period 2006-2014, which is the sample we use in Section

3 of the main paper. The bottom two panels show the plots for the 749 SP500 stocks

over the period 1993-2014, which is the sample we use in Section 4 of the main paper.

We start at the 1-minute frequency and increasingly aggregate returns up to half-hour

returns, and report the estimates averaged over stocks and time. For the full sample

we report the average over 500 random pairs, while for the DJIA sample we consider all

pairs.

The signature plots were used by Hansen and Lunde (2006) to highlight the dangers

of applying standard Realized Variance estimators to (too) high-frequency data. First

consider the Dow Jones Sample for which we use the 1-minute frequency in our main

paper. While the variance estimates based on 1-minute data are marginally higher than

those based on 5- or 10-minute data, the increases are moderate relative to those found in

Hansen and Lunde (2006), where the differences were a factor of 2 to 4 or more. Indeed,

4The construction of “iterated” forecasts for the SHAR and SCHAR models would necessitate ad-
ditional modeling assumptions about the realized semi(co)variances; for further discussion of “direct”
versus “iterated” volatility forecasts see, for example, Bollerslev, Hood, Huss, and Pedersen (2018) and
the references therein.
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Table S.6: Long-Horizon Results

MSE QLIKE
Model Average Ratio Average Ratio

Panel A. Weekly Forecasts, Small Portfolio Case (d =10)

HAR 1.314 1.000 0.086 1.000
SHAR 1.222 0.958 0.083 0.967
SCHAR 1.075 0.900 0.151 1.596
SCHAR-r 1.062 0.874 0.085 0.974

Panel B. Weekly Forecasts, Large Portfolio Case (d =100)

HAR 0.028 1.000 0.070 1.000
SHAR 0.026 0.917 0.065 0.936
SCHAR 0.024 0.881 0.068 0.981
SCHAR-r 0.023 0.823 0.062 0.884

Panel C. Monthly Forecasts, Small Portfolio Case (d =10)

HAR 1.407 1.000 0.108 1.000
SHAR 1.372 0.982 0.106 0.982
SCHAR 1.121 0.906 0.160 1.339
SCHAR-r 1.135 0.867 0.111 1.000

Panel D. Monthly Forecasts, Large Portfolio Case (d =100)

HAR 0.031 1.000 0.071 1.000
SHAR 0.030 0.954 0.068 0.956
SCHAR 0.028 0.926 0.060 0.859
SCHAR-r 0.025 0.816 0.058 0.837

Note: The table reports the loss for forecasting the portfolio variance for portfolios of
size d = 10 and 100 for each of the different forecasting models, for weekly and monthly
horizons. The reported numbers are based on 500 randomly selected portfolios. The
Average column provides the average loss over time and all portfolios. The Ratio column
gives the time-average ratio of losses across all sets of portfolios relative to the HAR
model.

biases in 1-minute returns have substantially decreased since the writing of that paper,

which is the foremost reason we start our sampling period in 2006. Next consider the

full S&P500 sample, which we use in our forecasting section. Here, a long time-span was

the primary consideration in our sampling frequency. As the bottom-left panel shows,

1-minute sampling here does lead to an almost two-fold increase in the realized variance

compared to 15-minute sampling, which is why for this section and sample, we settled at

15-minute sampling, from which the signature plots remain mostly stable.
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We test for the impact of microstructure noise on the 1-minute RV estimates in two

ways. First, we compare our estimates with a realized kernel estimate (Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008)). The average estimate is 2.68, compared to 2.89

for the Realized Variance, and the realized variance is within the 95% confidence interval

of the realized kernel on 97.9% of the stock-days. Second, we test for the presence of

microstructure noise using the test developed by Aı̈t-Sahalia and Xiu (2019). We use the

“H3n” statistic that is robust to stochastic volatility, non-Gaussian noise and jumps, and

which came out as most favorable in their simulations. We reject the null of no noise

in only 11.8% of the stock-days at the 5% level. Overall, we conclude that for this set

of highly liquid stocks, on this relatively recent sample, measures based on a one-minute

sampling frequency are not likely to be overly affected by microstructure noise.

Figure S.7: Signature Plots
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Note: The figures shows signature plots for the datasets used in Sections 3 and Section
4 of the main paper. The top panel plots average realized (semi)variances across all
DJIA stocks, and realized (semi)covariances across all possible pairs, at different sampling
frequencies. The bottom panel shows average realized (semi)variances across all 749 S&P
500 stocks, and average realized (semi)covariances over 500 randomly selected pairs of
the S&P 500 stocks, at different sampling frequencies.
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