Realized Semicovariances

This version: August 20, 2019

Tim Bollersleva,, Jia Lib, Andrew J. Pattonb, Rogier Quaedvliegc

aDepartment of Economics, Duke University, NBER and CREATES
bDepartment of Economics, Duke University
cErasmus School of Economics, Erasmus University Rotterdam

Abstract

We propose a new decomposition of the realized covariance matrix into components based on the signs of the underlying high-frequency returns. Under an asymptotic setting in which the sampling interval goes to zero, we derive the asymptotic properties of the resulting \textit{realized semicovariance} measures. The first-order asymptotic results highlight how the concordant components and the mixed-sign component load differently on economic information concerning stochastic correlation and jumps. The second-order asymptotics, taking the form of a novel non-central limit theorem, further reveals the fine structure underlying the concordant semicovariances, as manifest in the form of co-drifting and dynamic “leverage” type effects. In line with this anatomy, we empirically document distinct dynamic dependencies in the different realized semicovariance components based on data for a large cross-section of individual stocks. We further show that the accuracy of portfolio return variance forecasts may be significantly improved by using the realized semicovariance matrices to “look inside” the realized covariance matrices for signs of direction.

Keywords: High-frequency data; realized variances; semicovariances; co-jumps; volatility forecasting.

\textit{JEL}: C22, C51, C53, C58
1. Introduction

The covariance matrix of asset returns arguably constitutes the most crucial input for asset pricing, portfolio and risk management decisions. Correspondingly, there is a substantial literature devoted to the estimation, modeling, and prediction of covariance matrices dating back more than half-a-century (e.g., Kendall (1953), Elton and Gruber (1973), and Bauwens, Laurent, and Rombouts (2006)). Meanwhile, a large and rapidly growing recent literature has forcefully advocated for the use of high-frequency intraday data for a more reliable estimation of lower-frequency realized return covariance matrices (e.g., Andersen, Bollerlsev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004a), and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011)).

Set against this background, we propose a new decomposition of the realized covariance matrix into three realized semicovariance matrix components dictated by the signs of the underlying high-frequency returns. The realized semicovariance matrices may be seen as a high-frequency multivariate extension of the semivariances originally proposed in the finance literature several decades ago (e.g., Markowitz (1959), Mao (1970), Hogan and Warren (1972, 1974), and Fishburn (1977)). Our more formal high-frequency theoretical analysis is directly inspired by and extends the results in the pioneering work by Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

To fix ideas, let \(X_t = (X_{1,t}, \ldots, X_{d,t})^\top \) denote a \(d \)-dimensional log-price process, sampled on a regular time grid \(\{i \Delta_n : 0 \leq i \leq [T/\Delta_n]\} \) over some fixed time span \(T > 0 \). Let the \(i \)th return of \(X \) be denoted by \(\Delta_n^i X \equiv X_{i \Delta_n} - X_{(i-1)\Delta_n} \). The realized covariance matrix (Barndorff-Nielsen and Shephard (2004a)) is then defined as:

\[
\hat{C} \equiv \sum_{i=1}^{[T/\Delta_n]} (\Delta_n^i X) (\Delta_n^i X)^\top. \tag{1.1}
\]

If we let \(p(x) \equiv \max\{x, 0\} \) and \(n(x) \equiv \min\{x, 0\} \) denote the component-wise positive and negative elements of the real vector \(x \), the corresponding “positive,” “negative,” and “mixed” realized semicovariance matrices are then simply defined as:

\[
\hat{P} \equiv \sum_{i=1}^{[T/\Delta_n]} p(\Delta_n^i X) p(\Delta_n^i X)^\top, \quad \hat{N} \equiv \sum_{i=1}^{[T/\Delta_n]} n(\Delta_n^i X) n(\Delta_n^i X)^\top, \quad \hat{M} \equiv \sum_{i=1}^{[T/\Delta_n]} \left[p(\Delta_n^i X) n(\Delta_n^i X)^\top + n(\Delta_n^i X) p(\Delta_n^i X)^\top \right]. \tag{1.2}
\]

Note that \(\hat{C} = \hat{P} + \hat{N} + \hat{M} \) for any sampling frequency \(\Delta_n \). The concordant realized semicovariance matrices, \(\hat{P} \) and \(\hat{N} \), are defined as sums of vector outer-products and thus are positive semidefinite. By contrast, the mixed semicovariance matrix, \(\hat{M} \), has diagonal elements that are identically zero, and thus is necessarily indefinite.
Figure 1: Realized Covariance Decomposition

Note: The figure plots the time series of the concordant semicovariance ($\hat{P} + \hat{N}$), the mixed semicovariance (\hat{M}) and the realized covariance (\hat{C}). We construct each series as the 25-day moving average of the daily realized measures averaged across 500 random pairs of S&P 500 stocks.

As an initial empirical illustration of the different dynamic dependencies and information conveyed by the realized semicovariances, Figure 1 plots the daily realized covariance averaged across 500 randomly-selected pairs of S&P 500 stocks, together with its concordant ($\hat{P} + \hat{N}$) and mixed (\hat{M}) semicovariance components. The mixed component is, of course, always negative, while the concordant component is always positive. The two components are typically fairly similar in absolute magnitude during “normal” time periods. In periods of high volatility, however, the concordant component increases substantially more than the mixed component declines, in line with the widely held belief that during periods of financial market stress correlations and tail dependencies among most financial assets tend to increase. As such, the (total) realized covariance is largely determined by the concordant realized semicovariance components in these “crisis” periods.

To help understand these empirical features, consider a simple setting in which the vector log-price process X_t is generated by a Brownian motion with constant drift b, unit

1More precisely, each day we draw 500 asset pairs randomly and then compute $\bar{C} \equiv (1/500) \sum_{j \neq k} \hat{C}_{jk}$, where the sum is over the 500 pairs, and define \bar{P}, \bar{N} and \bar{M} similarly. More detailed descriptions of the data and the procedures used in calculating the realized semicovariances are provided in Section 4 below. To avoid cluttering the figure, we sum \bar{P} and \bar{N} into the single concordant component, and smooth the daily measures using a 25-day moving average.
Figure 2: Signed Return-Pairs for DJIA Stocks.

Note: The figure shows a scatter plot of the one-minute returns of each pair of the 30 Dow Jones Industrial Average stocks on two days in 2013.

volatility, and constant correlation ρ.\footnote{Although stylized, this simple model captures the central force in the first-order asymptotic behavior of the semicovariance estimators in the no-jump setting. Theorem 1 provides a more general asymptotic result for Itô semimartingales.} By the law of large numbers, the probability limits (as $\Delta_n \to 0$) of the (j,k) off-diagonal elements of the realized semicovariance matrices are then given by (normalizing $T = 1$)

$$
\text{plim } \hat{P}_{jk} = \text{plim } \hat{N}_{jk} = \psi(\rho), \quad \text{plim } \hat{M}_{jk} = -2\psi(-\rho), \quad (1.3)
$$

where

$$
\psi(\rho) = (2\pi)^{-1} \left(\rho \arccos (-\rho) + \sqrt{1 - \rho^2} \right), \quad (1.4)
$$

corresponding to $E[Z_1Z_21\{Z_1<0,Z_2<0\}]$ for (Z_1, Z_2) bivariate standard normally distributed with correlation ρ. As these expressions illustrate, the relative contribution of the concordant and mixed semicovariance components to the (total) covariance depends crucially on the value of ρ. Indeed, as ρ increases to 1, the limiting value of the concordant component $\hat{P} + \hat{N}$ approaches one while the mixed component \hat{M} approaches zero, and vice versa when ρ decreases to -1. This, of course, is also consistent with the empirical observation from Figure 1 that the concordant component accounts for most of the covariance in periods of market stress, which are generally believed to be accompanied by increased positive correlations.

This simple diffusive setting highlights the potentially different information conveyed by the concordant and the mixed semicovariance components. It does not, however, reveal any differences between the \hat{P} and \hat{N} components as they have the same limits in
this stylized setting. This is at odds with the intuition that these signed measures ought to carry distinct economic information as a result of the types of “news” that arrive on different days. By way of illustration, consider the high-frequency returns for the 30 Dow Jones Industrial Average (DJIA) stocks on the two different days presented in Figure 2. On September 18, 2013, shown in the left panel, the Federal Reserve announced that it would not taper its asset-purchasing program, in contrast to what the market had been anticipating; individual stocks responded abruptly with positive jumps at the announcement time, resulting in much larger estimates of \hat{P} than \hat{N}. By contrast, the right panel shows the returns on February 25, 2013, when the DJIA drifted down by 1.5% over the course of the day amid concerns, according to market anecdotes, about the political uncertainty in Italy, in turn resulting in a much larger estimates of \hat{N} than \hat{P}.

Hence, the empirical estimates of \hat{P} and \hat{N} can indeed be very different depending on the “directional” content of the news and the corresponding information processing process, whether it manifests in the form of price jumps and/or apparent price drifts. As such, the difference $\hat{P} - \hat{N}$, which we refer to as the concordant semicovariance differential (CSD), is likely to carry additional useful information.

Motivated by these empirical observations, in Section 2 we derive both the first- and the second-order asymptotics for the positive and the negative semicovariance estimators in a general Itô semimartingale setting, focusing particularly on a deeper understanding of their information content. Extending the earlier work of Barndorff-Nielsen, Kinnebrock, and Shephard (2010), the limit theory identifies three distinct channels through which \hat{P} and \hat{N} may differ: directional “co-jumps,” a type of “co-drifting,” and a specific form of “dynamic leverage effect.” The first co-jump channel manifests straightforwardly in the first-order asymptotics. In particular, assuming that the vector log-price process in the aforementioned running example is subject to finite activity jumps, it follows readily that

$$\text{plim} \hat{P}_{jk} = \psi(\rho) + \sum_{0<s \leq 1} p(\Delta X_{j,s}) p(\Delta X_{k,s}),$$

$$\text{plim} \hat{N}_{jk} = \psi(\rho) + \sum_{0<s \leq 1} n(\Delta X_{j,s}) n(\Delta X_{k,s}).$$

By comparison, any co-drifting and/or dynamic leverage effects would manifest in the form of second-order bias terms in a non-central limit theorem (these bias terms shrink to zero asymptotically). They are also both unique to our analysis of the semicovariances, and from a methodological perspective sets our asymptotic analysis distinctly apart from the usual high-frequency econometric analysis, in which central limit theorems are generally applied for the purpose of conducting statistical inference (see, e.g., Aït-Sahalia and Jacod (2014)). By contrast, the main purpose of our higher-order asymptotic results is

3Further details on the underlying data are provided in Section 3.

to further “dissect” the semicovariance estimators, thereby allowing for additional theoretical and empirical insights by appropriately comparing and contrasting the relevant terms.

More specifically, in line with the different intraday price behavior evident for the two days depicted in Figure 2, we rely on a standard truncation technique (Mancini (2001)) to obtain two CSD estimators, corresponding to separate jump and diffusive “signals,” respectively. For the former, we establish a feasible central limit theorem that may be used to construct formal statistical inference. For the latter diffusive component (which is related to price drift and a form of leverage effect and, hence, much more complicated), we provide a standard error estimator that quantifies its sampling variability in a well-defined sense, and which, under more restrictive regularity conditions, also results in an asymptotically valid and unbiased test.

Implementing the new inference procedures with high-frequency data for the 30 DJIA stocks over a nine-year period reveals strong statistical evidence for significant differences in the \(\hat{P} \) and \(\hat{N} \) semicovariance components on many different days. Consistent with economic intuition, we find that large differences in the jump semicovariance components are typically associated with “sharp” public news announcements (e.g., FOMC announcements). Meanwhile, large differences in the diffusive semicovariance components are typically associated with more difficult-to-interpret news, which manifests in the form of common price drifts within the day.\(^5\) In addition to the more detailed discussion of such event days, Section 3 further documents that days with significantly different \(\hat{P} \) and \(\hat{N} \) are associated with subsequent different dynamic dependencies both across and within the three realized semicovariance components.

This naturally suggests that decomposing the realized covariance matrix into its semicovariance components may be useful for volatility forecasting. In an effort to corroborate this conjecture, we analyze a large cross-section of stocks comprised of all of the S&P 500 constituents spanning more than two decades. We show that the out-of-sample forecasts of return variances for portfolios comprised of up to one hundred stocks may indeed be significantly improved by “looking inside” the covariance matrix through the lens of the new semicovariance measures. Moreover, the gains from doing so increase with the number of stocks included in the portfolio, although in line with the gains from naïve portfolio diversification the relative gains appear to plateau at around 30-40 stocks in the portfolio. Further dissecting the forecasting gains, we find that the models that incorporate the additional information that resides in the realized semicovariances generally respond faster to new information compared with standard models that only use realized variances or realized semivariances (see, e.g., Corsi (2009) and Patton and Sheppard (2015)). Interestingly, while the erratic nature of volatility during the financial crisis leads most

\(^5\)The two days plotted in Figure 2 also correspond to these two scenarios, and are indeed detected by using the new inference method, as further discussed in Section 3 below.
existing volatility forecasting models to reduce the weight on recent observations, the new semicovariance-based models developed here actually increase the weight, primarily due to an increase in the short-run importance of the negative semicovariance component.

The forecasting gains obtained through the use of the realized semicovariances are naturally linked to the early work on parametric asymmetric volatility models (e.g., Kroner and Ng (1998) and Cappiello, Engle, and Sheppard (2006)). The new realized semicovariance measures themselves and our CSD-based tests, in particular, are also closely related to other tests for asymmetric dependencies that have previously been proposed in the literature (e.g., Longin and Solnik (2001), Ang and Chen (2002) and Hong, Tu, and Zhou (2007)). They are also related to existing empirical work on the correlations between asset returns in “bear” versus “bull” markets, and notions of asymmetric tail dependencies (e.g., Patton (2004), Poon, Rockinger, and Tawn (2004), and Tjøstheim and Hufthammer (2013)), along with more recent work on high-frequency based co-skewness and co-kurtosis measures (e.g., Neuberger (2012) and Amaya, Christoffersen, Jacobs, and Vasquez (2015)), as well as recent work on jumps and co-jumps (e.g., Das and Uppal (2004), Bollerslev, Law, and Tauchen (2008), Lee and Mykland (2008), Mancini and Gobbi (2012), Jacod and Todorov (2009a), Aït-Sahalia and Xiu (2016) and Li, Todorov, and Tauchen (2017b)). In contrast to all of these existing studies, however, we retain the covariance matrix as the summary measure of dependence, and instead use information from signed high-frequency returns to “look inside” the realized covariance matrix as a way to reveal additional information about the inherent dependencies, both dynamically and cross-sectionally at a given point in time.

The rest of the paper is organized as follows. Section 2 presents the first- and second-order asymptotic properties of the realized semicovariances. Readers primarily interested in the practical empirical applications of the new semicovariance measures may skip the more technical parts of Section 2. Section 3 discusses our empirical findings related to the implementation of the semicovariance-based tests. Our results pertaining to the use of the realized semicovariances in the construction of improved volatility forecasts are discussed in Section 4. Section 5 concludes. Technical regularity conditions and proofs are deferred to the appendix. Additional robustness checks and extensions are available in a Supplemental Appendix.

2. Information content of realized semicovariances: an asymptotic analysis

In this section, we demonstrate the differential information embedded in various realized semicovariance measures in an infill asymptotic framework. Sections 2.1 and 2.2 present the first- and the second-order asymptotics, respectively. Section 2.3 describes feasible inference methods. Below, for a matrix A, we denote its (j,k) element by A_{jk} and its transpose by A^T. Convergence in probability and stable convergence in law are
denoted by P and L, respectively. All limits are for the sample frequency $\Delta_n \to 0$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

2.1. First-order asymptotic properties

Suppose that the log-price vector X_t is an Itô semimartingale of the form

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + J_t,$$

(2.1)

where b is the \mathbb{R}^d-valued drift process, W is a d-dimensional standard Brownian motion, σ is the $d \times d$ dimensional stochastic volatility matrix and J is a finitely active pure-jump process. We denote the spot covariance matrix of X by $c_t \equiv \sigma_t \sigma_t^\top$ and further set $v_{j,t} \equiv \sqrt{c_{jj,t}}$ and $\rho_{jk,t} \equiv c_{jk,t}/v_{j,t}v_{k,t}$. That is, $v_{j,t}$ and $\rho_{jk,t}$ denote the spot volatility of asset j and the spot correlation coefficient between assets j and k, respectively. We explicitly allow for so-called “leverage effect” (i.e., dependence between changes in the price and changes in volatility), stochastic volatility of volatility, volatility jumps and price-volatility co-jumps.

We begin by characterizing the first-order limiting behavior of the realized semicovariance estimators defined by equation (1.2) in the introduction. Let ΔX_s denote the price jump occurring at time s, if a jump occurred, and set it to zero if no jump occurred at time s. Further define

$$P^\dagger \equiv \sum_{s \leq T} p(\Delta X_s)p(\Delta X_s)^\top,$$

$$N^\dagger \equiv \sum_{s \leq T} n(\Delta X_s)n(\Delta X_s)^\top,$$

$$M^\dagger \equiv \sum_{s \leq T} \left(p(\Delta X_s)n(\Delta X_s)^\top + n(\Delta X_s)p(\Delta X_s)^\top \right).$$

These measures characterize the discontinuous parts of the semicovariance measures, as formally spelled out in the following theorem.

Theorem 1 Under Assumption 1 in the appendix, $(\hat{P}, \hat{N}, \hat{M}) \xrightarrow{P} (P, N, M)$, where P, N and M are $d \times d$ matrices with their (j,k) elements given by

$$P_{jk} \equiv \int_0^T v_{j,s}v_{k,s}^\top \psi(\rho_{jk,s}) ds + P_{jk}^\dagger,$$

$$N_{jk} \equiv \int_0^T v_{j,s}v_{k,s}^\top \psi(\rho_{jk,s}) ds + N_{jk}^\dagger,$$

$$M_{jk} \equiv -2 \int_0^T v_{j,s}v_{k,s}^\top \psi(-\rho_{jk,s}) ds + M_{jk}^\dagger,$$

and $\psi(\cdot)$ is defined in equation (1.4).
It follows from Theorem 1 that each of the realized semicovariances contains both diffusive and jump covariation components. Importantly, the limiting variables P and N share exactly the same diffusive component, but their jump components differ. In particular,

$$\hat{P} - \hat{N} \overset{p}{\rightarrow} P - N = P^\dagger - N^\dagger.$$

That is, the first-order asymptotic behavior of the concordant semicovariance differential (CSD) is fully characterized by the “directional co-jumps.” Consequently, in line with the stylized model in equation (1.2) discussed in the introduction, Theorem 1 cannot distinguish the information conveyed by \hat{P} and \hat{N} in periods when there are no jumps. Hence, in order to reveal the differential information inherent in the realized measures more generally, we turn next to a more refined second-order asymptotic analysis.

2.2. Second-order asymptotic properties

Since the main theoretical lessons about the second-order asymptotic behavior of the concordant realized semicovariance components can be readily learnt in a bivariate setting, we set $d = 2$ and focus on the analysis of \hat{P}_{12} and \hat{N}_{12} throughout this subsection. Correspondingly, we also write ρ_t in place of $\rho_{12,t}$ for simplicity. The joint analysis of all semicovariance components can be done in a similar manner. However, it is much more tedious to discuss, so for readability we defer this more general analysis to the Supplemental Appendix.

We need to impose some additional structure on the volatility dynamics. In particular, we will assume that the stochastic volatility σ_t is also an Itô semimartingale of the form (see, e.g., equation (4.4.4) in Jacod and Protter (2012))

$$\sigma_t = \sigma_0 + \int_0^t \tilde{b}_s ds + \int_0^t \tilde{\sigma}_s dW_s + \tilde{M}_t + \sum_{s \leq t} \Delta \sigma_s 1\{\|\Delta \sigma_s\| > \varepsilon\},$$

(2.2)

where \tilde{b} is the drift, $\tilde{\sigma}$ is a $d \times d \times d$ tensor-valued process, \tilde{M} is a local martingale that is orthogonal to the Brownian motion W.\(^6\) A few remarks are in order. The process $\tilde{\sigma}$ collects the loadings of the stochastic volatility matrix σ on the price Brownian shocks dW, and hence is naturally thought of as a multivariate quantification of a “leverage effect.” We also allow σ to load on Brownian shocks that are independent of dW through the local martingale \tilde{M}. The \tilde{M} process may also contain compensated “small” volatility jumps in the form of a purely discontinuous local martingale.\(^7\) Meanwhile, the term $\sum_{s \leq t} \Delta \sigma_s 1\{\|\Delta \sigma_s\| > \varepsilon\}$ collects the “large” volatility jumps (with an arbitrary but

\(^6\)By convention, the (j, k) element of the stochastic integral $\int_0^t \tilde{\sigma}_s dW_s$ equals $\sum_{l=1}^d \int_0^t \tilde{\sigma}_{jkl,s} dW_{l,s}$.

\(^7\)We remind the reader that two local martingales are called orthogonal if their product is a local martingale (or equivalently, their predictable covariation process is identically zero). A local martingale is called purely discontinuous if it is orthogonal to all continuous local martingales. See Definition I.4.11 and Proposition I.4.15 in Jacod and Shiryaev (2003) for additional details.
fixed threshold $\sigma > 0$), which often occur in response to major news announcements (see, e.g., Bollerslev, Li, and Xue (2018)). The Itô semimartingale setting also readily accommodates the well-established intraday periodicity in the volatility dynamics (see, e.g., Andersen and Bollerslev (1997)). Further regularity conditions regarding the σ process are collected in the appendix.

Theorem 2, below, describes the F-stable convergence in law of the normalized statistic $\Delta^{−1/2}_n(\hat{P}_{12} \quad - P_{12}, \hat{N}_{12} \quad - N_{12})$. The limit variable turns out to be fairly complicated, but it may be succinctly expressed as

$$
\left(\begin{array}{c}
B \\
-B
\end{array} \right) + \left(\begin{array}{c}
L \\
-L
\end{array} \right) + \left(\begin{array}{c}
\zeta \\
-\zeta
\end{array} \right) + \left(\begin{array}{c}
\zeta_P \\
\zeta_N
\end{array} \right) + \left(\begin{array}{c}
\tilde{\zeta}_P \\
\tilde{\zeta}_N
\end{array} \right),
$$

(2.3)

where, as we will detail below, B and L are bias terms, and (ζ, ζ_P, ξ) capture sampling variabilities that arise from various sources. In particular, we note that $\hat{P}_{12} \quad$ and \hat{N}_{12} load on the B and L bias terms in exactly opposite ways, which would cancel with each other in the (aggregated) realized covariance \hat{C}_{12}. Before presenting the actual limit theorem, we begin by briefly describing each of these separate terms.

Bias components due to price drift, B. The first type of bias is related to the price drift, which is defined for the semicovariance estimator \hat{P}_{12} as

$$
B = \frac{1}{2\sqrt{2\pi}} \int_0^T \left(\frac{b_{1,s}}{v_{1,s}} + \frac{b_{2,s}}{v_{2,s}} \right) v_{1,s}v_{2,s}(1 + \rho_s) \, ds.
$$

(2.4)

As mentioned above, the analogous bias term for \hat{N}_{12} is $-B$. Other things equal, this bias term is proportional to the average spot “Sharpe ratio” of the two assets

$$
\frac{1}{2} \left(\frac{b_{1,s}}{v_{1,s}} + \frac{b_{2,s}}{v_{2,s}} \right).
$$

(2.5)

Therefore, the B term tends to be more pronounced when the two assets drift in the same direction, akin to a “co-drift” type phenomenon.

Bias components due to continuous price-volatility covariation, L. The second bias term stems from the fact that the volatility matrix process σ_t may be partially driven by the Brownian motion W (i.e., $\sigma \neq 0$), corresponding to a “dynamic leverage” type effect. To more precisely describe this bias term for \hat{P}_{12}, define $f_1(x) \equiv 1_{\{x_1 \geq 0\}} \max\{x_2, 0\}$ and $f_2(x) \equiv \max\{x_1, 0\} 1_{\{x_2 \geq 0\}}$ and then set, for any 2×2 matrix A,

$$
F_j(A) \equiv \mathbb{E} \left[f_j(AW_1) \int_0^1 W_s dW_s^T \right], \quad j = 1, 2.
$$

The bias term in \hat{P}_{12} due to the common price-volatility Brownian dependence may then
be expressed as

\[L \equiv \sum_{j=1}^{2} \int_{0}^{T} \text{Trace} [\tilde{\sigma}_{j,s} F_{j}(\sigma_{s})] \, ds, \]

(2.6)

where \(\tilde{\sigma}_{j,s} \) denotes the \(2 \times 2 \) matrix \([\tilde{\sigma}_{jkl,s}]_{1 \leq k,l \leq 2} \). The bias term for \(\hat{N}_{12} \) may be defined similarly, and it can be shown to equal \(-L\).

Diffusive sampling error spanned by price risk, \(\zeta \). The third component in the limit of \(\hat{P}_{12} \) captures the sampling variability in \(p(\Delta_{t}^{n}X_{1})p(\Delta_{t}^{n}X_{2}) \) that is spanned by the Brownian price shock \(\sigma_{t}dW_{t} \). Formally,

\[\zeta \equiv \int_{0}^{T} (c_{s}^{-1}\gamma_{s})^{\top} (\sigma_{s}dW_{s}) , \]

(2.7)

where the \(\gamma_{t} \) process is defined as\(^8\)

\[\gamma_{t} \equiv \frac{(1 + \rho_{t})^{2}}{2\sqrt{2\pi}} v_{1,t} v_{2,t} \left(\begin{array}{c} v_{1,t} \\ v_{2,t} \end{array} \right). \]

(2.8)

The analogous component for \(\hat{N}_{12} \) equals \(-\zeta\). Note that the quadratic covariation matrix of the local martingale \((\zeta, -\zeta)\) equals \(\int_{0}^{T} \Gamma_{s} ds \), where

\[\Gamma_{t} \equiv \left(\begin{array}{cc} \gamma_{t}^{\top} c_{t}^{-1}\gamma_{t} & -\gamma_{t}^{\top} c_{t}^{-1}\gamma_{t} \\ -\gamma_{t}^{\top} c_{t}^{-1}\gamma_{t} & \gamma_{t}^{\top} c_{t}^{-1}\gamma_{t} \end{array} \right). \]

(2.9)

Diffusive sampling error orthogonal to price risk, \(\tilde{\zeta} \). While \(\zeta \) defined above captures the diffusive risk in the semicovariance spanned by the Brownian shocks to the price process, \(\tilde{\zeta} \) captures the diffusive risk component orthogonal to those shocks. This limit variable may be represented by its \(\mathcal{F} \)-conditional distribution as

\[\tilde{\zeta} = \left(\begin{array}{c} \tilde{\zeta}_{P} \\ \tilde{\zeta}_{N} \end{array} \right) = \int_{0}^{T} \tilde{\gamma}_{s}^{1/2} d\tilde{W}_{s}, \]

(2.10)

where \(\tilde{W} \) is a 2-dimensional standard Brownian motion that is independent of the \(\sigma \)-field \(\mathcal{F} \), and the \(\tilde{\gamma} \) process is defined by

\[\tilde{\gamma}_{t} \equiv \tilde{\Gamma}_{t} - \Gamma_{t}, \]

(2.11)

\(^8\)Further, \(\gamma_{(i-1)\Delta_{n}} \) is computed as \(\mathbb{E}[f(\sigma_{(i-1)\Delta_{n}}\Delta_{n}^{1/2}W/\Delta_{n}^{1/2})\sigma_{(i-1)\Delta_{n}}\Delta_{n}^{1/2}W/\Delta_{n}^{1/2}|\mathcal{F}_{(i-1)\Delta_{n}}] \), where \(f(x) = p(x_{1})p(x_{2}) \). Hence, \(c_{(i-1)\Delta_{n}}^{-1}\gamma_{(i-1)\Delta_{n}} \) corresponds to the population regression coefficient obtained from regressing \(f(\sigma_{(i-1)\Delta_{n}}\Delta_{n}^{1/2}W/\Delta_{n}^{1/2}) \) on the Brownian shock \(\sigma_{(i-1)\Delta_{n}}\Delta_{n}^{1/2}W/\Delta_{n}^{1/2} \).
where
\[
\begin{align*}
\Gamma_t &= \nu_1^2 \nu_2^2 \begin{pmatrix}
\Psi (\rho_1) - \psi (\rho_1)^2 & -\psi (\rho_1)^2 \\
-\psi (\rho_1)^2 & \Psi (\rho_1) - \psi (\rho_1)^2
\end{pmatrix},
\end{align*}
\]
(2.12)
and
\[
\Psi (\rho) = \frac{3\rho \sqrt{1 - \rho^2} + (1 + 2\rho^2) \arccos (-\rho)}{2\pi},
\]
(2.13)
with \(\Psi (\rho)\) corresponding to \(\mathbb{E} \left[Z_1^2 Z_2^2 1_{\{Z_1 < 0, Z_2 < 0\}} \right] \) for \((Z_1, Z_2)\) standard normally distributed with correlation \(\rho\).

\textit{Jump-induced sampling error, }\xi.\textit{ The price jumps also induce sampling errors. Let }T_j\textit{ for }j \in \{1, 2\}\textit{ denote the collection of jump times of }\(X_{j,t}\)\textit{ with the corresponding “signed” subsets denoted by }
\[
T_{j+} = \{ \tau \in T_j : \Delta X_{j,\tau} > 0 \}, \quad T_{j-} = \{ \tau \in T_j : \Delta X_{j,\tau} < 0 \}.
\]

For each \(\tau \in T_1 \cup T_2\) associate the variables \((\kappa_\tau, \tilde{\xi}_\tau, \tilde{\xi}_\tau+)\) that are, conditionally on \(\mathcal{F}\), mutually independent with the following conditional distributions: \(\kappa_\tau \sim \text{Uniform}[0, 1]\), \(\tilde{\xi}_\tau- \sim \mathcal{MN} (0, c_{\tau-})\), and \(\tilde{\xi}_\tau+ \sim \mathcal{MN} (0, c_{\tau+})\). Further define \(\tilde{\eta}_\tau = (\tilde{\eta}_{1,\tau}, \tilde{\eta}_{2,\tau})^\top = \sqrt{\kappa_\tau} \tilde{\xi}_\tau- + \sqrt{1 - \kappa_\tau} \tilde{\xi}_\tau+\). \(^9\) The limiting variable \(\xi = (\xi_P, \xi_N)^\top\) may then be expressed as
\[
\begin{align*}
\xi_P &= \sum_{\tau \in T_{1+} \cap T_{2+}} (\Delta X_{1,\tau} \tilde{\eta}_{2,\tau} + \Delta X_{2,\tau} \tilde{\eta}_{1,\tau}) \\
&\quad + \sum_{\tau \in T_{1+} \setminus T_2} \Delta X_{1,\tau} p (\tilde{\eta}_{2,\tau}) + \sum_{\tau \in T_{2+} \setminus T_1} \Delta X_{2,\tau} n (\tilde{\eta}_{1,\tau}),
\end{align*}
\]
\[
\xi_N = \sum_{\tau \in T_{1-} \cap T_{2-}} (\Delta X_{1,\tau} \tilde{\eta}_{2,\tau} + \Delta X_{2,\tau} \tilde{\eta}_{1,\tau}) \\
&\quad + \sum_{\tau \in T_{1-} \setminus T_2} \Delta X_{1,\tau} n (\tilde{\eta}_{2,\tau}) + \sum_{\tau \in T_{2-} \setminus T_1} \Delta X_{2,\tau} n (\tilde{\eta}_{1,\tau}).
\]

Note that the first component in \(\xi_P\) (resp. \(\xi_N\)) concerns the times when both assets have positive (resp. negative) jumps, while the other two terms are active when one asset jumps upwards (resp. downwards) and the other asset does not jump. Interestingly, the latter terms involve the half-truncated doubly mixed Gaussian variable \(p(\tilde{\eta}_\tau)\) (resp. \(n (\tilde{\eta}_\tau)\)). To the best of our knowledge, this type of limiting distribution is new to the literature.

With the definitions above, we are now ready to state the stable convergence in law

\[^9\text{It is instructive to recall the intuition for these limiting variables. The uniform variable } \kappa_\tau \text{ captures the indeterminacy of the jump time within a discrete sampling interval, while } \sqrt{\kappa_\tau} \tilde{\xi}_\tau- \text{ and } \sqrt{1 - \kappa_\tau} \tilde{\xi}_\tau+ \text{ capture the distribution of the Brownian increment before and after the jump time, respectively. The variable } \tilde{\eta}_\tau \text{ in turn represents the limiting behavior of the Brownian sampling error around the jump time } \tau.\]
of the realized semicovariances.

Theorem 2 Under Assumption 2 in the appendix,

\[
\Delta_n^{-1/2} \left(\frac{\hat{P}_{12} - P_{12}}{N_{12} - N_{12}} \right) \xrightarrow{\text{L.s}} \left(\begin{array}{c} B \\ -B \end{array} \right) + \left(\begin{array}{c} L \\ -L \end{array} \right) + \left(\begin{array}{c} \zeta \\ -\zeta \end{array} \right) + \left(\begin{array}{c} \tilde{\zeta}_P \\ \tilde{\zeta}_P \end{array} \right) + \left(\begin{array}{c} \tilde{\xi} \\ \tilde{\xi} \end{array} \right).
\]

Theorem 2 depicts a non-central limit theorem for the positive and negative realized semicovariances, where \((\pm B, \pm L)\) represent bias terms, while \((\pm \zeta, \tilde{\zeta}, \xi)\) stem from various sources of “sampling errors.” The latter sampling error terms are all formed as (local) martingales and have zero mean under mild integrability conditions.

However, the presence of the bias terms means that Theorem 2 is not directly suitable for the construction of confidence intervals for the \((P,N)\) estimand; but that is not our goal either. Instead, the main insight derived from Theorem 2 is to reveal the differential second-order behavior of the realized semicovariances \(\hat{P}\) and \(\hat{N}\), about which the first-order asymptotics in Theorem 1 remains entirely silent in the absence of jumps. Indeed, while Theorem 1 states that \(\hat{P}\) and \(\hat{N}\) have the same limit in the no-jump case, Theorem 2 clarifies that they actually load on higher-order “signals” \(\pm B\) and \(\pm L\) in the exact opposite way. From a theoretical perspective, this therefore explains why \(\hat{P}\) and \(\hat{N}\) may behave differently. From an empirical perspective, it helps guide our understanding of the actual \(\hat{P}\) and \(\hat{N}\) estimates discussed in Section 3, and the use of these measures in the construction of improved volatility forecasts discussed in Section 4.

2.3. Tests based on concordant semicovariance differentials

Even though Theorem 2 does not allow for the construction of standard confidence intervals, it is still possible to develop feasible inference methods for the difference \(\hat{P} - \hat{N}\), that is, the CSD. In particular, the asymptotic theory in the previous subsection reveals three types of signals underlying the CSD: a directional co-jump effect (i.e., \(P^\dagger - N^\dagger\)), a co-drifting effect (i.e., \(2B\)), and a dynamic leverage effect (i.e., \(2L\)). Empirically, it is of great interest to separate the variation due to jumps from that due to the diffusive price moves. Below, we use the standard truncation method (see, e.g., Mancini (2001, 2009)) to achieve such a separation. As in Section 2.2, we consider a bivariate setting, or \(d = 2\), and focus on the inference for \(\hat{P}_{12} - \hat{N}_{12}\).

The truncation method involves a sequence \(u_n \in \mathbb{R}^2_+\) of truncation thresholds satisfying \(u_{j,n} \simeq \Delta_n^{\varpi}\) for some \(\varpi \in (0,1/2)\) and \(j \in \{1,2\}\). Under our maintained assumption of finite activity jumps, it can be shown that the index set

\[
\hat{I} \equiv \{i : -u_n \leq \Delta_i^\varpi X \leq u_n \text{ does not hold}\}
\]
locates the jumps of the vector log-price process X with probability approaching one.10 In practice, it is important to choose the truncation threshold u_n adaptively so as to account for time-varying volatility, particularly its well-known U-shape intraday pattern.11 As a result, the diffusive and jump returns may be separated, allowing for the separate estimation of the diffusive components of the semicovariances using the “small” (non-jump) returns:

$$
\hat{P}^\star \equiv \sum_{i \notin \mathcal{I}} p(\Delta^n_i X) p(\Delta^n_i X)^	op, \quad \hat{N}^\star \equiv \sum_{i \notin \mathcal{I}} n(\Delta^n_i X) n(\Delta^n_i X)^	op,
$$

and the jump components of the semicovariances using the “jump” returns:

$$
\hat{P}^\dagger \equiv \sum_{i \in \mathcal{I}} p(\Delta^n_i X) p(\Delta^n_i X)^	op, \quad \hat{N}^\dagger \equiv \sum_{i \in \mathcal{I}} n(\Delta^n_i X) n(\Delta^n_i X)^	op.
$$

Given the aforementioned jump detection result, the asymptotic property of these truncated estimators can be established as a straightforward extension of Theorem 2, stated as follows.

Proposition 1 Under Assumption 2 in the appendix, the following convergences hold jointly

$$
\Delta_n^{-1/2} \begin{pmatrix}
\hat{P}^\dagger_{ij} - P^\dagger_{ij} \\
\hat{N}^\star_{ij} - N^\star_{ij}
\end{pmatrix} \xrightarrow{D} \begin{pmatrix}
\xi_P \\
\xi_N
\end{pmatrix},
$$

$$
\Delta_n^{-1/2} \begin{pmatrix}
\hat{P}^\star_{ij} - P^\star_{ij} \\
\hat{N}^\dagger_{ij} - N^\dagger_{ij}
\end{pmatrix} \xrightarrow{D} \begin{pmatrix}
B \\
-L
\end{pmatrix} + \begin{pmatrix}
\zeta \\
-L + \zeta
\end{pmatrix} + \begin{pmatrix}
\tilde{\zeta}_P \\
\tilde{\zeta}_N
\end{pmatrix},
$$

where $P^\star_{ij} = N^\star_{ij} \equiv \int_0^T v_{1,s} v_{2,s} \psi(\rho_s) ds$.

Proposition 1 allows for the construction of feasible inference for each of the two separate CSD components, $\hat{P}^\dagger_{ij} - \hat{N}^\star_{ij}$ and $\hat{P}^\star_{ij} - \hat{N}^\dagger_{ij}$, respectively.12 We will refer to these as the jump (resp. diffusive) concordant semicovariance differential, or JCSD (resp. DCSD) for short.

10See Proposition 1 of Li, Todorov, and Tauchen (2017b), for which the inequality $-u_n \leq \Delta^n_i X \leq u_n$ is interpreted element-by-element. Although jumps can be separately recovered in asymptotic theory, it is difficult to do so in practice. The realized semicovariance measures concern time-aggregated jump characteristics, instead of individual jumps. In our analysis, the jump recovery is only used as theoretical auxiliary tool to prove asymptotic results for time-aggregated quantities.

11See, for example, Bollerslev and Todorov (2011a,b), Andersen, Dobrev, and Schaumburg (2012), Todorov and Tauchen (2012), Li, Todorov, and Tauchen (2017b), and Christensen, Hounyo, and Podolskij (2018).

12The feasible inference relies on the stable convergence result and consistent estimation of spot covariances.
We start with a discussion of how to implement the JCSD test, which is the simpler of the two as it admits a central limit theorem. In particular, it follows immediately from Proposition 1,

$$\Delta_n^{-1/2} \left(\hat{P}_{12}^\dagger - \hat{N}_{12}^\dagger - \left(P_{12}^\dagger - N_{12}^\dagger \right) \right) \overset{d}{\rightarrow} \xi_P - \xi_N,$$

where, as discussed above, ξ_P and ξ_N are defined in terms of doubly-mixed Gaussian variables. Hence, to consistently estimate the distribution of the limiting variable, we first need to estimate the spot covariance matrix before and after each detected jump time. In order to do so, we choose an integer sequence k_n of local windows that satisfies $k_n \to \infty$ and $k_n \Delta_n \to 0$, and set, for each i,

$$\hat{c}_i^- \equiv \frac{1}{k_n \Delta_n} \sum_{l=1}^{k_n} \left(\Delta_{i-l}^n X \right) \left(\Delta_{i-l}^n X \right)^\top 1_{\left\{-n \leq \Delta_i^* X \leq n \right\}},$$

$$\hat{c}_i^+ \equiv \frac{1}{k_n \Delta_n} \sum_{l=1}^{k_n} \left(\Delta_{i+l}^n X \right) \left(\Delta_{i+l}^n X \right)^\top 1_{\left\{-n \leq \Delta_i^* X \leq n \right\}}.$$

Algorithm 1 describes the requisite steps for implementing the resulting JCSD test for the null hypothesis $P_{12}^\dagger = N_{12}^\dagger$, that is, equal directional jump covariation.

Algorithm 1 (JCSD Test).

Step 1. Draw random variables $(\kappa_i^*, \xi_i^-, \xi_i^+)$ that are mutually independent such that $\kappa_i^* \sim \text{Uniform}[0, 1]$ and $\xi_i^\pm \sim \mathcal{MN}(0, \hat{c}_i^\pm)$. Set $\hat{\eta}_i^* = (\hat{\eta}_{i,1}^*, \hat{\eta}_{i,2}^*) = \sqrt{\kappa_i^*} \xi_i^- + \sqrt{1 - \kappa_i^*} \xi_i^+$.

Step 2. Let $\Delta_i^n X_j^* \equiv \Delta_i^n X_j 1_{\left\{ \Delta_i^n X_j > u_{j,n} \right\}}$ for $j \in \{1, 2\}$ and set

$$\xi_P^* = \Delta_n^{-1/2} \sum_{i \in I} \left(p \left(\Delta_i^n X_1^* + \Delta_i^n X_2^* \right) \right),$$

$$\xi_N^* = \Delta_n^{-1/2} \sum_{i \in I} \left(n \left(\Delta_i^n X_1^* + \Delta_i^n X_2^* \right) \right).$$

Step 3. Repeat steps 1–2 many times. Compute the $1 - \alpha$ (resp. α) quantile of $\xi_P^* - \xi_N^*$ as the critical value of $\Delta_n^{-1/2}(\hat{P}_{12}^\dagger - \hat{N}_{12}^\dagger)$ for the null hypothesis $P_{12}^\dagger = N_{12}^\dagger$ in favor of the one-sided alternative $P_{12}^\dagger > N_{12}^\dagger$ (resp. $P_{12}^\dagger < N_{12}^\dagger$) at significance level α. □

Algorithm 1 may be seen as a parametric bootstrap that exploits the approximate (parametric) doubly-mixed Gaussian distribution of the detected jump returns given the estimated spot covariances, with ξ_P^* and ξ_N^* being the bootstrap analogue of the original normalized estimators. While this type of simulation-based inference is often used in the study of jumps, a non-standard feature of Algorithm 1 is its use of the truncated return $\Delta_i^n X_j^* = \Delta_i^n X_j 1_{\left\{ \Delta_i^n X_j > u_{j,n} \right\}}$, which shrinks the detected diffusive returns to zero. This shrinkage is needed in situations where exactly one asset jumps at time τ, so that the sampling variability contributed by the other (no-jump) asset, say j, is given by the half-truncated doubly-mixed Gaussian variable like $p(\hat{\eta}_{\tau,j})$. This distribution may in turn
be mimicked by $\Delta^{-1/2} p(\Delta_i^n X_j^* + \Delta_n^{1/2} \eta_{ij}^*) = p(\eta_{ij}^*)$, which differs from the “un-shrunk” variable $\Delta^{-1/2} p(\Delta_i^n X_j + \Delta_n^{1/2} \eta_{ij}^*)$.

Proposition 2 Under Assumption 2 in the appendix, the conditional distribution of $\xi_P - \xi_N$ given the data converges in probability to the \mathcal{F}-conditional distribution of $\xi_P - \xi_N$ under the uniform metric. Consequently, the test described in Algorithm 1 has asymptotic level α under the null $\{P_{12}^\dagger = N_{12}^\dagger\}$ and asymptotic power of one under one-sided alternatives.

We turn next to the conduct of feasible inference using the DCSD statistic $\hat{P}_{12}^* - \hat{N}_{12}^*$. This involves some additional non-standard theoretical subtlety. Proposition 1 implies that

$$\Delta_n^{-1/2} \left(\hat{P}_{12}^* - \hat{N}_{12}^* \right) - 2B - 2L \xrightarrow{\mathcal{L}} 2\zeta + \tilde{\zeta}_P - \tilde{\zeta}_N,$$

where we recall that B and L capture co-drift and dynamic leverage effects, respectively. The first-order limiting variables P_{12}^* and N_{12}^* exactly cancel with each other in the $\hat{P}_{12}^* - \hat{N}_{12}^*$ difference. Consequently, as revealed by the convergence in (2.14), the remaining “signal” carried by the DCSD is given by the higher-order term $2B + 2L$, which is comparable in magnitude with the statistical noise term $2\zeta + \tilde{\zeta}_P - \tilde{\zeta}_N$ (defined as a local martingale). Since the signal-to-noise ratio does not diverge to infinity even in large samples, the resulting test is generally not consistent.

A further non-standard complication related to (2.14) stems from the fact that the limiting variable $2\zeta + \tilde{\zeta}_P - \tilde{\zeta}_N$ is generally not mixed Gaussian. Specifically, while $\tilde{\zeta}_P - \tilde{\zeta}_N$ is \mathcal{F}-conditional Gaussian, the remaining part

$$\zeta_P - \zeta_N = 2 \int_0^T (c_s^{-1} \gamma_s)^\top (\sigma_s dW_s)$$

is generally not mixed Gaussian unless, of course, the stochastic volatility σ is independent of the Brownian motion W that drives the diffusive price moves.\(^{13}\)

Although these non-standard features of the limit theory prevent us from conducting formal tests in the most general setting, it is nevertheless possible to assess the sampling variability of $\hat{P}_{12}^* - \hat{N}_{12}^*$ in a well-defined way. Indeed, it follows from (2.7) and (2.10) that the quadratic variation of the continuous local martingale $2\zeta + \tilde{\zeta}_P - \tilde{\zeta}_N$ is given by

$$\Sigma^* \equiv 2 \int_0^T \Psi (\rho_s) ds.$$

Therefore, $\sqrt{\Sigma^*}$ may be naturally used as the standard error for gauging the sampling

\(^{13}\)This complication arises from the fact that the functions $x \mapsto p(x_1) p(x_2)$ and $x \mapsto n(x_1) n(x_2)$ are not globally even. Consequently, the local covariance between $p(\Delta_i^n X_1) p(\Delta_i^n X_2)$ (or $n(\Delta_i^n X_1) n(\Delta_i^n X_2)$) and the Brownian increment $\Delta_i^n W$ is non-zero, resulting in $\gamma_t \neq 0$ in general.
variability of the centered variable $\Delta_n^{-1/2}(\hat{P}_{12}^* - \hat{N}_{12}^*) - (2B + 2L)$. The Σ^* variable is defined as an integrated functional of the spot covariance matrix and may therefore be consistently estimated using a nonparametric “plug-in” estimator $\hat{\Sigma}^*$.\(^{14}\)

Comparing $\hat{P}_{12}^* - \hat{N}_{12}^*$ with its standard error provides an econometrically disciplined approach for detecting “large” differences in positive and negative concordant semicovariances, as summarized in the following algorithm. We refer to it cautiously as a detection rule instead of a test; it may be formally interpreted as a test under additional conditions, as detailed below.

Algorithm 2 (DCSD Detection).

Step 1. Define $\hat{v}_{1,i}$, $\hat{v}_{2,i}$, and $\hat{\rho}_i$ implicitly by decomposing the spot covariance matrix estimator \hat{c}_{i+} as

$$\hat{c}_{i+} = \begin{pmatrix} \hat{v}_{1,i}^2 & \hat{\rho}_i \hat{v}_{1,i} \hat{v}_{2,i} \\ \hat{\rho}_i \hat{v}_{1,i} \hat{v}_{2,i} & \hat{v}_{2,i}^2 \end{pmatrix},$$

and set $\hat{\Sigma}^* \equiv \frac{2\Delta_n}{[T/\Delta_n] - k_n + 1} \sum_{i=0}^{[T/\Delta_n]-k_n} \hat{v}_{1,i}^2 \hat{v}_{2,i}^2 \Psi(\hat{\rho}_i).$ (2.15)

Step 2. Use the $1 - \alpha$ quantile of a standard normal distribution z_α as the critical value for the t-statistic $\Delta_n^{-1/2}(\hat{P}_{12}^* - \hat{N}_{12}^*)/\sqrt{\hat{\Sigma}^*}$ for one-sided detection of deviations from $B + L = 0$.

The DCSD detection rule described in Algorithm 2 should be interpreted carefully in empirical work. Due to the aforementioned lack of mixed Gaussianity for the limiting variable under the most general conditions, the t-statistic $\Delta_n^{-1/2}(\hat{P}_{12}^* - \hat{N}_{12}^*)/\sqrt{\hat{\Sigma}^*}$ is generally not asymptotically standard normally distributed. For this reason, the asymptotic level of the proposed one-sided test is not guaranteed to be α. Instead, the t-statistic may be interpreted as a well-defined “signal-to-noise” measure, as opposed to a formal statistical test. That being said, mixed Gaussianity can be restored under the additional assumption that the volatility process σ is independent of the Brownian motion W. In this case, the limiting variable $2\zeta + \tilde{\zeta}_P - \tilde{\zeta}_N$ is, conditional on the σ-field generated by the σ process, centered Gaussian with conditional variance Σ^*. Consequently, the t-statistic $\Delta_n^{-1/2}(\hat{P}_{12}^* - \hat{N}_{12}^*)/\sqrt{\hat{\Sigma}^*}$ converges in σ-conditional law to a standard normal distribution. Correspondingly, in that situation, it then also readily follows that a test based on Algorithm 2 has asymptotic level α under the null and is asymptotically unbiased, with strictly nontrivial power under the alternative.

\(^{14}\)Theorem 9.4.1 in Jacod and Protter (2012) shows the consistency of a class of “plug-in” estimators for integrated volatility functionals. However, their theory requires the test function to have “polynomial growth” in the spot covariance matrix, which cannot be verified for the spot correlation. This restriction is relaxed in the extension of Li and Xiu (2016) and Li, Todorov, and Tauchen (2017a). Under our maintained assumptions, the latter theory can be directly invoked to show $\hat{\Sigma}^* \overset{p}{\to} \Sigma^*$.

17
2.4. Discussion of prior related studies

Putting our results further into perspective, Theorem 2 naturally extends Barndorff-Nielsen, Kinnebrock, and Shephard’s (2010) asymptotic theory (Proposition 2) from the univariate setting and realized semivariances to a multivariate setting and realized semicovariances. However, the results in Barndorff-Nielsen, Kinnebrock, and Shephard (2010) rely on the theory of Kinnebrock and Podolskij (2008), and hence rule out the presence of price or volatility jumps.\(^{15}\) Jacod and Protter (2012) provide a more general result allowing for volatility jumps (see Theorem 5.3.5). By comparison, we allow for both price and volatility jumps. Price jumps in turn result in an interesting limiting distribution that involves truncated doubly-mixed Gaussian variables (i.e., \(p(\tilde{\eta}_r)\) and \(n(\tilde{\eta}_r)\)), which, to the best of our knowledge, are new to the literature on jump-related inference (see, e.g., Aït-Sahalia and Jacod (2009), Jacod and Todorov (2009b), and Chapter 14 of Aït-Sahalia and Jacod (2014)).

The higher-order bias terms that appear in the second-order asymptotics arise from the fact that the realized semicovariances are not globally even transformations of the high-frequency returns. Results in Kinnebrock and Podolskij (2008), Barndorff-Nielsen, Kinnebrock, and Shephard (2010), and Chapter 5 of Jacod and Protter (2012) share that same feature. A more fundamental limit theorem is also proved by Jacod (1997) and reported as Theorem IX.7.3 in Jacod and Shiryaev (2003). Another interesting example of higher-order bias terms is provided by Li, Mykland, Renault, Zhang, and Zheng (2014), in their analysis of realized tricity (see their Theorem 2) and a test for endogenous sampling times. Jacod and Rosenbaum (2013) similarly show that plug-in estimators of general nonlinear integrated volatility functionals contain higher-order biases due to volatility-of-volatility, volatility jumps, and the nonparametric estimation error of spot volatility. All of these other biases, however, are distinct from the higher-order bias terms studied here.

The feasible inference developed in Section 2.3 also further sets our analysis apart from that of Barndorff-Nielsen, Kinnebrock, and Shephard (2010). In the absence of price jumps, in particular, our DCSD inference about the diffusive component involves a highly nonlinear transform of the spot covariance matrix, \(\Sigma^* \equiv 2 \int_0^T \sigma_1^2 \sigma_2^2 \Psi(\rho_s) ds\). Correspondingly, our feasible inference relies on the estimator for general integrated volatility functionals recently developed by Li and Xiu (2016) and Li, Todorov, and Tauchen (2017a); see also Renò (2008) and Kristensen (2010) for earlier results on spot volatility estimation. By contrast, the feasible inference of Barndorff-Nielsen, Kinnebrock, and Shephard (2010), available under more restrictive conditions, only requires the estimation

\(^{15}\) Although we only present the results for \(\hat{P}_{12}\) and \(\hat{N}_{12}\) in the main part of the paper, the joint convergence of all of the semicovariance components may be derived in a similar manner, as shown in the Supplemental Appendix S1. Correspondingly, Barndorff-Nielsen, Kinnebrock, and Shephard’s (2010) results correspond to our analysis of \(\hat{P}_{11}\) and \(\hat{N}_{11}\) in that appendix specialized to the no-jump case.
of integrated quarticity.

In further contrast to Barndorff-Nielsen, Kinnebrock, and Shephard (2010), who do not consider jumps, our JCSD test is explicitly geared toward price jumps. By focusing on the differential between positive and negative directional co-jumps, our test also serves a different empirical purpose than other tests for the presence of jumps and co-jumps (see, e.g., Barndorff-Nielsen and Shephard (2006), Aït-Sahalia and Jacod (2009), Jacod and Todorov (2009b), and Caporin, Kolokolov, and Renò (2017)). Our corresponding feasible inference described in Algorithm 1 may be seen as a parametric bootstrap, and as such is naturally related to the high-frequency bootstrap methods developed by Gonçalves and Meddahi (2009), Dovonon, Goncalves, Hounyo, and Meddahi (2019), among others. However, while the latter bootstrap methods are designed to mimic the sampling variability of aggregated Brownian shocks, we aim to recover that of the truncated jump returns.

3. Empirical semicovariance tests

We begin our empirical investigations by looking at the realized semicovariances for the 30 Dow Jones Industrial Average (DJIA) stocks. Our estimation is based on one-minute returns obtained from the Trades and Quotes (TAQ) database, spanning the period from January 2006 to December 2014, for a total of 2,265 trading days. Our choice of a relatively high one-minute sampling frequency and a fairly short recent sample for this part of our analysis is dictated by the need to reliably estimate the spot covariance matrix used for implementing the tests described in the previous section. To help more clearly pinpoint within-day market-wide price moves and economic events associated with the significance of the tests, we further exclude the returns for the first half-hour of the trading day in the calculation of the tests.

We calculate the concordant JCSD and DCSD semicovariance-based tests for all of the 435 unique DJIA stock pairs and 2,265 days in the sample, resulting in close to one million test statistics for each of the two tests. We rely on one-sided versions of the tests at 5% significance level. The average rejection rates for the JCSD tests far exceeds the nominal level, rejecting in favor of positive (resp. negative) co-jumps for about 30% (resp. 18%)

16 We use the DJIA composition as of September 23, 2013, which remained unchanged until the end of our sample period.

17 The choice of a one-minute sampling frequency mirrors that of Li, Todorov, Tauchen, and Chen (2017) in their estimation of spot covariances. It is also supported by the corresponding signature plots in the Supplemental Appendix. For additional discussion of market microstructure effects, see, for example, Zhang, Mykland, and Aït-Sahalia (2005), Hansen and Lunde (2006), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and Jacod, Li, and Zheng (2017).

18 We rely on the dynamic threshold advocated by Bollerslev and Todorov (2011a,b) based on three times the trailing bipower variation, as originally defined by Barndorff-Nielsen and Shephard (2004b, 2006), adjusted for the intraday periodicity in the volatility. We set the local window $k_n = 45$.

19
32%) of the pairs. The DCSD algorithm detects significantly positive (resp. negative) difference for 13% (resp. 10%) of all stock pairs.\footnote{We do not intend to make a formal statistical statement jointly across all pairs. Instead, we view the rejection frequencies as simple summary statistics of the pairwise test results.}

To help shed additional light on these test results, Table 1 lists the days with the most rejections for each of the two tests for each of the nine years in the sample. In addition to the date and the rejection frequencies, we also include a short description of the most important economic events that occurred on each of these days. As Panel A shows, all but one of the days with the most rejections for the JCSD test are associated with FOMC statements and/or changes in the federal funds rate, the only exception being a major geopolitical event in 2014. This finding is consistent with the prior literature that links high-frequency-detected jumps in individual assets with public news announcements (e.g., Andersen, Bollerslev, and Diebold (2007), Lee and Mykland (2008), Lee (2012), and Caporin, Kolokolov, and Renò (2017)). It is also in line with the literature on testing for co-jumps and the argument that those jumps are naturally associated with economy-wide news that affect all assets (e.g., Bollerslev, Law, and Tauchen (2008) and Lahaye, Laurent, and Neely (2011)).\footnote{A detailed comparison of the dates in Table 1 with those reported by the other jump testing studies cited here is beyond the scope of the present paper. However, we note that some of the dates overlap with those in Caporin, Kolokolov, and Renò (2017), for example, while others do not, as the different focus of the tests naturally leads to some variation in the days with the most significant jumps.}

In contrast to the “sharp” economic events associated with the JCSD test, Panel B shows that the days with the most rejections for the DCSD test are typically associated with “softer” and more difficult-to-interpret information. Kyle-type equilibrium microstructure models (Kyle (1985)) can be used to establish a more formal economic link between the “soft” information and price drift (which drives the DCSD test through the co-drift effect). In these models, informed traders trade strategically with liquidity traders to maximize their profit, and they do so patiently for the sake of managing the market marker’s belief. As shown more formally by Back (1992), informed traders’ optimal order flow is smooth (i.e., differentiable) in time, which in turn determines the drift of the equilibrium price. In a general setting with stochastic liquidity, Collin-Dufresne and Fos (2016) further show that, in equilibrium, the price drift exhibits mean reversion towards the asset’s true value, where the mean reversion is strong (weak) when the short-term liquidity is high (low) relative to the long-term liquidity. This equilibrium theory suggests that, other things equal, the price drift is greater in magnitude when there is higher level of mispricing and/or the revelation of the private information is more imminent. The latter effect may manifest in the form of “soft” information gathered through news articles.

To more clearly illustrate the distinct price dynamics on these “sharp” and “soft” event days identified by the two different tests, Figure 3 plots the cumulative returns...
Table 1: Top Rejection Days by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Direction</th>
<th>%</th>
<th>Headline Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Panel A. JCSD Test</td>
</tr>
<tr>
<td>2006</td>
<td>June 29</td>
<td>+</td>
<td>100</td>
<td>Fed raises short-term rate by a quarter-percentage point.</td>
</tr>
<tr>
<td>2008</td>
<td>December 16</td>
<td>+</td>
<td>100</td>
<td>Fed cuts short-term rate by a quarter-percentage point.</td>
</tr>
<tr>
<td>2009</td>
<td>March 18</td>
<td>+</td>
<td>100</td>
<td>Fed announces it will buy up to $300 billion in long-term Treasuries.</td>
</tr>
<tr>
<td>2010</td>
<td>August 10</td>
<td>+</td>
<td>98</td>
<td>Fed announces it will continue Quantitative Easing.</td>
</tr>
<tr>
<td>2011</td>
<td>September 22</td>
<td>+</td>
<td>100</td>
<td>Fed announces Operation Twist.</td>
</tr>
<tr>
<td>2012</td>
<td>September 13</td>
<td>+</td>
<td>100</td>
<td>Fed announces it will continue buying Mortgage Backed Securities.</td>
</tr>
<tr>
<td>2013</td>
<td>September 18</td>
<td>+</td>
<td>98</td>
<td>Fed announces it will sustain the asset buying program.</td>
</tr>
<tr>
<td>2014</td>
<td>August 5</td>
<td>−</td>
<td>97</td>
<td>Russian troops are reported lining on the borders of Ukraine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Panel B. DCSD Test</td>
</tr>
<tr>
<td>2006</td>
<td>July 19</td>
<td>+</td>
<td>57</td>
<td>Bernanke explains to the Senate Banking Committee how the Fed sees the economic slowdown.</td>
</tr>
<tr>
<td>2007</td>
<td>August 29</td>
<td>+</td>
<td>58</td>
<td>Bernanke writes letter to senator that Fed is monitoring and ready to step in if necessary.</td>
</tr>
<tr>
<td>2008</td>
<td>January 2</td>
<td>−</td>
<td>67</td>
<td>Markets react to poor manufacturing, housing and credit news.</td>
</tr>
<tr>
<td>2009</td>
<td>March 23</td>
<td>+</td>
<td>90</td>
<td>Obama administration announces its plan to buy $1 trillion in bad bank assets.</td>
</tr>
<tr>
<td>2010</td>
<td>July 7</td>
<td>+</td>
<td>76</td>
<td>EU reveals its first list of stress test banks.</td>
</tr>
<tr>
<td>2011</td>
<td>June 1</td>
<td>−</td>
<td>83</td>
<td>Moody’s cuts Greece’s bond rating by three notches.</td>
</tr>
<tr>
<td>2012</td>
<td>June 21</td>
<td>−</td>
<td>84</td>
<td>Rumors of Moody’s downgrade for global banks.</td>
</tr>
<tr>
<td>2013</td>
<td>February 25</td>
<td>−</td>
<td>83</td>
<td>Political uncertainty surrounding Italian elections.</td>
</tr>
<tr>
<td>2014</td>
<td>February 3</td>
<td>−</td>
<td>85</td>
<td>Janet Yellen sworn in as the new Fed chair.</td>
</tr>
</tbody>
</table>

Note: The table reports the top rejection dates by year for the daily semicovariance-based tests across all 435 DJIA stocks-pairs. The first column gives the date, the second gives the direction in which the rejections occurred, and the third provides the fraction of pairs of stocks for which the test rejects at the 5% level in that direction. The final column summarizes headline economic news events for the different days. The top Panel A reports the results for the jump CSD test, while the bottom Panel B is based on the diffusive CSD test.
Figure 3: DJIA Cumulative Returns on Representative Event Days

Note: The figure plots the cumulative return of the 30 Dow Jones Industrial Average stocks on two of the event dates associated with market-wide jump CSD and diffusive CSD events from Table 1.

throughout the day for each of the 30 DJIA stocks for two representative days selected from Table 1: September 18, 2013 and February 25, 2013.\(^{21}\) For the jump event detected by the JCSD test (left panel), all stocks experienced a large positive shock at 2pm when the FOMC meeting statement was released, stating that the Fed would sustain its asset-purchasing program. This announcement led to an immediate one-off average return of more than 1% for all stocks, whilst the prices appeared relatively stable before, and after, that statement release. By contrast, for the diffusive event detected by the DCSD test (right panel), we observe slow and steadily decreasing price paths throughout the day for all of the stocks. The total daily return is large, with the median daily return around negative 2%, but no “extreme” returns occurred for any of the stocks during the course of that day.

The outcome of the DCSD or JCSD tests and the differences in the within day price dynamics further translate into different dynamic dependencies in the semicovariance components across days.\(^{22}\) The total realized covariance \hat{C}, in particular, generally appear more persistent following days with diffusive events, as detected by the DCSD algorithm. On the other hand, the persistence of \hat{P} increases primarily following positive DCSD events, while the persistence of \hat{N} is mostly higher following negative DCSD events, again consistent with the idea that certain types of “soft” news is processed only slowly over multiple days. By comparison, only negative JCSD jump events appear to affect the

\(^{21}\)Figure 2 discussed in the introduction is also based on these two days. Supplemental Appendix S3 presents analogous plots for all of the event days listed in Table 1.

\(^{22}\)A summary table with the correlations conditional on different DCSD and JCSD event days is available in Supplemental Appendix S4.
average persistence of either component.

We turn next to a discussion of how these subtle dynamic dependencies may be used in the construction of relatively simple superior volatility forecasting models.

4. Forecasting with realized semicovariances

The results discussed in the previous section highlight the additional information and economic insights afforded by the realized semicovariances beyond those from standard realized covariances. The results also point to the existence of different dynamic dependencies conditional on different days. In this section we further explore these empirical differences from the perspective of forecasting future variances and covariances.

To allow for the construction of larger dimensional portfolios, we expand our previous sample of 30 DJIA stocks to include all of the S&P 500 constituent stocks. We also consider a longer sample period from January 1993 to December 2014, for a total of 5,541 trading days. In order to reliably estimate models for covariances and semicovariances, we include only stocks with at least 2,000 daily observations, resulting in a total of 749 unique stocks. Most of these stocks are not as actively traded as the DJIA stocks, especially during the earlier part of the sample. Correspondingly, since we only require consistent estimates for this part of our analysis, we rely on a coarser 15-minute sampling scheme to construct the realized measures. Finally, similar to most existing work on volatility forecasting (e.g., Hansen, Huang, and Shek (2012), and Noureldin, Shepherd, and Sheppard (2012)), we focus on the intra-daily period excluding the overnight returns.\(^{23}\)

4.1. Vector autoregressions for realized semicovariances

Figure 1 discussed in the introduction already points to the existence of different dynamic dependencies in the average combined concordant and discordant semicovariance components. To more directly highlight these differences, Figure 4 plots the lag 1 through 50 autocorrelations for each of the individual realized semicovariance components averaged across 1,000 randomly selected S&P 500 pairs of stocks.\(^{24}\) While the autocorrelations for the realized variances (RV) and the positive and negative realized semivariances (PSV and NSV) shown in the left panel are almost indistinguishable, there is a clear ordering in the rate of decay of the autocorrelations for the realized semicovariance elements shown in the right panel. Most noticeably, the autocorrelations for the off-diagonal elements of \(\hat{C}\) are systematically below those for the three realized semicovariance elements, with the mixed \(\hat{M}\) component exhibiting the highest overall persistence, and \(\hat{P}\) and \(\hat{N}\) decaying very similarly.

\(^{23}\)Empirical results that include the overnight returns are presented in Supplemental Appendix S6.3. All of our main empirical findings remain qualitatively unaltered.

\(^{24}\)We rely on the estimator of Hansen and Lunde (2014) to account for measurement errors in the realized measures.
Note: The graph plots the autocorrelation functions for the different realized semi-covariance elements. All of the estimates are averaged across 1,000 randomly selected S&P 500 pairs of stocks, and bias-adjusted following the approach of Hansen and Lunde (2014).

These differences naturally suggest that more accurate volatility and covariance forecasts may be obtained by separately modeling the realized semicovariance components that make up the realized covariance. To more directly investigate this, we estimate a vector version of the popular HAR model of Corsi (2009), in which each of the elements in the realized semicovariance matrix is allowed to depend on its own daily, weekly, and monthly lags, as well as the lags of the other realized semicovariance components.\(^{25}\)

Specifically, for each pair of assets \((j,k)\) we estimate the following three-dimensional vector autoregression:

\[
\begin{pmatrix}
\hat{P}_{jk,t} \\
\hat{N}_{jk,t} \\
\hat{M}_{jk,t}
\end{pmatrix}
=
\begin{pmatrix}
\phi_{jk,P} \\
\phi_{jk,N} \\
\phi_{jk,M}
\end{pmatrix}
+ \Phi_{jk,\text{Day}}
\begin{pmatrix}
\hat{P}_{jk,t-1} \\
\hat{N}_{jk,t-1} \\
\hat{M}_{jk,t-1}
\end{pmatrix}
+ \Phi_{jk,\text{Week}}
\begin{pmatrix}
\hat{P}_{jk,t-2:t-5} \\
\hat{N}_{jk,t-2:t-5} \\
\hat{M}_{jk,t-2:t-5}
\end{pmatrix}
+ \Phi_{jk,\text{Month}}
\begin{pmatrix}
\hat{P}_{jk,t-6:t-22} \\
\hat{N}_{jk,t-6:t-22} \\
\hat{M}_{jk,t-6:t-22}
\end{pmatrix}
+
\begin{pmatrix}
\epsilon^P_{jk,t} \\
\epsilon^N_{jk,t} \\
\epsilon^M_{jk,t}
\end{pmatrix},
\]

where \(\hat{P}_{t-l:t-k} \equiv \frac{1}{k-l+1} \sum_{s=l}^{k} \hat{P}_{t-s}\), with the other components defined analogously.\(^{26}\)

The first three columns of Table 2 report the resulting parameter estimates averaged across 500 randomly selected \((j,k)\) pairs of stocks. The table reveals a clear block structure in the coefficients of this general specification. Most notably, the dynamic de-

\(^{25}\)Explicitly building on the new ideas and theoretical results first presented here, Bollerslev, Patton, and Quaedvlieg (2019) have recently shown how the realized semicovariances may similarly be used in the construction of improved multivariate realized GARCH type models.

\(^{26}\)To simplify the interpretation of the estimates, we define the weekly variables to exclude the daily lag and the monthly variables to similarly exclude the daily and weekly lags. This, of course, does not affect the overall fit of the model.
pencies in \(\hat{P} \) and \(\hat{N} \) are almost exclusively driven by the lagged \(\hat{N} \) terms, while the dynamic behavior of the mixed \(\hat{M} \) elements is primarily determined by their own lags, with the monthly lag receiving the largest weight.

The last two columns of Table 2 report the parameter estimates from regressing the realized covariances \(\hat{C} \) on the lagged realized semicovariances and the lagged covariances. The model with individual semicovariances clearly reveals the most important components: the three lags of \(\hat{N} \) and the monthly lag of \(\hat{M} \) constitute the main drivers of the realized covariance \(\hat{C} \). Interestingly, the models based on the semicovariances also put a greater weight on more recent information compared to the standard HAR model reported in the last column: normalizing each of the explanatory variables by their sample means, the semicovariance-based HAR models effectively put a weight of 0.339 on lagged daily information, while the final column shows that a standard HAR model on average puts a weight of only 0.184 on the daily lag, implying a more muted reaction to new information. These differences are naturally associated with an improved fit of the semicovariance-based models, as shown by the \(R^2 \)'s in the bottom two rows. In the next section we investigate whether this improved in-sample fit is accompanied by a similar improvement in out-of-sample forecast performance for models that utilize the realized semicovariances.

4.2. Portfolio volatility forecasting

The realized variance of a portfolio obviously depends on the realized semicovariances of the assets included in the portfolio. In particular, utilizing the result that \(\hat{C} = \hat{P} + \hat{N} + \hat{M} \), the realized variance of a portfolio with portfolio weights \(w \) may be expressed as

\[
\hat{RV}_w \equiv w^\top \hat{C} w = w^\top \hat{P} w + w^\top \hat{N} w + w^\top \hat{M} w
\]

where we use the superscript \(w \) to indicate the relevant (scalar-valued) portfolio quantities. These portfolio semicovariance measures are distinctly different from the portfolio semivariances of Barndorff-Nielsen, Kinnebrock, and Shephard (2010), which only depend on the high-frequency returns of the portfolio. The portfolio semicovariances, on the other hand, depend on the high-frequency returns for all of the individual assets included in the portfolio, and cannot be computed using only returns on the portfolio itself.

To explore whether portfolio semicovariances convey useful information beyond familiar realized variances and semivariances, we extend the HAR model of Corsi (2009) to

\footnote{Note that due to the linear nature of the HAR model and the fact that realized semicovariances sum exactly to the realized covariance, each coefficient in the fourth column is simply the sum of the corresponding coefficients in the first three columns.}
Table 2: Semicovariance HAR Estimates

<table>
<thead>
<tr>
<th></th>
<th>(\hat{P}_{jk,t})</th>
<th>(\hat{N}_{jk,t})</th>
<th>(\hat{M}_{jk,t})</th>
<th>(\hat{C}_{jk,t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{P}_{jk,t})</td>
<td>0.038*</td>
<td>0.050*</td>
<td>-0.035*</td>
<td>0.052*</td>
</tr>
<tr>
<td>(\hat{P}_{jk,t-2:t-5})</td>
<td>0.004</td>
<td>0.057</td>
<td>-0.002</td>
<td>0.059</td>
</tr>
<tr>
<td>(\hat{P}_{jk,t-6:t-22})</td>
<td>-0.074</td>
<td>0.023</td>
<td>0.099</td>
<td>0.048</td>
</tr>
<tr>
<td>(\hat{N}_{jk,t})</td>
<td>0.248**</td>
<td>0.192**</td>
<td>-0.096**</td>
<td>0.344**</td>
</tr>
<tr>
<td>(\hat{N}_{jk,t-2:t-5})</td>
<td>0.312**</td>
<td>0.250**</td>
<td>-0.090*</td>
<td>0.472**</td>
</tr>
<tr>
<td>(\hat{N}_{jk,t-6:t-22})</td>
<td>0.349**</td>
<td>0.206*</td>
<td>-0.021</td>
<td>0.534**</td>
</tr>
<tr>
<td>(\hat{M}_{jk,t})</td>
<td>-0.075*</td>
<td>-0.072*</td>
<td>0.141**</td>
<td>-0.006</td>
</tr>
<tr>
<td>(\hat{M}_{jk,t-2:t-5})</td>
<td>-0.044</td>
<td>-0.049</td>
<td>0.209**</td>
<td>0.116</td>
</tr>
<tr>
<td>(\hat{M}_{jk,t-6:t-22})</td>
<td>0.028</td>
<td>-0.020</td>
<td>0.409**</td>
<td>0.417**</td>
</tr>
<tr>
<td>(\hat{C}_{jk,t})</td>
<td>0.184**</td>
<td>0.305**</td>
<td>0.304**</td>
<td>0.284</td>
</tr>
</tbody>
</table>

\(R^2 \) | 0.397 | 0.376 | 0.354 | 0.313 | 0.284 |
\(R^2_{adj} \) | 0.395 | 0.374 | 0.352 | 0.311 | 0.283 |

Note: The table reports the average parameter estimates for the vector HAR model in (4.1) averaged across 500 randomly selected pairs of stocks. The first three columns report results for the unrestricted models. The fourth column reports the estimates from a model that restricts the rows of \(\Phi_{jk,Day} \), \(\Phi_{jk,Week} \) and \(\Phi_{jk,Month} \) to be the same, corresponding to a model for \(\hat{C}_{jkt} \), whilst the final column reports the results of a standard HAR model on \(\hat{C}_{jk,t} \). ** and * signify that the estimates for that coefficient are significant at the 5% level for 75% and 50% of the randomly selected pairs of stocks, respectively.

allow the forecasts to depend on each of the realized portfolio semicovariance components. Accordingly, the one-day-ahead forecast for the portfolio return variance is constructed from

\[
RV_{t+1|t} = \phi_0 + \phi_{Day,P} \hat{P}_t + \phi_{Week,P} \hat{P}_{t-1:t-4} + \phi_{Month,P} \hat{P}_{t-5:t-21} + \phi_{Day,N} \hat{N}_t + \phi_{Week,N} \hat{N}_{t-1:t-4} + \phi_{Month,N} \hat{N}_{t-5:t-21} + \phi_{Day,M} \hat{M}_t + \phi_{Week,M} \hat{M}_{t-1:t-4} + \phi_{Month,M} \hat{M}_{t-5:t-21}.
\]

We will refer to this model as the SemiCovariance HAR (SCHAR) model. The general SCHAR model in (4.3) is obviously quite richly parameterized. Hence, motivated by the results in Table 2, we also consider a restricted version, in which we only include the daily, weekly and monthly lags of \(\hat{N}_t \), and the monthly lag of \(\hat{M}_t \). We will refer to this specification as the restricted SCHAR model, or SCHAR-r for short.

If the parameters associated with the lagged realized semicovariance component all
coincide (i.e., $\phi_{j,P} = \phi_{j,N} = \phi_{j,M} = \phi_j$ for $j \in \{\text{Day, Week, Month}\}$), the SCHAR model trivially reduces to the basic HAR model and the corresponding forecasting scheme

$$RV_{t+1|t}^w = \phi_0 + \phi_{\text{Day}} \widehat{RV}_t^w + \phi_{\text{Week}} \widehat{RV}_{t-1|t-4}^w + \phi_{\text{Month}} \widehat{RV}_{t-5|t-21}^w. \quad (4.4)$$

This simple and easy-to-implement model has arguably emerged as the benchmark for judging alternative realized volatility-based forecasting procedures in the literature.

In addition to this commonly used benchmark, we also consider the forecasts from the Semivariance HAR (SHAR) model of Patton and Sheppard (2015). This model uses the portfolio realized semivariances defined as

$$\widehat{PSV}_t = \left[\frac{T}{\Delta n}\right] \sum_{i=1}^{T/\Delta n} p (w^\top \Delta^n_i X)^2, \quad \widehat{NSV}_t = \left[\frac{T}{\Delta n}\right] \sum_{i=1}^{T/\Delta n} n (w^\top \Delta^n_i X)^2,$$

to decompose the daily realized variance into positive and negative semivariances, resulting in the forecasting scheme:

$$RV_{t+1|t}^w = \phi_0 + \phi_{\text{Day}} \widehat{PSV}_t + \phi_{\text{Day}} \widehat{NSV}_t + \phi_{\text{Week}} \widehat{RV}_{t-1|t-4}^w + \phi_{\text{Month}} \widehat{RV}_{t-5|t-21}^w. \quad (4.5)$$

This model has been found to perform particularly well from the perspective of portfolio variance forecasting, performing on par with or better than the forecasts from other HAR-style models, and as such constitutes another particularly challenging benchmark.

We consider equally-weighted portfolios comprised of $d = 10$ (“small”) and 100 (“large”) stocks randomly selected from the full set of 749 individual stocks. In each case, we ensure that the selected stocks contain an overlap of at least 1,100 daily observations. We then construct rolling out-of-sample forecasts based on each of the different models, with model parameters re-estimated daily using the most recent 1,000 daily observations. We rely on the commonly used mean-square-error (MSE) and QLIKE loss functions to evaluate the performance of the forecasts vis-a-vis the actual portfolio realized variances \widehat{RV}_{t+1}^w. Table 3 reports the resulting losses averaged across 500 randomly selected portfolios. In addition, for each of the 500 portfolios, we also compute the ratio of each model’s average loss relative to the benchmark HAR model, and report the average of these ratios over all of the random samples.

Consistent with Patton and Sheppard (2015), the SHAR-based forecasts that utilize the portfolio realized semivariances do result in fairly large relative gains vis-a-vis the benchmark HAR-based forecasts, especially for the large dimensional portfolios. The performance of the unrestricted SCHAR model, however, is mixed: it has smaller MSE

28 The MSE and QLIKE loss functions may both be formally justified for the purpose of volatility model forecast evaluation based on the use of imperfect ex-post volatility proxies; see Patton (2011).

29 The Supplemental Appendix reports corroborative evidence from a series of additional robustness checks.
Table 3: Performance Comparison for Portfolio Variance Forecasts

<table>
<thead>
<tr>
<th>Model</th>
<th>MSE Average</th>
<th>MSE Ratio</th>
<th>QLIKE Average</th>
<th>QLIKE Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAR</td>
<td>1.849</td>
<td>1.000</td>
<td>0.141</td>
<td>1.000</td>
</tr>
<tr>
<td>SHAR</td>
<td>1.671</td>
<td>0.966</td>
<td>0.139</td>
<td>0.986</td>
</tr>
<tr>
<td>SCHAR</td>
<td>1.643</td>
<td>0.955</td>
<td>0.210</td>
<td>1.318</td>
</tr>
<tr>
<td>SCHAR-r</td>
<td>1.567</td>
<td>0.908</td>
<td>0.139</td>
<td>0.979</td>
</tr>
</tbody>
</table>

Panel A. Small Portfolio Case (d = 10)

Panel B. Large Portfolio Case (d = 100)

Note: The table reports the loss for forecasting the portfolio variance for portfolios of size d = 10 and 100 for each of the different forecasting models. The reported numbers are based on 500 randomly selected portfolios. The Average column provides the average loss over time and all portfolios. The Ratio column gives the time-average ratio of losses across all sets of portfolios relative to the HAR model.

loss than the HAR forecasts, but underperforms that same benchmark under QLIKE loss. This finding is hardly surprising. There is ample evidence in the forecasting literature emphasizing the importance of parsimony (see, e.g., Zellner (1992)), and the results in Table 2 clearly suggest that the unrestricted SCHAR model is "over-parameterized," and as such is likely to perform poorly in a forecasting context. Indeed, looking at the results for the restricted SCHAR-r model guided by the estimates in Table 2, we see that the forecasts from this model unambiguously outperform those from the other models; the 13.8% improvement in terms of predictive accuracy (measured by MSE) for the large portfolio case is particularly impressive. As such, this clearly shows the benefit of utilizing the additional information inherent in the realized semicovariances, compared to both the HAR- and SHAR-based forecasts that only rely on the portfolio realized (semi)variances.

These gains in forecast accuracy are not unique to our specific choice of the two portfolio dimensions highlighted in Table 3. Figure 5 plots the median loss ratios for the HAR, SHAR and SCHAR-r models for all values of d ranging from 2 to 100, together with the 10% and 90% quantiles for the SCHAR-r forecasts computed across the 500 random portfolio-formations. As the figure shows, the median loss ratios for the SCHAR-r model are systematically below those of the other two models, the only exception being the QLIKE loss for d = 2. Also, the gains from using the information in the realized semicovariances accrue relatively quickly as the number of stocks in the portfolio increases,
Figure 5: Median Loss Ratios

Note: The graph plots the median loss ratios as a function of the number of stocks in the portfolio, d. The ratio is calculated as the average loss of the models divided by the average loss of the standard HAR, based on 500 random samples of d-stock portfolios.

and for the QLIKE loss appear to reach somewhat of a plateau for $d \approx 40$ stocks.

The gains in forecast accuracy obtained from using the realized semicovariance measures are not restricted to the one-day forecast horizon analyzed in Table 3 and Figure 5 either. To illustrate, we report in Table 4 the results for 5-day and 22-day ahead forecasts, corresponding to one week and one month, respectively. For simplicity we rely on “direct” forecasts constructed by simply replacing the left-hand-side variable in the estimation of the different models with the realized portfolio variance over the relevant horizon.30 As the table shows, if anything the forecast improvements obtained by the SCHAR-r model vis-a-vis the standard HAR model appear even larger over longer forecast horizons; as a case in point the 18.4\% relative improvement (measured by MSE) for the large portfolio at the monthly horizon is especially impressive.

To help further understand the source of these improvements it is instructive to represent the SHAR and SCHAR models as HAR models with time-varying parameters. To illustrate the idea, consider the forecasts from a SCHAR-type model based only on the

30The construction of “iterated” forecasts for the SHAR and SCHAR models would necessitate additional modeling assumptions about the realized semi(co)variances; for further discussion of “direct” versus “iterated” volatility forecasts see, for example, Bollerslev, Hood, Huss, and Pedersen (2018) and the references therein.
Table 4: Long-Horizon Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MSE Average</th>
<th>MSE Ratio</th>
<th>QLIKE Average</th>
<th>QLIKE Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel A. Weekly Forecasts, Small Portfolio Case (d = 10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>1.314</td>
<td>1.000</td>
<td>0.086</td>
<td>1.000</td>
</tr>
<tr>
<td>SHAR</td>
<td>1.222</td>
<td>0.958</td>
<td>0.083</td>
<td>0.967</td>
</tr>
<tr>
<td>SCHAR</td>
<td>1.075</td>
<td>0.900</td>
<td>0.151</td>
<td>1.596</td>
</tr>
<tr>
<td>SCHAR-r</td>
<td>1.062</td>
<td>0.874</td>
<td>0.085</td>
<td>0.974</td>
</tr>
<tr>
<td></td>
<td>Panel B. Weekly Forecasts, Large Portfolio Case (d = 100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>0.028</td>
<td>1.000</td>
<td>0.070</td>
<td>1.000</td>
</tr>
<tr>
<td>SHAR</td>
<td>0.026</td>
<td>0.917</td>
<td>0.065</td>
<td>0.936</td>
</tr>
<tr>
<td>SCHAR</td>
<td>0.024</td>
<td>0.881</td>
<td>0.068</td>
<td>0.981</td>
</tr>
<tr>
<td>SCHAR-r</td>
<td>0.023</td>
<td>0.823</td>
<td>0.062</td>
<td>0.884</td>
</tr>
<tr>
<td></td>
<td>Panel C. Monthly Forecasts, Small Portfolio Case (d = 10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>1.407</td>
<td>1.000</td>
<td>0.108</td>
<td>1.000</td>
</tr>
<tr>
<td>SHAR</td>
<td>1.372</td>
<td>0.982</td>
<td>0.106</td>
<td>0.982</td>
</tr>
<tr>
<td>SCHAR</td>
<td>1.121</td>
<td>0.906</td>
<td>0.160</td>
<td>1.339</td>
</tr>
<tr>
<td>SCHAR-r</td>
<td>1.135</td>
<td>0.867</td>
<td>0.111</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Panel D. Monthly Forecasts, Large Portfolio Case (d = 100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>0.031</td>
<td>1.000</td>
<td>0.071</td>
<td>1.000</td>
</tr>
<tr>
<td>SHAR</td>
<td>0.030</td>
<td>0.954</td>
<td>0.068</td>
<td>0.956</td>
</tr>
<tr>
<td>SCHAR</td>
<td>0.028</td>
<td>0.926</td>
<td>0.060</td>
<td>0.859</td>
</tr>
<tr>
<td>SCHAR-r</td>
<td>0.025</td>
<td>0.816</td>
<td>0.058</td>
<td>0.837</td>
</tr>
</tbody>
</table>

Note: The table reports the loss for forecasting the portfolio variance for portfolios of size $d = 10$ and 100 for each of the different forecasting models, for weekly and monthly horizons. The reported numbers are based on 500 randomly selected portfolios. The Average column provides the average loss over time and all portfolios. The Ratio column gives the time-average ratio of losses across all sets of portfolios relative to the HAR model.

lagged daily realized semicovariances,

\[
RV_{t+1|t}^w = \phi_0 + \phi_{Day,P} \hat{P}_t^w + \phi_{Day,N} \hat{N}_t^w + \phi_{Day,M} \hat{M}_t^w
\]

\[
= \phi_0 + \left(\phi_{Day,P} \frac{\hat{P}_t^w}{RV_t^w} + \phi_{Day,N} \frac{\hat{N}_t^w}{RV_t^w} + \phi_{Day,M} \frac{\hat{M}_t^w}{RV_t^w} \right) RV_t^w
\]

\[
\equiv \phi_0 + \phi_{Day,t} \hat{RV}_t^w
\]
As these equations show, even though the $\phi_{\text{Day,P}}$, $\phi_{\text{Day,N}}$, and $\phi_{\text{Day,M}}$ parameters used in the formulation of the model are all constant, the model may alternatively be interpreted as a first-order autoregression for \hat{RV}_{t+1} with a time-varying autoregressive parameter $\phi_{\text{Day},t}$. This idea obviously generalizes to the SHAR and the more elaborate SCHAR-r forecasting models used in our empirical analysis, in which the parameters associated with the weekly and monthly lags in the implied HAR-type representations would be time-varying as well.

In order to explicitly quantify these effects, Figure 6 plots the daily, weekly and monthly time-varying HAR parameters implied by the SHAR and SCHAR-r models for $d = 10$, averaged across 500 randomly selected ten-stock portfolios.\(^{31}\) In addition to the implied daily, weekly and monthly parameters, the last panel reports their sum as a measure of the overall persistence of the different models.

The daily, weekly, and monthly parameters for the HAR model are by definition all constant, with an average implied persistence of around 0.94. By comparison, the implied daily parameter estimates for the SHAR model vary slightly above the constant daily HAR parameter, while the constant weekly parameter for the SHAR model is slightly below that of the HAR model. As such, the overall persistence of the SHAR-based forecasts are generally very close to that of the standard HAR-based forecasts, which explains why the two models perform fairly similar over the longer monthly forecast horizon analyzed in Table 4.

By contrast, the implied time-varying daily and weekly HAR parameters for the SCHAR-r model both far exceed those of the standard HAR model, especially over the earlier part of the sample. On the other hand, the implied time-varying monthly parameters for the SCHAR-r model are typically less than the monthly parameters for the standard HAR and SHAR models. Meanwhile, the sum of the three implied parameters for the SCHAR-r model are typically greater than those for the other two models.\(^{32}\) Thus, not only do the superior SCHAR-based forecasts respond more quickly to new information, the forecasts are typically also more persistent and slower to mean-revert than the benchmark HAR- and SHAR-based forecasts. This explains why the SCHAR-r model performs well not just over the short one-day forecast horizon, but also over the longer monthly forecast horizons. It also highlights the usefulness of the richer information

\(^{31}\)In contrast to the out-of-sample forecast results in Table 3, which are based on a rolling estimation scheme, Figure 6 plots the implied parameter estimates obtained over the full sample period. Requiring observations to be available over the full sample reduces the number of stocks to 121. To avoid “contaminating” the results by a few influential outliers, we exclude any portfolios for which the maximum \hat{P}_w / \hat{RV}_w, \hat{N}_w / \hat{RV}_w and \hat{M}_w / \hat{RV}_w ratios exceed ten, and further smooth the implied parameters using a centered 50-day moving average.

\(^{32}\)Even though the sum of the autoregressive coefficients for the SCHAR-r model occasionally exceeds unity, this does not necessarily imply non-stationarity, as the temporal variation in the realized semicovariance measures may induce stationarity; see Conley, Hansen, Luttmer, and Scheinkman (1997) and Nielsen and Rahbek (2014) for a discussion of volatility-induced stationarity.
Note: The figure plots the implied HAR-type parameters for predicting the variance of a ten-stock portfolio, averaged across 500 randomly selected portfolios. The models are estimated over the full sample period.

5. Conclusion

We propose a new decomposition of the realized covariance matrix based on the signs of the underlying high-frequency returns into separate positive, negative and mixed-sign realized semicovariance components. Under a standard infill asymptotic setting for continuous-time Itô semimartingales, we derive the first- and second-order asymptotic properties of these new realized semicovariance measures. The asymptotic theory, taking the form of a non-central limit theorem, reveals the differential information carried by each of the realized semicovariance components, related to stochastic correlation, signed co-jumps, and notions of co-drifting and dynamic leverage effects. Using high-frequency data
Figure 7: Decomposition of Monthly Realized Covariances

Note: The figure plots seven-month moving averages of the monthly time series of the concordant semicovariance ($\hat{P} + \hat{N}$), the mixed semicovariance (\hat{M}) and the realized covariance (\hat{C}). Each series is constructed as the average of the corresponding monthly realized measures averaged across 500 randomly selected pairs of CRSP stocks over the 1926 - 2018 period. The shaded regions represent NBER recession periods.

for a large cross-section of U.S. equities, we demonstrate how the asymptotic theory may be used in understanding key features of the realized semicovariance components associated with different economic events. We further document distinctly different dynamic dependencies in the different realized semicovariance components. These differences in turn translate into markedly superior forecast performance for models that utilize the realized semicovariance measures.

The infill asymptotic framework underlying much of the recent financial econometrics literature, including the distributional results for the realized semicovariances derived here, naturally suggests the use of high-frequency intraday data for the calculation of daily realized variation measures. However, the availability of reliable intraday data invariably limits such empirical analyses to relatively short and recent sample periods. On the other hand, work in the finance literature often resort to more heuristic arguments in support of the use of “high-frequency” daily data for the calculation of monthly or quarterly (co)variances over longer time periods (see, e.g., the oft-cited study by Schwert (1989)). These lower frequency (co)variances in turn also speak more directly to the the longer holding periods that are commonplace in empirical asset pricing finance (see, e.g., the classic paper by Fama and French (1992)). Along these lines, coarser daily data can in principle be used in the construction of semicovariances spanning monthly or longer horizons.

To illustrate, Figure 7 presents a lower-frequency analog to Figure 1, showing monthly
covariances and semicovariances constructed from daily data spanning 1926 to 2018.33 While the use of coarser daily returns in the construction of the monthly semicovariances obviously drives a wedge between the infill asymptotic setting and the empirical measures, thus blurring the impact of co-jumps, short-lived co-drifts and/or dynamic leverage effects, for explaining the differences between the concordant semicovariance components, the figure still reveals notable differences through time in the relative importance of the concordant versus discordant components. In particular, the combined concordant semicovariance component generally, though not uniformly, increases in recessions more than the mixed component declines, leading to an overall increase in the total covariance. This is true for the Great Depression in the 1930’s and the Great Recession in the late 2000’s, as well as for the 1970’s oil-shock recession. However, it is not the case for the recessions of the early 1980s and 2000s. We leave further analyses of these intriguing features of the lower frequency monthly semicovariances for future research.

References

33In parallel to Figure 1, each month we randomly select 500 pairs of stocks from that month’s list of stocks available in the daily CRSP database, averaging the resulting monthly realized measures across all 500 such pairs.

Li, J., and D. Xiu (2016): “Generalized Method of Integrated Moments for High

Todorov, V., and G. Tauchen (2012): “The Realized Laplace Transform of Volatil-

Appendix A. Regularity conditions

In this appendix, we describe the regularity conditions that are needed for the asymptotic theory presented in the main text.

Assumption 1 The process X is an Itô semimartingale defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ of the form (2.1) with

$$ J_t = \int_0^t \int_{\mathbb{R}} \delta(s, u) \mu(ds, du), $$

where the process b is locally bounded, the process σ is càdlàg and takes value in $\mathbb{R}^{d \times d}$, δ is a predictable function and μ is a Poisson random measure defined on $\mathbb{R}_+ \times \mathbb{R}$ with compensator $\nu(dt, du) = dt \otimes \lambda(du)$ for some finite measure λ on \mathbb{R}.

Assumption 2 We have Assumption 1. Moreover, the process σ has the form (2.2) such that (i) σ_t is non-singular almost surely for all t; (ii) b is locally bounded; (iii) $\tilde{\sigma}$ is $d \times d \times d$ càdlàg adapted process; (iv) the process \tilde{M} is a local martingale that is orthogonal to W with $\|\Delta \tilde{M}_t\| \leq \sigma$ for some constant $\sigma > 0$ and its predictable quadratic covariation process has the form $(\tilde{M}, \tilde{M})_t = \int_0^t \tilde{q}_t ds$ for some locally bounded process \tilde{q}; (v) the compensator of the pure-jump process $\sum_{s \leq t} \Delta \sigma_s 1_{\{\|\Delta \sigma_s\| \geq \epsilon\}}$ has the form $\int_0^t q_s ds$ for some locally bounded process q.

Overall, these assumptions are fairly mild and quite standard in the analysis of high-frequency data. In particular, they allow for price and volatility jumps and co-jumps, as well as the so-called leverage effect. The only notable restriction is the finite activity of the price jumps. As in Li, Todorov, and Tauchen (2017b), we purposely impose this condition because, in the current paper, the empirical interest vis-a-vis jumps mainly concerns “large” market-wide co-jumps, which occur relatively infrequently (and thus aligned with the finite-activity condition). Relaxing this condition would greatly complicate our technical exposition, without leading to any change in the actual numerical implementation.

Appendix B. Proofs

Appendix B.1. Notation and preliminary results

We begin by defining some notation. Recall that for $j \in \{1, \ldots, d\}$, $T_j = \{\tau : \Delta X_{j, \tau} \neq 0\}$ collects the jump times of asset j, and

$$ T_{j+} \equiv \{\tau \in T : \Delta X_{j, \tau} > 0\}, \quad T_{j-} \equiv \{\tau \in T : \Delta X_{j, \tau} < 0\}. $$

That is, T_{j+} and T_{j-} collect the times at which asset j has positive and negative jumps, respectively. For each jump time τ, we denote by $i(\tau)$ the unique random integer i such
that \((i - 1) \Delta_n < \tau \leq i \Delta_n\). We then set

\[
\mathcal{I}_j \equiv \{ i (\tau) : \tau \in \mathcal{T}_j \} \quad \text{and} \quad \mathcal{I}_{j \pm} \equiv \{ i (\tau) : \tau \in \mathcal{T}_{j \pm} \}.
\] (B.1)

Recall that \(p(x) \equiv \max\{x, 0\}\) and \(n(x) \equiv \min\{x, 0\}\). To simplify notation, we denote, for \(x, y \in \mathbb{R}\),

\[
f(x, y) \equiv p(x) p(y), \quad g(x, y) \equiv n(x) n(y), \quad m(x, y) = p(x) n(y).
\]

Note that \(f\) and \(g\) are both continuously differentiable except on \(\{(x, y) : x = 0 \text{ or } y = 0\}\), with gradients

\[
\partial f(x, y) = \begin{pmatrix} 1_{\{x \geq 0\}} \max\{y, 0\} \\ \max\{x, 0\} 1_{\{y \geq 0\}} \end{pmatrix}, \quad \partial g(x, y) = \begin{pmatrix} 1_{\{x \leq 0\}} \min\{y, 0\} \\ \min\{x, 0\} 1_{\{y \leq 0\}} \end{pmatrix}.
\]

For generic functions \(h, h_1\) and \(h_2\) defined on \(\mathbb{R}^d\), and an invertible \(d \times d\) matrix \(a\) such that \(c = aa^\top\), we define the following quantities:

\[
\begin{align*}
R_c(h) &\equiv E_U [h(aU)] , \quad \gamma_c(h) = E_U [h(aU) (aU)] , \\
\tilde{\gamma}_a(h) &\equiv E_U [h(aU) U] , \\
H_j &\equiv h_j (aU) - R_c(h) - (c^{-1} \gamma_c(h))^{\top} aU, \quad j = 1, 2, \\
\tilde{\gamma}_c(h_1, h_2) &\equiv \text{Cov}_U (H_1, H_2), \\
\Gamma_c(h_1, h_2) &\equiv \text{Cov}_U \left((c^{-1} \gamma_c(h_1))^{\top} aU, (c^{-1} \gamma_c(h_2))^{\top} aU \right), \\
\Gamma_c(h_1, h_2) &\equiv \text{Cov}_U (h_1 (aU), h_2 (aU)),
\end{align*}
\] (B.2)

where \(U\) is a generic \(d\)-dimensional standard normal variable, and \(E_U\) and \(\text{Cov}_U\) are the expectation and covariance operators with respect to \(U\), respectively. We note that, except for \(\tilde{\gamma}_a(h)\), the expected values in (B.2) depend on \(a\) only through \(c = aa^\top\), which explains our notation \(R_c(\cdot), \gamma_c(\cdot), \text{etc.}\).

We need to establish a few identities among these functionals. Observe that the variable \(H_j\) is the residual obtained from projecting the demeaned variable \(h_j (aU) - E_U [h_j (aU)]\) onto \(aU\), with \(c^{-1} \gamma_c(h_j)\) being the corresponding projection coefficient. Since \(a\) is nonsingular, this residual may alternatively be written as

\[
H_j = h_j (aU) - E_U [h_j (aU)] - \tilde{\gamma}_a(h_j)^{\top} U.
\]

Hence, the functional \(\tilde{\gamma}_c(h_1, h_2)\) can be rewritten as

\[
\tilde{\gamma}_c(h_1, h_2) = E_U \left[\left(h_1 (aU) - \tilde{\gamma}_a(h_1)^{\top} U \right) \left(h_2 (aU) - \tilde{\gamma}_a(h_2)^{\top} U \right) \right] - E_U [h_1 (aU)] E_U [h_2 (aU)].
\] (B.3)
We further note that $\Gamma_c (h_1, h_2)$ computes the covariance of $h_1 (aU) - E_U [h_1 (aU)]$ and $h_2 (aU) - E_U [h_2 (aU)]$, while $\Gamma_c (h_1, h_2)$ computes the covariance of their projections. By a decomposition of covariance, we then deduce

$$\tilde{\gamma}_c (h_1, h_2) = \Gamma_c (h_1, h_2) - \Gamma_c (h_1, h_2).$$ \hfill (B.4)

In addition,

$$\Gamma_c (h_1, h_2) = \gamma_c (h_1) \Gamma_c (h_2).$$ \hfill (B.5)

Our analysis for the semicovariances relies on some explicit calculations of the expectations in (B.2). Lemma 1, below, provides the details for c taking the form

$$c = \begin{pmatrix} v_1^2 & \rho v_1 v_2 \\ \rho v_1 v_2 & v_2^2 \end{pmatrix}. \hfill (B.6)$$

The proof is done by direct integration, and is omitted for brevity.

Lemma 1 The following statements hold when the matrix c has the form (B.6):

(a) $R_c (f) = R_c (g) = v_1 v_2 \psi (\rho)$ and $R_c (m) = -v_1 v_2 \psi (-\rho)$;

(b) $R_c (\partial f) = -R_c (\partial g) = (2\sqrt{2\pi})^{-1} (1 + \rho) (v_2, v_1)^T$;

(c) $\gamma_c (f) = -\gamma_c (g) = (2\sqrt{2\pi})^{-1} (1 + \rho)^2 v_1 v_2 (v_1, v_2)^T$;

(d) $\Gamma_c (f, f) = \Gamma_c (g, g) = v_1^2 v_2^2 (\Psi (\rho) - \psi (\rho)^2)$ and $\Gamma_c (f, g) = -v_1^2 v_2^2 \psi (\rho)^2$.

Appendix B.2. Proofs

Proof of Theorem 1. Let X' denote the continuous part of X, that is, $X'_t \equiv \int_0^t b_s ds + \int_0^t \sigma_s dW_s$. We define \hat{P}' in the same way as \hat{P}, but with X replaced by X'. It follows that

$$\hat{P}'_{jk} = \hat{P}_{jk} + \sum_{i \in I_j \cup I_k} p (\Delta^n_{i} X_j) p (\Delta^n_{i} X_k) - \sum_{i \in I_j \cup I_k} p (\Delta^n_{i} X'_j) p (\Delta^n_{i} X'_k).$$

By Theorem 3.4.1(b) in Jacod and Protter (2012) and Lemma 1(a),

$$\hat{P}'_{jk} \xrightarrow{p} \int_0^T v_{j,s} v_{k,s} \psi (\rho_{j,k,s}) ds. \hfill (B.7)$$

We also note that

$$\sum_{i \in I_j \cup I_k} p (\Delta^n_{i} X_j) p (\Delta^n_{i} X_k) = \sum_{\tau \in I_j \cup I_k} p (\Delta^n_{i} \tau X_j) p (\Delta^n_{i} \tau X_k),$$

and $\Delta^n_{i(\tau)} X \to \Delta X_\tau$ pathwise. Hence,

$$\sum_{i \in I_j \cup I_k} p (\Delta^n_{i} X_j) p (\Delta^n_{i} X_k) \xrightarrow{p} P'_{jk}. \hfill (B.8)$$
Finally, by a standard estimate for continuous Itô semimartingales and the fact that $I_j \cup I_k$ is almost surely finite, we deduce that $\sum_{i \in I_j \cup I_k} p(\Delta^n_i X'_j) p(\Delta^n_i X'_k) = O_p(\Delta^n)$. This estimate, combined with (B.7) and (B.8), implies the asserted convergence $\hat{P}_{jk} \xrightarrow{p} P_{jk}$. The proof for \hat{N} and \hat{M} follows essentially the same argument. \(Q.E.D. \)

Proof of Theorem 2. Step 1. We begin by outlining the basic steps of the proof. First, we decompose

$$
\Delta_n^{-1/2} \left(\hat{P}_{12} - P_{12} \right) = \sum_{j=1}^{5} \hat{P}^{(j)}, \quad \Delta_n^{-1/2} \left(\hat{N}_{12} - N_{12} \right) = \sum_{j=1}^{5} \hat{N}^{(j)},
$$

where

$$
\begin{align*}
\hat{P}^{(1)} &\equiv \Delta_n^{-1/2} \left(\sum_{i \in I_1 \cup I_2} p(\Delta^n_i X_1) p(\Delta^n_i X_2) - P_{12}^I \right), \\
\hat{P}^{(2)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} p(\Delta^n_i X_1) p(\Delta^n_i X_2), \\
\hat{P}^{(3)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} p(\Delta^n_i X_1) p(\Delta^n_i X_2), \\
\hat{P}^{(4)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} p(\Delta^n_i X_1) p(\Delta^n_i X_2), \\
\hat{P}^{(5)} &\equiv \Delta_n^{-1/2} \left(\sum_{i \in I_1 \cup I_2} p(\Delta^n_i X_1) p(\Delta^n_i X_2) - P_{12}^* \right),
\end{align*}
$$

and

$$
\begin{align*}
\hat{N}^{(1)} &\equiv \Delta_n^{-1/2} \left(\sum_{i \in I_1 \cup I_2} n(\Delta^n_i X_1) n(\Delta^n_i X_2) - N_{12}^I \right), \\
\hat{N}^{(2)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} n(\Delta^n_i X_1) n(\Delta^n_i X_2), \\
\hat{N}^{(3)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} n(\Delta^n_i X_1) n(\Delta^n_i X_2), \\
\hat{N}^{(4)} &\equiv \Delta_n^{-1/2} \sum_{i \in I_1 \cup I_2} n(\Delta^n_i X_1) n(\Delta^n_i X_2), \\
\hat{N}^{(5)} &\equiv \Delta_n^{-1/2} \left(\sum_{i \in I_1 \cup I_2} n(\Delta^n_i X_1) n(\Delta^n_i X_2) - N_{12}^* \right),
\end{align*}
$$

To prove the assertion of Theorem 2, it suffices to show the following joint stable convergence in law

$$
\left(\sum_{j=1}^{4} \hat{P}^{(j)}, \sum_{j=1}^{4} \hat{N}^{(j)} \right) \xrightarrow{L^s} (\xi_P, \xi_N), \quad \left(\frac{\hat{P}^{(5)}}{\hat{N}^{(5)}} \right) \xrightarrow{L^s} \left(\begin{array}{c} B \\ -B \end{array} \right) + \left(\begin{array}{c} L \\ -L \end{array} \right) + \left(\begin{array}{c} \zeta \\ -\zeta \end{array} \right) + \left(\begin{array}{c} \hat{\zeta}_P \\ \hat{\zeta}_N \end{array} \right). \tag{B.9}
$$

\(43 \)
In steps 2 and 3, below, we prove these claims in turn. We note that, by a standard argument, it is easy to show that the convergences in (B.9) and (B.10) hold jointly with \mathcal{F}-conditionally independent limits (as they involve non-overlapping Brownian increments). Therefore, the remaining task is to show (B.9) and (B.10).

Step 2. This step proves the claim in (B.9). Let $\mathcal{T} \equiv \mathcal{T}_1 \cup \mathcal{T}_2$ collect all jump times of the bivariate process X. We set, for each $\tau \in \mathcal{T}$,

$$\hat{\eta}_\tau = (\hat{\eta}_{1,\tau}, \hat{\eta}_{2,\tau})^\top \equiv \Delta_n^{-1/2} (\Delta_n^{i(\tau)} X - \Delta X_\tau).$$

By Proposition 4.4.10 in Jacod and Protter (2012),

$$(\hat{\eta}_\tau)_{\tau \in \mathcal{T}} \overset{L^\infty}{\to} (\hat{\eta}_\tau)_{\tau \in \mathcal{T}}, \tag{B.11}$$

where $\hat{\eta}_\tau = (\hat{\eta}_{1,\tau}, \hat{\eta}_{2,\tau})^\top \equiv \sqrt{\kappa_\tau} \xi_{\tau} + \sqrt{1 - \kappa_\tau} \tilde{\xi}_{\tau}$ (recall the definitions in Section 2.2).

From (B.11), it is easy to derive the following representations uniformly for all $\tau \in \mathcal{T}$ (note that \mathcal{T} is finite almost surely): for $j \in \{1, 2\}$,

$$p \left(\Delta_n^{i(\tau) r_j} X_j \right) = \begin{cases}
\Delta X_{j,\tau} + \Delta_n^{1/2} p(\hat{\eta}_{j,\tau}) + o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T}_{j+}, \\
\Delta_n^{1/2} p(\hat{\eta}_{j,\tau}) + o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T} \setminus \mathcal{T}_j, \\
o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T}_{j-},
\end{cases} \tag{B.12}$$

and

$$n \left(\Delta_n^{i(\tau) r_j} X_j \right) = \begin{cases}
\Delta_n^{1/2} n(\hat{\eta}_{j,\tau}) + o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T}_{j+}, \\
\Delta X_{j,\tau} + \Delta_n^{1/2} n(\hat{\eta}_{j,\tau}) + o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T} \setminus \mathcal{T}_j, \\
o_p(\Delta_n^{1/2}), & \text{if } \tau \in \mathcal{T}_{j-}.
\end{cases} \tag{B.13}$$

Using these representations, we further deduce

$$\begin{cases}
\tilde{P}^{(1)} = \sum_{\tau \in \mathcal{T}_{1+} \setminus \mathcal{T}^+} (\Delta X_{1,\tau} \hat{\eta}_{2,\tau} + \Delta X_{2,\tau} \hat{\eta}_{1,\tau}) + o_p(1), \\
\tilde{P}^{(2)} = \sum_{\tau \in \mathcal{T}_{1+} \setminus \mathcal{T}_2} \Delta X_{1,\tau} p(\hat{\eta}_{2,\tau}) + o_p(1), \\
\tilde{P}^{(3)} = \sum_{\tau \in \mathcal{T}_{2+} \setminus \mathcal{T}_1} \Delta X_{2,\tau} p(\hat{\eta}_{1,\tau}) + o_p(1), \\
\tilde{P}^{(4)} = o_p(1),
\end{cases}$$

and

$$\begin{cases}
\tilde{N}^{(1)} = \sum_{\tau \in \mathcal{T}_{1+} \setminus \mathcal{T}^+} (\Delta X_{1,\tau} \hat{\eta}_{2,\tau} + \Delta X_{2,\tau} \hat{\eta}_{1,\tau}) + o_p(1), \\
\tilde{N}^{(2)} = \sum_{\tau \in \mathcal{T}_{1+} \setminus \mathcal{T}_2} \Delta X_{1,\tau} n(\hat{\eta}_{2,\tau}) + o_p(1), \\
\tilde{N}^{(3)} = \sum_{\tau \in \mathcal{T}_{2+} \setminus \mathcal{T}_1} \Delta X_{2,\tau} n(\hat{\eta}_{1,\tau}) + o_p(1), \\
\tilde{N}^{(4)} = o_p(1).
\end{cases}$$
These representations, together with the convergence (B.11), imply (B.9).

Step 3. This step proves the claim in (B.10). Let X' denote the continuous part of X, that is,

$$X'_t = \int_0^t b_s ds + \int_0^t \sigma_s dW_s.$$

We define \tilde{P}' and \tilde{N}' in the same way as \tilde{P} and \tilde{N}, but with X replaced by X'. It is easy to see that $\tilde{P}' - \sum_{i \in I_1 \cup I_2} p(\Delta^*_i X_1) p(\Delta^*_i X_2)$ and $\tilde{N}' - \sum_{i \in I_1 \cup I_2} n(\Delta^*_i X_1) n(\Delta^*_i X_2)$ are $O_p(\Delta_n)$. Hence, it suffices to prove the claim with $\tilde{P}^{(5)}$ and $\tilde{N}^{(5)}$ replaced, respectively, by the following variables:

$$\tilde{P}' \equiv \Delta_n^{-1/2} \left(\hat{P}'_{12} - P^{*}_{12} \right), \quad \tilde{N}' \equiv \Delta_n^{-1/2} \left(\hat{N}'_{12} - N^{*}_{12} \right).$$

In order to derive the stable convergence in law of (\tilde{P}', \tilde{N}'), we apply Theorem 5.3.5 in Jacod and Protter (2012) to the test function $x \mapsto (p(x_1) p(x_2), n(x_1) n(x_2))$. To do so, it is enough to verify that the limiting variables $(B, -B), (L, -L), (\zeta, -\zeta)$ and $(\tilde{\zeta}_P, \tilde{\zeta}_N)$ coincide with Jacod and Protter’s $\overline{A}, \overline{A}', \overline{U}$ and \overline{U}' variables. Turning to the details, we first note that, by Lemma 1(a), we can rewrite

$$P^{*}_{12} = \int_0^T R_{c_s} (f) ds, \quad N^{*}_{12} = \int_0^T R_{c_s} (g) ds. \quad (B.14)$$

By Lemma 1(b), we can rewrite the B term as

$$B = \int_0^T b^\top_s R_{c_s} (\partial f) ds = - \int_0^T b^\top_s R_{c_s} (\partial g) ds. \quad (B.15)$$

Given (2.6), no further rewriting is needed for the $(L, -L)$ term.

By Lemma 1(c), we can rewrite

$$\gamma_t = \gamma_{c_t} (f) \quad \text{and} \quad \tilde{\gamma}_t = \gamma_{c_t} (g). \quad (B.16)$$

Hence, $\gamma_t = \sigma_t \tilde{\gamma}_t (f) = - \sigma_t \tilde{\gamma}_t (g)$ and, by (2.7),

$$\tilde{\zeta} = \int_0^T \tilde{\gamma}_{s} (f)^\top dW_s = - \int_0^T \tilde{\gamma}_{s} (g)^\top dW_s. \quad (B.17)$$

By (B.16) and (B.5), we see that Γ_t defined in (2.9) can be written as

$$\Gamma_t = \left(\begin{array}{cc} \Gamma_{c_t} (f, f) & \Gamma_{c_t} (f, g) \\ \Gamma_{c_t} (g, f) & \Gamma_{c_t} (g, g) \end{array} \right). \quad (B.18)$$

45
By Lemma 1(d), we see that \(\Gamma_t \) defined in (2.12) can be expressed equivalently as

\[
\Gamma_t = \begin{pmatrix}
\Gamma_{c_t} (f, f) & \Gamma_{c_t} (f, g) \\
\Gamma_{c_t} (g, f) & \Gamma_{c_t} (g, g)
\end{pmatrix}.
\] (B.19)

Recall from (2.11) that \(\bar{\gamma}_t \equiv \Gamma_t - \Gamma_t \). By (B.4), (B.18) and (B.19), it follows that

\[
\bar{\gamma}_t = \begin{pmatrix}
\bar{\gamma}_{c_t} (f, f) & \bar{\gamma}_{c_t} (f, g) \\
\bar{\gamma}_{c_t} (g, f) & \bar{\gamma}_{c_t} (g, g)
\end{pmatrix}.
\]

In view of (B.3), we verify that the local quadratic variation of the \((\tilde{\zeta}_P, \tilde{\zeta}_N)\) term coincide with that defined in (5.2.4) of Jacod and Protter (2012).

We are now ready to apply Theorem 5.3.5 in Jacod and Protter (2012) to finish the proof of (B.10) and, hence, the assertion of Theorem 2. \(Q.E.D. \)

PROOF OF PROPOSITION 1. By Proposition 1 in Li, Todorov, and Tauchen (2017b), the set \(\hat{I} \) coincides with \(I_1 \cup I_2 \) with probability approaching one and, in restriction to such events,

\[
\hat{P}_{12}^* = \sum_{i \notin I_1 \cup I_2} p \left(\Delta_{n_i} X_1 \right) p \left(\Delta_{n_i} X_2 \right), \quad \hat{P}_{12}^* = \sum_{i \in I_1 \cup I_2} p \left(\Delta_{n_i} X_1 \right) p \left(\Delta_{n_i} X_2 \right),
\]

\[
\hat{N}_{12}^* = \sum_{i \notin I_1 \cup I_2} n \left(\Delta_{n_i} X_1 \right) n \left(\Delta_{n_i} X_2 \right), \quad \hat{N}_{12}^* = \sum_{i \in I_1 \cup I_2} n \left(\Delta_{n_i} X_1 \right) n \left(\Delta_{n_i} X_2 \right).
\]

The assertion of Proposition 1 then follows from (B.9) and (B.10) in the proof of Theorem 2. \(Q.E.D. \)

PROOF OF PROPOSITION 2. Let \(\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 \). For notational simplicity, we denote, for each subset \(S \subseteq \mathcal{T} \),

\[
\xi_p^* (S) = D_{1} \left(\sum_{\tau \in S} \left(p \left(\Delta_{n_{(r)}} X_{1}^{*} + \Delta_{n_{(r)}} \tilde{h}_{(r),1}^{*} \right) p \left(\Delta_{n_{(r)}} X_{2}^{*} + \Delta_{n_{(r)}} \tilde{h}_{(r),2}^{*} \right) \right) \right).
\] (B.20)

By Proposition 1 in Li, Todorov, and Tauchen (2017b), \(\hat{I} \) coincides with \(I_1 \cup I_2 \) with probability approaching one. Hence, we can restrict our calculations to such events without loss of generality. In particular, we can write \(\xi_p^* \) as \(\xi_p^* (\mathcal{T}) \) using the notation (B.20). We can then decompose \(\xi_p^* \) as

\[
\xi_p^* = \xi_p^* (\mathcal{T}_1 \cap \mathcal{T}_2^+) + \xi_p^* (\mathcal{T}_1 \cap \mathcal{T}_2^+) + \xi_p^* (\mathcal{T}_1^+ \cap \mathcal{T}_2^+) + \xi_p^* (\mathcal{T}_1 \cap \mathcal{T}_1^+) + \xi_p^* (\mathcal{T}_1 \cap \mathcal{T}_2^+) + \xi_p^* (\mathcal{T}_1^+ \cap \mathcal{T}_2^+).
\]

We note that \(\Delta_{n_{(r)}} X_{j}^* = 0 \) for all \(\tau \in \mathcal{T} \setminus \mathcal{T}_j \) with probability approaching one. It is then
easy to deduce that

\[
p(\Delta^n_{i(\tau)} X^*_j + \Delta^{1/2}_n \tilde{\eta}^*_i(\tau),j) = \begin{cases}
 p(\Delta^n_{i(\tau)} X^*_j) + \Delta^{1/2}_n \tilde{\eta}^*_i(\tau),j + o_p(\Delta^{1/2}_n), & \text{if } \tau \in \mathcal{T}_{j+}, \\
 \Delta^{1/2}_n p(\tilde{\eta}^*_i(\tau),j) + o_p(\Delta^{1/2}_n), & \text{if } \tau \in \mathcal{T} \setminus \mathcal{T}_j, \\
 o_p(\Delta^{1/2}_n), & \text{if } \tau \in \mathcal{T}_{j-}.
\end{cases}
\]

From there, we readily deduce that

\[
\begin{align*}
\xi^*_p (\mathcal{T}_1^+ \cap \mathcal{T}_2^+) &= \sum_{\tau \in \mathcal{T}_1^+ \cap \mathcal{T}_2^+} (p(\Delta^n_{i(\tau)} X^*_1) \tilde{\eta}^*_i(\tau),2 + p(\Delta^n_{i(\tau)} X^*_2) \tilde{\eta}^*_i(\tau),1) + o_p(1), \\
\xi^*_p (\mathcal{T}_1^+ \setminus \mathcal{T}_2) &= \sum_{\tau \in \mathcal{T}_1^+ \setminus \mathcal{T}_2} p(\Delta^n_{i(\tau)} X^*_1) p(\tilde{\eta}^*_i(\tau),2) + o_p(1), \\
\xi^*_p (\mathcal{T}_2^+ \setminus \mathcal{T}_1) &= \sum_{\tau \in \mathcal{T}_2^+ \setminus \mathcal{T}_1} p(\Delta^n_{i(\tau)} X^*_2) p(\tilde{\eta}^*_i(\tau),1) + o_p(1), \\
\xi^*_p (\mathcal{T}_1^- \cup \mathcal{T}_2^-) &= o_p(1).
\end{align*}
\]

(B.21)

By a standard result for spot covariance estimation (see, e.g., Theorem 9.3.2 in Jacod and Protter (2012)), we have that \(\hat{c}_{i(\tau)} \rightarrow^p c_{\tau} \). Consequently,

\[
(\tilde{\eta}^*_i(\tau))_{\tau \in \mathcal{T}} \rightarrow^{\mathcal{C}\mathcal{F}} (\tilde{\eta}_i)_{\tau \in \mathcal{T}},
\]

where \(\rightarrow^{\mathcal{C}\mathcal{F}} \) denotes the convergence in probability of \(\mathcal{F} \)-conditional laws under the uniform metric. In addition, we note that \(p(\Delta^n_{i(\tau)} X^*_j) \rightarrow^p \Delta X_{j,\tau} \) for all \(\tau \in \mathcal{T}_{j+} \). Combining these convergence results with (B.21), we deduce that \(\xi^*_p \rightarrow^{\mathcal{C}\mathcal{F}} \xi_p \). Evidently, the same argument can be used to show that \(\xi^*_N \rightarrow^{\mathcal{C}\mathcal{F}} \xi_N \), jointly with \(\xi^*_p \rightarrow^{\mathcal{C}\mathcal{F}} \xi_p \), which implies the first assertion of Proposition 2 (i.e., \(\xi^*_p - \xi^*_N \rightarrow\mathcal{L} \xi_p - \xi_N \)). The size and power properties of the test readily follow from here.

Q.E.D.