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Abstract

Using the consumption-savings model proposed by Amador, Werning and Angeletos in their 2006
Econometrica paper (henceforth AWA), in which individuals face the trade-off between flexibility and
commitment, we show that withdrawal penalties can be part of the optimal contract from an ex ante
perspective, despite involving money-burning. For the case of two states (which we interpret as “normal
times” and a “negative liquidity shock”), we provide a full characterization of the optimal contract, and
show that within the parameter region where the first best is unattainable, the likelihood that withdrawal
penalties are part of the optimal contract is decreasing in the probability of a negative liquidity shock
and increasing in the severity of the shock. We also show that contracts with the same qualitative
feature (withdrawal penalties for high types) arise in continuous state spaces, too. Our conclusions differ
from AWA because the analysis in the latter implicitly assumes that the optimal contract is interior
(the amount withdrawn from the savings account is strictly positive in each period in every state). Our
results are consistent with empirical evidence on withdrawals from individual retirement accounts and
time deposit contracts.
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1 Introduction

In an important paper, Manuel Amador, Iván Werning and George-Marios Angeletos (2006, from

now on AWA) study the optimal savings rule in a model where people are tempted to consume

earlier, along the line of Strotz (1956), Phelps and Pollack (1968) and Laibson (1997, 1998), but

full commitment is undesirable as it does not allow for incorporation of new information, such

as taste shocks and income shocks.1 They provide an optimal rule in two broad situations: if
∗We thank Manuel Amador for useful suggestions, and Alexander Groves for valuable research assistance.
†E-mail: aa231@duke.edu
‡E-mail: g-egorov@kellogg.northwestern.edu
1See also Gul and Pesendorfer (2001) and Dekel, Lipman and Rustichini (2001) for axiomatic foundations for

preferences that imply temptation by present consumption and relatedly demand for commitment. For other
papers studying optimal contracts with agents who suffer from self-control problems, see, e.g., DellaVigna and
Malmendier (2004), Eliaz and Spiegler (2006) and Esteban and Miyagawa (2005).



the shock variable can only take two values, and if the shock variable is continuous but a simple

regularity condition on the density holds. An important feature of the optimum in the above

characterization results is that there is no money burning from the consumer’s perspective: in

every state total consumption over time is equal to total endowment.2

We revisit the model of AWA and first analyze the case of two possible taste shocks. We

show that money-burning may be used in equilibrium, imposed on the impatient type, in order

to provide incentives for the more patient type not to imitate the impatient type. This is

in contrast with Proposition 1 in AWA. The reason is that the arguments in AWA implicitly

assume that the optimal contract involves allocating strictly positive amounts of the good to

be consumed at both time periods, in every state. However, we show that there is an open set

of parameter values for which the optimal contract involves 0 consumption in the second time

period in case of a negative liquidity shock in the first time period. There is a natural way to

modify the framework in AWA that allows for utility functions that indeed guarantee that the

optimal contract always specifies an interior consumption plan, and hence the analysis in AWA

is valid: adding utility functions that at consumption level 0 take a value of −∞. However, as
we show it in the paper, imposing Inada conditions on the utility functions does not rule out

corner solutions and money-burning in the optimal contract.

For utility functions in the original AWA framework, we show that money burning becomes

part of the optimal contract when the probability of the impatient type is not too large, and

when the negative liquidity shock is severe enough. The intuition behind the first feature is that

money burning becomes a realized loss in the high liquidity shock state, hence it can only be

optimal ex ante if the high liquidity state is not too likely.

For continuous type spaces, we provide a similar result. Take any distribution of shocks

satisfying the regularity condition in AWA, and assume that the high type is present-biased

enough to prefer to consume everything in the first period.3 Consider a distribution which is

obtained as the original distribution with probability 1− ε, and the same distribution shifted to
the right by z with probability ε. The interpretation is that on top of the normal shocks, there

is an ε likelihood of a catastrophic liquidity shock. Then whenever ε is small enough and z is

large enough, the optimal contract involves money-burning and 0 second period consumption in

all states following the catastrophic shock. This in particular implies that in the model with a

2Analogously, Athey et al. (2004) and Athey et al. (2005) show in various contract theory settings (that are
technically connected to the original models they are primarily interested in) that money burning is not part of
the optimal contract. Ambrus and Egorov (2009), in a principal-agent setting different from the one in the current
paper, characterize cases when money burning can be part of an optimal delegation scheme. See also Amador
and Bagwell (2011).

3The latter assumption can be relaxed, but it makes the proof much easier. Characterizing the optimal contract
in the continuum types setting is difficult in general.
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continuum of types, money burning can be imposed in optimum on the highest types. This is

not consistent with Proposition 2 from AWA, for reasons similar to why money-burning can be

optimal in the model with two states.

The cases in which we find money-burning to be optimal admit a natural withdrawal penalty

interpretation: in high liquidity-shock states the agent is allowed to withdraw everything from

the savings account in the first period, at the cost of a withdrawal penalty. This is roughly

consistent with the rationale behind early withdrawal penalties associated with individual re-

tirement accounts (IRA) and 401(k) accounts in the US, expressed, for example in Thaler (1994):

consumers should be allowed to withdraw their savings in case of severe need, but “...the absence

of a withdrawal penalty would imply that whatever funds get contributed would be more at risk

to a spending spree.”4 The empirical findings of Holden and Schrass (2008), in that only 5% of

IRA withdrawals occur before age 5912 (the period for which withdrawal penalties apply) are

consistent with early withdrawals only being chosen in rare high liquidity shock states, while

Amronim (2002, 2003) provides evidence that curtailing the liquidity of IRAs and 401(k) plans is

particularly attractive for people with weaker self-control.5 Similarly, our analysis also provides

a possible new explanation for withdrawal penalties being common features of time deposit con-

tracts offered by commercial banks, complementing the supply-side explanation that they make

the task of liquidity management easier for banks.6 Empirical evidence in this context also sup-

ports that early withdrawals are associated with high liquidity shocks of depositors (Amromin

and Smith (2003)), and that their likelihood is nonzero but relatively small (Gilkeson (1999)).

Our point that withdrawal penalties might be part of the optimal contract receives empirical

support from Beshears et al. (2011), who in a field experiment offer subjects to split their savings

between a savings account with no early withdrawal penalties, and a savings account with

positive withdrawal penalties (and the same interest rate). They find that subjects contribute

a significantly positive amount to the savings account with withdrawal penalties, and that this

contribution is significantly higher when the withdrawal penalty is 20% versus when it is 10%.7

4The idea that people have a tendency to undersave, and that it is related to self-control problems and hence
can lead to preference for commitment is originally brought up in Diamond (1977).

5 Incidentally, Amromin (2003), using a completely different modeling framework than we do, also conclude
that catastrophic income shocks are needed to explain empirical regularities regarding deposits to and withdrawals
from tax-deferred withdrawal accounts.

6The contracting problem in AWA is not embedded in a market environment, hence it is not a good fit for
analyzing savings contracts offered by commercial banks, although it could possibly be reinterpreted as the type of
contract that would emerge with homogenous consumers and a perfectly competitive banking sector. We do not
pursue this extension here. For a recent paper on a monopolist bank contracting with heterogenous and possibly
time-inconsistent agents, see Galperti (2012).

7For further empirical evidence for demand for ex ante commitment in contracts, see Ashraf et al. (2006),
DellaVigna and Malmendier (2006), and Bryan et al. (2010).
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2 The model

The setup reintroduces the model from AWA, and we preserve the notation. There are two

periods and a single good. A consumer has a budget y and chooses his consumption in periods

1 and 2, c and k, respectively, so his budget set B is defined by c ≥ 0, k ≥ 0, c + k ≤ y (the

interest rate is normalized to 0). The utility of self-0 (the individual before the consumption

periods) is given by:

θU (c) +W (k) ,

where U,W : R+ → R∪ {−∞} are two strictly increasing, strictly8 concave and continuously
differentiable functions, and θ ∈ Θ is a taste shock which is realized in period 1. AWA assume

that U,W map R+ to R, thus ruling out the possibility of, say, U (c) = log c. We extend their

framework as allowing for this does not complicate the analysis, and as we show leads to some

new insights regarding the possibility of money-burning in optimum.

We assume that Θ is bounded and normalized so that Eθ = 1. Denote the c.d.f. of θ by F (·)
and the p.d.f. of θ by f (·). The utility of self-1 is given by

θU (c) + βW (k) ,

where 0 < β ≤ 1 captures the degree of agreement between self-0 and self-1 (and 1− β captures
the strength of temptation towards earlier consumption). The goal is to characterize the optimal

contract with self-0 as the principal and self-1 as the agent, i.e., the consumption scheme that

self-0 would choose from behind the veil of ignorance about the realization of the taste shock θ.

Hereinafter, we find it convenient to characterize contracts in terms of utilities rather than

allocations (each is a monotone transformation of the other). We let C (u) and K (w) be the

inverse functions of U (c) and W (k), respectively, and we let set A be given by

A = (u,w) ∈ R2 : u ≥ U (0) , w ≥W (0) , C (u) +K (w) ≤ y .

Since C (u) and K (w) are convex functions, the set A is convex. Define function z (·) by

z (x) =W (y − C (x)) ;

then z (·) is decreasing and strictly concave. The set {u,w : w = z (u)} is the frontier of the set
8Assuming strict concavity rules out linear utility functions, but simplifies characterization a lot. Clearly, any

linear function may be approximated by strictly concave functions, so the results may be applied to characterize
the properties of optimal contracts with linear utility functions as well.
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A where there is no money-burning: C (u) +K (w) = y. Thus, self-0 solves:

max
(u(θ),w(θ))θ∈Θ θ∈Θ

(θu (θ) + w (θ)) dF (θ) (1)

subject to (u(θ), w(θ)) ∈ A for every θ ∈ Θ, (2)

θu (θ) + βw (θ) ≥ θu θ� + βw θ� for every θ, θ� ∈ Θ. (3)

Finally, let ufb (θ) , wfb (θ) = argmax(u,w)∈A (θu+ w) denote the first best allocation.

3 Two types

Here we consider the case of two types, so that Θ = {θl, θh} with 0 < θl < θh (and given the
normalization Eθ = 1, θl < 1 < θh). This setup can be interpreted such that state θl represents

“normal times”, while state θh represents a negative liquidity shock, such as a job loss.

If we denote the probability that θ = θl by μ, we must have

μθl + (1− μ) θh = 1. (4)

We are thus solving the problem

max
(ul,wl),(uh,wh)∈A

(μ (θlul + wl) + (1− μ) (θhuh + wh)) (5)

subject to θlul + βwl ≥ θluh + βwh, (6)

θhuh + βwh ≥ θhul + βwl. (7)

Throughout this section, we use subscripts l and h to denote the values at θl and θh, respectively,

e.g., ul ≡ u (θl), etc.
AWA, as part of Proposition 1 in this paper, characterizes the parameter regions in which

(i) the optimal contract achieves the first best; (ii) does not achieve the first best but implies

separation of the two types; and (iii) implies pooling of the two types. Parts of this proof relied

on an argument that there is no money-burning in the optimal contract. We show that this

need not hold without additional assumptions, and provide the complete proof of this result in

the Appendix, even though Part 1 of Proposition 1 of AWA is correct as stated.

Proposition 1 Suppose Θ = {θl, θh} with θl < θh. Suppose that θl < dz
du |u=U(y) and θh >

dz
du |u=U(0) .9 Then there exists β∗ ∈ (θl/θh, 1) such that for β ∈ [β∗, 1] the first-best allocation
is implementable.

9This requirement ensures that the first best contract is not pooling, and should have been included in Propo-
sition 1 of AWA as well. If θl ≥ dz

du
|u=U(y) , then the optimal contract is cfbl = cfbh = y, kfbl = kfbh = 0, and if

θh ≤ dz
du
|u=U(0) , then the optimal contract is cfbl = cfbh = 0, kfbl = kfbh = y. In either of these cases, the first best

is implementable for all β. (If z (u) does not have a left derivative at u = U (0), or U (0) = −∞, then dz
du
|u=U(0)

is 0.)
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If β ≤ θl/θh, then pooling is optimal, i.e., uh = ul and wh = wl; moreover, there is no

money-burning in this case: wl = z (ul).

If, however, β ∈ θl
θh
,β∗ , then separation is optimal, i.e., uh > ul and wh < wl. In this

last case, wl = z (ul), but both wh = z (uh) and wh < z (uh) are possible. In either case, the IC

constraint of the low type (6) is binding and the IC constraint of the high type (7) is not.

Proposition 1 of AWA also claims that money burning is never part of the optimal contract,

which, as we find, does not have to hold in general. Our next result below gives a necessary

and sufficient condition for money burning to be part of the optimal contract. The proof of

Proposition 1 in AWA is invalid without further assumptions at the point where the authors

write “Then an increase in c (θh) and a decrease in k (θh) that holds (θl/β)U (c (θh))+U (k (θh))

unchanged...”, which implicitly assumes that a decrease in kh = k (θh) is possible. If kh = 0, so

type θh consumes only in period 1, then such a decrease is clearly impossible. We prove that

this is the only possible case consistent with money burning (i.e., money-burning implies ch < y,

kh = 0), and it is only possible if W (0) �= −∞ (Proposition 2). In fact, if kh > 0 in the optimal

contract then the argument in AWA goes through, ruling out the possibility of money burning.

As a prelude to the next result, the following figures illustrate the two types of separating

contracts that are possible in optimum. Note that if the IC constraint is binding for the low type

then the line connecting (ul, wl) and (uh, wh) has to have a slope of −θl/βl. Below we refer to
this line as the ICl line. Figure 1 (left) represents a possibility such that at the optimum the ICl

line intersects set A twice at the Pareto frontier. This corresponds to a separating equilibrium

with no money burning, as in AWA. Figure 1 (right) represents a different possibility, when at

the optimum the ICl line crosses the horizontal boundary of set A (on the w = W (0) line),

implying that there is money burning in equilibrium. Below we show that both of these cases

can indeed occur at the optimum.

Figure 1: Optimal contracts without and with money burning.
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In order to give a precise characterization of when money-burning is part of a separating

optimal contract, we need to introduce some further notation. Proposition 1 implies that the

IC constraint of type θl is binding; let us denote, for any K ∈ R,

λK = (u,w) ∈ A : u+ β
θl
w = K . (8)

For any K, the above set of points is either a line segment, a point, or the empty set, although

for simplicity we just refer to it as the ICl line. Whenever λK �= ∅, let λKl = uKl , w
K
l

and λKh = uKh , w
K
h be the points of λK that minimize and maximize u, respectively. Fixing

K = ul+
β
θl
wl = uh+

β
θl
wh, we observe that (ul, wl) = λKl and (uh, wh) = λ

K
h (if it were not the

case, then moving (ul, wl) north-west along the ICl line would not violate (6) or (7) and would

increase (5), as θl <
θl
β , and moving (uh, wh) along the same line would have the same effect as

θh >
θl
β ). Let us now take a particular value of K,

K0 = U (y) +
β

θl
W (0) ; (9)

then K0 is finite if W (0) �= −∞ and K0 = −∞ otherwise. In the case K0 is finite, notice that

λK0
h = (U (y) ,W (0)) by definition. The leftmost point of intersection of λK0 with A, λK0

l , plays

a critical role in the following formulation, and we let u0 ≡ uK0
l .

Proposition 2 Suppose θl
θh
< β < β∗, so the optimal contract is separating. Money-burning

will be used as part of the optimal contract if and only if (i) W (0) �= −∞, (ii) u0 > U (0), where
u0 is defined as u

K0
l for K0 = U (y) +

β
θl
W (0), and (iii) for the following inequality holds:

μ
1− β
1

| dzdu |u=u0 | −
β
θl

> 1. (10)

While the formal proof is in the Appendix, here we provide a brief intuition for it. The key

insight is that when reformulating the optimization program in terms of K, the maximand is

strictly concave. Hence, money burning is optimal if and only if starting from an IC allocation

that specifies a consumption vector (y, 0) in θh, the effect of a marginal amount of money-burning

(decreasing first period consumption marginally while keeping second period consumption at 0)

in the high state plus the implied consumption vector change through the IC constraint yields

a strictly positive expected utility change for the consumer.

The next corollary, which follows directly from the proof described above, further clarifies

the set of cases where money-burning may be used.

Corollary 1 If the optimal contract requires money-burning, then self-1 with type θl is impatient

enough to prefer allocation (y, 0) to cfb (θl) , k
fb (θl) , i.e.,

θlU (y) + βW (0) > θlu
fb
l + βw

fb
l . (11)
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In particular, W (0) must be finite, so W (k) must be bounded away from −∞. Moreover,

whenever the optimal contract requires money-burning, we must have kh = 0.10

Note that the case W (0) = −∞ is only realistic if the consumer literally keeps all her

resources in the savings account, and has no other source of consumption, and this is unlikely to

hold for savings accounts in practice. Putting it differently, it is reasonable in real life savings

situations that self-1 is impatient enough (β is low) to want to withdraw all money from the

account in period 1, if this option is feasible.

We also want to point out that imposing a condition that W �(0) =∞ (commonly referred to

as Inada condition) does not rule out the possibility that the optimal contract involves money-

burning and 0 second period consumption in the high state. The intuition is that the IC

constraint for the low type is binding. Therefore while marginally increasing second-period

consumption in the high state, starting from 0, increases the consumer’s expected utility at

an infinite rate, this also makes the temptation of the low type to pretend to be a high type,

tightening the IC constraint and decreasing utility in the low state at an infinite rate.

The following is an example in which money burning is part of the optimal contract.

Example 1 Suppose U (c) =
√
c, W (k) =

√
k.11 In this case, z (u) = y − u2 and u0 =

(θl/β)
2−1

(θl/β)
2+1

√
y, dzdu (u0) = − u0√

y−u20
= −1

2
θl
β − β

θl
, and the condition (10) becomes

μ (1− β) θl
β

(θl/β)
2 − 1

(θl/β)
2 + 1

> 1.

Now, if we take θl = 1
10 , θh = 10, μ = 10

11 , β =
1
20 , the left-hand side equals

57
55 > 1. One can

check that the optimal contract is cl = 121
346 , kl =

225
346 , ch =

1369
1384 , kh = 0, and indeed involves

money-burning. (The optimal contract with the constraint that money-burning is not allowed

would be cl = 9
25 , kl =

16
25 , ch = 1, kh = 0, and the ex-ante expected utilities in the two contracts

are 3257
220

√
346

= 0.795897 and 87
110 = 0.790909, respectively, with the difference of 0.005.) In a

working paper version, we provided examples with different (power) utility functions, where the

use of money-burning increased the gain in ex-ante welfare by more than 36%.

Example 1, which shows that money-burning is possible, is not atypical. In particular, this

has nothing to do with the choice of utility functions (except that we need W (0) �= −∞ to

get money-burning). Moreover, as long as the utility functions in both periods are the same,

one can find an open set of parameter values (relative to the possible set of parameter values

10 If β = θl/θh, then the optimal contract is not uniquely defined, and among them there may be contracts with
money-burning and kh > 0. But in this case we can find an optimal contract without money burning.
11We thank an anonymous referee for a suggestion that made the example simpler.
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defined in the model) for which having money burning is optimal, i.e., (10) is satisfied. In other

words, such situations are not knife-edge cases. We formalize this result in the Supplementary

Appendix, and also show that for utility functions satisfying dz
du |u=u0 ≥ 1, the optimal contract

involves money-burning for all β ∈ θl
θh
,β∗ , i.e., whenever the optimal contract is separating.

Next we examine comparative statics for the region where money burning is part of the

optimal contract.

Proposition 3 Suppose that μ, θl, θh, β are such that (4) holds and β ∈ θl
θh
,β∗ (so the

optimal contract is separating but not the first best) and it involves no money burning. Then,

for a fixed θl and β, a decrease in μ involves no money-burning either. For a fixed
θl
β and μ, a

higher β implies no money-burning.

This means that within the parameter region which imply separation, but not the first-

best, money-burning is part of the optimal contract when the high state is sufficiently rare.

Intuitively, if μ is high enough, then committing to money burning in the state θh does not

affect the expected utility of self-0 too negatively. Note that the second part of the result, since

increasing θl for a fixed μ implies decreasing θh, can be reworded such that given
θl
β constant,

money burning is part of the optimal contract when the high liquidity shock is severe enough.

We finish the section by pointing out that clearly, with two types, all contracts that involve

money-burning have a “withdrawal fee” interpretation. Indeed, they may be implemented as

follows. The agent can withdraw up to cl in period 1 free of charge. Withdrawal of any larger

amount is possible, but requires paying a fee of y−ch. In equilibrium then, type θl will withdraw
cl, and type θh will withdraw the full amount but consume only ch < y.

4 Continuum of types

Let us restrict attention to the case where the support of θ is a compact segment Θ = θ, θ̄ ,

and that f (θ) is positive on Θ. Denote

G (θ) = F (θ) + θ (1− β) f (θ) , (12)

and let θp be the lowest θ ∈ Θ such that
θ̄

θ̂
(1−G(θ̃))dθ̃ ≤ 0 for all θ̂ ≥ θp.

Since F θ̄ = 1 and f θ̄ > 0, we must have θp < θ̄. The following proposition proves that

there is “bunching at the top”, i.e., all types θ > θp get the same allocation.
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Proposition 4 An optimal allocation {(u (θ) , w (θ))}θ∈Θ satisfies u(θ) = u(θp) and w (θ) =

w (θp) for θ ≥ θp. Both w (θ) = z (u (θ)) and w (θ) < z (u (θ)) are possible for θ ≥ θp.

This proposition corrects Proposition 2 in AWA. Like AWA, we claim that the types θp, θ̄

are pooled. Unlike AWA, we do not claim that the budget constraint holds with equality for these

types and there is no money-burning at the top. On the contrary, we show that it is possible

that types θp, θ̄ will have to burn money. The difference in the conclusions again arises because

of the possibility that the optimal contract does not specify an interior consumption plan. In

particular, in the proof of Proposition 2 AWA suggest that if θp is interior (i.e., θp ∈ θ, θ̄ ), then

u (θp) can be increased in a way that the IC constraint is preserved and the objective function

does not decrease. However, preserving the IC constraint for type θp necessarily implies that

w (θp) must be decreased, which is impossible if w (θp) = 0. As in the case with two types,

therefore, we only can have money-burning at the top if w (θ) = 0 for high types.

Next we explicitly characterize cases in which there is money-burning imposed in the optimal

contract on the highest types. We do this by starting from any distribution F satisfying the

regularity conditions of AWA, and a condition that is satisfied when the degree of present bias is

high enough. Then we consider distributions which can be obtained as F with probability 1− ε,
and F shifted to the right by z with probability ε (we actually need to shift F to the left by
εz
1−ε in order to keep the mean one condition). The interpretation is that on top of the normal

shocks, there is an ε likelihood of a catastrophic liquidity shock. We then show that whenever ε

is small enough and z is large enough, the optimal contract involves money-burning in all states

following the catastrophic shock.

Proposition 5 Take distribution F with finite support θ, θ̄ and mean 1, and let u (θ), w (θ)

be the optimal contract. Suppose that in period 1, type θ̄ would prefer to consume everything

immediately rather than stay with the contract he pre-committed to:

θ̄U (y) + βW (0) > θ̄u θ̄ + βw θ̄ . (13)

Consider now a family of distibutions Fz,ε, given by:

Fz,ε (x) = (1− ε)F θ +
εz

1− ε + εF (θ − z) .

Then there exist z > 0 such that for every z > z there is ε > 0 such that for ε < ε, the optimal

contract implies c(θ) < y and k(θ) = 0 for every τ in the support of F (θ − z).

As AWA demonstrates, with more than two types in general the optimal contract can spec-

ify money-burning in a complicated pattern that not have a withdrawal fee interpretation.12

12A full characterization of the optimal contract in the continuous setting is a difficult problem and it is beyond
the reach of the current paper. An alternative direction of future investigation is characterizing the optimal
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However, the above result shows that even with a continuum of states, the possibility of a rare

catastrophic shock can lead to the optimal contract resembling one withdrawal fees. Therefore

the possibility that the optimal contract specifies money-burning and 0 second period consump-

tion (hence has a withdrawal penalty interpretation) is not tied to the two-state case, instead

to its qualitative essence of catastrophic shocks.

Lastly, we note that Proposition 6 in AWA, which generalizes Proposition 2 there, is also in-

correct in claiming the absence money-burning, for the same reason as Proposition 2. However,

under the additional assumption that guarantees that the optimal contract takes the form of

minimal savings requirement, the result goes through and there is no money-burning (Proposi-

tion 7 in AWA). We omit the details here.

5 Appendix

Proof of Proposition 1. First note that the first-best allocation is implementable if β ≥ β∗,
where

β∗ = θl
ufbh − ufbl
wfbl − wfbh

,

and moreover β∗ > θl
θh
. This is correctly proven in AWA.

From now on, consider the case β < β∗. Adding the incentive constraints (6) and (7) implies

θh (uh − ul) ≥ θl (uh − ul), which implies uh ≥ ul. Trivially, if (6) holds with equality, then (7)
holds as well. Let us prove that (6) binds (so we could forget about (7)), and also (ul, wl) ∈ ∂A,
(uh, wh) ∈ ∂A.

To see that (ul, wl) ∈ ∂A, assume the contrary. Indeed, if (ul, wl) /∈ ∂A, then we can use
the reasoning analogous to AWA: we can lower ul and raise wl slightly while holding θlul + βwl

unchanged, so that the modified contract is still in A; this would not change (6), will relax (7),

and will increase the objective function (5), which contradict optimality of the initial contract.

To prove that (uh, wh) ∈ ∂A, suppose that (uh, wh) /∈ ∂A, and consider the following three
cases separately. If β > θl

θh
, then a slight increase in uh and a corresponding decrease in wh that

holds θluh + βwh unchanged will not change (6), will relax (7), and will increase the objective

function (5). If β < θl
θh
, then a slight decrease in uh and a corresponding increase in wh will do

the same. Finally, if β = θl
θh
, then moving (uh, wh) to ∂A while preserving θluh + βwh will not

violate any constraint and will preserve the objective function, so without loss of generality we

may assume that (uh, wh) ∈ ∂A in the optimal contract in this case as well.
savings contract in the model framework of Fudenberg and Levine (2006), which is a major alternative to the
quasi-hyperbolic approach used in AWA and the current paper. The specification of the above model with linear
costs of self-control is particularly tractable, potentially facilitating a more complete analysis.
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Let us now prove that (6) holds with equality in the optimal contract. Denote

∂fA = {(u,w) ∈ ∂A : C (u) +K (w) = y} (i.e., the frontier, where there is no money-

burning), ∂cA = {(u,w) ∈ ∂A : C (u) = 0} (there is no consumption in period 1) and ∂kA =

{(u,w) ∈ ∂A : K (u) = 0} (no consumption in period 2). The latter two may be empty if

U (0) = −∞ or W (0) = −∞, respectively, but in any case ∂A = ∂fA ∪ ∂cA ∪ ∂kA.
Suppose, to obtain a contradiction, that (6) is not binding; this already implies that the

optimal contract is separating. We must have (uh, wh) ∈ ∂fA, for otherwise we would be able
to increase uh slightly without violating either of the constraints and increasing the objective

function). Second, we must have (ul, wl) ∈ ∂fA. Indeed, suppose not, then either (ul, wl) ∈ ∂cA
or (ul, wl) ∈ ∂kA. Notice that (7) must bind, for if (7) did not bind, we could increase cl to
increase the objective function. Now, if (ul, wl) ∈ ∂kA, then we must have wl ≤ wh (wl is the
lowest possible), we also have ul ≤ uh and if the contract is separating, one of the inequalities
is strict, but then (7) cannot be binding. The remaining case is (ul, wl) ∈ ∂cA \ ∂fA. Since
(7) binds, we must have dz

du |u=uh > θh
β . But then slightly increasing wl coupled with moving

(uh, wh) along ∂fA so as to preserve (7) would unambiguously increase the objective function.

This means that if (6) is not binding, then (ul, wl) ∈ ∂fA, (uh, wh) ∈ ∂fA, and also ul < uh

(otherwise the contract would be pooling, not separating). Again, suppose first that (7) binds;

then ul < uh means that (uh, wh) is the rightmost point of intersection of the line corresponding

to (7) and ∂fA, and so dz
du |u=uh > θh

β ; in this case, moving (uh, wh) slightly in the direction

of ufbh , w
fb
h would relax (7) and increase the objective function. The last possibility is that

(7) does not bind. Then we could move either (uh, wh) slightly in the direction of ufbh , w
fb
h or

(ul, wl) slightly in the direction of ufbl , w
fb
l so as to increase the objective function without

violating any of the non-binding constraints. The only case where such deviation would not be

possible is where (uh, wh) = ufbh , w
fb
h and (ul, wl) = ufbl , w

fb
l . But this is not an incentive

compatible contract if β < β∗ by the definition of β∗. This contradiction proves that (6) binds.

Consider the case θl
θh
< β < β∗. Let us prove that the contract is separating. Indeed, if

it were pooling, then, first of all, (ul, wl) = (uh, wh) ∈ ∂fA. If this contract is λKr (but not

λKl ) for K = ul +
β
θl
wl, then we can lower ul and raise wl slightly while holding θlul + βwl

unchanged; this would not change (6), will relax (7), and will increase the objective function

(5). If this contract corresponds to λKl (but not λ
K
r ), then we can raise uh and lower wh slightly

while holding θluh+βwh unchanged with similar effects. The remaining case is where λKl = λ
K
r ;

this means that dz
du |u=uh = θl

β , and then moving (ul, wl) in the direction of ufbl , w
fb
l and

moving (uh, wh) in the direction of ufbh , w
fb
h in a way that (6) continues to bind will relax (7)

and will increase the objective function. Consequently, the optimal contract is separating. This

implies ul < uh, and thus (7) does not bind. From this one can easily prove that (ul, wl) ∈ ∂fA
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(otherwise slightly increasing θlul + βwl would create an incentive compatible contract which

yields a higher ex-ante payoff) and, moreover, dz
du |u=ul ∈ θl,

θl
β (in particular, ul ∈ ufbl , u

fb
h ).

Indeed, if dz
du |u=uh < θl, then moving (ul, wl) in the direction of ufbl , w

fb
l would increase the

ex-ante payoff, and dz
du |u=ul > θl

β makes (ul, wl) ∈ ∂fA and (6) binding incompatible with

uh > ul. As for (uh, wh), we can rule out (uh, wh) ∈ ∂cA (as then ul < uh is impossible), but as
we show, both (uh, wh) ∈ ∂fA and (uh, wh) ∈ ∂kA is possible.

Now consider the case β < θl
θh
. Let us prove that the contract is pooling. If it were separating,

then we can lower uh and raise wh slightly while holding θluh + βwh unchanged (the fact that

(ul, wl) ∈ A ensures that such deviation results in a contract within A, but it also preserves

(6), (7) and increases the ex-ante payoff (5). Hence, the contract is pooling. This means that

(ul, wl) = (uh, wh) ∈ ∂fA and also ul ∈ ufbl , u
fb
h , for otherwise moving the pooled contract

along ∂fA in the direction of the first-best contract would increase the ex-ante payoff.

We thus showed that the contract is separating if θl
θh
< β < β∗, pooling if β < θl

θh
, and

money-burning is possible only in the separating case and for type θh only. The possibility of

money-burning for type θh is established by Example 1; the construction of an example without

money-burning at optimum is trivial. This completes the proof.

Proof of Proposition 2. Take β ∈ θl
θh
,β∗ . From the proof of Proposition 1, if money-

burning is part of the optimal contract, then (uh, wh) ∈ ∂kA \ ∂fA, so kh = 0, ch < y. This

already implies W (0) > −∞.
Also, by Proposition 1 we know that (6) is binding. Consequently, if (ul, wl, uh, wh) is

the optimal contract, then uh +
β
θl
wh = ul +

β
θl
wl, which we denote by K. This means that

(ul, wl) , (uh, wh) ∈ λK . Moreover, from the proof of Proposition 1 we know that (ul, wl) = λKl ,

(uh, wh) = λ
K
h . This proves that the optimal contract solves the following problem (formulated

in terms of K, which remains the only degree of freedom):

max
K:λK �=∅

μ θlu
K
l + w

K
l + (1− μ) θhuKh + wKh . (14)

Indeed, the constraints (6) and (7) would then hold automatically: The IC constraint of type

θl (6) would hold as equality because uKl , w
K
l and uKh , w

K
h lie on the same λK , and the IC

constraint of type θh (7) would follow from the fact that (6) holds with equality and uKh ≥ uKl .
Moreover, again from the proof of Proposition 1, we have (ul, wl) ∈ ∂fA, and also ul ≥ ufbl , so
it is suffices to optimize over K ≥ ufbl + β

θl
wfbl only.

Let us first establish that (14) is strictly concave in K. Take two values of K, K1 and K2,

and denote the value of the maximand in (14) by v (K1) and v (K2), respectively. Now take any

δ ∈ (0, 1). Given the linearity of the objective function (14) and the constraints (6) and (7), the
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contract given by u�l = δu
K1
l + (1− δ)uK2

l , u�h = δu
K1
h + (1− δ)uK2

h , w�l = δw
K1
l + (1− δ)wK2

l ,

w�h = δwK1
h + (1− δ)wK2

h satisfies the constraints and yields the value of (14) v� equal to

δv (K1) + (1− δ) v (K2); moreover, it lies in A due to convexity of A. Since we proved that we
can only improve by moving (ul, wl) to the upper-left and (ul, wl) to the lower-right, we get that

v (δK1 + (1− δ)K2) > δv (K1) + (1− δ) v (K2) (to see that the inequality is strict, notice that
at least (u�l, w

�
l) necessarily lies in the interior of A. Hence we established that (14) is strictly

concave in K.

We now see that money-burning is optimal if and only if (14) increases if we decrease K a

little bit from the value K0 ≥ U (y) + β
θl
W (0). If u (0) = U (0), then doing so decreases the

value of the objective function, because both the low type and the high type will get a smaller

payoff. Now consider two cases. Suppose first that K0 > u
fb
l +

β
θl
wfbl ; then the formula (10) is

derived in the main text. If K0 ≤ ufbl + β
θl
wfbl , then

dz
du |u=u0 ≤ θl as u0 ≤ ufbl . But then the

right-hand side of (10) does not exceed μθl < 1, so the formula is correct in this case as well.

Proof of Corollary 1. From Proposition 2, we have W (0) > −∞, so W (·) is bounded
away from −∞. Now, we have a combination of (in)equalities:

θlU (y) + βW (0) > θluh + βwh; (15)

θluh + βwh = θlul + βwl; (16)

θlul + βwl ≥ θlu
fb
l + βw

fb
l (17)

Indeed, uh < U (0) and wh =W (0) imply (15); (16) follows because (6) is binding (as shown in

the proof of Proposition 1), and (17) holds because dz
du |u=ul ∈ θl,

θl
β (again from the proof of

Proposition 1), so dz
du |u=ul ≤ θl

β , and now u
fb
l < ul and ufbl , w

fb
l ∈ ∂fA imply the required

condition. This implies θlU (y) + βW (0) > θlu
fb
l + βw

fb
l , which completes the proof.

Proof of Proposition 3. For fixed β and θl, u0 is also fixed. Then the left-hand side of (10)

is clearly increasing in μ, so if (10) did not hold for a given μ, then it would not hold for a lower

μ. Hence, if the new optimal contract is separating, there will be no money-burning because (10)

would not hold, and if the new optimal contract is not separating, then such optimal contract

never involves money-burning. Finally, a decrease in θh, for a fixed θl, implies a lower μ, and

we can use the previous reasoning. This completes the proof.

Proof of Proposition 4. The proof that u (θ) = u (θp) for θ ≥ θp in AWA is correct, and
is omitted here. Trivially, we must have w (θ) = w (θp) for θ ≥ θp as well (otherwise, only the
contracts with the highest w will be chosen). This proves the first part of the Proposition.

The proof that w (θp) < z (u (θp)) is possible follows from Proposition 5.
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Proof of Proposition 5. The first step in the proof is to show that for z large, the types

in the support of F (θ − z) are bunched. Indeed, we have
θ̄

θ̂
1−G θ̃ dθ̃ =

θ̄

θ̂
1− F θ̃ − θ̃ (1− β) f θ̃ dθ̃

=
θ̄

θ̂

θ̄

θ̃
f θ� dθ�dθ̃ −

θ̄

θ̂
θ̃ (1− β) f θ̃ dθ̃

=
θ̄

θ̂
θ̃ − θ̂ f θ̃ dθ̃ −

θ̄

θ̂
θ̃ (1− β) f θ̃ dθ̃

=
θ̄

θ̂
βθ̃ − θ̂ f θ̃ dθ̃ < βθ̄ − θ̂ 1− F θ̂ .

Now, if z is large enough, then β (θh + z) < θl + z, and therefore
θh+z

θ̂
1−G θ̃ dθ̃ ≤ 0 for

all θ ≥ θl + z. Consequently, θp ≤ θl + z and the “catastrophic” types are bunched.
The second step is to notice that we must have W (0) > −∞ (otherwise type θ̄ would not

prefer to consume everything in period 1, so (13) would be violated).

The third step is to notice that for z sufficiently large (at least z > θ̄−θ), as ε tends to 0, the
optimal allocation for the types in the support of F θ + εz

1−ε must converge (in distribution)

to the optimal contract for the original distribution F . This is true because for any given z, the

“catastrophic” types from the support of F (θ − z) have a vanishing impact as ε → 0, and the

optimal contract is unique.

Now assume, to obtain a contradiction, that the statement is false: i.e., there is a monotoni-

cally increasing sequence zn tending to +∞ for each of which there is a monotonically decreasing

sequence εn,m tending to 0 for which there types in the support of F (θ + z) are pooled, but

either cn,m = y or kn,m > 0 for these types. Let us show that none of these points may have

cn,m + kn,m < y and kn,m > 0 simultaneously (i.e., if there is money-burning, then there must

be zero consumption in period 1). Indeed, if these inequalities were true for (cn,m, kn,m) where

εn,m is small enough, then, as in the proof of Proposition 1, we could increase cn,m and decrease

kn,m without violating the IC constraint for the type θ̄ − εn,mzn
1−εn,m and below, and improving the

payoffs for self-0 of every “catastrophic” type (this is true whenever θ̄ − εn,mzn
1−εn,m /β < θ + z,

i.e., true for large z and small ε). Consequently, (cn,m, kn,m) must satisfy cn,m + kn,m = y, in

other words, (U (cn,m) ,W (kn,m)) ∈ ∂fA.
Since the set of allocations is compact, we can, for every zn, pick a limit point of

(cn,m (θ) , kn,m (θ)) and denote it (cn (θ) , kn (θ)), and then pick a limit point of this sequence

and denote it (c∗, k∗). Consider two possibilities. First, assume that c∗ �= c θ̄ , where c θ̄

is the first-period consumption in the optimal contract for type θ̄. If so, monotonicity implies

c∗ > c θ̄ . However, since the set A is convex and (U (c∗) ,W (c∗)) ∈ ∂fA, type θ̄ − εn,mzn
1−εn,m will

15



prefer taking (cn,m, kn,m) for n and m large. This would violate his IC constraint.

The second possibility is that c∗ = c θ̄ ; this would be true, for example, if the “catastrophic”

types were not given any options other than what “normal” types have. Notice that c θ̄ < y

(otherwise, the condition (13) would not hold). Then for large zn and small εn,m there would

be a profitable deviation as before: increase cn,m and decrease kn,m without violating the IC

constraint for the type θ̄ − εn,mzn
1−εn,m and below, and improving the payoffs for self-0 of every

“catastrophic” type. Since such a deviation may not be possible in an optimal contract, we get

to a contradiction, which completes the proof.
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