
Supplementary Appendix: For Online Publication Only

In this supplementary appendix we provide an extended analysis that supports our main

paper, “Investments in social ties, risk sharing, and inequality,” henceforth referred to as the

main paper.

A. More general environments and surplus sharing rules

This section provides a slightly more general and comprehensive treatment of the issues

studied in the corresponding section of the main paper—Section 6.1. The main difference is

that here we allow for multiple groups, while in Section 6.1 attention was restricted to the one-

group case. Because of the generalization, we present a complete and self-standing analysis,

even though there is much overlap with Section 6.1. We number replicated assumptions and

results so that they correspond to those in Section 6.1, and new results with the prefix SA.

The purpose of this section is to examine under what conditions our main conclusions

extend to more general utility functions, income distributions, and surplus division rules.

The environment with CARA utilities and jointly normally distributed incomes facilitates

a convenient transferable (expected) utilities environment that is particularly tractable to

analyze when social surplus is divided in accordance with the Myerson value. While analytical

tractability requires a series of strong assumptions, below we show that some of the main

qualitative insights of the model extend to much more general specifications.

For general specifications of the model, expected utilities are non-transferable and the

simple, costless means of redistributing surplus via state-independent transfers we used before

is no longer available, hence we need to take a more general approach to risk sharing. Let

vi(ci) be the utility function for agent i, mapping second-period consumption into utility. We

assume that vi = vj for all i and j in the same group, and that vi is strictly increasing and

strictly concave for all i ∈ N.1 Let Pk be the distribution the incomes of agents in group

k ∈M are drawn from.

Let L be the set of all possible networks for agents in N. We assume there is a unique

risk-sharing arrangement that will be implemented for any possible network L ∈ L, and that

agents correctly anticipate the risk-sharing agreement that will obtain. These risk-sharing

arrangements, which depend on the social network, might be dictated by social conventions,

or they can be outcomes of negotiation processes for transfer arrangements once the network

is formed. Let τ(L) be the transfer arrangement, and let uτi (L) be the expected second-period

consumption utility of agent i implied by τ(L).2

We continue to assume that for every L ∈ L, τ(L) specifies a pairwise-efficient risk-sharing

arrangement τij(L) for every pair of agents i, j that are linked in L. As shown earlier, this

1These properties imply that for any number of agents more than one, and for any point of the Pareto frontier
of feasible consumption plans that can be reached via risk-sharing arrangements, there is a direction along the
Pareto frontier in which a given agent’s expected utility is strictly increasing.
2More precisely, the utility function vi, the distribution of income realizations, and the transfer arrangement
τ(L) jointly determine uτi (L).
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is equivalent to τ(L) being Pareto efficient at the component level. Agent i maximizes the

difference between expected utility from the second-period risk sharing (given by uτi ) and her

costs of establishing links.

Let Ci(L) be the set of agents on the same component as i given L, and recall that G is a

function that maps agents in N to groups in M.

Next, we impose a series of assumptions on τ(·). We do not claim that the above as-

sumptions hold universally when informal risk-sharing takes place, but they are relatively

weak requirements that are natural in many settings. Our main objective is to demonstrate

that our qualitative results hold for a much broader class of models than the CARA-normal

setting with surplus division governed by the Myerson value.

The first assumption requires that establishing a link always strictly increases the connect-

ing agents’ expected consumption utilities.

Assumption 11(a). For every i ∈ N , uτi (L ∪ {lij}) > uτi (L) for every L ∈ L and all j ∈ N

such that lij /∈ L.

The next assumption requires that establishing an essential link does not impose a negative

externality on other agents. This implies that while both i and j privately benefit from

essential link lij in terms of second-period expected utility, they do not benefit over and

above the enhancement of risk-sharing opportunities that the link facilitates.

Assumption 11(b). For every k ∈ N , uτk(L∪{lij}) ≥ uτk(L) for every L ∈ L and all i, j ∈ N

such that Ci(L) 6= Cj(L).

Next, we extend the idea that the private benefit that two agents receive from establishing

a link should be increasing in the distance between them in the absence of the link. In

the previous analysis these private benefits depended specifically on the Myerson distance

between the two agents, while here we allow for a general class of distance measures. Before

defining the class of distance measures we allow for, some additional notation is required.

For two sets S and S′, we define M(S, S′) as the set of matching functions µ : S → S′ ∪ {∅}
such that for s ∈ S, if µ(s) 6= ∅ then µ(s) 6= µ(t) for all t ∈ S \ {s}. Thus every µ ∈M(S, S′)

maps each element of S either to a different element of S′ or to the empty set. Also, let

N
2

= {(i, j)|i, j ∈ N, i 6= j}.
A distance measure is a mapping d : N

2 × L → R++ that has the following properties:

Assumption 11(c) (i)–(iii).

(i) If i and j are in different components on L, then d(i, j, L) = d, with d strictly greater

than the maximum possible distance between any two path-connected agents.
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(ii) d depends only on paths (thus ignoring walks with cycles).

(iii) Let Sij be the set of paths between i and j, and let Skl be the set of paths between

k and l. We assume that d(i, j;L) > d(k, l;L) if there exists a matching function

µ ∈ M(S, S′) such that each path between i and j is matched to a shorter path

between k and l, and that all such paths between k and l are independent (do not pass

through any of the same nodes as each other).

Assumption 11(c) (i)–(iii) places only weak restrictions on the distance measure. In partic-

ular, part (iii) in general provides only a very weak partial ordering of the distances between

agents. However, there is a special case in which the ordering is complete. On a tree network,

there is a unique path between any two agents, so this determines the ordering of distances

between pairs of agents. In what follows, let d(·) be any distance measure satisfying the

above requirements.

While we will use the concept of distance between agents in the general case of multiple

groups, we first focus on extending our earlier results for the case of homogeneous agents.

Then we make assumptions on how distance in the absence of a link influences the private

benefits of two agents within the same group establishing that link.

The next assumption requires that if all agents are from the same group, then the private

benefit two agents receive when establishing a link depends only (positively) on their distance

in the absence of the link and on the sizes of the components they are on. Recall that in

our benchmark model in the CARA-normal setting these private benefits depended only on

the Myerson distance between the agents. The requirement below allows the private benefit

to depend on different distance measures and also on the sizes of the agents’ components

(which for general utilities influences the difference between the Pareto frontiers of feasible

consumption plans with and without the link).

Assumption 11(c). If G(i) = G(j) for all i, j ∈ N such that lij /∈ L, then

uτi (L ∪ {lij})− uτi (L) = g(d(i, j, L), |Ci(L)|, |Ci(L ∪ {lij})|),

Moreover, g(d(i, j, L), |Ci(L)|, |Ci(L ∪ {lij})|) is increasing in d(i, j, L).

Note that Assumption 11(c) differs slightly from the corresponding assumption in the

main paper: Now that we are permitting multiple groups, a qualification is made for this

assumption to apply only when all agents are in the same group. In the multiple-group case

the composition of each component, in terms of the groups the constituent agents come from

and their network positions, can matter.

The last assumption we need for recreating the results of the benchmark model for homo-

geneous agents is that the cost of link formation within a group is sufficiently small relative

to the private benefits from establishing an essential link. In the CARA-normal framework
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with the surplus allocated according to the Myerson value and all agents being homogeneous,

a pair forming an essential link received the full social surplus created by the link. This

implies that the social and private benefits coincide in the benchmark model for essential

links, and therefore there is no within-group underinvestment for any cost of link formation.

For general utility functions and surplus allocation rules, such equivalence does not hold;

therefore, a lack of within-group underinvestment cannot be expected to hold for all possible

costs of link formation. However, for any specification of the general model that satisfies the

assumptions above (in particular that the private benefit of establishing any link is always

strictly positive), there is no within-group underinvestment if the cost of establishing a link

between agents from the same group is small enough.

Assumption 11(d). For all networks L,

κw/2 < min
i,j:Ci(L)6=Cj(L)

uτi (L ∪ {lij})− uτi (L).

Assumption 11(d) immediately implies that if all agents are from the same group, then

in all stable networks there is a single component. The next proposition shows that the

same holds for all efficient networks. For the rest of this section, the above assumptions are

maintained.

A network is Pareto efficient if there is a feasible transfer agreement that could be reached

on that network such that there is no other pair consisting of a network and a feasible transfer

agreement in which all agents are weakly better off and some agents are strictly better off.

Proposition 12. If all agents are from the same group, then a network is Pareto efficient if

and only if it is a tree that connects all agents.

Proof. First, we consider the “only if” direction. In any Pareto-efficient network, every

component has to be a tree. This is because if any component is not a tree, then a link

could be deleted and the same risk-sharing arrangement as before could be achieved, but

the costs of establishing the link would be saved. Now suppose there are two components

of a Pareto-efficient network L that are not connected. Let agents i and j be on different

components. By Assumption 11(d), the total expected utilities (that is, taking into account

the costs of network formation too) of both i and j are strictly higher for network L ∪ {lij}
than for network L, while by Assumption 11(b) all other agents’ total expected utilities are

weakly higher for L ∪ {lij} than for L. This contradicts the Pareto efficiency of L.

We now consider the “if” direction. Consider a tree network, and suppose we implement a

risk-sharing agreement in which ci(ω) = cj(ω) for all i and j and all states ω. As all agents’

consumptions are equalized in all states, there is then no way in which link-formation costs can

be redistributed, and the risk-sharing arrangement can be changed, without making someone

worse off. Suppose, by way of contradiction, that we can redistribute the link-formation
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costs by forming a different tree network and find new feasible consumptions that together

constitute a Pareto improvement. Holding consumptions fixed, the change in the network

will make some agents worse off if any agents are made better off. Thus to achieve a Pareto

improvement, consumptions will have to be changed. Let c′(ω) be the new consumption

vector. As all agents in the same group have the same utility function vi(ci) = v(ci) and as

the utility function v(·) is strictly concave, Jensen’s inequality implies that

1

n

∑
i

v(c′i(ω)) < v

(
1

n

∑
i

c′i(ω)

)
=

1

n

∑
i

v(ci(ω))

for all ω. Thus the average expected utility from consumption will decrease. As total link-

formation costs have remained constant, this implies that at least one agent must be worse

off. This is a contradiction. �

Corollary SA1. When all agents are from the same group, there is no underinvestment.

Given Proposition 12, Corollary SA1 follows immediately from Assumption 11(d) and we

omit a proof.

Note that for any non-essential link, |Ci(L)| = |Ci(L ∪ {lij})|. Thus the marginal benefits

i and j receive from forming a superfluous link depends only on the distance between i and j

on L and the number of agents in their component. The latter is n for any efficient network,

by Proposition 12. Thus the marginal benefit i and j receive from forming a superfluous link

depends only on the distance between i and j and is increasing in this distance. Therefore an

efficient network will be stable if and only if the maximum distance between any two agents

is sufficiently small. The next corollary formally states this result.

Corollary 14. If all agents are from the same group, then an efficient network is stable if

and only if its diameter is sufficiently small.

Proof. Consider an efficient network L. As L is efficient, there exists a unique path between

i and j for all i and all j 6= i. Consider two such agents i and j 6= i. Assumption 11(c)

(i)–(iii) implies that d(i, j, L) is strictly increasing in the path length between i and j and

that d(i, j, L) = d(j, i, L). Further, as |Ci(L)| = |Ci(L ∪ {lij})| = n, by Assumption 11(c) we

have that

uτi (L ∪ {lij})− uτi (L) = g(d(i, j, L), n, n) = g(d(j, i, L), n, n) = uτj (L ∪ {lij})− uτj (L).

Moreover, by Assumption 11(c), g(d(i, j, L), n, n) is strictly increasing in d(i, j, L). Thus

for all i and j 6= i, there exists a threshold d̂ such that i and j benefit from forming a

superfluous link if and only if d(i, j, L) > d̂.

In the absence of any underinvestment (by Corollary SA1), a network L is stable if and

only if no two agents can benefit from forming a superfluous link. As the agents furthest

away from each other have the strongest incentives to form a superfluous link, L is stable if
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and only if maxi,j d(i, j, L) ≤ d̂. As d(i, j, L) is strictly increasing in the (unique) path length

between i and j, this is equivalent to the diameter of L being sufficiently small. �

A network is least stable within a class of networks if its stability implies the stability of

any other network in that class. A network is most stable within a class of networks if its

instability implies the instability of any other network in that class.

Proposition 14. If all agents are from the same group, then

(i) the most stable efficient network is the star,

(ii) the least stable efficient network is the line.

Proof. By Corollary 14, an efficient network is stable if and only if its diameter is sufficiently

small. It follows that if a network with diameter d is stable, all efficient networks with

weakly lower diameter will also be stable. As the line network is the efficient network that

maximizes the diameter, its stability implies the stability of all other efficient networks and

it is the least stable efficient network. Similarly, if a network with diameter d is unstable,

Corollary 14 implies that all networks with a weakly higher diameter are unstable. As the

star network is the efficient network that minimizes the diameter, its instability implies the

instability of all other efficient networks and it is the most stable efficient network. �

Inequality measures within the Atkinson class will often rank utility vectors differently.

In the simpler setting with CARA utilities, normally distributed incomes, and the Myerson

value allocation rule, we were able to identify the star as the least equitable network for any

inequality measure in the Atkinson class. This was achieved by showing that any efficient

network could be transformed into a star by rewiring it in such a way that, at each step of

the rewiring the utility of the center agent increased, the utility of one other agent decreased,

and the utility of the remaining agents remained constant. Specifically, the act of removing

a link lij and adding a link ljk increased the utility of agent k, decreased the utility of agent

i and held constant the utilities of all other agents.

In the more general setting, this rewiring need not hold constant the utilities of the other

agents. This creates problems. Consider the four-agent line network, and suppose that the

utilities, after link-formation costs, are (10, 25, 25, 10). Now suppose we remove link l34 and

add link l24 to create a star network. In the more general model, utilities after this rewiring

might be (11, 35, 11, 11). These two vectors will be ranked differently by different inequality

measures within the Atkinson class. However, if we make an additional assumption that this

kind of rewiring affects only those agents who gain or lose a link, then we can relate inequality

to network structure in the more general setting.

Proposition 15. Suppose there is one group, and for all pairs of efficient networks L and

L′ such that L′ = (L \ {lij}) ∪ {ljk}, the transfer arrangements satisfy τl(L) = τl(L
′) for all

l 6= i, k. Then for all inequality measures in the Atkinson class, among the set of efficient
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Figure 1. An example of the rewiring used to find a contradiction in the
proof of Lemma SA2 is shown. Panel (i) shows the initial network, Panel
(ii) the interim network and Panel (iii) the final network after the rewiring is
complete.

networks, star networks and only star networks maximize inequality, while line networks and

only line networks minimize inequality.

Proof. We begin with a lemma:

Lemma SA2. Suppose there is one group, and that for all pairs of efficient networks L and

L′ such that L′ = (L \ {lij}) ∪ {ljk}, the transfer arrangements satisfy τl(L) = τl(L
′) for all

l 6= i, k. Then agents with a higher degree in L have a higher utility.

Proof. Consider an efficient network L, and suppose agent i has higher degree than j. We

will show that we can rewire a network in a way that weakly reduces i’s utility and increases

j’s utility, but swaps the positions of i and j in the network such that on this new network

i would have the same utility j had on the initial network. This will imply that i must have

had a higher utility on the initial network.

Consider the following rewiring, an example of which is illustrated in Figure 1. As L is

efficient, it is a tree by Proposition 12 and there is a unique path between i and j. If i is

directly connected to j, we need not do any rewiring along this path. Otherwise, let there be

l ≥ 1 agents other than i and j on this path, and create the following two labelings of these

agents: i, i1, . . . , il, j and i, jl, . . . , j1, j. Thus i1 = jl, i2 = j(l − 1), and so on. Now if agent

i1 has a link to an agent k on L and k is not on the path between i and j, we remove the

link li1,k and add the link lj1,k. Repeat until all of i1’s links to agents not on the shortest

path between i and j have been rewired. We now repeat for ik, with k = 2, . . . l. Note that

at each step of this rewiring we reach a connected tree network.

Consider now the neighbors of j not on the path between i and j. Match each of these

neighbors to a different neighbor of i’s who is also not on this path. As i has a higher degree

than j, such a matching exists. For each such pair, we start with j’s neighbor. Letting this

neighbor of j be k, one by one we rewire each of k’s links on L, except lij , to the neighbor

of i that agent k was matched to. Let this agent be l. We then rewire each of l’s links on L,
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except lil, to agent k. Repeat for all of j’s neighbors on L not on the path between i and j.

Note again that at each step of this rewiring we reach a tree network. After all this rewiring,

let the network that has been reached be denoted L′.

As in all the rewiring so far i and j have kept the same links, and as at each step an

efficient network has been reached, by the premise of the Proposition, τi(L) = τi(L
′) and

τj(L) = τj(L
′), so uτi (L) = uτi (L′) and uτj (L) = uτj (L′).

Finally, we consider the neighbors of i who were not on the shortest path to j and were

not matched to any of j’s neighbors. As i’s degree is higher than j’s, there exists at least one

such agent. For all agents in this set, we remove their link to i and add a link to j. Let the

network reached after this be denoted L′′.

By Assumption 11(a), this increases j’s utility and decreases i’s utility, so uτi (L) = uτi (L′) >

uτi (L′′) and uτj (L) = uτj (L′) < uτj (L′′). However, by construction, after this rewiring is

complete i’s position in L′′ is identical to j’s position in L (up to a relabeling of agents), while

j’s position in L′′ is identical to i’s position in L. Thus by Assumption 11(c), uτi (L) = uτi (L′′)

and uτj (L) = uτj (L′′). We then have that

uτi (L) = uτi (L′) > uτi (L′′) = uτj (L).

�

We can now prove the Proposition. As shown in the proof of Proposition 6(ii), the star

network can be reached from any efficient network L by rewiring links to the highest-degree

agent in L. By Lemma SA2, the agent with the highest utility on L is the agent with the

highest degree, and by Assumption 11(d) the net expected utility of this agent increases

at each such step of the rewiring, while the net expected utility of all other agents weakly

decreases. The argument from the proof of Proposition 6(ii) can then be applied again, and

utilities become more unequal for any inequality measure in the Atkinson class.

The argument for the line network is equivalent. From any efficient network L, there is

a rewiring to the line network that decreases the utility of the highest-degree agent at each

step, which by Lemma SA2 is also the highest-utility agent, and increases the utility of all

other agents. Thus utilities become more equal for any inequality measure in the Atkinson

class. �

We will now consider the multiple-group case. With one group it was efficient for a network

to form in which all agents are path connected to one another. We now make an assumption

to ensure that this remains the case with multiple groups.

Assumption SA3 (Efficient Risk Sharing Across Groups). For any network L with at least

two components, there exist a risk-sharing agreement τ and a pair of agents i and j 6∈ Ci

such that all agents are weakly better off on L ∪ {lij} and some agents are strictly better off.

Relative to the single-group case, agents from different groups provide each other with

access to less correlated income streams. This increases the total surplus generated by risk
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sharing conditional on a given network being formed. Moreover, the presence of across-

group links provides positive externalities to others insofar as it increases the marginal value

of within-group links. This raises the question of how the additional surplus generated by

across-group risk sharing should be split among the agents. We take a parsimonious approach

to this issue by making two assumptions. The first assumption builds on the single-group

analysis. It requires that agents receive at least the same marginal benefits they would receive

if all agents were from the same group. The additional surplus generated must be split in

such a way that each agent receives a weakly positive share.

Assumption SA4. Consider a network L such that lij is essential on L ∪ {lij}, and two

allocations G,G′ of the agents to groups. If all agents are from the same group under G,

hence G(k) = G(k′) for all k, k′, then

uτi (L ∪ {lij}, G′)− uτi (L,G′) ≥ uτi (L ∪ {lij}, G)− uτi (L,G).

This assumption requires that the essential within group links are weakly more valuable to

agent i when the risk-sharing component i belongs to includes agents from multiple groups

rather than all agents belonging to i’s group.

Assumption SA5. Consider two networks L and L′ connecting the same sets of agents,

and two allocations of the agents to groups G,G′. If L′ can be reached from L by rewiring a

link to i such that L′ = (L \ {ljk}) ∪ {lij}, i 6= j 6= k, lij 6∈ L, ljk ∈ L, G′ contains agents

from different groups, and under G all agents are from the same group, then

uτi (L′, G′)− uτi (L,G′) > uτi (L′, G)− uτi (L,G).

Assumption SA5 is only a coarse partial ordering on utilities. While it implies that an

agent’s share of the additional surplus generated by across-group risk sharing increases as

links are rewired to that agent, it makes no comparison between networks that cannot be

reached by rewiring links to a single agent. In particular, following a rewiring to i it does not

pin down how the payoffs of other agents change.

Proposition SA6. Suppose all groups have the same utility function: vi = vj for all i, j.

With k different groups, there exist a κ̄W > 0 such that for all κW < κ̄W a network is Pareto

efficient if and only if it is a tree with k − 1 across-group links.

Proof. We begin by showing the “only if” direction. All Pareto-efficient networks are trees.

First, by Assumption SA3, risk sharing among all agents is efficient, so L must connect all

agents. Second, a Pareto improvement can be achieved on any connected non-tree network

by implementing the same risk-sharing arrangement and deleting a superfluous link, thereby

saving on costs.
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We now show that efficient networks must also have exactly k − 1 across-group links. We

will show, by construction, that for any tree network with strictly more than k−1 across-group

links there exists a Pareto improvement.

If there are more than k−1 across-group links in a tree network, we claim that there must

exist an across-group link lij which, upon its removal, will result in a network L′ = L \ {lij}
such that there exist two agents (k, l), with G(k) = G(l) and Ck(L

′) 6= Cl(L
′).

Suppose, by way of a contradiction, that there are k′ > k − 1 across-group links and that

the claim in the previous paragraph is not true. As L is a tree network, removing all across-

group links must then result in there being k′ + 1 components. If there are no agents from

the same group in different components, this implies that there must be at least k′ + 1 > k

different groups, which is a contradiction. Thus there exist two components, each containing

an agent from the same group. Denote these agents by k, l. As L is a tree, there exists a

unique path between k and l on L, and as k and l are in different components following the

removal of across-group links, there exists at least one across-group link on this path. Letting

this link be lij proves the claim.

As k, l are in different components on L′ but from the same group, the network L′′ =

L′ ∪ {lkl} will be a connected tree network with one less across-group link, and one more

within-group link, than L.

On the network L′′ we implement the same risk-sharing arrangement as before, with one

exception. First, we identify the vector of consumptions that make them just as well off as

on the original network and continue to satisfy the Borch rule:

∂vi(ci(ω))/∂ci(ω)

∂vi(ci(ω′))/∂ci(ω′)
=

∂vj(cj(ω))/∂cj(ω)

∂vj(cj(ω′))/∂cj(ω′)
=

∂vi′(ci′(ω))/∂ci′(ω)

∂vi′(ci′(ω′))/∂ci′(ω′)

for all states ω, ω′ and all i′ 6= k, l.

As i and j save the cost of an across-group link, and utility is strictly increasing and

concave in consumption, ci(ω) and cj(ω) must strictly decrease in all states ω. This additional

consumption is passed on to agents k and l. As there is a strictly positive amount of remaining

consumption in all states of the world, and utilities are strictly increasing in consumption,

there exist feasible consumption vectors for agents k and l that strictly increase E(v(ck)) and

E(v(cl)). Thus for all sufficiently small κw we have E(v(ck)) > κw and E(v(cl)) > κw. We

have therefore constructed a Pareto improvement.

We now show the “if” direction. Consider a tree network with k − 1 across-group links.

Suppose we implement a risk-sharing agreement in which ci(ω) = cj(ω) for all i, j. As

all agents’ consumptions are equalized in all states, there is then no way in which link-

formation costs can be redistributed, and the risk-sharing arrangement changed, without

making someone worse off. Suppose, by way of a contradiction, that we can redistribute the

link-formation costs, by forming a different tree network with k − 1 across-group links, to

generate a Pareto improvement. Holding consumption fixed, on the new network if some

agents are better off, then some will be worse off. Thus to achieve a Pareto improvement,
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consumptions will have to be changed. Let c′(ω) be the new consumption vector. As the

utility function v(·) is concave, Jensen’s inequality implies that

1

n

∑
i

v(c′i(ω)) < v

(
1

n

∑
i

c′i(ω)

)
=

1

n

∑
i

v(ci(ω))

for all ω. Thus the average expected utility from consumption will decrease, and total link-

formation costs have remained constant, so at least one agent must be worse off. This is a

contradiction.

�

In our baseline model with CARA utilities, normally distributed incomes, and the Myerson

value allocation rule, across-group underinvestment is possible but there is no within-group

underinvestment. The same example establishes the possibility of across-group underinvest-

ment in our more general setting. There is also never any within-group underinvestment in

our more general setting, as we now show.

Proposition SA7. There is never any within-group underinvestment.

Proof. Consider any stable network L′ and allocation to groups G′. Suppose, by way of a

contradiction, that there is underinvestment within a group in L′. There must then be an

essential link lij the planner could form to achieve a Pareto improvement. Stability of L′

implies that either uτi (L′ ∪ {lij}, G′) − uτi (L′, G′) < cw or uτj (L′ ∪ {lij}, G′) − uτj (L′, G′) <

cw. Without loss of generality, suppose uτi (L′ ∪ {lij}, G′) − uτi (L′, G′) < cw. Consider now

the alternative grouping G in which all agents are from the same group. In this case, by

Assumption 11(d) and as lij is essential, uτi (L′ ∪ {lij}, G)− uτi (L′, G) ≥ cw. Thus combining

inequalities, uτi (L′ ∪ {lij}, G) − uτi (L′, G) > uτi (L′ ∪ {lij}, G′) − uτi (L′, G′). This contradicts

Assumption SA4. �

Consider the partial ordering in which an agent i is more central in a network L′ than in

network L if and only if L′ can be reached from L by rewiring links only to i. The following

result generalizes the result in the benchmark model that more centrally located agents within

a group have higher incentive to create across-group links.

Proposition SA8. Suppose that

(i) if there is one group, then for all efficient networks L ∪ {lij}, g(d, |Ci(L)|, |Ci(L ∪
{lij})|) = g(d, |Cj(L)|, |Cj(L ∪ {lij})|); and

(ii) there are two groups.

Then for any efficient network L with across group-link lij, if it is profitable for an agent

i to form lij, and the alternative efficient network L′ can be reached from L by rewiring

within-group links to i, then it is also profitable for i to form the link lij ∈ L′.

Proof. Let G′ be the grouping of agents. Agent i is weakly better incentivized to invest in

the across-group link lij on the network L′ than on the network L if and only if



12

(1) uτi (L,G′)− uτi (L \ {lij}, G′) ≤ uτi (L′, G′)− uτi (L′ \ {lij}, G′).

As L and L′ are efficient, and lij is an across-group link on both L and L′, all agents who

are path connected to i on L \ {lij} are from the same group as i, as are all agents path

connected to i on L′ \ {lij}. Thus on the networks L′ \ {lij} and L \ {lij}, by Assumption

SA4 agent i must then get exactly the same payoffs as he would in the one-group case:

uτi (L \ {lij}, G′) = uτi (L \ {lij}, G) and uτi (L′ \ {lij}, G′) = uτi (L′ \ {lij}, G), where G is the

grouping in which all agents are from the same group. We can therefore rewrite equation (1)

as

uτi (L,G′)− uτi (L,G) + uτi (L,G)− uτi (L \ {lij}, G) ≤ uτi (L′, G′)− uτi (L′, G)

+uτi (L′, G)− uτi (L′ \ {lij}, G).(2)

Repeatedly applying Assumption SA5, uτi (L,G′)−uτi (L,G) < uτi (L′, G′)−uτi (L′, G). Thus

a sufficient condition for equation (2) to hold is that

uτi (L,G)− uτi (L \ {lij}, G) ≤ uτi (L′, G)− uτi (L′ \ {lij}, G).

As we are in the one-group case and lij is essential on both L and L′, uτi (L,G) − uτi (L \
{lij}, G) = uτi (L′, G)− uτi (L′ \ {lij}, G) = g(d). This completes the proof.

�

B. Supported risk sharing

As with the previous section, this section provides a slightly more general and comprehen-

sive treatment of analysis than in the main paper. This time the corresponding section of

the main paper is Section 6.2. Again, we number replicated assumptions and results so that

they correspond to those in Section 6.2 of the main paper, while new results are labeled with

the prefix SA.

In this section we extend the model to capture the idea that having friends in common

can reduce an agent’s incentives to renege on an agreement. This might be because the

friend in common is able to monitor actions and identify the guilty party in a dispute, or

because reneging on the agreement will lead to a damaging reputation loss with the friend

in common. While it is beyond the scope of this paper to fully explore these issues, and

there is a vibrant literature that focuses on network-based enforcement of agreements (see,

for example, Jackson et al. (2012), Wolitzky (2012), Ali and Miller (2013, 2016), Ambrus et

al. (2014), Nava and Piccione (2014), and Ambrus et al. (2016)), in this section, motivated

by this literature, we model the value of friends in common for enforcement by assuming that

risk sharing between two agents is possible if and only if those two agents have a friend in

common. This is known as closure (Coleman, 1988) and has long been thought important for
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cooperation because it enables collective sanctions to be imposed on a deviating agent—if an

agent cheats on one of their neighbors, there are friends in common that can also punish the

deviating agent.

A link in L is supported and can be used for risk-sharing if and only if it is part of a triangle

(i.e., the complete network among three agents). Let L′(L) be the spanning subgraph of L

which contains only supported links. An illustration of this is provided in Figure 2. Risk-

sharing agreements and rent distribution are as in Section 2 of the main paper. The only

difference is that now risk sharing takes place on the network L′(L) instead of L (but agents

continue to pay to form links in L).

1 3

4 5

2

6

(a) L1

1 3

4 5

2

6

(b) L′1

1 3

4 5

2

6

(c) L2

1 3

4 5

2

6

(d) L′2

Figure 2. (A) Example of a network, L1, among six villagers. (B) The links
on L1 that support risk sharing. (C) Example of a different network, L2,
among six villagers. (D) The links on L2 that support risk sharing.

Before we can state our main result for this section, we need some new terminology. A

network L is a tree union of triangles if it can be expressed as the union of m ≥ 2 (non–node-

disjoint) subnetworks, ordered as L(N1), . . . , L(Nm), such that ∪ki=1Ni ∩Nk+1 = 1 and each

subnetwork L(Ni) is a triangle. Thus each subnetwork in the sequence is a triangle that has

exactly one node in common with the union of all the nodes in the subnetworks preceding

it in the sequence. Two different tree unions of triangles are illustrated in Figures 3 and 4a.

The tree union of triangles illustrated in Figure 3 is known the Friendship graph or Windmill

network; in that network all triangles have the same node in common.

We will focus on risk sharing within a village. We denote the cost of forming a link by

κ = κw. As before, we continue to focus on the parameter range for which risk sharing among
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(a)

Figure 3. The Friendship graph on 9 nodes

all agents is efficient. As before, the surplus obtained from enabling risk sharing among two

groups of agents is V . Proposition 16 shows that it is efficient for all agents to risk share if

and only if V ≥ 3κ, and that the efficient networks are then tree unions of triangles. Thus in

comparison to Section 2 of the main paper, where agreements didn’t need to be supported

to be enforceable, tree unions of triangles play the role of tree networks.

Proposition 16. Suppose the number of villagers n ≥ 3 is odd.

(i) If risk sharing among all n agents is efficient, then the efficient risk-sharing networks

are tree unions of triangles.

(ii) Risk sharing among all n agents is efficient for all n if and only if V ≥ 3κ.

The proof of Proposition 16 is fairly long, and is deferred until Section B.1. Here we offer

some intuition. First, observe that any link that is not supported is costly to form but cannot

be used for risk sharing. While in principle such a link might still be valuable as a means

for supporting an agreement on another link, this requires a triangle to be formed with the

other link, which would make it supported. Thus in an efficient network every link must be

supported and must be part of some triangle. Given this, the most efficient way to organize

links (among an odd number of agents) is to form a tree union of triangles. This creates

distinct triangles in which no link is shared by two triangles. This might seem inefficient,

but it is not, because it economizes on the number of triangles required. As a comparison,

consider the tree union of triangles shown Figure 4a and the alternative network shown in

Figure 4b; in the later, villagers 1 and 2 are connected to all other villagers and there are

no other links. In the alternative network there are n− 2 = 7 triangles, while there are just

(n − 1)/2 = 4 triangles in the tree union of triangles. Thus although the triangles in the

alternative network all share the link l12, meaning that for n−3 = 6 of the triangles only two

additional links are required, there are more links in the alternative network than in the tree

union of triangles (3(n− 2)− (n− 3) = 15 links in the alternative network, in comparison to

3(n− 1)/2 = 12 links in the tree union of triangles).
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Figure 4. (A) A tree union of triangles connecting nine villagers. (B) An
alternative network connecting nine villagers in which all villagers are able to
risk share but all triangles share a common link, l12, hence it isn’t a tree union
of triangles.

Jackson et al. (2012) find a class of networks they call social quilts to be those that

can supporting risk-sharing agreements based on renegotiation proofness. Interestingly, tree

unions of triangles are social quilts. The networks we identify through efficiency consider-

ations based on the very simple condition of support for risk sharing to be possible would

also be renegotiation proof in their setting. This provides further motivation for the simple

approach to enforcement we take.

We now consider the stability of the efficient risk-sharing networks. Unlike the correspond-

ing result in Section 4 of the main paper, all tree unions of triangles are equally pairwise stable

and the empty network is now always pairwise stable. As risk sharing now requires three

agents for an agent to extricate herself from an agreement while not leaving unsupported

links, two links must be deleted at once. Thus we consider networks that are not only pair-

wise stable but also stable to multiple-link deletions. Such a network L must be pairwise

stable and, for all agents i, ui(L) ≥ ui(L
′) for all L′ that can be obtained by removing any

of i’s links in L.

As before, we let V be the constant value of reducing the number of risk-sharing groups

by 1.

Proposition SA9. In a tree union of triangles, agent i receives a net payoff |N(i;L)|((V/3)−
κ). A tree union of triangles L is pairwise stable if and only if 3V/5 ≤ 3κ ≤ 2V . A tree

union of triangles L is pairwise stable, and also stable to multiple-link deletions if and only

if 3V/5 ≤ 3κ ≤ V . The empty network is always pairwise stable.

The full proof is in Section B.1. Analogously to before, on efficient networks all links are

essential and make the same expected contribution to total surplus for a random arrival order

of the agents (as can be used to calculate the Myerson value). Moreover, these benefits are

shared equally among two agents when they have a link. Collectively, a triangle of links

contributes an amount 2V to total surplus. In a tree union of triangles, each link is part of
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only one triangle, and thus each link contributes on average 2V/3. As these benefits are split

evenly among the agents forming the link, they each get V/3, while it costs each agent κ to

form a link. Hence each agent receives a net payoff of |N(i;L)|((V/3) − κ), which is again

proportional to her degree.

If an agent deletes a link, exactly one of her other links becomes unsupported. Thus the

agent’s payoff decreases by 2V/3, but there is a saving of only κ in costs. Thus a network is

stable to individual link deletions if and only if 2V ≥ 3κ, while it is stable to multiple-link

deletions if and only if V ≥ 3κ (which holds by the maintained assumption that it is efficient

for all agents to risk share with one another).

Consider an agent’s incentives to form an additional (superfluous) link. In any network,

agents can benefit only from forming links that would be supported, so that they can be used

for risk-sharing. The key to the proof is showing that on a tree union of triangles, for any

superfluous link that would be supported upon its formation, there are the same incentives

to deviate from it. Thus there is a profitable deviation to form any superfluous link in any

tree union of triangles if and only if it is profitable to form the link, as shown in Figure 5. As

it is profitable to form this additional link if and only if V/2 ≥ 3κ, a tree union of triangles

is robust to the pairwise addition of a link if and only if V/2 ≤ 3κ.

2

1

4

5

3

(a)

Figure 5. The Friendship graph on five nodes with a possible deviation
shown by the dashed line

Finally, to see that the empty network is always stable, just note that on this network an

additional link will not be supported, and so will not facilitate any risk sharing; thus there

are no incentives to form any link. The stability of the empty network and the need for

groups of at least three agents to support risk sharing suggest that it might be reasonable to

permit coalitions of three agents to form links among themselves. We do so with the minimal

possible extension to pairwise stability that facilitates such deviations.

A network is tripletwise stable with respect to expected utilities {ui(L)}i∈N if and only if it

is pairwise stable and for all i, j, k ∈ N, if two or more of lij , lik, lkj are not in L and L̂ is the

union of network L with these three links, and then if ui(L̂) ≥ ui(L) and uj(L̂) ≥ uj(L) with

at least one of these inequalities strict, then uk(L̂) < uk(L). In words, tripletwise stability
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requires a network to be pairwise stable and does not allow any set of three players to be

able to benefit by forming the remaining links among themselves (thereby facilitating direct

risk sharing among themselves).

Proposition 17.

(i) If there exists an efficient tripletwise stable network then all friendship networks are

tripletwise stable, and for a non-empty range of parameter specifications the only

efficient networks that are tripletwise stable are friendship networks.

(ii) For all inequality measures in the Atkinson class, among the set of efficient networks,

friendship networks maximize inequality and are the only efficient networks that max-

imize inequality.

This result is analogous to results in Proposition 6 in Section 4 of the main paper. There,

a star network was the most efficient stable network, but also the most unequal. Proposition

17 shows that this result generalizes to the case in which links must be supported to facilitate

risk sharing, but with friendship networks taking the place of star networks.

The proof of Proposition 17 is in section B.1. The basic intuition for this result mirrors

the intuition for the corresponding result in the main paper (Proposition 6). Groups of three

agents have stronger incentives to deviate and form links among themselves to facilitate

risk sharing when they are further apart. Among the set of efficient networks, the relevant

distances are minimized by the friendship network. In terms of inequality, agents’ net payoffs

are again proportional to their degrees, and the total number of links is constant for all tree

unions of triangles connecting n agents. Further, in any tree union of triangles all agents

must have degree at least 2. The friendship network therefore minimizes the possible degree

for all but one agent while maximizing the possible degree for the remaining agent. The

star network did the equivalent thing in Section 4 of the main paper, and this was the key

property of the star network that led it to generate the most inequality for any inequality

measure in the Atkinson class. The argument establishing that the friendship network now

generates the most inequality for any inequality measure in the Atkinson class is the same.

B.1. Proofs.

B.1.1. Proof of Proposition 16.

Proof. Part (i): Consider an efficient network L. As the network is efficient, all agents are

then in the same risk-sharing component, so L′(L) is connected. Further, as the network

is efficient, every link must be supported, so L′(L) = L. This means that the network can

be decomposed into a set of triangles (where the triangles can share nodes and links with

one another and every node is part of at least one such triangle). There may be more than

one such decomposition for L. Moreover, as L′(L) = L is connected, these triangles must be

connected to one another so that there is a path from every triangle to every other triangle.
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It is therefore possible to order the triangles in the decomposition so that as the triangles are

added to the network in this sequence there is always a unique component.

Figure 6 gives an example of this triangle decomposition. In this example there is a

redundant triangle such that the original network can be constructed from a set of triangles

that excludes it. It doesn’t matter which decomposition is selected, or whether the redundant

triangle is included or not.

1

2

3

4
5

(a)

1

2

3

4

5

(b)

Figure 6. (A) A network in which every link is supported (i.e., L′(L) = L).
(B) Representation of this network as a sequence of triangles; by combining
triangles 1, 2, 3, 4, and 5, the original network is obtained. The arrows in (B)
indicate which links and nodes are combined in this construction.

Consider an efficient network and an associated triangle decomposition. Suppose we create

the network associated with the decomposition. Thus if there are k triangles in the decom-

position, we are then left with a network consisting of k disjoint triangles (this will require

creating duplicate nodes and links). This network has k components, 3k nodes, and 3k links.

We then order these triangles, and recombine them to create the efficient network. We start

with triangle 1, add triangle 2 so that 1 and 2 now form a network component, add 3 so that

triangles 1, 2, and 3 form a component, and so on. Thus after each step in the sequence the

number of components is reduced by one.3 We consider how the number of links and nodes

in the network must evolve along such a sequence.

When we connect an unconnected triangle to an existing set of connected triangles (which

we term the component), the ways in which this might be done can be partitioned as follows:

The new triangle can share 3 nodes with existing nodes, 2 nodes with existing nodes, or 1

node with existing nodes. In the case of sharing 3 nodes, no new nodes are being added to

the network, but new links might be. As, by construction, all nodes in the component are

already supported, it is without loss of generality to ignore such operations when searching

for minimally connected networks that enable risk sharing among all agents (i.e., efficient

3For the example given in Figure 6, the sequence 1, 2, 3, 4, 5 results in a reduction in the number of components
of one at each step, while the sequence 2, 5, 3, 1, 4 would not.
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networks).4 Figure 7 shows two examples of this. The addition of the triangle as shown in

panel (A) has no effect on the number of links or nodes in the network (see panel (B)), while

the addition of the triangle as shown in panel (C) increases the number of links but not the

number of nodes in the network (see panel (D)).

(a) (b) (c) (d)

Figure 7. Panels (A) and (B) illustrate the addition of a triangle (blue)
to a risk-sharing component (red) in which all nodes are shared by a single
existing triangle. Panels (C) and (D) illustrate the addition of a triangle (blue)
to a risk-sharing component (red) in which all nodes are shared by existing
triangles.

When a triangle is added that shares two nodes, it can either share one link as well, or

share no links. When a triangle is added that shares just one node, it cannot share any links.

These three possibilities are enumerated below and illustrated in Figure 8.

(a) The triangle shares two nodes, one node with each of two different triangles. In this

case, we increase the number of links in the component by 3 and increase the number

of nodes in the component by 1.

(b) The triangle shares two nodes, both with the same triangle. In this case, we increase

the number of links in the component by 2 and increase the number of nodes in the

component by 1.

(c) The triangle shares one node. In this case, we increase the number of links in the

component by 3 and increase the number of nodes in the component by 2.

Following the decomposition, along the sequence of recombining the triangles we do one

of the above three operations at each of the k − 1 steps. There are n nodes, where (by

assumption) n is an odd integer. Suppose it is feasible to do any combination of the operations

(a) − −(c), in any order, to arrive at n nodes. We always start with the component being

a triangle, with three nodes and three links. This means that the number of nodes in the

original network is n = 3 + a+ b+ 2c, where a is the number of (a) operations, b the number

of (b) operations, and (c) the number of c operations. As the initial network is efficient,

this sequence of operations must minimize the number of links in the resulting network,

conditional on enabling all n agents to risk share. Assuming that any sequence of operations

4For example, the redundant triangle in Figure 6a could be added last, in which case it would share three
nodes and three links with the component and its addition would add no new links or nodes to the component.
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(a) (b) (c) (d)

(e) (f)

Figure 8. Panels (A)-(D) illustrate the possible ways in which triangles that
share two nodes can be added, while panels (E) and (F) illustrate the possible
ways in which triangles that share one node can be added.

is feasible, the sequence of operations must minimize 3+3a+2b+3c subject to 3+a+b+2c = n.

As n is odd, this is uniquely achieved by setting a = b = 0 and c = (n− 3)/2. (Incidentally,

when n is an even number greater than 3, it can be seen that this is instead achieved by

setting a = 0, b = 1, and c = (n − 4)/2; thus when n is even the structure of the efficient

networks is similar to the structure of the efficient networks when n is odd.) Note that the

efficient network is constructed through sequentially adding triangles such that at each step

in the sequence the added triangle shares exactly one node with the triangles already added.

But this is just the definition of a tree union of triangles. This implies that this sequence

of operations is feasible and that the efficient networks are tree unions. When there are n

nodes, with n odd, any tree union of triangles is efficient, and no other network is efficient.

Part (ii): We have established that an efficient network is a tree union of triangles, so the

number of links under full risk sharing is 3(n − 1)/2. Since every link incurs the cost κ for

both agents, full risk sharing is therefore efficient if and only if V (n− 1) ≥ 3(n− 1)κ.

�

B.1.2. Proof of Proposition SA9.

Proof. Let L be a tree union of triangles and consider one such triangle τ . Without loss

of generality label the agents in this triangle 1, 2 and 3. Consider adding the agents to the

network in an arbitrary permutation. For any such permutation, the last agent to be added

from the set {1, 2, 3} completes the triangle τ . As L is a tree union of triangles, prior to

completion of this triangle, agents 1, 2 and 3 cannot risk share with each other and must

be in different risk-sharing components of the network L′(L). Thus, the completion of the
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triangle τ reduces the number of risk-sharing components by 2, generating additional value

2V . So in the Myerson value calculation, the presence of the triangle τ generates an additional

expected payoff for each of the agents {1, 2, 3} equal to 2V/3 (as each is last to arrive in 1/3

of the permutations, and so each completes τ , thereby generating risk-sharing benefits of 2V ,

in 1/3 of the permutations). Thus, in a tree union of triangles an agent’s payoff before link

formation costs is |N(i;L)|V/3.

As after a link is deleted one sharing triangle is lost (as no triangles share links in a tree

union of triangles) deleting a link causes that agent to lose benefits 2V/3. Thus an agent does

not want to delete any one of their links in a tree union of triangles if and only if 2V/3 > κ.

Consider now the incentives of two unconnected agents i and j to form an additional link

lij . As i and j are unconnected they are in different risk-sharing triangles. If the link lij

does not create a new triangle with some agent k, then it does not facilitate any additional

risk-sharing on any subnetwork that can be reached by adding the agents in sequentially.

Hence, agents i’s and agent j’s Myerson value is unaffected, but they pay a cost κ each to

form the link. As such deviations are unprofitable, we can restrict attention to link lij that

would be part of a triangle once added. Let τ be the triangle on L∪{lij} between agents i, j

and some other agent k. Thus lik ∈ L and ljk ∈ L. Upon its completion (i.e., when the last of

i, j or k is added for a given arrival order) the triangle τ facilitates new risk sharing between

agents i, j and k thereby reducing the number of risk-sharing components by 2, if and only

if both i and k and j and k were not able to risk-share with each other before. As i and k

are connected on L, and L is a tree union of triangles, they must be part of a risk-sharing

triangle on L with another agent k′. Hence they are already risk-share with each other if and

only if k′ has already been added (i.e., k′ is not the last agent to be added in the permutation

among the four agents i, j, k, k′). This happens in 3/4 of the permutations. Similarly, agents

j and k must also already be part of a risk-sharing triangle with another agent k′′ 6= k′ (were

k′′ = k′ this would imply that two risk-sharing triangles in L share a link lk′k, but then L

would not be a tree union of triangles). So risk sharing among agents j and k is also already

possible if k′′ is not last in the permutation among the four agents i, j, k, k′′ (see Figure 9).

k k’’

ji

k’

Figure 9. Adding a new link that is supported. The new link is the dashed link.

.

The probability that the new triangle τ generates benefits 2V upon being added is 2(3!)/5!.

There are 5! permutations of i, j, k, k′, k′′. There are 3! permutations of i, j, k. For each of

these permutations, there are two permutations in which k′′ and k′ are the last two elements

for a permutation of i, j, k, k′, k′′. Hence the probability that k′′ and k′ are both after all
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of i, j and k in a random permutation is 2(3!)/5! = 1/10. The probability that τ generates

benefits V is the probability that either k′ is after all of i, j and k or k′′ is after all of i, j and

k, but k′ and k′′ are not both after all of i, j and k. The probability that k′ is after all of i, j

and k is 1/4. The probability that k′′ is after all of i, j and k is 1/4. Thus the probability that

τ generates benefits V is 1/2− 1/10 = 2/5. Thus the expected increase in surplus generated

by the link lij is 2V/5 + 2V/10 = 3V/5. These benefits accrue to agent i with probability

1/3, to agent j with probability 1/3 and to agent k with probability 1/3. Thus agent i and

j have a profitable pairwise deviation to form the link if and only if V/5 > κ. Thus a tree

union of triangles is pairwise stable if and only if 3V/5 ≤ 3κ ≤ 2V as claimed.

When it is possible to delete multiple links at once, a lower bound on the benefit lost

per link deleted in a tree union of triangles is V/3. Recall that in a tree union of triangles

an agent’s payoff before link formation costs is |N(i;L)|V/3. Thus, if after a deletion all

remaining links still facilitate risk-sharing, only V/3 will be lost per link deleted. If after the

deletion some of remaining links are not able to facilitate risk-sharing, the loss per link will be

greater. The bound of V/3 is tight. For example, if an agent simultaneously deletes all their

links this bound will be achieved. As the amount saved in link formation costs from deleting

a link is κ, it then follows that a network is pairwise stable and also stable to multiple link

deletions if and only if 3V/5 ≤ 3κ ≤ V .

Finally, note that in the empty network the incremental benefits of forming a link lij are

0 as it does not permit any risk-sharing. Hence, the empty network is pairwise stable. �

B.1.3. Proof of Proposition 17.

Proof. Part (i): By Proposition 16, efficient networks are tree unions of triangles and by

Proposition SA9 all these networks are equally pairwise stable. Thus any difference in stability

between the efficient networks in terms of stability must be due to tripletwise deviations that

form at least two links among the three agents. Thus, there are two cases to consider—when

a triplet deviates by adding two links and when a triplet deviates by adding three links.

We consider these cases shortly. Before that, it is helpful to define a new distance measure

for tree unions of triangles. By the definition of a tree union of triangles, any L tree union

of triangles can be decomposed into a sequence of triangles such that each triangle in the

sequence shares a single node with triangles earlier in the sequence. Thus, for any two nodes

i and j on a tree union of triangles L, there is a minimal subset of these triangles that must

be added for i and j to be path connected. We define the triangle distance between i and

j 6= i on a tree union of triangles L to be the cardinality of this set of triangles and denote

the distance by ∆(i, j;L). For example, in Figure 10 we have ∆(i, j;L) = 4, ∆(i, k;L) = 5

and ∆(k, j;L) = 1.

.

Case A (two links): For the additional links to be valuable they must create a triangle.

Thus, when the triplet adds two links, the other link must already be present. Without loss,
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j

k

i

Figure 10. A tree union of triangles L

label this triplet i, j, k and suppose that lij ∈ L is the link in this triangle that is already

present. We let τ denote this triangle between i, j and k. As L is a tree union of triangles,

lij must be supported and there must be an agent k′ such that lik′ ∈ L and ljk′ ∈ L. Figure

11 shows the subnetwork of L among agents i, j, k and k′, including the links that would be

formed by the deviation.

If agents i, j and k deviate to form τ , the probability that agents i and j could risk-share

without the links lik and ljk at the time τ is completed, for a random arrival order, is the

probability that agent k′ has already been added—i.e., 3/4 (the probability that k′ is not last

to arrive out of i, j, k, k′). Figure 11 shows the subnetwork of L among agents i, j, k and k′,

and the links that would be formed by the deviation which are dashed.

j

ki

k’

Figure 11. A subnetwork of a tree union of triangles L induced by agents
i, j, k and k′ is shown by the solid links. A possible tripletwise deviation among
agents i, j and k through the creation of the links lik and ljk is shown by the
dashed links.

.

The probability that agents i and k can already risk share depends on whether there would

be a supported path between them when the triangle τ is completed. Recall that ∆(i, k;L) is

the triangle distance between i and k. Without loss, suppose that ∆(i, k;L) ≥ ∆(j, k;L). A

supported path between i and k will exist upon the completion of τ if and only if all agents

in the triangles counted in the triangle distance between i and k are already present. This

requires 1+2∆(i, k;L) agents, including i, j and k to be present when τ is completed. Letting

x = 1 + 2∆(i, k;L), the probabilty of this is the probability that i, j or k arrive last in the

arrival order among these x agents, i.e., 3(x− 1)!/x! = 3/x.

There are two possibilities to consider (given that ∆(i, k;L) ≥ ∆(j, k;L)) when calculating

the probability that agents j and k can already risk-share upon the completion of τ . First,

we could have ∆(i, k;L) = ∆(j, k;L), in which case agents j and k will be path connected
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upon the completion of τ if and only if i and k are path connected upon the completion

of τ . Moreover, in this case, i and k (and thus also j and k) are path connected upon the

completion of τ only if the triangle (i, j, k′) is present upon the completion of τ . An example

of this case is shown in panel (A) of Figure 12. Thus the probability that the triangle τ

generates benefits 2V upon its completion is 1/4 (i.e., the probabilty k′ is last to arrive of

i, j, k and k′), and the probability it generates benefits of exactly V upon its completion is

1− 1/4− 3/x. So the expected benefits τ generates are V (5/4− 3/x).

j

ik

(a)

j

ik

(b)

Figure 12. (A) A triplet deviation for agents i, j and k in which the triangle
distance between both agents i and k and agents j and k is 6. (B) A triplet
deviation for agents i, j and k in which the triangle distance between agents i
and k is six and between agents j and k is five.

The second possibility is that ∆(j, k;L) = ∆(i, k;L)− 1. An example of this case is shown

in panel (B) of Figure 12. Consider a labeling of agents consistent with lik and ljk being

the new links and lij being already present. If ∆(i, k;L) is the same for both possibilities,

then the incentives to deviate in this case are always weaker. This is because we can match

permutations such that permutation by permutation the risk-sharing value attributable to

the new links, upon completion of τ , is weakly lower now than under the first possibility.

For example, in Figure 12(a), consider any permutation in which k′ is the last agent to be

added and j is the second to last agent to be added. In this case, τ generates value 2V as

upon the addition of j none of i, j or k would be able to risk-share with each other without

the new links. Now consider the same sequence of agents for the example shown in Figure

12(b) (where, in this figure, agents j and k′ have swapped position in comparison to before).

Now, when j is added, agents k and j would be able to risk-share without the new links

because they will be still be path connected. Hence the new links only generate additional

risk-sharing benefits of V .
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On any tree union of triangles L there are at least two leaf triangles (such that two of the

agents in the triangle have degree 2). Thus, if the maximal triangle distance between any two

nodes on L is z, there is a pair of connected nodes i, j whom are both triangle distance z from

some other node k. Hence, for the triplet of agents with the strongest incentives to deviate

by forming two links on any tree union of triangles L, the triangle distance between the

agents without links will be equal to the maximum triangle distance in the network. Thus,

the maximum incentives over all triplets in a tree union of triangles L, for them deviate by

forming two links, is increasing in the maximum triangle distance on the network which we

call the triangle diameter. For example, for the tree unions of triangles shown in Figure 12

the triangle diameter is 6 and for the deviation shown in panel (A) the triangle distance

between agent i and k and between agents j and k are equal to 6. The friendship network

has a triangle diameter of 2, which is strictly lower than for any other tree union of triangles

that is not a friendship network. The incentives for some triplet to deviate on a tree union

of triangles is therefore strictly lower on a friendship network than any other tree union of

triangles.

Case B (three links): Again the additional links must create a triangle and facilitate risk

sharing among the agents. Without loss, label these agents i, j and k and the triangle they

create from their deviation τ . For the three links to be added, these agents must all initially

be in different risk-sharing triangles. Moreover, as L is a tree union of triangles, there is a

unique set of risk-sharing triangles among any two of them that connects them. Let X be the

set of agents in the risk-sharing triangles connecting i and k, let Y be the set of agents in the

risk-sharing triangles connecting j and k, and let Z be the set of agents in the risk-sharing

triangles connecting i and j.

The triangle τ , upon its completion for a random arrival order, permits new risk sharing

among the triplet generating value 2V if and only if none of the following conditions hold:

(i) agent i or k is the last to arrive among the agents in the set X; (ii) agent j or k is the

last to arrive among the agents in the set Y ; (iii) agent i or j is the last to arrive among

the agents in the set Z. This is a complex (although tractable) combinatorial calculation to

write down. However, for our purposes, what matters are the following two facts: (a) this

probability increases as additional agents are added to any of the sets X, Y or Z (whether

these agents are present in the other sets or not); (b) this probability increases as the sets

X,Y and Z become less overlapping holding their individual cardinalities fixed. For example,

holding the sets Y and Z fixed, and the cardinality of X fixed, if |X ∪Y | or |X ∪Z| increases

the probability increases.

The triangle τ , upon its completion, permits new risk sharing among the triplet generating

value V or 2V if and only if at most one of the following conditions hold: (i) agent i or k

is the last to arrive among the agents in the set X; (ii) agent j or k is the last to arrive

among the agents in the set Y ; (iii) agent i or j is the last to arrive among the agents in the

set Z. Again, for our purposes, what matters is the following two facts: (a) this probability
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increases as additional agents are added to any of the sets X, Y or Z (whether these agents

are present in the other sets or not); (b) this probability increases as the sets X,Y and Z

become less overlapping holding their individual cardinalities fixed.

As i, j and k are in different risk-sharing triangles on L (and no triangles in a tree union

of triangles share a link), we have the following inequalities on cardinalities:

(1) |X|, |Y |, |Z| ≥ 5,

(2) |X ∪ Y |, X ∪ Z|, |Y ∪ Z| ≥ 7,

(3) |X ∪ Y ∪ Z| ≥ 7.

For any given tree union of triangles, when considering the stability of it with respect to

these deviations, we are interested in the triplet of agents that has the strongest incentives

to deviate. These incentives are again minimized in the friendship graph. The friendship

graph achieves the aforementioned bounds for any triplet of agents that can deviate in this

way. Moreover, it is straight-forward to see that for any other tree union of triangles, the

bounds are not achieved—there must exist two agents with a tree distance greater than 2,

and without loss these agents can be labeled i and k such that |X| ≥ 7.

Part (ii): By Proposition SA9 the payoff of each agent is proportional to its degree.

Among tree unions of triangles the friendship graph maximizes the degree of the highest

degree agent and set the degree of all remaining agents to 2. As all agents in all tree unions

of triangles must have degree of at least 2 the argument used in the proof of Proposition 6(ii)

in the main paper goes through unchanged.

�

C. Permitting some free links

This section replicates and then extends Section 6.4 in the main paper.

In practice, relationships are formed for many reasons, and there will be some relation-

ships that exist for reasons unrelated to risk sharing but nevertheless permit risk sharing.

These links might, for example, represent family relationships or close friendships formed in

childhood. In effect, these are relationships are formed at no cost the purpose of risk sharing,

providing another explanation for why real-world risk-sharing networks are denser than tree

networks. We extend our baseline model to permit this possibility.

Let L̂ denote the exogenously given set of links that can be formed at no cost. As, by the

Myerson value calculation, a link strictly increases the expected utility an agent receives in

a risk-sharing arrangement, we assume that all such links are always formed. The network

L̂ will consist of a set of components, each of which contains agents from the same group.

For each component C, we identify an agent i∗(C) ∈ argmini maxjmdij(C). This is an agent

who has the lowest maximum Myerson distance to any other agent in component C. We

will refer to agent i∗(C) as the Myerson distance central agent in component C and let Ci

denote the component to which i belongs. Considering all components, we then have a set
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of Myerson distance central agents I∗ = (i∗(C))C . Finally, we identify a Myerson distance

central agent associated with the largest distance, i∗∗ ∈ argmaxi∗∈I∗ maxj∈Ci∗ mdi∗j .

We dub a network generated by forming all free links, and the links li∗i∗∗ for all i∗ 6=
i∗∗, a central-connections network. Suppose there are k different groups and k′ ≥ k initial

components. The set of efficient network then comprises the set of networks in which there

is a single component and k′ − k within group links are formed (i.e., the minimal number of

costly links that must be formed for there to be a single component).5 Central-connections

networks are always efficient. They are also the most stable networks within the class of

efficient networks.

Proposition 18. Suppose there is one group. If any efficient network is stable, then all

central-connections networks are stable.

Proposition 18 shows that when some within-group are formed at no cost, the most stable

efficient network forms all additional links required for risk sharing with a single agent. As

payoffs are proportional to degree, this again pushes villages toward inequitable outcomes.

We now prove Proposition 18.

Proof. Consider two components C and C ′. For two agents i, j in component C, recall that

md(i, j, C) equals 1/2 less the probability that a path exists between i and j on C upon the

arrival of i. Suppose now we take two components C and C ′. Let agents i, k be in component

C and agents j, k′ be in component C ′, and form the bridging link lkk′ . The probability a

path exists between i and j upon i’s arrival is now is equal to the probability that a path

exists between i and k on C multiplied by the probability that a path exists between k′ and

j on C ′. This is because these events are independent, and when both path exist agents k

and k′ must have arrived before i and so the link lkk′ must be present. It follows that

argmax
i,j

mdij(C ∪ C ′ ∪ {lkk′}) = {i, j : i ∈ argmax
l

mdlk(C), j ∈ argmax
l

mdlk′(C
′)}.

Thus the network generated by forming all free links, and the links li∗i∗∗ for all i∗ 6= i∗∗

minimizes the maximum Myerson distance on an efficient network and, by Lemma 4, is

stable if any other efficient network is stable. �

When there are multiple groups, central-connections networks within group with the agent

i∗∗ providing the across group link(s) continue to work well. With multiple groups, agents’

incentives to form superfluous within-group links depend on two things. First, as before,

whether the link will be essential for a random arrival order, and second, unlike before,

how many agents from other groups the link provides access to upon i’s arrival when it is

essential. Incentives to form a superfluous within-group links are increasing in the number of

agents from other groups the link provides access to, and decreasing in the number of agents

5As before, the same set of risk-sharing arrangements can be implemented on any given component, and as
expected utility is transferable, given that formation costs have been minimized, any point on the Pareto
frontier can be obtained.
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within-group the link provides access to. These considerations make superfluous links to the

agent providing the across group link(s) particularly valuable. However, by construction the

network generated by forming a central-connections network within-group, with the agent i∗∗

providing the across group link(s), minimizes the maximum probability that a superfluous

link to the agent providing the across group link(s) will be essential for a random arrival

order. It thus minimizes the maximum incentives for an agent to form a superfluous link

within-group to the agent providing the across group link(s).

Considering the incentives within a group to efficiently form an across-group essential link,

a central-connections networks within-group is also likely to do well. By Lemma 9 more

Myerson central agents have better incentives to form across group links. While central-

connections networks maximize a slightly different notion of the centrality of the most central

agent, in this case agent i∗∗, these measures of centrality are likely to be highly correlated.

We therefore expect central-connections networks within-group to provide relatively good

incentives for across group links to be formed.

D. General tensions between stability, efficiency and inequality

Like earlier sections, here we provide a more detailed treatment of a corresponding Section

in the main paper. The corresponding section this time is Section 6.5.

The purpose of this section is to document a general fundamental tension between equality

and efficient stable networks. We begin by relating different graph-theoretic concepts to

stability, efficiency, and inequality.

D.0.1. Equality. We would like to say something general about inequality for all inequality

measures in the Atkinson class on formed networks for any symmetric payoff function u :

L → R. Unfortunately, without further restrictions on how network positions translate into

payoffs, it is impossible to compare two networks in general. However, it is possible to

pose and answer in general the question of when payoffs will be guaranteed to be perfectly

equitable.

We proceed under the assumption that only agents’ network positions matter for their

payoffs—specifically, we require agents in identical network positions to receive the same

payoffs. Intuitively, then, if all agents are in identical positions, they must receive equal

payoffs. The set of networks for which this holds, thereby guaranteeing perfectly equitable

outcomes, will be a useful benchmark that helps identify a general tension between equality

and efficiency/stability.

In order to formalize the idea that agents are in identical network positions, we need

to introduce some graph theory notation and terminology. We limit attention to connected

networks. Every network is implicitly labeled, and we identify the set of labels with the set of

nodes N. Two networks L1 and L2 are called isomorphic, written L1 ∼I L2, if they coincide

up to labeling, that is, up to a permutation of N. They are also automorphic if given the

permutation of nodes associated with the isomorphism f , lf(i)f(j) ∈ L2 if and only if lij ∈ L1.



29

When networks L1 and L2 are automorphic we write L1 ∼A L2. A simple undirected binary

graph L ∈ L is vertex transitive if for every given pair of nodes i and j in N, there exists an

automorphism f : N→ N such that f(i) = j. Thus when a network is vertex transitive, we

can take a node i and map it to the position of any other node j, by changing the label of

j to i, and there exists a way of relabeling the other nodes such that all nodes have exactly

the same neighbors as before and the structure of the graph is preserved. Thus the positions

of any two nodes i and j in a vertex-transitive network are equivalent in a certain sense, and

it is intuitive that the agents should receive the same payoff.

To formalize the idea that vertex transitivity is the key network symmetry condition for

equal payoffs we show that for a large class of payoff functions mapping network positions into

payoffs, payoffs are identical if and only if the network is vertex transitive. In principle, an

agent’s payoff can depend not only on their position in a network L, but also their position in

subnetworks of L. Moreover, we might want to assign different subnetwork values to agents

in the same subnetwork that vary with different orderings of the agents, and in particular,

some notion of the marginal effect an agent has on the subnetwork. This gives us a rich basis

for considering network payoffs.

Define T as the ordered set of permutations over the nodes N. Note that with regards

to any node i ∈ N, every permutation τ ∈ T maps one-to-one onto two specific induced

subgraphs: one, the subgraph supported by nodes up to and excluding i, and two, the

subgraph supported by nodes up to and including i. Let ν : T × V ×L → R be the function

which assigns to every pair {τ, i} a “marginal value” with regards to such implied pairs of

subgraphs in L. Let Siτ ⊆ L denote the induced subgraph supported by those nodes up to

and including i in τ , while S−iτ = Siτ \ {i} is the node-deleted subgraph of Siτ with regards

to i. We require νi(τk) = νj(τ`) if the respective subgraphs including, respectively, i and

j are isomorphic (Siτk ∼I S
j
τ`) and the respective subgraphs excluding, respectively, i and

j are isomorphic (S−iτk ∼I S
−j
τl ). This confines node identity only to matter in so far as it

corresponds to a position in a subnetwork. Let Vi : Rn! → R be the function which maps node

i’s multi-set of n! marginal values {νi(τ)}T in L onto a “graph value”, where n! is simply the

cardinality of T . So the overall payoff we assign to an agent depends on all their possible

marginal values. We restrict how these marginal values are mapped into payoffs by requiring

only anonymity, i.e. any pre-image under Vi is closed under permutation. Hereafter, we let

νi and Vi indicate the conditioning on some node i when convenient.

Let V denote the space of admissible functions Vi, and F denote the space of admissible

functions νi. We will say that a result applies generically if it applies to all but a zero measure

set of admissible functions νi and all but a zero measure set of admissible functions Vi. Of

course, many non-generic mappings (Vi, νi) may be of interest. That non-withstanding it is

of interest to study what network symmetry is needed in general for agents to receive equal

payoffs.
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We proceed to pin down the simple graphs for which expected payoffs Vi must be uniform

for any payoff mapping (including the Myerson value).

Proposition SA10. Vi = Vj for all i, j ∈ N if L is vertex transitive and, generically, Vi =

Vj for all i, j ∈ N only if L is vertex transitive.

Proof. Sufficiency. Consider any two nodes i and j as well as some permutation τ . Let

f(τ) ∈ T be the image of τ under the automorphism mapping i to j, which exists by

the vertex transitivity of L. As automorphisms by definition preserve adjacency relations,

Sjτ ∼I Sf(i)f(τ) and S−jτ ∼I S−f(i)f(τ) for all i, j ∈ V. Hence, νj(τ) = νi(f(τ)) by the earlier

requirement of identity in ν under isomorphism of the implied graph arguments, for any

τ ∈ T . Fix the set of all of i’s marginal values in L, written {νi}T , in arbitrary order. By

the foregoing argument, there exists a bijection between {νi}T and {νj}T through f . By

anonymity of V , hence V ({νj}T ) = V ({νi}f◦T ) = V ({νi}T ).

Necessity. We start with a well known result from graph theory. A simple undirected

binary graph of finite order is vertex transitive if, and only if, its one-node deleted subgraphs

are isomorphic (Thomassen, 1985). Thus if we have a graph that is not vertex transitive

there exist nodes i and j such that L\{i} 6∼I L\{j}. Hence generically, for any permutation

τ in which i is last, and any permutation τ ′ in which j is last, νi(τ) 6= νj(τ). So generically,

V ({νi}T ) 6= V ({νj}T ). �

Proposition SA10 shows that for a large space of payoff functions for which all that matters

is agents’ network positions, vertex transitivity guarantees equal payoffs and is also required

for equal payoffs, generically. A non-generic payoff function in this space, that can be applied

in the special case of transferable utilities (which is not assumed for the above result) is the

Myerson value. As we have seen, vertex transitivity is sufficient but not necessary for equal

payoffs under the Myerson value. With the Myerson value the weaker symmetry requirement

of regular networks (so that each node has the same number of neighbors) is sufficient (see

Section 4 of the main paper).

Proposition SA10 takes its informational basis for determining payoffs to be similar to that

used by the Myerson value. However, this informational basis is very broad and any way of

determining payoffs based on coarser information is covered by the result. For example, the

result covers any payoff function that depends only on each agent’s set of friends (neighbors),

set of friends of friends, set of friends of friends of friends, and so on, for every possible

subnetwork of L. As a more specific example, if payoffs were proportional to each agent’s

eigenvector centrality they would depend only on the structure of the network L, and so

by Proposition SA10 agents would receive identical payoffs on a vertex transitive network.6

Similarly, if payoffs were proportional to agents’ marginal contributions to the spectral radius

of the network L, then they would depend only on the structure of the network L and the

6As one of many ways in which this can be implemented, set νi(τ) equal to i’s eigenvector centrality on L for
all τ in which i is last to arrive, and to 0 otherwise, and let Vi equal maxτ∈T νi(τ).



31

subnetworks L \ {i} for all i ∈ N , and so, by Proposition SA10 agents’ payoffs would be

identical on a vertex transitive network.

D.0.2. Efficiency. A network L = (n,L) is Pareto efficient if there is no network L′ such

that the payoffs of the agents on the network L′ = (n,L′) Pareto dominate those on L (i.e.,

all agents receive weakly higher net payoffs on L′ than L, and at least one agent receives a

strictly higher payoff).

To get a handle on the set of Pareto-efficient networks, we assume that shorter path lengths

facilitate weakly better risk sharing.

Assumption 19. All Pareto-efficient networks L = (n,L) have one component, and there

is no alternative network L′ = (n,L′) such that |L′| ≤ |L| and the path length distribution of

L′ first-order stochastically dominates the path length distribution of L.

This enables us to eliminate some configurations as being Pareto efficient. We also make

an assumption that risk-sharing relationships are sufficiently costly to maintain that dense

risk-sharing networks are Pareto inefficient.

Assumption 20. There are no Pareto efficient networks L = (n,L) in which |L| ≥
√
n− 1.

To aid interpretation, a realistic lower bound on the size of a typical village is 100, while a

realistic upper bound is 500. Thus when n = 100 this rules out Pareto-efficient risk-sharing

networks with an average degree of more than about 10 links, while for n = 500 it rules

out Pareto-efficient risk-sharing arrangements with an average degree of more than about

22 links. As a comparison, using the data collected by Banerjee, Chandrasekhar, Duflo and

Jackson (2013) across 75 rural villages in southern India, the mean number of households in

a village is 209 and the average number of risk-sharing relationships a household has is less

than 4. Although there is no guarantee that the networks we observe in practice are efficient,

or even close to efficient, the fact that risk-sharing networks are much sparser in practice

than required by our upper bound is suggestive that the costs of forming links are sufficiently

high to make Assumption 20 reasonable. Moreover, if there is no underinvestment in links

in stable networks, as in our benchmark model, then the observed density of links is a valid

upper bound for the density of links in Pareto-efficient networks.

D.0.3. Stability. Finally, we turn to stability. Since we want to make a point at a high level

of generality, without a concrete model specification, we place no restrictions on stability.

The efficient stable networks are of course constrained by the assumptions we’ve made on

efficiency, and this tension with equality is sufficient for our impossibility result.

D.0.4. A general tension. The next result formalizes the general tension between efficient

stable networks and equality by showing that, given the assumptions we’ve made, a network

cannot be both Pareto efficient and regular—which, as argued above, is in general necessary

but not sufficient for perfectly equitable outcomes.
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Proposition 19. Given Assumptions 19 and 20, there does not exist a Pareto-efficient and

regular network.

Proof. Towards a contradiction suppose there exists a regular Pareto efficient network L =

(n,L) of order r in which Assumptions 19 and 20 are satisfied.

By Assumption 19 all Pareto efficient networks have one component, and there is no

alternative network L′ such that |L′| ≤ |L| and the path length distribution of L′ first order

stochastically dominates the path length distribution of L. As L has one component, it

contains at least n− 1 links. Consider now a network L′ = (n,L′) that has the same number

of links as L and contains the star network on n nodes as a subnetwork. Such L contains at

least n − 1 links, such a network exists. The path length distribution for the network L′ is

that there are n(n − 1)/2 − |L| pairs of agents that have path length 2 and |L| agents that

path length 1. This is because nodes i and j have a minimum path length of 1 in L′ if and

only if l′ij ∈ L′, while the remaining n(n − 1)/2 − |L| pairs of nodes must have a minimum

path length of 2 because the star network is a subnetwork of L′. As L is Pareto efficient,

it must have exactly the same path length distribution. It will also have |L| minimum path

lengths of 1 and to prevent its path length distribution from being first order stochastically

dominated by L′ the remaining minimum path lengths must be 2. Hence L has a diameter

of 2.

In a regular network of order r, each node has r neighbors. A given node i then has r

neighbors, and each of these have r − 1 neighbors other than i. Were there any other nodes

in the graph, the diameter would be more than 2. Hence, an upper bound on the number of

nodes in the network L is n̄ := 1 + r + r(r − 1) = r2 + 1. Thus n ≤ r2 + 1. Rearranging this

inequality, the order of L must be r ≥
√
n− 1. However, this violates Assumption 20, so we

have a contradiction. �

E. Timing of Negotiations

Here we provide a more detailed treatment of the analysis in Section 6.6 of the main paper.

We begin by formally introducing a version of our basic model in which establishing links

and negotiating risk-sharing agreements using these links happen at the same time. We refer

to this model as the one-stage negotiations model. Let the socio-economic environment be

as it is defined in Subsection 2.1 of the main paper. But now we consider the following

network formation game ex ante (before the realization of endowments), in which agents

simultaneously decide which other agents they would like to establish a link with, and what

risk-sharing agreement to propose to these agents. Formally, each agent i selects a subset of

agents A(i) ⊆ N/{i} to approach, and for each j ∈ N/{i} proposes a collection of risk-sharing

agreements τij(L, ω) for every network L such that lij ∈ L, and for every ω ∈ Ω. Thus, a

proposal specifies a proposed risk-sharing agreement with j for any possible network that can

form. A link lij forms if and only if (i) j ∈ A(i) and i ∈ A(j); (ii) τij(L, ω) = −τji(L, ω) for

every network L such that lij ∈ L, and for every ω ∈ Ω. In words, the link is established if both
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agents approach each other and propose the same network-contingent and state-contingent

transfer agreement with each other. As before, if a link is formed, both agents pay the same

cost towards forming it. Successfully formed links comprise the realized network L, and after

endowment realizations neighboring agents on L carry out the transfers specified by their

agreements for network L and the particular endowment realization.

Pairwise stability can be extended in a straightforward manner to this more complicated

network formation game. Let τ = (τi)i∈N denote the collections of proposals of different

agents, and let L(τ) be the network established by τ .

We say that the collection of proposals τ and the resulting network L(τ) are pairwise

agreement stable if and only if:

(i) there is no i, j ∈ N with lij ∈ L(τ) such that i would strictly benefit from de-

viating from A(i) to A(i)/{j} while keeping the proposed τik unchanged for every

k ∈ A(i)/{j};
(ii) there are no two agents i and j and transfer agreement τ ′ij who would both strictly

benefit from a joint deviation of i approaching A(i)∪{j} and proposing an agreement

with j of τ ′ij while keeping the proposal to all agents in A(i)/{j} unchanged, and j

approaching A(j) ∪ {i} and proposing an agreement with i of −τ ′ji while keeping the

proposal to all agents in A(j)/{i} unchanged.7

The next result establishes that networks and surplus divisions that are pairwise stable in

our two-stage base model continue to be pairwise agreement stable in the one-stage model

defined above. For every network L, let τ∗(L) be a collection of Pareto-efficient bilateral

transfer agreements between neighboring agents in L that results in division of the total

surplus according to the Myerson values of agents.

Proposition SA11. Let L∗ be a pairwise stable network in our baseline model in which the

total surplus from risk sharing is divided according to the Myerson values of agents. Let the

resulting vector of ex ante expected payoffs be u. Then in the one-stage negotiations model

there is a pairwise agreement stable collection of proposals τ with resulting network L(τ) = L∗

such that the resulting ex ante expected payoffs of agents are u.

Proof. For every agent i, consider the strategy A(i) = (j|lij ∈ L∗) and τij = τ∗ij(L) for every

j ∈ A(i) and all L. Then the resulting network is L∗ and the resulting ex ante payoffs are u

by construction. We need to show that τ with the resulting network L∗ is pairwise agreement

stable. Condition (i) in the definition of pairwise agreement stability holds because given the

above strategies, i not strictly benefitting from deviating from A(i) to A(i)/{j} while keeping

the proposed τik unchanged for every k ∈ A(i)/{j} is equivalent to i not strictly benefitting

in the first stage of the original model from cutting the link with j while keeping all other

links. The latter holds because we assumed L∗ to be pairwise stable in the original model.

7Note that this formulation allows both for lij ∈ L(τ) and lij /∈ L(τ). In the former case the deviation is a
renegotiation of the agreement between the two while in the latter case it is forming a new link with a new
agreement.
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We now turn to showing that condition (ii) in the definition of pairwise agreement stability

also holds, for every i, j ∈ N . Consider first a pair i and j such that lij ∈ L∗. Since

τ induces a Pareto-efficient risk-sharing arrangement on L∗, given all other bilateral risk-

sharing agreements on L∗ specified by τ , there is no transfer agreement τ ′ij between i and

j that strictly benefits both of them relative to τij . Consider now a pair i and j such that

lij /∈ L∗. In the original model, given L∗, a joint deviation by i and j to form a link is

not strictly profitable for both of them, because L∗ is pairwise stable. In the original model

i and j divide the total extra surplus from established network L∗ ∪ lij versus L∗ equally

as well as the cost of forming lij . By construction, the maximum total surplus they can

achieve in the one-stage model, given the above strategies, when forming the link lij is the

same as in the original model. Therefore i and j have no joint deviation in the one-stage

model involving establishing lij with any transfer agreement between them, while keeping all

transfer agreements with other agents unchanged, that strictly benefits both of them. �

F. Overinvestment and Underinvestment Examples

In this Section we provide an example of over-investment within group in the unique stable

network and a related example of underinvestment across group in the unique stable network.

We begin by assuming there is one group with s members connected by a network L.

Equation 11 in the main paper implies that Myerson distance of two agents i, j such that

lij 6∈ L is greater than 1/2, while the Myerson distanace between i and j if they form the link

lij would be 1/2. Thus i and j’s gross payoff strictly increases if the link lij is added. So, for

κw sufficiently close to 0, in all stable networks for any pair of agents i, j the link lij must be

formed; The unique stable network is the complete network and there is overinvestment.

Suppose now there are two groups, g, g′ both with s members and keep the same parameter

values from the previous example. By equation 13 in the main paper, the incentives to form

within group links are weakly increased by the presence of any across group links. Thus

in all stable networks the network structure within-group must be complete networks; All

possible within-group links must be formed. Suppose these are the only links formed so that

no across-group links are formed. Denote this network L. From equation 13 the change in

total variance achieved by connecting an agent i from group g to an agent j from group g′ is

strictly increasing in s (the size of both groups). Given the Myerson value calculation, this

means that the marginal contribution of the link lij to total surplus (the certainty equivalent

value of the variance reduction) is strictly greater on L∪{lij} than it is on any strict subgraph,

including all those formed when the later of i and j arrives in the Myerson calculation. This

implies that (MV (i;L∪ lij)−MV (i;L))+(MV (j;L∪ lij)−MV (j;L)) < TS(L∪ lij)−TS(L)

for all lij : i ∈ Sg, j ∈ Sg′ . So, setting κa such that

MV (i;L ∪ lij)−MV (i;L) +MV (j;L ∪ lij)−MV (j;L) < 2κa < TS(L ∪ lij)− TS(L),



35

the network L is the unique stable network and there is underinvestment (in across-group

links) in all stable networks.
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