Supplementary Appendix to Commitment-Flexibility Trade-off and Withdrawal Penalties

Attila Ambrus*

Duke University, Department of Economics

Georgy Egorov†

Northwestern University, Kellogg-MEDS

September 2012

1 Additional formal results

Proposition 1 Take any convex functions $U(\cdot)$ and $W(\cdot)$ such that the function z(u) has at least one point $u_0 \in (0, y)$ with $\left|\frac{dz}{du}\right|_{u=u_0} \ge 1$ (this would be the case, for example, if W=U, or if $W'(0) = \infty$ and $W(0) \neq -\infty$). Then there exists an open set of parameter values μ , θ_l , β (with θ_h found from $\mu\theta_l + (1 - \mu)\theta_h = 1$) such that the optimal contract necessarily includes money-burning.

Proof of Proposition 1. Given $U(\cdot)$ and $W(\cdot)$, the set A is fixed. Let w=z(u) be the equation that determines the upper boundary of this set and let $k=\left|\frac{dz}{du}(u_0)\right|\geq 1$. By assumption that $W(0)\neq -\infty$ and convexity of A, the number $s=\frac{z(u_0)-W(0)}{U(y)-u_0}\in (k,\infty)$. For any $\beta\in \left(0,\frac{1}{s}\right)\subset (0,1)$, let $\theta_l(\beta)=\beta s$. In this case, u_0 will be the u_0 from formulation of Proposition 2 in Ambrus and Egorov (2012). We have $\mu\frac{1-\beta}{\left|\frac{1}{dx}(u_0)\right|-\frac{\beta}{\theta_l(\beta)}}=\mu\frac{1-\beta}{\frac{1}{k}-\frac{1}{s}}$. But $s\in (k,\infty)$ and $k\geq 1$ implies $\frac{1}{k}-\frac{1}{s}\in (0,1)$, which means that inequality

$$\mu \frac{1-\beta}{\left|\frac{dz}{du}\right|_{u=u_0}\right|} - \frac{\beta}{\theta_l} > 1. \tag{1}$$

must hold for β sufficiently close to 0 and μ sufficiently close to 1 (and θ_l , θ_h derived by $\theta_l = \beta s$ and $\theta_h = \frac{1-\mu\theta_l}{1-\mu}$). Moreover, for μ close to 1 we will have θ_h arbitrarily high, in particular, $\theta_h > s = \frac{\theta_l(\beta)}{\beta}$. The latter implies $\beta > \frac{\theta_l}{\theta_h}$, and we have $\beta < \beta^*$ by construction, so in this case, indeed, a separating contract is optimal by Proposition 1 in Ambrus and Egorov (2012). Finally,

^{*}E-mail: aa231@duke.edu

[†]E-mail: g-egorov@kellogg.northwestern.edu

since varying u_0 would not change the inequalities above, then the set of parameters β, μ, θ_l for which money-burning is optimal contains an open set.

Proposition 2 If $\beta \in \left(\frac{\theta_l}{\theta_h}, \beta^*\right)$ (so that the optimal contract is separating but not the first-best), and $\left|\frac{dz}{du}\right|_{u=u_0} \ge 1$, then the optimal contract involves money-burning. In particular, if z(u) is such that $\left|\frac{dz}{du}\right|_{u=U(0)} \ge 1$ and $\left|\frac{dz}{du}\right|_{u=U(y)} \le \theta_h$ (i.e., $\left|\frac{dz}{du}(u)\right| \in [1, \theta_h]$ for all $u \in [U(0), U(y)]$), then for **every** $\beta \in \left(\frac{\theta_l}{\theta_h}, \beta^*\right)$ the optimal contract involves money-burning.

Proof of Proposition 2. Fix u_0 and thus $\left|\frac{dz}{du}\right|_{u=u_0} = x > 1$. Let us take $\beta_0 = \frac{\theta_l}{\theta_h} = \frac{\theta_l(1-\mu)}{1-\mu\theta_l}$ and plug it into (1). We get:

$$\mu \frac{1 - \beta_0}{\frac{1}{|\frac{dz}{du}|_{u=u_0}|} - \frac{\beta_0}{\theta_l}} - 1 = \mu \frac{1 - \frac{\theta_l(1-\mu)}{1-\mu\theta_l}}{\frac{1}{x} - \frac{1-\mu}{1-\mu\theta_l}} - 1$$
$$= \frac{x - 1}{1 - x\frac{1-\mu}{1-\mu\theta_l}} = \frac{x - 1}{1 - \frac{x}{\theta_h}} \ge 0,$$

because $x \leq \frac{\theta_l}{\beta} < \frac{\theta_l}{\beta_0} = \theta_h$ and x > 1. Notice that the left-hand side of (1) is increasing in β (again for a fixed $\left|\frac{dz}{du}\right|_{u=u_0} = x$): indeed, we have

$$\frac{d}{d\beta} \left(\mu \frac{1-\beta}{\frac{1}{x} - \frac{\beta}{\theta_l}} \right) = x\mu \theta_l \frac{x - \theta_l}{(\theta_l - x\beta)^2} > 0,$$

as $x > 1 > \theta_l$. Consequently, for $\beta > \beta_0 = \frac{\theta_l}{\theta_h}$, condition (1) holds with strict inequality, and money-burning is optimal.

To prove the second part, it now suffices to prove that for all $\beta \in \left(\frac{\theta_l}{\theta_h}, \beta^*\right)$, $u_0 > U(0)$ (then we would have $\left|\frac{dz}{du}\right|_{u=u_0}\right| > 1$ and the first part would apply). But now the first-best points are (U(y), W(0)) for θ_h and (U(0), W(y)) for θ_l . Consequently, the leftmost point of the green line corresponding to $\beta < \beta^*$ that lies in A satisfies $u_0 = U(0)$, and thus the previous result is applicable. This completes the proof. \blacksquare

2 References

Ambrus, A. and G. Egorov (2012): "Commitment-flexibility trade-off and withdrawal penalties," mimeo Duke University and Northwestern University.