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Abstract

This paper investigates how groups or coalitions of players can act

in their collective interest in non-cooperative normal form games even if

equilibrium play is not assumed. The main idea is that each member of

a coalition will confine play to a subset of their strategies if it is in their

mutual interest to do so. An iterative procedure of restrictions is used to

define a non-cooperative solution concept, the set of coalitionally rational-

izable strategies. The procedure is analogous to iterative deletion of never

best response strategies, but operates on implicit agreements by different

coalitions. The solution set is a nonempty subset of the rationalizable

strategies.
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I. Introduction

The main solution concept in noncooperative game theory, Nash equilibrium,

requires stability only with respect to individual deviations by players. It does

not take into account the possibility that groups of players might coordinate

their moves, in order to achieve an outcome that is better for all of them. There

have been several attempts to incorporate this consideration into the theory of

noncooperative games, starting with the pioneering works of Schelling [1960]

and Aumann [1959]. The latter offered strong Nash equilibrium, the first for-

mal solution concept in noncooperative game theory that takes into account

the interests of coalitions. More recently, Bernheim, Peleg, and Whinston pro-

posed coalition-proof Nash equilibrium (Bernheim et al. [1987]). This concept

has since been used to derive predictions in a wide range of economic models.

Examples include menu auctions (Bernheim and Peleg [1986]), dynamic pub-

lic good provision games (Chakravorti [1995]), bankruptcy rules (Dagan et al.

[1997]), principle-agent games (Gupta et al. [1998]), corporate takeovers (Noe

[1998]), common agency games (Konishi et al. [1999]), and oligopoly competi-

tion (Delgado and Moreno [2004]).

However, all of the concepts introduced so far are not being able to guarantee

the existence of a solution in a natural class of games. This casts doubt on

the validity of the solution they provide even in games in which a solution

exists. Nonexistence is especially severe in the case of strong Nash equilibrium.

Coalition-proof Nash equilibrium exists in a larger set of games, but at the

cost of imposing debatable restrictions on which coalitions of players can make

agreements with each other, and even so it cannot get around the nonexistence

issue.

This paper proposes a new solution concept, coalitional rationalizability, to
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address the issue of coalitional agreements. Attention is restricted to normal-

form games, although the principles proposed here can be applied to more gen-

eral settings. Both a direct and a procedural definition for the solution set is

provided. The latter is particularly easy to use. To obtain the set of coalition-

ally rationalizable strategies in any game, one can just use a simple iterative

procedure.

The main conceptual innovation is that I depart from the usual equilibrium

setting and present a non-equilibrium theory, like rationalizability (Bernheim

[1984] and Pearce [1984]). The coalitional agreements players can consider in

this context take the form of restrictions of the strategy space. This means that

players look for agreements to avoid certain strategies, without specifying play

within the set of nonexcluded strategies. These agreements are more general

than the ones that uniquely pin down a strategy profile for a coalition.

A restriction is supported if every group member always (for every possible

expectation) expects a higher payoff if the agreement is made than if he instead

chooses to play a strategy outside the agreement. If conjectures are associated

with the payoffs that best response strategies to these conjectures yield, then

the above requirement means that players in the group prefer any conjecture

compatible with the agreement to any for which a strategy outside the agreement

is a best response.

The construction assumes that players go through the following reasoning.

First every coalition of players looks for supported restrictions given the set of all

strategies. Then players consider the set of strategy profiles that are consistent

with all the above restrictions (their conjectures are restricted to be concentrated

on these strategies) and look for further restrictions, given this smaller set of

strategies. They continue this procedure and restrict the set of strategies further
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and further, until they reach a point at which there is no supported restriction by

any coalition given the set of strategies that survived the procedure so far. This

procedure is analogous to iterative deletion of never best response strategies

in that the order of restrictions does not matter. Furthermore it deletes all

strategies that the latter procedure eliminates. The new feature is that groups

of players, as opposed to just individual players, can delete strategies.

The set of coalitionally rationalizable strategies is the set of profiles that

survive the above procedure of iterated supported restrictions by coalitions.

The interpretation of the solution concept is that it is the set of outcomes

which are compatible with the reasoning procedure reflected by the iterative

procedure of supported restrictions. The latter restrictions come from intro-

spection, based on the publicly known payoffs of the game. They reflect im-

plicit agreements among players. In particular they have to be self-enforcing: if

a player believes that all others play according to a supported restriction then

it is strictly in her interest to play according to it.

The outline of the paper is as follows. Section 2 provides two simple examples

to provide intuition on the logic of coalitional restrictions. The examples show

that coalitional reasoning can lead to sharp predictions in certain games even

when players’ expectations are not assumed to be correct. In the first example it

leads to an equilibrium profile (so the correctness of expectations is established

as a result, as opposed to being assumed in the first place), while in the second

one it significantly reduces the set of possible outcomes. Section 3 provides

the formal construction of the theory, defining supported restrictions and the

iterative procedure that obtains the solution set. It also contains the main

results of the paper, establishing various properties of the iterative procedure

and the solution set. Sections 4 and 5 relate the solution set to other non-
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cooperative solution concepts and examine connections with Pareto efficiency.

II. Motivating Examples

This Section provides examples on how coalitional reasoning can help players

narrow down the set possibilities they should consider, and to coordinate their

action choices.

II.A. Voting with Costly Participation

Consider the following voting game. There are three potential voters, and three

possible outcomes. Assume there is a status quo outcome S and that it can

only be changed if at least two of the voters show up and vote for the same

new alternative. There are two potential new alternatives to vote for, A and

B. Showing up and casting a vote costs ε ∈ (0, 1). Voters rank the possible
outcomes the following way. Voter 1’s favorite outcome is A, then B, then

S. Voter 2’s favorite outcome is A, then S, then B. Finally, voter 3’s favorite

outcome is B, then S, then A. Assume that for every voter her favorite outcome

yields a payoff of 2, her second favorite outcome yields 1 and her least favorite

outcome has 0 (minus ε in each case if she showed up to vote). This game has

multiple equilibria, and in fact for all three outcomes in the game there is some

Nash equilibrium that yields that outcome. In one equilibrium all three voters

stay at home and the status quo outcome prevails. In another equilibrium voters

1 and 3 show up and vote for outcome B, while voter 2 stays home. And in

yet another equilibrium voters 1 and 2 show up and vote for outcome A, while

voter 3 stays at home. The above equilibria are not Pareto-ranked (note that

each voter has a distinct least favorite outcome, so in any equilibrium someone’s

least favorite outcome is chosen). On the other hand, the following reasoning
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procedure selects a unique equilibrium in the game.

First, note that it is never rational (it is strictly dominated) for voter 3 to

show up and vote for alternative A, since voting is costly and A is her least

preferred outcome. Given that, the best possible outcome in the game for vot-

ers 1 and 2 is if they show up and vote for A. Although this point is fairly

straightforward, let us make it more rigorous, to demonstrate the logic of sup-

ported restrictions that I formally define in the next section. Fix any conjecture

concerning player 3’s strategy that allocates zero probability to player 3 voting

for A. Then the following are true. If players 1 and 2 both show up and vote for

A, they expect a payoff of 2− ε for sure. If player 1 shows up and votes for B,

her expected payoff cannot be higher than 1− ε. If player 1 stays at home, her

expected payoff cannot be higher than 1. The same are true for player 2, too

(with the addition that voting for B is not even rational for her). Therefore for

any possible conjecture concerning player 3’s strategy, both player 1 and player

2 are strictly better off coordinating on playing A than not coordinating and

playing some other strategy. Completing the argument, if player 1 and player

2 act accordingly, then outcome A is indeed implemented, no matter whether

player 3 stays at home or shows up and votes for B. Given this, voter 3 should

conclude that she is better off staying at home and not voting.

II.B. Dollar Division Game with External Reward

The second example demonstrates that even when coalitional reasoning does not

lead to a unique prediction in a game, it can considerably narrow down the set

of possible outcomes. Consider a classic dollar division game with the additional

twist that players receive an external reward in the event that players behave

“nicely”. Concretely, three players vote secretly and simultaneously on how to
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divide a dollar. If two or more players vote for the same allocation, the dollar

is divided accordingly, otherwise the dollar is lost to the players. The added

element is that if every player votes for allocations that would give all players

in the game at least a quarter dollar, then every player gets an additional $100

reward for the group being “generous”, independently of what happens to the

original dollar (in particular, even in the event that it is not allocated to the

players because of lack of agreement).1 In this game coordinating on voting

for allocations that give at least 1/4 dollar to every player is unambiguously

mutually advantageous for the players. It is not clear how the original dollar

should be divided, or whether it is reasonable to expect two or more players to

vote for the same division, and if yes then which players vote for the winning

allocation. There is a conflict of interest among players regarding how to allocate

the “last quarter”, but they have a strong incentive to propose at least 1/4 dollar

to every player, since the external reward is much bigger than the stake that is to

be divided. Players who coordinate along the line of common interest therefore

should expect each other to propose allocations (x1, x2, x3) such that xi ≥ 1/4,
∀ i ∈ {1, 2, 3}, even if they are uncertain about exactly what allocations the
others propose. It is worth pointing out that coalition-proof Nash equilibrium

does not exist and therefore does not give any prediction in this game.2

1This game can be interpreted as a simple model of the following situation. Several political
parties in a post-war country trying to form a coalitional government, and an international
organization makes a credible promise to provide a large amount of financial aid to the country
if during the negotiations parties do not try to squeeze out any of the participants from power.

2 Section 4 discusses the relationship between coalitional rationalizability and coalition-
proof Nash equilibrium in detail, and briefly revisits this game.
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III. Construction and the Main Results

III.A. Notation and Basic Definitions

Let G = (I, S, u) be a normal form game, where I = {1, ..., n} is the set of
players, S = ×

i∈I
Si, is the set of strategies, and u = ×

i∈I
ui, ui : S → R, ∀ i ∈ I

are the payoff functions. Assume that Si is finite for every i ∈ I. Let S−i =

×
j∈I/{i}

Sj , ∀ i ∈ I and let S−J = ×
j∈I/J

Sj , ∀ J ⊂ I. Similarly, for a generic s ∈ S,

let s−i = ×
j∈I/{i}

sj , ∀ i ∈ I and let s−J = ×
j∈I/J

sj , ∀ J ⊂ I. I will refer to

nonempty groups of players (J such that J ⊂ I and J 6= ∅) as coalitions.

I assume that players are Bayesian decision makers and that they can form

correlated conjectures concerning other players’ moves. Given the latter as-

sumption, a strategy is a never best response if and only if it is strictly dom-

inated (by a mixed strategy),3 therefore from this point on I use these terms

interchangeably. Requiring conjectures to be independent (to be product prob-

ability distributions over the strategy space) does not change the qualitative

results in the paper.

Let ∆−i be the set of probability distributions over S−i, representing the set

of possible conjectures player i can have concerning other players’ moves. For

every J ⊂ I, i ∈ J and f−i ∈ ∆−i let f−J−i be the marginal distribution of f−i
over S−J .

The construction involves comparing expectations of players under different

conjectures. For every f−i ∈ ∆−i and si ∈ Si let ui(si, f−i) =
P

t−i:t−i∈S−i
ui(si, t−i)·

f−i(t−i) denote the expected payoff of player i if he has conjecture f−i and plays

pure strategy si.

3For the proof of this well-known result see for instance Fudenberg and Tirole [1992], pp.
52-53.

8



Since players are Bayesian decision makers, the concept of best response

plays a central role in what follows. For every f−i ∈ ∆−i let BRi(f−i) =

{si | si ∈ Si, ui(si, f−i) ≥ ui(ti, f−i), ∀ ti ∈ Si}, the set of pure strategy
best responses player i has against conjecture f−i. For any B ⊂ S such that

B 6= ∅ and B = ×
i∈I

Bi, let Ω∗−i(Bi) = {f−i | f−i ∈ ∆−i, ∃ bi ∈ Bi such that

bi ∈ BRi(f−i)}. In words, Ω∗−i(Bi) is the set of beliefs that player i has against

which there is a best response in Bi.

Let bui(f−i) = ui(bi, f−i) for any bi ∈ BRi(f−i). Then bui(f−i) is the expected
payoff of a player if he has conjecture f−i and plays a best response to his

conjecture. That means bui(f−i) is the expected payoff of a rational player if he
has conjecture f−i.

I will consider restrictions on the supports of players’ conjectures. These

restrictions are required to be product sets. For any A such that A ⊂ S and

A = ×
i∈I

Ai, let ∆−i(A) = {f−i |suppf−i ⊂ A−i}, the set of conjectures player i
can have that are concentrated on A−i (the set of conjectures that are consistent

with player i believing that other players play inside A).

Certain product subsets of the strategy space play an important role in the

construction below. These are sets that satisfy that whenever a player believes

that others play inside the set then all her best responses are inside the set.

Following standard terminology, I call these sets closed under rational behavior.4

Definition. Set A is closed under rational behavior if it satisfies the following

two properties:

(*) A = ×
i∈I

Ai and Ai ⊂ Si, ∀ i ∈ I

4The term was introduced by Basu & Weibull [1991].
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(**) BRi(f−i) ⊂ Ai, ∀ f−i ∈ ∆−i(A) , ∀ i ∈ I.

LetM denote the collection of sets closed under rational behavior.

I assume that players coordinate on restricting their play to a subset of

the strategy space whenever by doing so each of them is guaranteed to get an

expected payoff that is strictly higher than any expected payoff he could get if

the restriction was not made and he played a strategy outside the restriction.

These restrictions, called supported restrictions, constitute the main building

block of the construction that follows.

Let A and B be such that A ⊂ S, A = ×
i∈I

Ai, B ⊂ A, B = ×
i∈I

Bi and B 6= ∅.

Definition. B is a supported restriction by J given A if it satisfies the

following two properties:

(1) Bi = Ai, ∀ i /∈ J

(2) ∀ j ∈ J, f−j ∈ Ω∗−j(Aj/Bj) ∩∆−j(A) it is the case that buj(f−j) <buj(g−j) ∀ g−j ∈ ∆−j(B) such that g−J−j = f−J−j .

Let A &J B denote that B is a supported restriction by J given A. Let

A& B denote A&J B for some J ⊂ I, J 6= ∅.

Supported restrictions are defined given a nonempty product subset of the

strategy space. The motivation is that players are certain that play is inside

this set.5 Note that the set is allowed to be the set of all strategies. The

first condition in the above definition requires that only the strategies of those

players who are members of the given group be restricted. The second condition

5For a rigorous formalization of this idea see Ambrus [2005], where coalitional rationaliz-
ability is introduced in an epistemic framework.
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requires that for any player in the coalition, any belief to which he has a best

response strategy outside the agreement yields a strictly lower expected payoff

than any belief that is consistent with other players in the coalition keeping

the agreement, holding the marginal expectation concerning the strategies of

players outside the coalition fixed.

Intuitively, this definition considers the possible expected payoffs of a player

if he chose to play a strategy to be excluded by the agreement, and compares

them to payoffs he could expect if the restriction is made (if all the other players

in the coalition confined their play to the restriction). Arguably this is the most

natural payoff comparison to use in deciding whether it is in the interest of a

player to agree upon not playing the strategies to be excluded by a restriction. A

restriction is then called supported if the expected payoffs that are compatible

with the agreement strictly Pareto dominate those that are associated with

playing strategies outside the restriction, for any fixed conjecture concerning

players’ strategies outside the coalition. In short, a restriction is supported if

every coalition member prefers the agreement to playing a strategy outside the

agreement, for every possible conjecture that he can have associated with the

above two scenarios.

The reason marginal conjectures concerning the play of players outside the

coalition are fixed is that since players make their moves secretly, the strategy

choice of players outside the coalition cannot be made contingent on whether

players in the coalition play inside B. The other players, after going through

whatever mental procedure they use to formulate beliefs, may or may not believe

that members of the coalition play according to the restriction. The point

is that they do not have a chance to find this out. Note however that, as

discussed above, the payoff comparison condition is required to hold for all

possible conjectures concerning the play of players outside the coalition.
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Besides its intuitive appeal, the definition above has the advantage that

supported restrictions satisfy two desirable properties. One is that the concept

is a generalization of eliminating never best response strategies by individual

players (see Proposition 4 below), which ensures that a theory built on it is

consistent with individual rationality. This property does not hold for definitions

that are not based on comparing expected payoffs, for example if it is only

required that for every player in the coalition every payoff within the restriction

is strictly higher than every payoff outside the restriction. The second is that

supported restrictions are self-enforcing. Note that the second condition in the

above definition cannot hold if there is a player j in J and a conjecture f−j which

is concentrated on B−j and against which j has a best response in A−j/B−j .

This implies that if A is closed under rational behavior and A is a supported

restriction given B, then B is also closed under rational behavior. If a player

believes that the others play according to a supported restriction, then it is in

his best interest to play according to the restriction too.

Nevertheless, comparing sets of payoffs is a far from obvious exercise, there-

fore one might want to consider alternative definitions to supported restriction.

I do not take up that task here, instead refer the interested reader to Ambrus

[2005].

III.B. The Set of Coalitionally Rationalizable Strategies

and its Basic Properties

The construction below refers to sets that are closed under rational behavior

and have the property that every strategy in the set is a best response to some

conjecture concentrated on the set. I call these sets coherent.6

6The terminology reflects that these sets satisfy the coherence requirement of Gul [1996] in
that the strategies of a player that are inside the given set are implied by the restriction that
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Definition. Set A is coherent if it is closed under rational behavior and

satisfies:

(3) ∪
f−i∈∆−i(A)

BRi(f−i) = Ai, ∀ i ∈ I.

Consider now the following iterative procedure of supported restrictions.

Starting from the set of all strategies, in each step the intersection of all sup-

ported restrictions is retained. Below it is shown that supported restrictions

are compatible with each other in the sense that taking the intersection of all

supported restrictions at any step of the procedure results in a nonempty set

of strategies. This holds despite the fact that a player is part of many different

coalitions and those coalitions may have different supported restrictions.

The procedure defined above can be thought of as a descriptive theory of

belief formation. Players, based on the strategies and payoff functions of the

game, look for supported restrictions given the set of all strategies. This means

that at the beginning of the procedure they consider any strategy profile to

be possible to be played. If such restrictions are found, then they expect the

players in the corresponding coalitions to play inside the restrictions (to success-

fully coordinate their moves to play inside the restrictions). This requirement

restricts the set of possible beliefs they can have. Then they look for supported

restrictions with respect to the new, restricted set of possible beliefs. If such

restrictions are found, then they expect players in the corresponding coalitions

to play inside the restrictions, and so on, until the set of possible beliefs cannot

be constrained any further. No other beliefs can be ruled out confidently based

only on the information summarized in the payoff functions. I emphasize that,

other players play inside the set and that allowable beliefs about other players should include
the convex hull of action profiles in the restriction. Investigating sets of strategies satisfying
this type of requirement was first undertaken by Bernheim [1984] and Pearce [1984]. Basu
and Weibull [1991] call these sets strictly closed under rational behavior.
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in the above interpretation, players do not explicitly make agreements with each

other. They simply go through a reasoning procedure based on the commonly

known payoff structure of the game and formulate their beliefs concerning the

others’ play according to this procedure. Explicit agreements would require

pre-play communication among players, which is not considered here.

For every A ∈M let F(A) denote the collection of all supported restrictions
given A.

Definition. Let A0 = S. For every k ≥ 1 let Ak = ∩
B∈F(Ak−1)

B. Let

A∗ = ∩
k=0,1,2,...

Ak.

The following two properties are useful in establishing one of the main results

in the paper, nonemptyness ofA∗. Proposition 1 establishes that the intersection

of all supported restrictions given a set that is closed under rational behavior is

nonempty. Proposition 2 establishes that if B is a supported restriction given A

and A is closed under rational behavior, then B remains a supported restriction

given any set that is obtained from A by a sequence of generalized supported

restrictions. This property guarantees the internal consistency of the iterative

procedure of supported restrictions, the main step in establishing that the order

in which restrictions are made is inconsequential in this iterative procedure (see

Proposition 5 below).

Proposition 1. Let A ∈M . Then ∩
B: B∈F(A)

B 6= ∅.

Proposition 2. Let A ∈ M . Assume A &JB B. Let C0, ..., Ck (k ≥ 1)

be such that C0 = A and Ci &Ji Ci−1, ∀ i = 1, ..., k. Then Ck &JB

(B ∩ Ck).
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All formal proofs are in the Appendix. The important insight in establishing

Proposition 1 is that for every player the strategies that are best responses for

this player for her most optimistic conjecture (the one that yields the highest

expected payoff) concentrated on A have to be included in every supported

restriction by every coalition that this player is a member of. This follows from

the definition of a supported restriction. For proving Proposition 2 the key step

is showing that given a set that is closed under rational behavior, the intersection

of two supported restrictions by the same coalition is a supported restriction

itself, by the same coalition (and therefore, by Proposition 1, nonempty).

Proposition 3, a central result in this section, establishes that the iterative

procedure of supported restrictions stops in a finite number of steps, and the

set it obtains is nonempty, closed under rational behavior and has the property

that, given this set, no coalition has a nontrivial supported restriction. The key

step in proving this is showing, using Propositions 1 and 2, that Ak is nonempty

and closed under rational behavior for every k. The finiteness of the game then

implies all the claims in the proposition.

Proposition 3. A∗ satisfies the following properties:

(i) nonempty

(ii) closed under rational behavior

(iii) A∗ & B implies B = A∗

(iv) ∃ K <∞ such that Ak = A∗ whenever k ≥ K.

Although the iterative procedure is defined on pure strategies, allowing play-

ers to use mixed strategies would lead to the same pure strategies and some (not

necessarily all) of the mixed strategies with the same support. For more on this,

see Subsection 6.3.
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To obtain some other properties of A∗ it is useful to identify supported

restrictions by singleton coalitions. Proposition 4 establishes that these restric-

tions are equivalent to elimination of never best-response strategies.

Proposition 4. Let A ∈M and i ∈ I. Then A&{i} B iff B = Bi×A−i, Bi ⊂
Ai and si ∈ Bi/Ai implies −∃ f−i ∈ ∆−i(A) such that si ∈ BRi(f−i).

Proposition 3 implies that, in particular, there is no supported restriction

by any single-player coalition given A∗. Proposition 4 then implies that A∗

satisfies (3). Furthermore, Proposition 3 establishes that A∗ ∈M. Combining

these results establishes that A∗ is coherent. This immediately implies that A∗

is contained in the set of rationalizable strategies, since the latter is the largest

coherent set (see Bernheim [1984]).

A∗ is defined to be the set obtained by a particular iterative procedure

that requires supported restrictions to be made in a particular order, namely

making all possible generalized supported restrictions simultaneously at every

step. The next claim establishes that the particular order of restrictions does

not matter. Any iterative procedure that makes some nontrivial supported

restriction whenever one exists (for example just making one restriction at a

time, in any possible order) would yield the same solution set, A∗. This result

is essentially a consequence of the one in Proposition 2.

Proposition 5. Let B0 = S. If there is no nontrivial supported restriction

given B0, then let B1 = B0. Otherwise let Θ0 be a nonempty collection

of nontrivial supported restrictions from B0 and let B1 = ∩
B:B∈Θ0

B. In

a similar fashion once Bk is defined for some k ≥ 1, let Bk+1 = Bk if

there is no nontrivial supported restriction given Bk, otherwise let Θk be
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a nonempty collection of nontrivial supported restrictions given Bk and

let Bk+1 = ∩
B:B∈Θk

B. Then there is L ≥ 0 such that Bk = A∗, ∀ k ≥ L.

The last proposition of this section shows that the set of coalitionally ra-

tionalizable strategies is stable with respect to supported restrictions given any

superset, and using this property gives a direct definition of the set.

Let A = ×
i∈I

Ai 6= ∅ and A ⊂ S.

Definition. A is externally coalitionally stable if for every C 6= A such that

A ⊂ C it is the case that A ⊂ ∩
B: B∈F(C)

B and C 6= ∩
B: B∈F(C)

B.

Definition. A is internally coalitionally stable if A& B implies B = A.

Definition. A is coalitionally stable if it is both externally and internally

coalitionally stable.

Intuitively, coalitional stability of A requires that whenever one starts out

from a set larger than A, supported restrictions restrict that set “towards A”,

while A itself cannot be restricted further.

Proposition 6. A∗ is the only coalitionally stable set in G.

The proof generalizes the arguments behind Proposition 2 and shows that (i)

A∗ is coalitionally stable; (ii) for any set A which is such that A/A∗ is nonempty

there is a superset of A given which there is a supported restriction that does

not include A/A∗, implying that these sets cannot be coalitionally stable.
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IV. Relating Coalitional Rationalizability to

Other Solution Concepts

I examine the connections between the set of coalitionally rationalizable strate-

gies and some standard noncooperative solution concepts. These are Nash equi-

librium, and the two most commonly used noncooperative coalitional equilib-

rium concepts: coalition-proof Nash equilibrium and strong Nash equilibrium.

IV.A. Nash Equilibrium

The set of coalitionally rationalizable strategies is not an equilibrium concept,

so it is not surprising that it is not contained in the set of Nash-equilibrium

outcomes (the outcomes that can be realizations of some mixed strategy Nash-

equilibrium). Consider the game of Figure 1.

[INSERT FIGURE I HERE]

The only Nash equilibrium of the game is (A2, B2). Nevertheless, the set

of coalitionally rationalizable profiles is the whole game. For all other strategy

profiles the sum of payoffs is negative. Still, if conjectures do not have to be

correct, then other strategies can be played since players can expect positive

payoffs in the negative-sum matching pennies game {A1, A3} × {B1, B3}.

Furthermore, as seen in previous examples, the set of Nash equilibria is not

contained in the set of coalitionally rationalizable strategies. However, it is

straightforward to show that there is always at least one Nash equilibrium of

every game that is inside the set of coalitionally rationalizable strategies. This

is a direct implication of the result that A∗ is closed under rational behavior:

any Nash equilibrium of the game with restricted strategy sets A∗ (which as a
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finite normal-form game, has at least one Nash equilibrium in mixed strategies)

is also a Nash equilibrium of G.

IV.B. Coalition-proof Nash Equilibrium and Strong Nash

Equilibrium

The first question addressed here is whether there can be nontrivial supported

restrictions in games in which coalition-proof Nash equilibrium does not exist.

The next example demonstrates that the answer is yes. Coalitional rationality

can have bite in these games, in the sense that the set of coalitionally rational-

izable strategies is strictly smaller than the set of rationalizable strategies.

The dollar division game is a classic example of a game in which coalitional

equilibrium concepts do not exist. Consider the version of the game presented

in Section 2. The intuition that players should expect each other to vote for gen-

erous allocations so that the group can receive the external reward is captured

by coalitional rationalizability. Proposing only allocations (x1, x2, x3) such that

xi ≥ 1/4, ∀ i ∈ {1, 2, 3} is a supported restriction for the coalition of all players
given the set of all strategies, and it is the set of coalitionally rationalizable

strategies. The game does not have any coalition-proof Nash equilibrium.

The next question is whether the set of outcomes consistent with some

coalition-proof Nash equilibrium is contained in the set of coalitionally ratio-

nalizable strategies. The following example demonstrates that the answer is

no.

[INSERT FIGURE II HERE]

In the game of Figure 2 (A3, B3, C3) is the unique coalition-proof equilibrium

(even allowing for mixed strategies). It is straightforward to establish that there
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is no self-enforcing profile in which players only play strategies inside {A1, A2}×
{B1, B2}×{C1, C2} with positive probability, by showing that from every such
Nash equilibrium there is a two-player coalition that can profitably deviate

to another Nash equilibrium.7 Next, observe that in any Nash equilibrium

a player can only play his third strategy with positive probability if at least

one of the other players plays his third strategy with probability 1 (otherwise

the third strategy cannot be a best response). But then in any self-enforcing

profile at least two players have to play their third strategies with probability

1. It is straightforward to show that there is no self-enforcing profile in which

two players play their third strategies with probability 1 and the third player

does not, because then the first two players have a joint deviation from which

neither of them could deviate further profitably. Hence, the only candidate even

in mixed strategies for a self-enforcing profile is when player 1 plays A3 with

probability 1, player 2 plays B3 with probability 1 and player 3 plays C3 with

probability 1. Furthermore, it is a self-enforcing profile since no single-player

or two-player coalition can have a profitable deviation, and the coalition of all

three players does not have a self-enforcing deviation, because there is no other

self-enforcing profile in the game. Since (A3, B3, C3) is the only self-enforcing

profile in the game, it is the unique coalition-proof equilibrium.

Furthermore, the set of coalitionally rationalizable strategies is {A1, A2} ×
{B1, B2}×{C1, C2} (this is the set obtained after the first round of the iterative
procedure at which point there is no more nontrivial supported restriction), so

(A3, B3, C3) is not coalitionally rationalizable. In fact, the set of coalitionally

rationalizable strategies and the set of coalition-proof equilibria are disjoint sets

7 In a three-player game a profile is self-enforcing iff it satisfies the following two properties:
(i) it is a Nash equilibrium; (ii) no coalition of two players can deviate to a profile that is a
Nash equilibrium in the component game induced on them by the third player’s strategy in
such a way that both of them are strictly better off. For the general definition of self-enforcing
see Bernheim et al. [1987].
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in this game.

Note that (A3, B3, C3) is a coalition-proof equilibrium only because the

game with set of strategies {A1, A2} × {B1, B2} × {C1, C2} does not have
a coalition-proof equilibrium. On the other hand, all players would strictly

prefer to switch play to that part of the game no matter what happens over

there (they cannot agree upon a concrete profile, but they would all agree to

restricting their moves to {A1, A2} × {B1, B2} × {C1, C2}). This prediction is
clearly more reasonable than that players will play the profile (A3, B3, C3).

The above game could easily be made generic by some small perturbation

of the payoffs, such that the set of coalitionally rationalizable strategies and the

set of coalition-proof equilibria remain the same. Thus, even in generic games

a coalition-proof equilibrium might not be coalitionally rationalizable.

The next proposition shows that only the nonexistence of coalition-proof

Nash equilibrium in some restriction of the original game can result in some

coalition-proof Nash equilibrium not being coalitionally rationalizable. Propo-

sition 7 establishes that if in every restriction of the original game there exists

a coalition-proof Nash equilibrium, then all the pure strategy coalition-proof

Nash equilibria of the original game are coalitionally rationalizable. The main

argument in the proof is as follows. If a profile is not included in the set of

coalitionally rationalizable strategies then there is k and a coalition J such that

the profile is included in Ak, but there is a supported restriction B by J given A

such that the profile is not included in B. Then it can be shown that coalition

J could deviate in a credible and profitable manner from the original profile to

any coalition-proof Nash equilibrium of the game restricted to B, contradicting

that the profile is a coalition-proof Nash equilibrium itself. The result can be

extended to mixed strategy coalition-proof Nash equilibria by requiring that
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every game which is obtained from the original game by fixing a mixed strategy

profile for some players and restricting the strategies of the other players to a

subset of their original strategy set has a coalition-proof Nash equilibrium.

For every A ⊂ S such that A = ×
i∈I

Ai 6= ∅ let G[A] = (I,A, uA) denote the
normal form game for which uA(s) = u(s), ∀ s ∈ A. It is the game obtained

from G by restricting the set of strategies to A.

Proposition 7. If for every A ⊂ S such that A = ×
i∈I

Ai 6= ∅ it holds that G[A]
has a coalition-proof Nash equilibrium then every pure strategy coalition-

proof Nash equilibrium of G is contained in A∗.

Proposition 7 and the example of Figure 2 illustrate that the issue of nonexis-

tence confounds the iteratively defined solution concept of coalition-proof Nash

equilibrium. This is not surprising given the iterative definition of the con-

cept. The set of coalition-proof Nash equilibria of a game directly depends

on coalition-proof Nash equilibria of restrictions of the original game, therefore

coalition-proof Nash equilibrium can only be trusted to give a reasonable predic-

tion if it gives a reasonable prediction in every restriction of the game (namely

if it exists in every restriction). It is unclear to me whether in the latter class of

games coalition-proof Nash equilibria give more reasonable prediction than other

Nash equilibria that lie within the set of coalitionally rationalizable strategies.

This is an issue I hope to return to in future work.

The section concludes by investigating relations to strong Nash equilibria:

profiles that satisfy that no coalition has any profitable joint deviation. The

latter is a very strong stability requirement, resulting in nonexistence of strong

Nash equilibrium in many games. The next proposition establishes that, unlike

coalition-proof Nash equilibria, every strong Nash equilibrium of every game
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must be contained in the set of coalitionally rationalizable strategies. This

means that there is no inherent contradiction between supported restrictions in

a non-equilibrium setting and group deviations in an equilibrium setting. Incon-

sistencies only arise if the set of allowable coalitional deviations are restricted

according to the definition of coalition-proof Nash equilibrium.

Proposition 8. Let σ = (σ1, ..., σI) be a strong Nash equilibrium profile.

Then suppσ ⊂ A∗.

V. Pareto Efficiency

Coalitional rationalizability takes the interest of coalitions other than the coali-

tion of all players into account, therefore in general it does not guarantee Pareto

efficiency. There is no containment relationship between the set of coalitionally

rationalizable strategies and the set of Pareto undominated profiles, or rational-

izable profiles that are Pareto undominated by other rationalizable profiles, or

Nash equilibria that are Pareto undominated by other Nash equilibria.

The fact that groups of players expect each other to pursue common gains

can make all of them worse off, as the game of Figure 3 shows.

[INSERT FIGURE III HERE]

In this game the (strict) Nash equilibrium profile (A1, B1, C1) is not coali-

tionally rationalizable because no matter what player 3 does, playing (A2, B2)

always gives the highest payoff for players 1 and 2. But then player 3 is better

off playing C2, making (A2, B2, C2) the only coalitionally rationalizable profile,

which is strictly Pareto-dominated by (A1, B1, C1).

This example might seem puzzling, given that coalitional rationalizability is

built on the assumption that players try to attain common gains. However, if
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not only the coalition of all players, but also subcoalitions of players act along

these lines, then nothing guarantees Pareto efficiency of the resulting outcome.

The fact that coalitions cannot commit not to go for a common gain can make

them worse off. I view this as a coalitional version of the insight that is obtained

from the prisoner’s dilemma, where the fact that players cannot commit not to

play individually rational strategies makes both of them worse off. Although

in the above example Pareto inefficiency results from the fact that there is a

highlighted coalition that cannot commit not to go for coalitional gains, it can

be shown that inefficiency can arise in perfectly symmetric games as well.8

Pareto efficiency can be guaranteed only in special classes of games. For ex-

ample it is easy to establish that in games that have a Pareto dominant profile

among rationalizable strategies, that profile is the unique element in the set of

coalitionally rationalizable strategies. Also, in 2-player games the support of

every Pareto-undominated Nash equilibrium is contained in the set of coalition-

ally rationalizable strategies. The proofs of these claims are straightforward and

therefore omitted.

VI. Discussion

VI.A. Epistemic Definition

The definition of coalitional rationalizability provided in this paper is along the

lines of the original definition of rationalizability (see Pearce [1984] and Bern-

heim [1984]). It is characterized by an iterative procedure which has an intuitive

interpretation: players expect all supported restrictions to be made given the

set of all strategies, and they expect all supported restrictions to be made given

8See the previous version of the paper for an example.
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the set of strategies that are consistent with the above requirement, and so

on. The main advantage of this definition, besides that it refers to an intuitive

reasoning procedure, is that it is constructive, making the set of rationalizable

strategies relatively easy to compute in examples and applications. However,

it does not directly reveal what primitive assumptions on players’ beliefs and

action choices imply that they play coalitionally rationalizable strategies. The

set of rationalizable strategies was subsequently shown to be equivalent to the

set of strategies compatible with rationality and common certainty of rationality

(Tan and Werlang [1988], Brandenburger and Dekel [1993]), using the formal-

ism of interactive epistemology. This raises the question whether the set of

coalitionally rationalizable strategies has a similar interpretation. The direct

characterization of Proposition 6 is a step in this direction. I do not pursue

the issue further in this paper, instead referring the interested reader to Am-

brus [2005]. That paper provides alternative, epistemic definitions of coalitional

rationalizability.

VI.B. Mixed Strategies

Coalitional rationalizability is a concept defined on pure strategies (with respect

to the players’ actions, a player’s conjecture can be any probability distribution

on the other players’ strategy set). However, the construction is also valid if

players are allowed to play mixed strategies. It is straightforward to extend

the concept of supported restriction and then coalitional rationalizability to the

space of mixed strategies. One can then show that coalitionally rationalizable

mixed strategies are a subset of mixed strategies whose support is inside the

set of coalitionally rationalizable pure strategies.9 Furthermore, they include

all coalitionally rationalizable pure strategies.

9The inclusion can be strict. This is analogous to the relationship between rationalizable
pure and mixed strategies.
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VI.C. Pre-play Communication

A natural issue to investigate is the interaction of pre-play communication and

coalitional rationality. The particular questions that arise include whether all

supported restrictions remain credible in a context with communication among

players, whether there are new restrictions that become credible and whether

the set of solutions compatible with the theory still has product structure. Since

these issues are complicated and possibly depend on the exact specification of the

rules of communication, I leave the task of formally addressing the problem of

coalitional agreements in a framework with communication to a future project.

Here I just note that there are reasons to believe that pre-play communi-

cation can have a role in determining whether or not players use coalitional

reasoning. Coalitional rationalizability requires confidence that other players

reason a particular way. Pre-play communication can help establish the neces-

sary amount of trust for the restrictions involved. Experimental game theory

provides some support for this claim. In certain coordination games, pre-play

communication increases players’ propensity to play Pareto optimal outcomes,

and multi-sided pre-play communication may increase cooperation more than

one-sided communication (see Cooper et al. [1992] and Charness [2000]).

VII. Related Literature

Section 4 related coalitional rationalizability to various equilibrium concepts.

Besides the general solution concepts mentioned, there are several contributions

in the literature that incorporate coalitional reasoning into the play of normal-

form games in more specific settings.

Chwe [1994], Mariotti [1997], Xue [1998] and Xue [2000] assume that players

engage in a possibly infinite negotiation procedure before playing a normal-form
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game. These models are similar to the construction behind coalitional rational-

izability in that coalitions can freely form and that binding agreements are not

available. The main difference, besides that only point agreements are consid-

ered, is the assumption that coalitions act publicly and therefore agreements

are publicly observed.

Noncooperative coalitional bargaining considers extensive form noncoopera-

tive games to model n-player coalitional bargaining situations based on charac-

teristic function games (or generalizations of those). These characteristic forms

can be derived from normal-form games, as done in Ray and Vohra [1997] and

Ray and Vohra [1999]. The main difference between this approach and the

one presented in this paper is the central assumption in the above papers that

members inside a coalition can make binding agreements, and only the play

among different coalitions occurs in a noncooperative fashion. The current pa-

per conforms with the tradition of noncooperative game theory and retains the

assumption that players cannot make any binding agreements.

Rabin’s concept of Consistent Behavioral Theories (see Rabin [1994b]) can

be used to incorporate coalitional reasoning into normal-form games, and the

paper proposes one such theory, Pareto-focal rationalizability. However, while

Rabin’s approach starts with some exogenously given set of focal points, the

procedure in this paper can endogenously explain why certain outcomes are

focal in a game.

There are papers investigating the role of pre-play communication before

playing a normal-form game, examining whether it leads to the type of belief

restrictions considered in this paper. Farrell [1988] assumes that before play-

ing a normal-form game one player can send a suggestion to the others. This

suggestion is allowed to be a set of strategies, not just a single profile. He

27



points out that there are games in which players clearly do not want to make

any single-profile agreement, although his considerations are different than the

ones highlighted in this paper. Rabin [1990] considers similar assumptions to

Farrell in a rationalizability setting. Watson [1991] introduces a model in which

one player can suggest playing inside some subset of the strategy space. The

definition of when this message is credible is somewhat similar to the definition

of supported restriction, although it is not a generalization of best response

strategies. Furthermore, Watson’s concept is defined only for 2-player games,

in which the issues of coalitional agreements are fairly simple.

VIII. Conclusion

In a lot of economic and political situations subgroups of the participants have

an incentive to coordinate their action choices. Various coalitional equilibrium

concepts were proposed in the literature that assumed that players with similar

interest could coordinate their play. However, the concepts proposed so far

cannot guarantee existence in a natural class of games. The way I interpret this

is that allowing coalitions to be able to make only point restrictions (agreements)

leads to logical inconsistencies. As this paper shows, these inconsistencies do

not have to arise if one allows for set-valued restrictions, suggesting that the

latter is the appropriate framework to incorporate coalitional reasoning into

noncooperative game theory.
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IX. Appendix

Proof of Proposition 1. Let a be such that uj(a) = max
s: s∈A

uj(s). But then by the

definition of a supported restriction, aj ∈ Bj ∀ B such that A& B because aj

is a best response against a−j (it yields the maximum payoff in A and A ∈M).

Therefore ∩
B: B∈z(A)

Bj 6= ∅. This establishes the claim since j was arbitrary and
∩

B: B∈z(A)
B is a product set. QED

Lemma 1. Let A ∈M and A&J B. Then B ∈M .

Proof of Lemma 1. Suppose B /∈M. Then ∃ j, aj and f−j such that j ∈ J ,

aj ∈ Aj/Bj , f−j ∈ ∆−j(B) and aj ∈ BRj(f−j), which contradicts A &J B.

QED

Lemma 2. Let A&J B and let C be such that C ∈M , C ⊂ A and C∩B 6= 0.
Then C &J (C ∩B).

Proof of Lemma 2. Lemma 1 and C ∈M implyB ∈M. Then C∩B ∈M by

the definition of a set closed under rational behavior. Let j and cj be such that

j ∈ J and cj ∈ Cj/Bj . Note that A &J B implies uj(cj , f−j) < uj(bj , g−j),

∀ bj , f−j , g−j such that f−j ∈ Ω∗−j(A/B) ∩ ∆−j(A), cj ∈ BRj(f−j), g−j ∈
∆−j(B), bj ∈ BRj(g−j) and g−J−j = f−J−j , ∀ s−J ∈ S−J . But since C ⊂ A

and C ∩ B ⊂ B, this implies uj(cj , f−j) < uj(bj , g−j), ∀ bj , f−j , g−j such

that f−j ∈ Ω∗−j((C ∩ B)) ∩ ∆−j(C), cj ∈ BRj(f−j), g−j ∈ ∆−j(C ∩ B),

bj ∈ BRj(g−j) and g−J−j = f−J−j , ∀ s−J ∈ S−J . Since this holds for every j and

cj such that j ∈ J and cj ∈ Cj/Bj , (C)&J (C ∩B). QED

Proof of Proposition 2. By Lemma 1, B ∈M and Ci ∈M ∀ i = 1, ..., k. By
Proposition 1, B∩C1 6= ∅. Then by Lemma 2, C1 &JB (B∩C1). Now suppose
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Cn &JB (B∩Cn) for some 1 ≤ n ≤ k−1. Then by definition B∩Cn 6= ∅. Then
Proposition 1, Cn &JB (B∩Cn) and Cn &Jn Cn−1 imply B∩Cn+1 6= ∅. Then
Lemma 2 implies that Cn+1 &JB (B ∩ Cn+1). The claim follows by induction.

QED

Proof of Proposition 3. since S is finite and Ak−1 ⊃ Ak, ∀ k ≥ 1, the

second part of the claim is immediate. Note that A0 = S ∈M. Now assume

Ak ∈ M for some k ≥ 0. By Proposition 1, Ak+1 6= ∅. By Lemma 2, Ak+1

can be reached from Ak by a sequence of supported restrictions and then by

Proposition 2, Ak+1 ∈M. By induction, Ak 6= ∅ and Ak ∈M, ∀ k ≥ 0. Since
A∗ = Ak whenever k ≥ K, this implies A∗ 6= ∅ and A∗ ∈ M. Now suppose

that there exists a nontrivial supported restriction given A∗. Since A∗ = AK ,

this implies that there is a nontrivial supported restriction given AK , which

contradicts that AK+1 = AK . QED

Proof of Proposition 4. follows from the fact that for a single-player coalition

{i}, requirement 2 in the definition of supported restriction is equivalent to
requiring that there are no si and f−i such that si ∈ Bi/Ai, f−i ∈ ∆−i(A) and
si ∈ BRi(f−i). QED

Proof of Proposition 5. since the sequence of sets (Bk)∞k=0 is nested and S

is finite, there is L ≥ 0 such that Bk = BL, ∀ k ≥ L. Since B0 = S, B0 ∈M.

Now assume Bk ∈M for some k ≥ 0. By Proposition 1, ∩
B: B∈F(Bk)

B 6= ∅, so
Bk+1 = ∩

B: B∈Θk
B 6= ∅. By Lemmas 1 and 2, Bk+1 ∈ M. Since Bk = BL, ∀

k ≥ L, by definition of the sequence (Bk)∞k=0 there is no nontrivial supported

restriction given BL.

By definition BL ⊂ A0. Note that by Lemma 2 and Proposition 2 BL can

be reached from A0 by a sequence of supported restrictions. Then by Lemma

1 BL ∈M. Therefore by Proposition 2 A0 & B implies BL & BL ∩ B. Then
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since there is no nontrivial supported restriction given BL, BL ⊂ A1. Then by

Lemma 2 BL can be reached from A1 by a sequence of supported restrictions.

An inductive argument shows that BL ⊂ Ak, ∀ k ≥ 0, and therefore BL ⊂ A∗. A

symmetric argument establishes that A∗ ⊂ Bk, ∀ k ≥ 0, and therefore A∗ ⊂ BL.

QED

Lemma 3. Let A be such that A∗ ⊂ A and A 6= A∗. Then A∗ ⊂ ∩
B: B∈F(A)

B.

Proof of Lemma 3. Suppose not. Then there are B ⊂ A and J ⊂ I such

that A &J B and A∗ * B. First consider B ∩ A∗ 6= ∅. Then by Lemma 2
A∗ &J (B ∩A∗), contradicting that there is no nontrivial supported restriction
given A∗.

Now consider B ∩ A∗ = ∅. Then there is k ≥ 0 such that B ∩ Ak 6= ∅
and B ∩ Ak+1 = ∅. As established above, Ak ∈ M. Together with A ∈ M
this implies that A ∩ Ak ∈M, because for any i ∈ I and any f−i ∈ ∆−i(A ∩
Ak), BRi(f−i) ∈ A since A ∈ M and BRi(f−i) ∈ Ak since Ak ∈ M, so

BRi(f−i) ∈ A ∩ Ak. Since A &J B, by Proposition 2 (A ∩ Ak) &J (B ∩ Ak).

Furthermore, since A∩Ak+1 6= ∅ (they both contain A∗), (A∩Ak)&J (A∩C)
∀ C ∈ F(Ak). The above implies ∩

C: C∈F(A∩Ak)
⊂ (A ∩ Ak+1) ∩ (B ∩ Ak). But

(B ∩Ak) ∩ (A ∩Ak+1) = B ∩Ak+1 = ∅, contradicting Proposition 1. QED

Lemma 4. Let A ∈ M be such that A/A∗ 6= ∅ and A ∩ A∗ 6= ∅. Then
∩

B: B∈F(A)
B 6= A.

Proof of Lemma 4. There exists k ≥ 0 such that A ⊂ Ak and A * Ak+1.

Then there are B ⊂ A and J ⊂ I such that Ak &J B and A ∩ B 6= A. Note

that Ak &J B implies Ak+1 ⊂ B which in turn implies A∗ ⊂ B. Therefore

A ∩ A∗ 6= ∅ implies A ∩ B 6= ∅. Furthermore, Ak &J B implies A ∈M, which
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together with A ∈M and A ∩ B 6= ∅ implies A ∩ B ∈M. Then by Lemma 2

A&J (A ∩B), so ∩
B: B∈F(A)

B 6= A. QED

Proof of Proposition 6. Lemmas 3 and 4 establish that A∗ is externally

coalitionally stable. Proposition 3 establishes that A∗ is internally coalitionally

stable. By Lemma 4, if A is such that A/A∗ 6= ∅ and A ∩ A∗ 6= ∅, then A

cannot be coalitionally stable. If A/A∗ = ∅, then A ⊂ A∗, in which case either

A = A∗ or A cannot be coalitionally stable, since A∗ contains it and there is

no nontrivial supported restriction given A∗. And if A ∩ A∗ = ∅, then there is
k ≥ 0 such that A ⊂ Ak and A * Ak+1, therefore A is not coalitionally stable,

since A ⊂ Ak and A * ∩
B: B∈F(Ak)

B. QED

Proof of Proposition 7. suppose s∗ is a pure strategy coalition-proof Nash

equilibrium and s∗ /∈ A∗. Then there is k ≥ 0 such that s∗ ∈ Ak but s∗ /∈ Ak+1.

That implies that there is J ⊂ I and B ⊂ A such that Ak &J B and s∗ /∈ B.

Let s0 be a coalition-proof Nash equilibrium of G[BJ0 × s∗I/J0 ]. The starting as-

sumption guarantees the existence of such profile s0. Note that for every j ∈ J

it holds that s0j is a best response against a conjecture that allocates probabil-

ity 1 to s0−j , and that s
∗
j is a best response against a conjecture that allocates

probability 1 to s∗−j . This implies that uj(s
0) > uj(s

∗), ∀ j ∈ J 0 because B is

a supported restriction by J given Ak. Therefore s0 is a profitable coalitional

deviation from s∗ by J 0. Suppose now that there is a credible profitable coali-

tional deviation s00 from s0 by J 00 ⊂ J 0. The credibility of this deviation implies

that for every j ∈ J 00, s00j is a best response against the belief that allocates

probability 1 to s00−j . Consider first the case that s
00
j ∈ Ak

j , ∀ j ∈ J 00. Since

s0 is a coalition-proof Nash equilibrium of G[BJ0 × s∗I/J0 ], it can only be that

s00i /∈ Bi for some i ∈ J 00. But then the profitability of this deviation implies that

ui(s
00) > ui(s

0), contradicting Ak &J B, since i ∈ J 00 ⊂ J. Next consider the

case that s00j /∈ Ak
j for some j ∈ J 00. Let m ≥ 0 be such that s00j ∈ Am

j , ∀ j ∈ J 00,
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but there is i ∈ J 00 such that s00i /∈ Am+1
i . Note that m < k since s00j /∈ Ak

j .

Then there is some L ⊂ I and C ⊂ Am such that Am &L C and s00i /∈ Ci. But

the profitability of the above deviation implies ui(s00) > ui(s
0), contradicting

Am &L C. This establishes that s0 is a credible profitable deviation from s∗

by J 0 since there is no credible profitable deviation from it by a subcoalition of

J 0. This contradicts that s∗ is a pure strategy coalition-proof Nash equilibrium.

QED

Proof of Proposition 8. Let Ai =suppσi, ∀ i ∈ I and let A = ×
i∈I

Ai. Suppose

A * A∗. Then there is k ≥ 0 such that A ⊂ Ak, but A * Ak+1. This implies

that there are B ⊂ Ak and J ⊂ I such that B is a supported restriction by J

given Ak, and A * B. Let L = {j | j ∈ J, ∃ sj such that sj ∈ Aj and sj /∈ Bj}.
For every l ∈ L let al be such that al ∈ Al and al /∈ Bl. For every l ∈ L let

f−l be the conjecture of player l corresponding to the others playing the profile

σ−l : f−l(s−l) = ×
i∈I/{l}

σi(si). Note that al ∈ BRl(f−l), ∀ l ∈ L. Now let GL be

the truncated game in which the set of players are L, the set of strategies are Bl,

l ∈ L and the payoff functions are bgl(sL) = gl(sL, σ−L). Since its strategy sets

are compact and payoff functions are continuous, GL has a Nash equilibrium

in mixed strategies. Let bξL be such a profile. Since B ∈M by Lemma 1, for

every l ∈ L, bξl is a best response against the profile (bξL/l, σ−L). Then since B
is a supported restriction by J given C, ul(bξL, σ−L) > ul(al, σ−l) = ul(σ). But

that implies bξL is a profitable deviation for L from σ, contradicting that σ is a

strong Nash equilibrium. QED

Princeton University and Harvard University
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