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Abstract

We show that in multi-sender communication games where senders imperfectly

observe the state, if the state space is large enough, then there can exist equilibria

arbitrarily close to full revelation of the state as the noise in the senders’observations

gets small. In the case of replacement noise, where the senders observe the true state

with high probability, we show this under mild assumptions, for both unbounded and

large bounded state spaces. In the case of continuous noise, where senders observe a

signal distributed according to a continuous distribution over a small interval around

the true state, we establish this for unbounded state spaces. The results imply that

when there are multiple experts from whom to solicit information, if the state space

is large, then even when the state is observed imperfectly, there are communication

equilibria that are strictly better for the principal than delegating the decision right to

one of the experts.

1 Introduction

In sharp contrast to the predictions of cheap talk models with a single sender (Crawford and

Sobel (1982), Green and Stokey (2007)), if a policymaker has the chance to consult multiple

experts who each observe the state, there exist equilibria in which the policymaker always
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learns the true state. This observation was first made by Krishna and Morgan (2001a),

while Battaglini (2002) gives necessary and suffi cient conditions for the existence of such

fully revealing equilibria. An important implication of these results is that with a large

enough state space, under the best equilibrium for the sender, retaining the decision right

and consulting multiple experts is superior to delegating the decision power to one of the

informed agents. In contrast, as Dessein (2002) shows, the best outcome from communicating

with one expert can be strictly worse than delegating the decision to the expert. In particular,

if the expert’s bias is small enough, delegation is optimal.1

This paper revisits the above questions by departing from the assumption that each

sender observes the state exactly, and instead investigating a more realistic situation in

which senders observe the state with a small amount of noise.2 There are reasons to think

that in such an environment, the qualitative conclusions from multi-sender cheap talk games

would significantly change. In particular, some of the equilibrium constructions provided

in the literature require the senders to exactly reveal the true state, and punish individual

deviations by rendering an action that is bad for both senders in the case of nonmatching

reports. The latter is possible because after an out-of-equilibrium profile of messages by

the experts, nothing restricts the beliefs of the receiver. Such constructions obviously break

down if the experts observe the state with noise, however small, since nonmatching reports

then occur along the equilibrium path. Indeed, Battaglini (2002) shows that for a particular

type of noise structure, in a 1-dimensional state space, there cannot exist any fully revealing

equilibrium with two senders biased in opposite directions. However, it is not investigated

how close information revelation can get to full revelation.

In this paper, we show that if the state space is large enough (relative to the experts’

biases), then for types of noise structures commonly used in the literature, there exist equi-

libria arbitrarily close to full revelation of the state as the noise in the senders’observations

vanishes. We consider two common types of noise. The first one is replacement noise, where

each sender observes the true state with high probability, but observes the realization of

a random variable independent of the state with low probability. In such a context, we

show that with one round of simultaneous cheap talk, as the probabilities of observing the

true state approach 1, there exist equilibria arbitrarily close to full revelation under weak

conditions on the noise structure. Then, we investigate the case of continuous noise, where

the senders’signals, conditional on the state, follow a distribution with bounded support.

Constructing equilibria with fine information revelation is more involved in this environment,

1In the political science literature, Gilligan and Krehbiel (1987) establishes a similar point in the context
of legislative decision-making.

2Relatedly, Krehbiel (2001) addresses the issue of empirical plausibility of equilibria in a multi-sender
cheap talk context.
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as it is a 0-probability event that the senders’observations coincide. Here, we show that

if the state space is unbounded, then under mild assumptions, there exists a fully reveal-

ing equilibrium. For large bounded state spaces, we provide a more limited result, showing

that if there are two rounds of communication, then under certain restrictions on the noise

structure, there exists an equilibrium in which one of the senders’signal is fully revealed.

The starting point for our basic construction is an equilibrium in the noiseless limit game

where, for any message m1 sent by sender 1 and any message m2 sent by sender 2 along the

equilibrium path, there is a set of states with positive measure where the prescribed message

profile is (m1,m2). Put simply, any combination of messages that are used in equilibrium

are on the equilibrium path, as in the multi-dimensional construction of Battaglini (2002),

and the receiver’s action following any of these message profiles can be determined by Bayes’

rule. A new feature of our construction is that any pair of equilibrium messages is sent with

strictly positive probability.

The above type of construction constitutes an equilibrium whenever the set of states

where (m′1,m2) or (m1,m
′
2) is prescribed (for m′1 6= m1 and m′2 6= m2) is far away, relative to

the senders’biases, from the set of states where (m1,m2) is prescribed. We show that even

when the set of states corresponding to each message pair is small, the above condition can

be satisfied when the state space is suffi ciently large. Thus, the action taken by the receiver

can be made arbitrarily close to the true state with ex ante probability arbitrarily close to

1, if the state space is large enough. In such equilibria, the receiver’s expected utility is

arbitrarily close to her expected utility in the case of full revelation of the state.

When the state space is a large bounded interval of the real line, we propose the following

construction. The state space is partitioned into n2 intervals ("cells") with equal size, for

some large n corresponding to the number of each sender’s equilibrium messages. The n×n
different combinations of the equilibrium messages are then assigned such that any two cells

in which a sender sends the same message are far from each other. Essentially, cells are

labeled with 2-digit numbers in a base-n number system in a particular way, and one sender

is supposed to report the first digit of the interval from which she received a signal, while the

other sender is supposed to report the second digit of the interval from which she received

a signal. The construction relies on the fact that if the state space is large, then n can be

taken to be such that 1
n2
times the length of the state space (the size of the cells) is small,

but 1
n
times the length of the state space (which is roughly the distance between cells in

which a sender sends the same message) is large.

In the proposed equilibrium, the receiver solicits different pieces of information from the

senders. This is done by transforming the 1-dimensional state space to a 2-dimensional

one, through discretization and rearrangement, such that each message is of very limited
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use, but their combination reveals the state with high precision.3 For this reason, we view

our contribution as more normatively relevant, for situations where the policymaker can

propose a mechanism, but cannot commit to action choices (so that the latter have to be

sequentially rational). We note that for a fixed bounded state space, our constructions do

not necessarily yield the best equilibrium for the receiver. However, if the state space is

large enough relative to the biases, they provide a recipe to construct equilibria close to

full revelation of information, irrespective of the fine details of the game (distribution of the

noise, preferences of the senders), for a remarkably large class of games. In particular, the

constructions allow for state-dependent biases for the senders. Moreover, we do not require

either the single-crossing condition on the senders’preferences that is usually assumed in

the literature, or the assumption that the sign of a sender’s bias remains constant over the

state space. Thus, our results hold for games outside the Crawford and Sobel framework.

In the case of continuous noise, the above construction breaks down, as even for very

small noise, in states near a boundary between two cells, senders can be highly uncertain

about the cell where the other sender’s signal lies. Senders getting signals right around cell

boundary points may therefore deviate from prescribed play, which can cause the prescribed

strategy profile to unravel far from the boundary points.

Nevertheless, when the supports of the senders’ signals are bounded conditional on a

state realization, and the state space is unbounded, it is possible to construct a fully reveal-

ing equilibrium. The key condition for the result is that the support of a sender’s signal

conditional on the state strictly increases (that is, both boundaries of the interval support

increase), at a rate bounded away from zero. This is a mild requirement, and in particular,

it is satisfied when each sender’s signal is the sum of the true state and an independent noise

term with interval support, a standard specification in the global games literature (starting

with Carlsson and van Damme (1993) and Frankel, Morris and Pauzner (2003)). If this

condition holds, then provided that the other sender truthfully reports her signal, any mis-

reporting by a sender results with positive probability in a pair of signal reports that are

not compatible (cannot realize in any state). An unbounded state space makes it possible

to specify out-of-equilibrium beliefs for the receiver that lead to actions very far away from

the reported signals if they are incompatible. In fact, we provide a construction that yields

an expected payoff of −∞ to a sender after any misreporting. This construction crucially

relies on both the boundedness of the signal distributions conditional on a state, and on the

unboundedness of the state space. It is similar to the equilibrium provided in Mylovanov

3Ivanov (2012) proposes an optimal mechanism with similar features in a communication game with one
sender, in which the receiver can endogenously determine the type of information the sender can learn, and
there can be multiple rounds of learning and communication.
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and Zapechelnyuk (2013) in that deviations from truthtelling induce the harshest possible

punishment, but our construction does not require commitment power on the side of the

receiver (the action choices are sequentially rational), and it is in an environment with noisy

state observations and unbounded state space.

For bounded state spaces, we provide a construction that requires two rounds of public

communication by the senders and, under certain restrictions on the noise structure, consti-

tutes an equilibrium that fully reveals the signal of one of the senders. In the second round,

this equilibrium prescribes a strategy profile very similar to the construction described above

for replacement noise, involving combinations of messages from the senders identifying cells

in a partition of the state space. The main complications are that the sizes of the partition

cells vary in a specific way that depends on the noise structure, and that instead of one

fixed partition, there is a continuum of partitions that can be played along the equilibrium

path. The partition used in the second round is announced in the first round by sender 1.

In particular, for every signal s1 that player 1 can receive, there is exactly one equilibrium

partition with a cell exactly consisting of the support of sender 2’s signal s2 conditional on

s1. We show that for large state spaces, we can take the loss from a coordination failure

high enough so that sender 1 chooses to announce this partition in order to ensure successful

coordination.

An interesting feature of this construction is that even though, initially, no small subset

of the state space is common p-belief between the senders for positive p, after the first-round

communication, it becomes a common 1-belief between the senders that both of their signals

and the true state are in a small interval. This aspect of our construction is potentially rele-

vant in games outside the sender-receiver framework. In particular, the infection arguments

used in global games rely on the nonexistence of nontrivial events that are common p-belief

among players, for p close enough to 1, as described for example in Morris et al. (1995).4

We show that strategic communication can create such events, albeit in a different type

of game: in global games with cheap talk, the communication stage is followed by actions

from the senders of messages, while in our game they are followed by an action from a third

party. As far as we know, existing work on global games with pre-play cheap talk (Baliga

and Morris (2002), Baliga and Sjostrom (2004), Acharya and Ramsay (2013); see also p71 in

the survey paper Morris and Shin (2003)) only consider one round of communication. Our

analysis suggests the potential importance of considering the possibility of multiple rounds

of communication (as well as mediated communication), in related games.5

4The concept of common p-belief for p < 1 was introduced by Monderer and Samet (1989).
5In cheap talk games without noise, it has been shown that adding rounds of communication can improve

information transmission; see for example Krishna and Morgan (2001b) and Krishna and Morgan (2004).
Golosov et al. (2014) considers a sender-receiver game in which there are multiple rounds of action choices,
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The closest papers to ours in the literature investigating cheap talk communication be-

tween multiple senders and a receiver are Battaglini (2002), Battaglini (2004), Ambrus and

Takahashi (2008), Eső and Fong (2008) and Lu (2011).6 Battaglini (2002) shows the nonex-

istence of fully revealing equilibria for replacement noise in one-dimensional state spaces,

but does not address the question of how close equilibria can get to full revelation. We show

that for large state spaces, there are such equilibria arbitrarily close to full revelation. To

reconcile these results, note that a finer and finer interval partition of the real line segment,

such as the one in our construction, does not have a well-defined limit as the sizes of the

intervals in the partition go to zero. Correspondingly, even in the noiseless limit game, we

only consider equilibria close to full revelation (in which the receiver only learns that the

state is from a small interval around the true state), and show that there exist such equi-

libria robust to small amounts of replacement noise. Battaglini (2004) shows the existence

of a fully revealing equilibrium in a specific model with continuous noise, if the state space

is a multi-dimensional Euclidean space and the prior distribution is diffuse. This result

requires restrictive assumptions, and in particular does not extend to situations where the

prior distribution is proper. Ambrus and Takahashi (2008) focus on the case of perfectly

informed senders, but also show the nonexistence of fully revealing equilibria that satisfy a

robustness criterion (diagonal continuity), indirectly motivated by noisy state observations,

for compact state spaces. The equilibria in our paper do not satisfy diagonal continuity, with

the exception of the construction for bounded continuous noise and unbounded state space.

However, diagonal continuity is not a natural requirement for either games with replacement

noise, where senders receive the same signals with high probability, or in games with multi-

ple rounds of communication, where the first round of communication can establish common

p-belief (for p close to 1) between the senders that the state is in a small interval of the state

space - as in our equilibrium construction. Eső and Fong (2008) analyze a continuous-time

dynamic multi-sender game with discounting and construct a fully revealing equilibrium that

is robust to replacement noise under certain assumptions, including that the receiver is more

patient than the senders.

Lu (2011) takes the approach that the ex ante distributions of senders’ observations

besides communication. For mediation between one sender and one receiver, see Goltsman et al. (2009),
Ivanov (2010) and Ambrus et al. (2013). There is also an earlier literature investigating what communication
equilibria between multiple senders and a receiver can be replicated without a mediator; see for example
Forges (1988).

6For multi-sender cheap talk games in which the senders observe the state with substantial noise, see
Austen-Smith (1990a, 1990b, 1993), Wolinsky (2002) and Ottaviani and Sørensen (2006). McGee and Yang
(2013) present a model of multi-sender cheap talk in which different senders observe different dimensions
of the state. Lai et al. (2014) and Vespa and Wilson (2012) are recent experimental contributions on
multi-sender cheap talk games.
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may not be common knowledge even while there is common knowledge that the senders’

observations are near the state. He shows that, generically, the only equilibria of the noiseless

game that are robust to such situations (in the sense that there exists a "nearby" strategy

profile where all players play approximate best responses as evaluated under their own belief

about the noise) are multi-sender analogs of the one-sender Crawford and Sobel (1982)

equilibria - and therefore do not approach full revelation. By contrast, this paper examines

equilibria in the noisy game, where noise is commonly known. Therefore, taken together,

these two papers imply that common knowledge of the noise structure can significantly

enhance information transmission.

The rest of the paper is organized as follows. In Section 2, we introduce the basic model

and some terminology. In Section 3, we establish our main results for one-dimensional state

spaces in games with replacement noise. In Section 4, we examine the case of continuous

noise. Finally, in Section 5, we discuss extensions of the model. Specifically, we describe

how some of our results extend to multidimensional state spaces, to discrete state spaces, to

models in which noise is also introduced at other points in the game, and to situations in

which the receiver has commitment power.

2 Model

The model features two senders, labeled 1 and 2, and one receiver. The game starts with

sender 1 observing signal s1 and sender 2 observing signal s2 of a random variable θ ∈ Θ,

which we call the state. We refer to Θ as the state space, and assume that it is a closed and

connected subset (not necessarily proper) of R.7 The prior distribution of θ is given by F ,
which we assume exhibits a density function f that is strictly positive and continuous on Θ.8

We will consider both games in which the senders observe the state perfectly (noiseless

limit games, where s1 = s2 = θ), and games in which senders observe the state with small

noise, for two types of noise structures: replacement noise (Section 3), where each sender

observes the true state with high probability, and bounded continuous noise (Section 4),

where each sender observes a signal that follows a continuous distribution around the state.

After observing their signals, the senders simultaneously send public messages m1 ∈ M1

and m2 ∈ M2. We assume that M1 and M2 are Borel sets having the cardinality of the

continuum. In the baseline game, after observing the above messages, the receiver chooses

7Closedness is assumed for notational convenience only. None of the results depend on this assumption.
For an extension of the model to multi-dimensional state spaces, see Section 5.

8Although we assume a proper prior distribution throughout, our results from Section 3 readily extend
to the case where the state space is an unrestricted Euclidean space and the prior is diffuse, as in Battaglini
(2004).
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an action y ∈ Rd, and the game ends. In Section 4, we consider an extended version of
this game, with an additional round of cheap talk. Formally, after the senders send public

messages m1 and m2, they send another pair of messages m′1 ∈ M1 and m′2 ∈ M2. After

observing the sequence of message pairs (m1,m2), (m′1,m
′
2), the receiver chooses an action

and the game ends.

We assume that the receiver’s utility function v(θ, y) is continuous, strictly concave in y,

and that v(θ, ·) attains its maximum value of 0 at y = θ. We also assume that sender i’s

utility function ui(θ, y) is continuous, that it is strictly concave in y, and that ui(θ, ·) attains
its maximum value of 0 at y = θ+bi(θ). We refer to θ+bi(θ) as sender i’s ideal point at state

θ, and to bi(θ) as sender i’s bias at state θ. Note that neither the signals or the messages

directly enter the players’utility functions.

We also maintain the following two assumptions throughout the paper.

A1: For every y ∈ R,
∫
R f(θ)v(θ, y)dθ is finite.

A2: For any δ ≥ 0, there exists K(δ) > 0 such that, for any θ ∈ Θ, ui(θ, a′) < ui(θ, a)

whenever |a− θ| ≤ δ and |a′ − θ| ≥ K(δ), ∀ i = 1, 2.9

A1 requires that the expected utility of the receiver from choosing any action is well-

defined under the prior. A2 posits that neither sender becomes infinitely more sensitive to the

chosen action being in some directions from the true state than in other directions. In the case

of symmetric loss functions around ideal points, which is assumed in most of the literature, A2

is equivalent to requiring that there is a universal bound on the magnitude of senders’biases

- without it, the biases could tend to infinity as θ → ±∞. The assumption automatically
holds in the case of state-independent biases assumed, for example, in Battaglini (2002,

2004).

3 Replacement Noise

Throughout this section, we assume that the senders observe the state with replacement

noise, defined as follows.

Definition: In a game with replacement noise, there are random variables τ 1, τ 2 ∈ Θ,

independent of each other and of θ, and distributed according to c.d.f. G with a contin-

uous density function g strictly positive on Θ. Then, conditional on any θ ∈ Θ, si =

9A2 is not implied by ui being strictly concave in the action. For example, take δ = 0. While a constant
K such that ui(θ, a′) < ui(θ, θ) whenever |a′ − θ| ≥ K automatically exists for each θ, without A2, there
would be no guarantee that we can require the same finite K to apply for all θ.
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{
θ with probability p

τ i with probability 1−p for i ∈ {1, 2}, for some p ∈ (0, 1).10

The solution concept we use is weak perfect Bayesian equilibrium, defined in the context

of our model as follows.

For the baseline game with one communication round, let H(θ, s1, s2) be the c.d.f. of the

joint probability distribution of the state and the sender’s signals, and for i ∈ {1, 2}, let Hsi
i

be the marginal distribution of (θ, s−i) conditional on si. An action rule of the receiver is

a measurable function y : M1 ×M2 → R, and a belief rule of the receiver is a measurable
function µ : M1 × M2 → ∆(Θ). For every i ∈ {1, 2}, sender i’s signaling strategy is a
measurable function mi : Θ→Mi.11

Definition: Action rule ŷ, belief rule µ̂, and signaling strategies m̂i (i ∈ {1, 2}) constitute
a pure strategy weak perfect Bayesian Nash equilibrium if:

(1) ∀ i ∈ {1, 2} and si ∈ Θ, m̂i(si) solves max
mi∈Mi

∫
(θ,s−i)∈Θ2

ui(θ, ŷ(mi, m̂−i(s−i)))dH
si
i ,

(2) ∀ (m1,m2) ∈M1 ×M2, ŷ(m1,m2) solves max
y∈R

∫
θ∈Θ

v(θ, y)dµ̂(m1,m2),

(3) µ̂(m1,m2) is obtained from m̂1(·) and m̂2(·) by Bayes’rule, whenever possible.

We use this weak notion of perfect Bayesian Nash equilibrium mainly because there is no

universally accepted definition of perfect Bayesian Nash equilibrium with continuous action

spaces. We note that in the equilibrium constructed below, there are no out-of-equilibrium

message pairs, and Bayes’rule pins down the receiver’s beliefs after any possible message

pair. Such equilibria satisfy the requirements of any reasonable definition of perfect Bayesian

equilibrium.

We henceforth refer to weak perfect Bayesian Nash equilibrium simply as equilibrium.

3.1 Large Bounded State Space

First, we consider the case where Θ = [−T, T ] for some T ∈ R++, and show that for every

ε, δ > 0, if T is large enough and the noise parameter is low enough, then there exists an

equilibrium of the cheap talk game in which, at every state, the probability that the distance

between the induced action and the state is smaller than δ is at least 1− ε.
To establish this result, we consider the following signaling profile for the senders. For

any T ≥ K(δ), let nδ,T be the largest integer such that T
nδ,T
≥ K(δ). Partition Θ to nδ,T

10We only assume that τ1 and τ2 are independent of each other for expositional simplicity. The results
can be extended for arbitrary correlation between the two variables.
11Since we only construct pure strategy equilibria, we do not formally introduce mixed strategies here.
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equal intervals, to which we will refer as blocks. Note that the size of each block is 2T
nδ,T

,

which is by construction between 2K(δ) and 4K(δ). Next, further partition each block into

nδ,T equal subintervals, to which we will refer as cells. We will use Ij,k(i,j) to denote the jth

cell in the ith block, where k(i, j) =
{

i+j−1 if i+j−1≤n
i+j−1−n if i+j−1>n

. Thus, block i is partitioned into the

following nδ,T cells: {(1, i), (2, i+ 1), ..., (nδ,T − i+ 1, nδ,T ), (nδ,T − i+ 2, 1), ..., (nδ,T , i− 1)},
and there is a total of n2

δ,T cells. For completeness, assume that the cells in the partition are

closed on the left and open on the right, with the exception of cell Inδ,T ,nδ,T , which is closed

at both ends. Define signaling profile (mδ,T
1 ,mδ,T

2 ) such that for every j, k ∈ {1, ..., nT}, after
receiving signal s1 ∈ Ij,k, sender 1 sends message mj

1, and after receiving signal s2 ∈ Ij,k,

sender 2 sends message mk
2. Figure 1 below illustrates this signaling profile.

Let yδ,T be an action rule that maximizes the receiver’s expected payoffgiven (mδ,T
1 ,mδ,T

2 ).

Note that y(mj
1,m

k
2) is uniquely defined for j, k ∈ {1, ..., nδ,T} for any noise structure we

consider, since the conditional beliefs of the receiver after receiving such message pairs are

given by Bayes’rule, and the receiver’s utility function is strictly concave. As for out-of-

equilibrium messages mi 6= mj
i for all j ∈ {1, ..., nδ,T}, assume that the receiver interprets

each as having the same meaning as some message sent in equilibrium. No sender will then

have an incentive to deviate to an out-of-equilibrium message.

Figure 1: Signaling profile for large bounded intervals

Proposition 1: For every δ > 0, there exists T (δ) > 0 such that if T > T (δ), then

strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ) constitutes an equilibrium in the noiseless limit game, and

for every θ ∈ Θ, we have |yδ,T (mδ,T
1 (θ),mδ,T

2 (θ))− θ| < δ.

Proof: By construction, the receiver plays a best response in the proposed profile, so we
only need to check the optimality of the senders’strategies.

Note that nδ,T →∞ as T →∞. Since, by construction, 2T
nδ,T
≤ 4K(δ) for any T ≥ K(δ),

the above implies that the cell size, 2T
n2δ,T

, goes to 0 as T → ∞. Note that for every j, k ∈
{1, ..., nδ,T} and θ ∈ Ij,k, the assumptions on v imply that if both senders play according to
the prescribed profile, then the action induced at θ lies within Ij,k.

Also by construction, if the other sender plays the prescribed strategy, all other actions

that a sender could induce by sending a different message than prescribed are more than
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nδ,T−2

nδ,T
times the block size away. The latter is by construction at least 2K(δ), so if nδ,T > 4,

those actions are more than K(δ) away.

The above imply that there exists T (δ) > 0 such that |yδ,T (mδ,T
1 (θ),mδ,T

2 (θ)) − θ| < δ

if T > T (δ), and any deviation by a sender, given strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ), would

induce an action y by the receiver such that |u− θ| > K(δ). By the definition of K(δ), this

implies that there is no profitable deviation by either sender. �

Intuitively, the proposed construction is an equilibrium because the cell associated with

message pair (mj
1,m

k
2) for any j, k ∈ {1, ..., nδ,T} is far away from any cell in which the

prescribed message pair is either (m1,m
k
2) with m1 6= mj

1, or (mj
1,m2) with m2 6= mk

2. This

holds for large T even given a small cell size, which ensures that the distance between states

and induced actions is small.

Next, we show that if noise parameter 1−p is small enough, then profile (mδ,T
1 ,mδ,T

2 , yδ,T )

remains an equilibrium in a game with replacement noise.

Proposition 2: Suppose δ > 0 and T > T (δ). Then for any noise distribution G, there

exists p(G) < 1 such that p > p(G) implies that in a game with replacement noise structure

(G, p), strategy profile (mδ,T
1 ,mδ,T

2 , yδ,T ) constitutes an equilibrium.

Proof: Note that since both f and g are continuous and strictly positive on the compact
Θ, as p → 1, given signaling strategies (mδ,T

1 ,mδ,T
2 ), the conditional distribution of θ given

message pair (mj
1,m

k
2) in the game with replacement noise, denoted µ(θ,mj

1,m
k
2), converges

weakly to the conditional distribution of θ given message pair (mj
1,m

k
2) in the noiseless limit

game, for every j, k ∈ {1, ..., nδ,T}. To see this, note that letting f(mj
1,m

k
2) =

∫
I
m
j
1,m

k
2

f(θ)dθ,

we have

µ(θ,mj
1,m

k
2) =

∫
I
m
j
1,m

k
2

h(θ, s1, s2)ds1ds2∫
Θ

∫
I
m
j
1,m

k
2

h(θ, s1, s2)ds1ds2dθ

=



(p2+2p(1−p)f(mj1,m
k
2)+(1−p)2f(mj1,m

k
2)2)f(θ)

D(mj1,m
k
2 ,p)

if θ ∈ Imj1,mk2
(p(1−p)f(mj1,m

k
2)+(1−p)2f(mj1,m

k
2)2)f(θ)

D(mj1,m
k
2 ,p)

if θ ∈ Imj1,m2
for some m2 6= mk

2,

or θ ∈ Im1,mk2
for some m1 6= mj

1

(1−p)2f(mj1,m
k
2)2f(θ)

D(mj1,m
k
2 ,p)

otherwise

,

where D(mj
1,m

k
2, p) is the integral over Θ of the numerators. As p → 1, the numerator

in each of the latter two lines → 0, while the numerator in the first line → f(θ).

Then since the expected payoffof the receiver resulting from choosing some action y after

11



message pair (mj
1,m

k
2) is continuous with respect to the weak topology in the conditional

distribution of θ given (mj
1,m

k
2), the theorem of the maximum implies that yδ,T is continuous

in p, even at p = 1. This implies that the expected payoff of sender i resulting from sending

message ml
i after receiving signal si is continuous in p, for every i ∈ {1, 2}, l ∈ {1, ..., nδ,T}

and si ∈ Θ, even at p = 1. Moreover, in the noiseless limit game, after signals s1, s2 ∈ Ij,k,
sending message mj

1 yields a strictly higher expected payoff for sender 1 than m
l
1 for l 6= j,

and sending message mk
2 yields a strictly higher expected payoff for sender 2 than m

l
2 for

l 6= k. Thus, the same holds for p close enough to 1. This establishes the claim. �

The intuition behind Proposition 2 is that the receiver’s optimal action rule given (mδ,T
1 ,mδ,T

2 )

is continuous in p, even at p = 1. Therefore, the expected payoff of a sender when send-

ing different messages after a certain signal changes continuously in p as well. Since in the

noiseless limit game, a sender strictly prefers to send the prescribed message to sending any

other equilibrium message, the same holds for noisy games with p high enough.

Note that the above propositions imply that for any δ > 0, if the state space is large

enough, then there is an equilibrium of the noiseless limit game, where the action induced

at any state is at most δ away from the state, that is robust to replacement noise in a strong

sense: it can be obtained as a limit of equilibria of games with vanishing replacement noise,

for any noise distribution G.

The propositions also imply the following result.

Corollary 1: Fix payoff functions v(., .) and ui(., .), i = 1, 2, defined over R2 satisfying

A1. Take any sequence of games with bounded interval state spaces [−T1, T1],[−T2, T2],... ,

state distributions F1, F2, .., noise distributionsG1,G2,... and payofffunctions (v1, u1
1, u

1
2), (v2, u2

1, u
2
2), ...

such that vj, uj1 and u
j
2 are restrictions of v, u1 and u2 to [−Tj, Tj]×R. If Ti →∞ as i→∞,

then there exists a sequence of noise levels p1, p2, ... with pi < 1 for every i ∈ Z++ and pi → 1

as i → ∞, such that there is a sequence of equilibria of the above games with equilibrium
outcomes converging to full revelation in R.

Corollary 1 contrasts with Proposition 2 in Battaglini (2002), which establishes that if

the senders’ biases are above some threshold, then there does not exist a fully revealing

equilibrium robust to replacement noise in a one-dimensional state space, no matter how

large the state space.12 To reconcile these results, it is useful to observe that although the

sequence of outcomes induced by the sequence of equilibria from Corollary 1 converges to

12Battaglini’s result is stated in an environment where each player’s loss depends only on (a− bi(θ))2, and
does so in the same way in every state. However, its proof extends to our more general setting if for every
θ, each sender’s bias is large enough (in the sense that if ui(θ, θ) = ui(θ, a) and a 6= θ, then |a− θ| must be
large), and if the extent to which the receiver’s payoff’s sensibility to |a− θ| varies across states is bounded.

12



full revelation of the state in R, such sequences of equilibrium strategy profiles do not have

a well-defined limit in the noiseless limit game with state space R. This is because the limit
of a sequence of interval partitions where the sizes of the intervals converge to zero is not

well-defined.

3.2 Unbounded State Space

In this subsection, we analyze the case where Θ = R. We show that the equilibrium con-

struction introduced in the previous subsection can be extended to this case when the prior

distribution of states has thin enough tails.

The state space is still partitioned into n2 cells, and combinations of the n equilibrium

messages are allocated to different cells in the same order as before. The difference is that

in the case of an unrestricted state space, only the middle n2 − 2 cells can be taken to be

small; the extreme cells are infinitely large. Hence, in the equilibria we construct, even with

no noise, the implemented action will be far away from the state with nontrivial probability

in states in the extreme cells. But if the profile is constructed such that the middle n2 − 2

cells cover interval [−T, T ] for large enough T , then for small noise, the ex ante probability

that the induced action is within a small neighborhood of the realized state can be made

close to 1.

The extra assumption needed for this construction guarantees that for large enough block

size, even in the extreme cells, the senders prefer inducing the action corresponding to the

cell instead of deviating and inducing an action in a different block.

Let yθ,d,L (respectively, yθ,d,R) be the optimal action for the receiver when her belief about

the true state follows density d truncated to (−∞, θ] (respectively, [θ,∞)).

A3: There exist C,Z > 0 such that |yθ,f,L − θ| < Z for all θ < −C, and |yθ,f,R − θ| < Z

for all θ > C.

A3 requires the tail of the prior distribution to be thin enough: it is satisfied if f converges

quickly enough to 0 at −∞ and∞, relative to how fast the loss functions at moderate states
diverge to infinity as the action goes to −∞ or ∞. For example, if v exhibits quadratic
loss invariant in θ, a suffi cient condition for A3 is that limx→−∞

F (x)
f(x)

and limx→∞
1−F (x)
f(x)

exist. This is clearly true if f converges to 0 exponentially fast, so for v quadratic, A3 holds

for exponential distributions or for any distribution that converges to 0 faster, such as the

normal.

Proposition 3: Suppose f(θ)
g(θ)
≥ b > 0, for every θ ∈ Θ. If Θ = R and A3 holds, then for

every δ, η > 0, there exists p < 1 such that, in a noisy game with p > p, |y − θ| < δ with ex

13



ante probability at least 1− η.
Proof: Consider the following strategy profile in the noiseless limit game.
Let T be such that F (T ) − F (−T ) = 1 − η

2
. As in Subsection 3.1, partition R into n

blocks. Blocks 2 through n − 1 are equally sized and large enough so that each is bigger

than K(δ) + 2δ, and they together cover [−T, T ] ∪ [−C,C], where C is the corresponding

constant in A3.

For each k ∈ {1, ..., n}, we will further partition block k into n cells, labeled as in

Subsection 3.1. Block 1 minus the leftmost cell and block n minus the rightmost cell are

each bigger than max{K(Z), K(δ) + δ}, where Z is the corresponding constant in A3. We
choose n large enough so that each of the middle n2 − 2 cells, which are of equal size, is

smaller than δ. For the sake of completeness, let each of the middle n2− 2 cells be closed on

the left and open on the right.

Label the cells as in Subsection 3.1, and consider the following strategy profile:

- when s1 falls in cell (j, k), sender 1 sends message mj
1;

- when s2 falls in cell (j, k), sender 2 sends message mk
2;

- y(mj
1,m

k
2) is an optimal response to mj

1,m
k
2 given the above strategies, for every j, k ∈

{1, ..., n};
- the receiver associates any out-of-equilibrium message to a message sent by that player

in equilibrium, and after any other message pair, the receiver chooses the corresponding

y(mj
1,m

k
2) for some j, k ∈ {1, ..., n}.

This profile constitutes an equilibrium in the noiseless limit game, which has the property

that |y − θ| < δ with ex ante probability at least 1 − η
2
. This is because message pairs are

allocated to cells in a way that at any state, any action that a sender could induce other

than the prescribed one is strictly worse for the sender than the prescribed action.

Analogous arguments as the ones used in the proof of Proposition 2 establish that for

large enough p, the above profile still constitutes an equilibrium. The assumption that
f(θ)
g(θ)
≥ b > 0 guarantees that for p large, senders believe with high probability that they have

observed the correct state. Moreover, it is easy to see that for large enough p, conditional on

the state being in the middle n2 − 2 cells, the probability that |y − θ| < δ is at least 1− η
2
.

Then, the ex ante probability of |y − θ| < δ is at least 1− η, concluding the proof. �

Proposition 3 implies that, if A3 holds, then in a game where the state space is the real

line, for any δ > 0, there exists an equilibrium robust to small replacement noise in which

the distance between any state and the action induced in that state is less than δ with high

ex ante probability. The thinness of the tail of the distribution then also implies that the ex

ante expected payoff of the receiver in equilibrium can closely approximate the maximum

possible payoff value 0, obtained in a truthful equilibrium.
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4 Bounded Continuous Noise

Our construction from Section 3 requires that, regardless of their signal si, each sender

believes that the other sender’s signal sj lies in the same cell as si with high probability.

This occurs with replacement noise due to the high probability that both senders observe

the state exactly. However, if signals follow a continuous distribution around the state and

are not perfectly correlated, then the probability that they coincide is 0. As a result, when si
is suffi ciently near the boundary between two cells, the probability that sj lies on the other

side of the boundary is non-negligible. In that case, the senders may have an incentive to

second-guess their signal in order to reduce the probability of a coordination failure (which

we call miscoordination) that would result in the action being in a different block, or in

order to make miscoordination less costly by changing the action that follows it. But doing

so in states near the boundary can trigger a departure from the originally prescribed strategy

profile in other states and lead to an unraveling of the equilibrium construction from Section

3.13

In this section, we allow for the distribution of si to exhibit continuous density, and

focus on the case where, conditional on θ, the supports of the signals si are small relative

to the state space ("bounded"). Our main result is that if the state space is unbounded,

then under mild conditions on the noise structure, there exists an equilibrium in which the

receiver perfectly learns both senders’signals. For large bounded state spaces, we show a

more limited result: given additional assumptions on the noise structure, there exists an

equilibrium with two rounds of messages by the senders that fully reveals one of the senders’

signal.

4.1 Unbounded State Space: Fully Revealing Equilibrium

It is well known that in noiseless games with large enough state space, full revelation can

occur in equilibrium, given out-of-equilibrium beliefs by the receiver that make any deviation

suffi ciently costly. Proposition 4 shows that for many noise structures where the senders’

signals are never too far apart, a similar reasoning holds when Θ = R. The main difference
13For example, suppose θ follows a uniform distribution, and both senders independently observe si dis-

tributed U [θ−ε, θ+ε] (whenever [θ−ε, θ+ε] ⊆ Θ). Suppose θ is the boundary between I1,2 and I2,3 (which
are in block 2) in the construction from Section 3. Suppose also that between the miscoordinations resulting
an action in I1,3 (in block 3) and I2,2 (in block 1), sender 1 prefers the former, while sender 2 has symmetric
preferences.
If sender 2 follows the prescribed strategy, then when sender 1 sees s1 slightly to the right of θ, she will

prefer sending message 1 instead of 2: although she thinks that sender 2 is slightly more likely to send 3
than 2, she minds I1,3 less than I2,2. However, sender 2 will repond to that by sending 2 instead of 3 when
s2 is slightly to the right of θ. As a result, sender 1 will shift her "boundary" between messages 1 and 2
further right, and so on. The equibrium profile unravels.
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with the noiseless case is that ifmi is only slightly different from si, then an out-of-equilibrium

message pair only occurs with small probability. The construction that we propose ensures

that the receiver’s strategy is suffi ciently extreme off the equilibrium path that even small

deviations by the senders are deterred.

The following notation is useful to state our assumptions about the noise structure. Let

g(s1, s2, θ) be the joint density of (s1, s2, θ). Let Si(θ) be the support of si conditional on θ,

and let Θi(s) be the support of θ conditional on si = s. Finally. let si(θ) and si(θ) be the

infimum and supremum of Si(θ), and let θi(s) and θi(s) be the infimum and supremum of

Θi(s).

Assumption 4 ensures that whenever sender j does not truthfully report her signal (mj 6=
sj), but sender i does (mi = si), then there is a positive probability that (m1,m2) does not

correspond to a pair of signals that can arise with truthful reporting, i.e. that g(m1,m2, θ) =

0 for all θ.

A4: For all θ and i, Si(θ) are nontrivial intervals, and si(.) and si(.) are both strictly
increasing and continuous.14

Next, we also need the probability that g(m1,m2, θ) = 0 for all θ (i.e. that m1 and

m2 are incompatible signals) to increase suffi ciently fast from 0 as mj moves away from sj,

assuming mi = si. This is guaranteed by A5.

A5: (i) There exists ν > 0 such that g(s1, s2, θ) > ν whenever (s1, s2) ∈ S1(θ) × S2(θ).

(ii) θi(.) and θi(.) are both Lipschitz continuous, with Lipschitz constant C.

Proposition 4: Suppose A4 and A5 hold and Θ = R. Then there exists an equilibrium
where both s1 and s2 are revealed to the receiver.15

The idea for the proof of Proposition 4 is to make the senders’ expected utility from

any deviation −∞. Suppose, without loss of generality, that m2 is slightly below s2, while

m1 = s1. Then, by A4, x(m1,m2) ≡ θ1(m1) − θ2(m2) is positive (and small) with positive

probability. In this case, we let the receiver’s belief be θ = 1/x(m1,m2)2, which means that

her optimal action is a = 1/x(m1,m2)2. A5 guarantees that the density of x(m1,m2) for

small x(m1,m2) is on the order of x(m1,m2). This, combined with a = 1/x(m1,m2)2 and the

14This is equivalent to assuming that for all s and i, Θi(s) are nontrivial intervals, and θi(.) and θi(.) are
both strictly increasing and continuous. One can see this by noting that the joint support of (θ, si) is the
joint support of (si, θ) reflected about the 45◦ line.
15In an earlier version of this paper, we provided a fully revealing equilibrium without assuming A5, but

with the presence of an impartial mediator.
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concavity of ui in the action, ensure that the expected utility after any deviation is indeed

−∞. The full proof in the Appendix shows how this can be done for deviations that are not
necessarily small.

4.2 Bounded State Spaces: Two Rounds of Communication

The result in the previous subsection applies to a broad class of bounded continuous noise

structures, and provides a fully revealing equilibrium for arbitrary levels of noise. However,

the construction requires the state space to be unbounded. For bounded state spaces, we

propose an alternative construction, which can be implemented through two rounds of public

cheap talk. The drawbacks of this construction are that it only reveals s1, is only valid

for a more restricted class of noise structures, and is significantly more involved than the

equilibrium used for Proposition 4.16

Formally, we consider a multi-stage game in which θ is realized and each sender i observes

si in stage 0. In stage 1, the senders send messages m1 and m2 that are public (i.e. observed

by all players before the next stage). After observing these messages, in stage 2, the senders

simultaneously send public messages m′1 and m
′
2. Lastly, in stage 3, the receiver chooses an

action.

Strategies are defined as follows. The action rule of the receiver becomes a measurable

function y : (M1 ×M2)2 → R, and the belief rule is now a measurable function µ : (M1 ×
M2)2 → ∆(Θ). Sender i’s signaling strategy is a pair of measurable functions mi : Si →
∆(Mi) and m′i : Si×M1×M2 → ∆(Mi). Sender i’s belief in stage 1 is determined by Bayes’

rule, while her belief rule in stage 2 is µi : Si×M1×M2 → ∆(Θ×Sj). We use weak perfect
Bayesian Nash equilibrium, defined analogously as in Section 3, as our solution concept.

We impose the following assumptions A6-A8 regarding the distribution of signals and

preferences:

A6: There exists ε > 0 such that, conditional on the state θ, we have si ∈ [θ − ε, θ +

ε]. Furthermore, there exist ν, δ, r > 0 such that for every s1, (i) the distribution of s2

conditional on s1 exhibits a density f(s2|s1) > ν everywhere on S2(s1) ≡ [s2(s1), s2(s1)], (ii)

s2(s1) − s2(s1) > δ, and (iii) s2(.) and s2(.) are continuous and strictly increasing at a rate

of at least r.

An example of a class of noise that satisfies the above restrictions is the following: s1 =

θ + ω1 and s2 = θ + ω1 + ω2, where ωi ∼ Fi independently, and F1 and F2 are distributions

16The construction we propose here can also be used for unbounded state space, in which case it has
the advantage of not relying on out-of-equilibrium beliefs as any combination of messages can occur in
equilibrium.
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with finite interval supports and densities bounded away from 0. In particular, this holds

when s2 is a mean-preserving spread of s1 satisfying the above technical conditions.17

Let a(s1) = arg maxa
∫
v(θ, a)f(θ|s1)dθ be the receiver’s optimal action conditional on

s1. Note that a(s1) is unique because v(θ, a) is strictly concave in a.

A7: a(s1) is strictly increasing and Lipschitz continuous in s1, with Lipschitz constant

Λ.

For example, A7 is satisfied when for some ε > 0, the distribution of θ conditional on s1,

denoted F (θ|s1), first-order stochastically dominates F (θ − ε(s1 − s′1)|s′1) whenever s1 > s′1.

A8: For any ε ≥ 0, there exists L(ε) > 0 such that for any a, θ ∈ Θ, and a′, θ′ ∈
[θ−ε, θ+ε], we have ui(θ, a′)−ui(θ, a) = ui(θ

′, a′′)−ui(θ′, a) for some a′′ ∈ [a−L(ε), a+L(ε)], ∀
i = 1, 2.

A8 bounds the extent to which senders care more about the outcome in one state of the

world than the outcome in another state. Like A2, A8 is automatically satisfied if preferences

depend only on a− θ, as assumed in most of the literature on cheap talk and delegation.

When Θ is a large bounded interval of R, we define the underlying game (distribution of
θ and si, preferences) over all of R.

Proposition 5: Suppose A1, A2, A6, A7 and A8 are satisfied in the underlying game
and when Θ is truncated to a bounded state space. Then there exists T ∗ such that whenever

Θ is truncated to [−T, T ], where T > T ∗, in a game with two rounds of simultaneous public

messages, there exists an equilibrium where s1 is exactly revealed.

Below is a summary of the equilibrium construction in the proof of Proposition 5. Because

the construction is simpler when Θ = R, we start by describing this case.
In stage 1, sender 1 sends a message that selects a partition among a continuum of possible

partitions, while sender 2 babbles. Each of these partitions has infinitely many cells, each

designated by a message pair (m′1,m
′
2), where m′1 ∈ {1, 2, ..., n} and m′2 ∈ Z. Like in the

construction in Section 3, a cell designated by message pair (m′1,m
′
2) is located far from any

17In this example, one sender is better informed than the other, but Propositions 5 and 6 below do not
require the noise to be asymmetric, and the lack of atoms assumed in A6 can be relaxed. For example, our
results also hold for the following class of noise: s1 = θ + ω1 and s2 = θ + ω2, where ωi ∼ Fi independently,
F1 and F2 are distributions with finite interval supports and densities bounded away from 0, and F1, F2, or
both F1 and F2 has/have point masses at the endpoints (the point masses can be arbitrarily small). The
presence of atoms (or, in the main text’s example, asymmetry) ensures that f(s2|s1) is bounded away from
0, as A6 requires.
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cell of the form (x,m′2) for x ∈ {1, 2, ..., n}\{m′1} or of the form (m′1, x) for x ∈ Z\{m′2}, so
that if the cell where signals are located is common knowledge among senders, no deviation is

profitable. The continuum of possible partitions is such that for any s1, exactly one partition

has a cell that contains S2(s1). For this partition, sender 1 knows for sure which cell s2 lies

in. In stage 2, the senders play a continuation strategy profile analogous to the one from

Section 3. The combination of stage 1 and stage 2 messages exactly reveals s1 to the receiver,

and does not reveal any additional information. Hence, the receiver plays the optimal action

conditional on sender 1’s signal being s1.

We build the collection of partitions for the first stage as follows. First, note that A6

ensures that for any s1, s
′
1 ∈ S1, S2(s1) * S2(s′1). This implies that one can build a set P

of partitions such that, for every s1, there is a unique partition within P where sender 1
puts probability 1 on s2 lying in the same cell as s1. Furthermore, for every s1, there exist

s′1 < s1 and s′′1 > s1 such that s2(s1) = s2(s′1) and s2(s1) = s2(s′′1). Therefore, it is possible

to construct P such that, in every partition in P, every cell can occur on the equilibrium
path. Since, by definition, every partition covers R, this implies that for every s2 ∈ R, every
partition in P is on the equilibrium path: regardless of the chosen partition, sender 2 cannot
know that sender 1 has deviated.

Assumptions A6 (through ν and r) and A7, together with the cost of miscoordination

in our construction, ensure that sender 1 chooses the partition where the probability of

miscoordination is 0. To see this, note that since both s2(s1) and s2(s1) are increasing

at a rate bounded away from 0, and the density of S2(s1) is bounded away from 0 on

its support, any small deviation from the prescribed partition increases the probability of

miscoordination by a rate bounded away from 0. Finally, the receiver’s action is a(s1): she

receives no information about s2 other than the fact that it lies in S2(s1).

To extend the construction to bounded Θ, we give each partition n2 cells, like in our basic

construction from Section 3. As in Section 3, T needs to be large relative to the senders’

biases such that the partition’s blocks can be made large enough to discourage deviations.

There are two main diffi culties for the case of bounded Θ: i) since the size of the cells is

determined by the noise structure, to make the number of cells in each partition square,

we need to modify the construction; ii) the cells at the ends of the partitions may now be

out-of-equilibrium. We discuss these issues and provide the full proof of Proposition 5 in the

Appendix.
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5 Extensions and Discussion

5.1 Multidimensional State Spaces

Our construction from Section 3 can be readily extended to multidimensional state spaces

for replacement noise if the state space is the whole Euclidean space Rd, for d ≥ 2. In

particular, for any δ > 0, instead of partitioning a high-probability portion of the state space

into n2 − 2 intervals of size δ, we partition in into (n2 − 2)d d-dimensional hypercubes with

edges of size δ. Now take nd messages for each sender, and index them by {1, 2, ..., n}d.
Hence, a typical message for sender i is labeled as mi

j1,...,jd
(j1, ..., jd ∈ {1, 2, ..., n}). The lth

component jl of each sender’s message is determined by the l-coordinate of the cell where

that sender’s signal is located, in the same way as in Subsection 3.2. Proceeding like this for

all d dimensions results in a strategy profile of the senders such that each pair of possible

messages is identified with a unique cell in the above partition. Moreover, the profile is

constructed such that at every state, sending a different message than the one corresponding

to the cell containing the state results in a message pair identified with a cell far away from

the original state, whether the sender deviates in one or more dimensions from the prescribed

message. Proving that this profile constitutes an equilibrium for small enough replacement

noise is analogous to the proof of Proposition 3.

The equilibrium construction from Proposition 4 can be extended to multidimensional

state spaces with straightforward extensions of assumptions A4 and A5.

For large d-dimensional orthotopes, the construction from Section 3 can be extended

in a straightforward manner. For different types of bounded state spaces in Rd, our basic
construction cannot be applied directly. However, the same qualitative insight still holds.

Suppose the state space can be partitioned into n2 cells with diameter at most δ, and that

there is a bijection from M ≡ {m1
1, ...,m

n
1} × {m1

2, ...,m
n
2} to the cells in the partition such

that for any (m1,m2) ∈M and for any (m′1,m
′
2) ∈M with either (i) m1 = m′1 and m2 6= m′2,

or (ii)m1 6= m′1 andm2 = m′2, it holds that the distance between the partition cells associated

with (m1,m2) and with (m′1,m
′
2) are at least K(δ) away from each other. Then there is an

equilibrium of the noiseless limit game that is robust to a small amount of replacement noise.

5.2 Introducing Noise at Different Stages of the Game

We have been investigating equilibria robust to perturbations of a multi-sender cheap talk

game in the observations of the senders. This is the type of perturbation most discussed in

the literature. However, similar perturbations can be introduced at various other stages of

the communication game: in the communication phase (the actual message received by the
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receiver is not always exactly the intended message by a sender) and in the action choice

phase (the policy chosen by the receiver is not exactly the same as the intended policy

choice).18

The equilibria we propose in this paper are robust with respect to the above perturbations

as well. To see this for the case of small perturbations in the receiver’s action choice, note

that in the equilibria we construct, senders strictly prefer sending the prescribed message to

any other equilibrium message (while out-of-equilibrium messages lead to the same intended

actions as equilibrium messages). Hence for replacement noise, bounded continuous noise

with unbounded state space, and in stage 2 of the two-round construction, if the noise in the

action choice is small enough, senders still strictly prefer sending the prescribed message to

sending any other message along the path of play. To ensure that there is no deviation in

stage 1 of the two-round construction, one would need regularity conditions on the change

in the distribution of the realized action when the intended action changes.

For noise in the communication phase, it is more standard to introduce replacement noise,

as in Blume et al. (2007), since there typically is no natural metric defined on the message

space (messages obtain their meanings endogenously, through the senders’ strategies). A

small modification of our equilibrium constructions from Sections 3 and 4.219 makes the

profile robust with respect to such noise: partition each sender’s message space into subsets,

one for each equilibrium message, and associate each subset with a distinct equilibrium

message. In the senders’new strategies, after any signal, they select an action randomly

(according to a uniform distribution) from the subset of messages associated with the original

equilibrium message. The resulting profile remains an equilibrium and induces exactly the

same outcome. Moreover, this equilibrium is robust to a small amount of replacement noise,

subject to regularity conditions guaranteeing that, when the above strategy profile is played,

any message is much more likely to be intended than to be the result of noise.20

5.3 Commitment Power

If the receiver can credibly commit to an action scheme as a function of messages received,

then there exist constructions simpler than the ones we proposed that are robust to small

18For an analysis of noisy communication in one-sender cheap talk, see Blume et al. (2007). See also
Chen et al. (2008) for a one-sender cheap talk game in which both the sender and the receiver are certain
behavioral types with small probability, a model resembling one in which there is a small replacement noise
in both the communication and the action choice stages.
19Extending our construction from Section 4.1 leads to the following problem: if there is always a positive

probability of incompatible messages, the senders’utilities are −∞ regardless of their strategy.
20For a bounded state space, this is the case if the distribution of the replacement noise has a bounded

density function, and the probability of replacement noise is small enough.
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amount of noise and achieve exact truthful revelation of the state. Here, we only discuss the

case of replacement noise and one-dimensional state spaces. Mylovanov and Zapechelnyuk

(2013) shows that a necessary and suffi cient condition for the existence of a fully revealing

equilibrium in a noiseless two-sender cheap talk game with commitment power and bounded

interval state space [−T, T ] is the existence of a lottery with support {−T, T} with the
property that at every θ ∈ [−T, T ], both senders prefer action θ to the above lottery. The

suffi ciency of this condition is easy to see: the receiver can commit to an action scheme that

triggers the above lottery in case of differing messages from the senders.

We observe that given the above action scheme, truthtelling by the senders remains an

equilibrium for small enough replacement noise. This is because if the other sender follows

a truthtelling strategy, then after receiving signal θ, sending any other message than θ

induces the threat lottery with probability 1, while sending message θ induces θ with high

probability. The latter outcome is, by construction, preferred by the sender if the state is

likely to be θ. The above implies that in case of commitment power, there exists a fully

revealing equilibrium robust to replacement noise, even if the state space is relatively small.

For example, if senders have symmetric and convex loss functions and are biased in opposite

directions, then there exists an equilibrium construction like the one above whenever biases

are less than T in absolute value.

5.4 Discrete State Spaces

The constructions in 3.2 and 3.3 extend in a straightforward manner to large discrete state

spaces. Consider first the case when the state space is a coarse finite grid of a large bounded

interval: Θ = {θ ∈ [−T, T ]|θ = −T + k · ε}, where T ∈ R+ is large and ε ∈ R+ is small.

Define n2ε,T as in Subsection 3.2, and partition [−T, T ] to n2
2ε,T equal-sized subintervals. By

construction, each partition contains at least one state from Θ. Then it is easy to see that

the strategy profile presented in 3.2 gives an equilibrium robust to a small amount of noise,

in which the supremum of the absolute distance between any possible state and the action

induced in that state is at most 2ε. This construction readily extends to other finite one-

dimensional state spaces and implies almost full revelation of the state whenever the distance

between the two extreme states is large enough, and the maximum distance between two

neighboring states is small enough.
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6 Appendix

6.1 Proof of Proposition 4

Consider the following strategy profile:

- Sender i sends mi = si.

- If g(m1,m2, θ) > 0 for some θ, the receiver’s beliefs are derived from Bayes’rule, and

the receiver takes the optimal action.

- Otherwise, let x(m1,m2) = θi(mi) − θj(mj), where θi(mi) ≥ θj(mj), be the distance

between the set of states compatible with s1 = m1 and the set of states compatible with

s2 = m2. Also let:

k(m1,m2) = inf
i=1,2;j 6=i;zj∈Sj(Θi(mi))

{θi(mi)− θi(mi), θj(zj)− θj(zj)}.

Define y(m1,m2) =

{
x(mod k) if x is not a multiple of k

k if x is a multiple of k
(suppressing the (m1,m2) ar-

gument after x and k for readability). Then the receiver believes θ = 1/y(m1,m2)2 with

probability 1 and plays a = 1/y(m1,m2)2.

It is obvious that the receiver’s beliefs are consistent with Bayes’rule when possible, and

that her action rule is optimal given these beliefs.

It remains to be shown that truthtelling is optimal for the senders. We do so by showing

that the sender’s expected utility after any deviation is −∞.
Note that by A4, θi(si(θ)) = θ. Taking θ = θj(sj), we see that after observing sj, sender

j believes that θi(si) can be as high as θj(sj). By the same token, sender j also believes that

θi(si) can be as low as θj(sj). This implies that:

- As soon as Θj(mj) 6= [θj(sj), θj(sj)] (which, by A4, occurs whenever mj 6= sj), then mj

and si are incompatible with positive probability, and assuming truthtelling by i, x > 0 with

positive probability.

- From sender j’s perspective, the interval of possible θi(si) contains [θj(sj), θj(sj)]. Thus,

if i reports the truth and mj < sj, then the support of x(m1,m2) either has left endpoint 0

(if θj(mj) > θj(sj)), or has size at least θj(sj)− θj(sj) ≥ k(m1,m2). The same goes for the

interval of possible θi(si) and mj > sj.

Combining the above observations, we see that if mi = si, then player j believes that if

she sends any mj 6= sj, then the support of y(m1,m2) has left endpoint 0.

As senders’utilities are concave, in order to conclude that any deviation yields expected

utility −∞, it is suffi cient to show that
∫∞

0
(1/y2)ϕj(y|sj,mj)dy =∞ for any sj andmj 6= sj,
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where ϕj(.|sj,mj) is the density of y conditional on sj, mj 6= sj and truthtelling by i.

Now let fj(si|sj) be the density of si conditional on sj. That is,

fj(si|sj) =

∫
Θj(sj)

g(s1, s2, θ)dθ∫
Si(Θj(sj))

∫
Θj(sj)

g(s1, s2, θ)dθdsi
.

Lemma 1: For any sj, ∃ε(sj) > 0 such that fj(si|sj) > ε(sj)|Θi(si) ∩Θj(sj)|.
Proof of Lemma 1: By A5(i), g(s1, s2, θ) > ν for all θ ∈ Θj(sj) and si ∈ Si(θ), i.e.

whenever θ ∈ Θi(si) ∩ Θj(sj). Letting ε(sj) = ν/D(sj), where D(sj) is the denominator of

fj(si|sj), yields the desired result. �

Without loss of generality, we consider deviations of the form mj < sj. By Lemma

1 and A5(ii), the density of θi(si) conditional on sj is bounded below by ε(sj)|Θi(si) ∩
Θj(sj)|/C. This implies that, conditional on sj, mj 6= sj and truthtelling by i, the density

of x = θi(si) − θj(mj) only reaches 0 at the endpoints of its support, from where, as si
changes, it increases at a rate of at least ε(sj)/C until Θi(si) ∩ Θj(sj) starts losing some

elements.21 Therefore, ϕj(y|sj,mj) > yε(sj)/C for suffi ciently small y and allmj < sj. Since∫ c
0
(1/y2)(yε(sj)/C)dy =∞ for any c > 0, it follows that

∫∞
0

(1/y2)ϕj(y|sj,mj)dy =∞, which
concludes the proof. �

6.2 Proposition 5

6.2.1 Extending the Construction Described in theMain Text to Bounded State
Spaces

To use the construction from Section 3, we need to make the number of cells in each partition

square. To do so, we divide the set of partitions P into two subsets, L and R. Each partition
in L is constructed starting with a cell at the left end of S2 ⊆ [−T − ε, T + ε]. This first cell

is called a small extreme cell if its right endpoint is less than s2(mins1∈S1 s1), which implies

that there is no s1 for which this cell contains S2(s1); otherwise, it is a regular cell. Each

subsequent cell, except for the rightmost one, is (s2(z), s2(z)] for some z ∈ S1, where s2(z) is

the right boundary of the previous cell; these are all regular cells. Once regular cells and, if

applicable, the small extreme cell together cover 3
4
of S2 and number n2− 1 for some integer

n, we cease creating new cells, and the last cell, called the large extreme cell, covers the rest

of S2. By construction, there are n2 cells in each partition. Partitions in R are constructed

21That is, moving right to left, until θi(si) drops below θj(sj), and, moving left to right, until θi(si)
increases above θj(sj).
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in a similar fashion, but starting at the right end of S2. Notice that for every element of

L, there is a corresponding element of R that is identical in the area where regular cells of

L-partitions and regular cells of R-partitions overlap, and vice versa. A typical partition

is illustrated in Figure 2. The top of the picture displays the partition in L prescribed for

signal s1, while the bottom of the picture displays the corresponding partition in R. Note

that in both partitions, the cell that s1 belongs to is exactly S2(s1).

Figure 2: The L and R partitions prescribed for a typical signal of sender 1

In the proposed equilibrium, sender 1 chooses a partition where one of the cells is exactly

[s2(s1), s2(s1)]. By construction, there is at least one such partition in P, and at most one
such partition in each of L and R. When a partition from L and a partition from R both

satisfy the criterion, which occurs when s1 is a regular cell of both partitions, sender 1

randomizes 50/50 between them; this is consistent with equilibrium since both partitions

lead to the same action, a(s1).

We also need to deal with extreme cells being out of equilibrium: on the equilibrium path,

the senders’round 2 messages (m′1,m
′
2) never point to an extreme cell. This is especially

problematic when (m′1,m
′
2) corresponds to the large extreme cell due to its size. We specify

the receiver’s beliefs after such message pairs such that no profitable deviation is created.22

Specifically, if P ∈ L, then the large extreme cell is (n, n − 1). In our equilibrium, the

receiver’s belief after seeing P ∈ L and (n, n−1) is the same as if (m′1,m
′
2) had instead been

(n, n− 2), which corresponds to a cell a block away. As a result:

- When m′1 = n, the rightmost action that sender 2 can induce is in (n, n−2) (by sending

m′2 = n− 1 or n− 2). So when s2 is in cell (n, n− 1), sending m′2 = n− 1 is still optimal for

sender 2.

- When m′2 = n − 1, the rightmost action that sender 1 can induce is in (n, n − 2) (by

sending m′1 = n). This is because, apart from (n, n − 1), which cannot be induced, the

closest cell to (n, n − 2) where m′2 = n − 1 is (1, n − 1), which is almost a block to the left

22Moreover, in round 2, sender 2 is aware that sender 1 has deviated in round 1 if s2 is in an extreme
cell of the announced partition. At such histories, in our equilibrium, sender 2’s beliefs are such that m′1 is
consistent with the cell where s2 is located.
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of (n, n − 2).23 Therefore, when s1 is in cell (n, n − 1), sending m′1 = n is still optimal for

sender 1.

The case where P ∈ R is analogous.

6.2.2 Proof of Proposition 5

1. Constructing partitions for stage 1 messages by sender 1.

Note that by assumption A6, s2(s1)− s2(s1) ≥ δ for all s1.

Let S2 = [−B,B] ⊆ [−T − ε, T + ε], and let X = max{s1:s2(s1)=−T} s2(s1).

Define partition L(x), which consists of n2 cells labeled as in Section 3, as follows for

all x ∈ (−B,X]. The leftmost cell (1, 1) is [−B, x]. Each subsequent cell, except for the

rightmost one (n, n − 1), is (s2(z), s2(z)], where s2(z) is the boundary of the previous cell;

note that this is well-defined because s2(.) and s2(.) are continuous and strictly increasing.

Let nL be large enough so that if n = nL, the left boundary of the rightmost cell (n, n− 1)

is greater than T
2
for all L(x). This is possible since, by assumption, the size of cells is

bounded below by δ and above by 2ε.24 We will refer to the rightmost cell as the large

extreme cell, and in partitions where x < s2(mins1∈S1 s1), we refer to the leftmost cell as the

small extreme cell. Moreover, call all others cells regular. Note that since s2(s1) and s2(s1)

are strictly increasing, there exists a unique x ∈ (−B,X] such that sender 1 puts probability

1 on s1 and s2 being in the same regular cell.

Let nL (the number of cells per block) be large enough so that the following hold for all

s, feasible s2 given s1 = s, and actions a located nL − 3 cells away from a(s):

(i) minθ∈[s−ε,s+ε]{u1(θ, a(s))− u1(θ, a)} > Λ
νr

maxθ∈[s−ε,s+ε],a′∈[a(s−4ε),a(s+4ε)] | ∂∂αu1(θ, a′)| ≡
Λ
νr
M(s), where ∂

∂α
denotes the partial with respect to the receiver’s action; and

(ii) E[u2(θ, a(s))|s1 = s, s2]− E[u2(θ, a)|s1 = s, s2] > 0.

Condition (ii) simply ensures that in stage 2, after sender 2 has learned s1 = s, sender

2 has no incentive to deviate since inducing a cell almost a block away (as happens when

she unilaterally deviates given a partition) is not profitable. Note that θ ∈ [s1 − ε, s1 + ε],

and that furthermore, as a result, a(s1) ∈ [s1 − ε, s1 + ε]. Therefore, as in Section 3, due to

A2, it is possible to make the blocks large enough (on the order of K(ε), by taking n large

enough) so that (ii) is satisfied.

23By construction, m′2 = n− 1 is skipped at the boundary between the last two blocks.
24To see that for T large enough, it is possible for the size of the first n2 − 1 cells to lie between B + T

2

and B + B, we need to show that as n increases, the size of the first n2 − 1 cells will not "skip over" this
range. A partition’s n2 − 2 middle cells will cover at least (n2 − 2)δ. If we increase n by 1, we are adding

2n + 1 cells, which cover at most (2n + 1)ε. Note that (n2−2)δ+(2n+1)ε
(n2−2)δ

n→∞→ 1, while B+B

B+T
2

≥ (T+ε)+(T−ε)
(T+ε)+T

2

,

which increases in T and converges to 4
3 > 1.
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Condition (i) does the same for sender 1 and - as shown in the last part of the proof -

provides incentives for sender 1 to announce a partition where no miscoordination is possible.

Without themin andmax functions in condition (i), the existence of nL would be guaranteed

by A2 and the concavity of u1 with respect to the action. A8 links sender 1’s preferences at

any θ ∈ [s− ε, s+ ε] to her preferences at the state where | ∂
∂α
u1(θ, a′)| is maximized, which

allows us to take the min and max functions in condition (i).

Similarly, let Y = min{s1:s2(s1)=T} s2(s1), and define the partition R′(y) for all y ∈ [Y, T ),

starting from the right, so that its rightmost n2 − 1 cells cover at least [−T
2
, B]. Define nR

analogously, and let n = max{nL, nR}.
Note that, for any x, y, the regular cells from L(.) and R′(.) will overlap over at least

[−T
2
, T

2
]. Because s2(s1) and s2(s1) are strictly increasing over the relevant range, for every

y ∈ (0, Y ], there exists ϕ(y) ∈ (0, X] such that in the range of the overlap, the cells of

L(ϕ(y)) have the same boundaries as the cells from R′(y). Define R(x) = R′(ϕ−1(x)), so

that in the area of the overlap, the cells of L(x) and R(x) have the same boundaries.

As a result, for every s1, there exists a unique x such that sender 1 puts probability 1

on s1 and s2 being in the same regular cell for at least one of L(x) and R(x). Denote this

quantity x(s1).

2. The strategy profile

- Stage 1: Sender 1 announces a partition from the set {L(x), R(x)}x∈(0,X]. This partition

is such that sender 1 knows which regular cell s2 lies in - the partition must be either L(x(s1))

or R(x(s1)). If both of these partitions work, sender 1 randomizes 50/50 between them. For

the remainder of this proof, we will let P be the announced partition. Sender 2 babbles.

- Stage 2: We distinguish three cases:

a) On the equilibrium path (for sender 1, if no deviation in stage 1; for sender 2, if s2

lies in a regular cell of P ): The senders send m′i corresponding to the cell of P where s2

lies, which, by construction, is known to sender 1. Beliefs µi are determined according to

Bayes’rule. Note that (m′1,m
′
2) must correspond to a regular cell of P and reveals s1 when

combined with sender 1’s announcement in stage 1.

b) Off the equilibrium path for sender 1 (following deviation in stage 1): µ1 is unchanged

from stage 1, and sender 1 plays a best response.

c) Off the equilibrium path for sender 2 (if s2 lies in an extreme cell of P ): Sender 2

sends m′2 corresponding to the cell of P where s2 lies. Her belief µ2 remains unchanged with

respect to θ, while with respect to s1, it is such that m′1(s1,m1,m2) = 1 (if s2 lies in the

leftmost cell of P ) or m′1(s1,m1,m2) = n (if s2 lies in the rightmost cell of P ). Note that

this is always possible because, on the equilibrium path, m1 = P ′ and m′1 = k can occur for
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all P ′ ∈ {L(x), R(x)}x∈(0,X] and k ∈ {1, ..., n}.
- Stage 3:

a) If (m′1,m
′
2) corresponds to a regular cell of P , the receiver chooses a(s1), where s1 is

inferred from P , m′1 and m
′
2. Note that this is always the case on the equilibrium path.

b) If, instead, (m′1,m
′
2) points to the small extreme cell of P , the receiver believes that

the state is the endpoint (−T or T ) within that extreme cell, and chooses that action.
c) If, finally, (m′1,m

′
2) points to the large extreme cell of P , the receiver believes that the

state is a(s1) and chooses that action, for s1 determined as follows:

- if P = L(x) for some x, then s1 is inferred as if sender 2 had sent m′2 = n− 2, so that

the cell is the regular cell (n, n− 2) instead of the large extreme cell (n, n− 1);

- if P = R(x) for some x, then s1 is inferred as if sender 2 had sent m′2 = 2, so that the

cell is the regular cell (1, 2) instead of the large extreme cell (1, 1).

We now verify the optimality of this strategy profile for each player. For sender 2, we

will assume that P = L(x) for some x. A symmetric argument applies if P = R(x) instead.

3a. Optimality for the receiver

On the equilibrium path, the receiver has learned s1 exactly, but no information on s2

other than the fact that it lies in [s2(s1), s2(s1)]. It is therefore optimal for the receiver to

choose a(s1).

Off the equilibrium path, sequential rationality for the receiver’s action choice directly

follows from the specified beliefs.

3b. Optimality for sender 2 on the equilibrium path

If s2 lies in a regular cell of P , then sender 2 believes that m′1 will refer to the cell where

s2 lies. For the same reason as in Section 3’s basic construction, sender 2 has no profitable

deviation to another regular cell or to the small extreme cell. Deviating to the large extreme

cell (n, n − 1) is also not profitable: message pair (n, n − 1) now leads to the same action

as for message pair (n, n − 2). Obviously, sender 2 has no incentive to deviate is she is

supposed to send n − 2. When sender 1 is supposed to send n and sender 2 is supposed to

send any message other than n− 1 and n− 2, then s2 is at least almost a block away from

cell (n, n− 2), so once again, there is no incentive to deviate.

3c. Optimality for sender 2 off the equilibrium path

Given µ2, sender 2 believes, as on the equilibrium path, that coordination will be suc-

cessful if m′2 corresponds to the cell of P where s2 lies. If this cell is the small extreme cell,

this is optimal as deviating would lead to an action almost a block away. If s2 is in the large

extreme cell (n, n − 1), then sender 2 expects m′1 = n. The best that sender 2 can send is
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to send n− 1 or n− 2, which results in an action about a block to the left of cell (n, n− 1).

If sender 2 sends anything else, she would expect the action to be even further left, which is

undesirable.

3d. Optimality for sender 1

For the same reasons as for sender 2, there is no profitable deviation to a regular cell or

the small extreme cell in stage 2 if sender 1 followed the equilibrium prescription in stage 1.

Deviating to the large extreme cell (n, n−1) is also not profitable: this is only possible when

m′2 = n−1, which implies that s2 is located in cell (1, n−1) or further to the left. Therefore,

inducing an action in cell (n, n − 2), which is almost a block to the right of (1, n − 1), is

suboptimal.

Moreover, it cannot be profitable for sender 1 to announce L(x) instead of R(x) or vice

versa - it would either lead to the same action, or to a far away action (if sender 1 also deviates

in stage 2, or if the announcement causes s2 to be in the large extreme cell). For the same

reason, if announcing L(y) instead of L(x) is not a profitable deviation, then announcing

R(y) instead of L(x) is also not profitable (and vice versa).

It therefore remains to be shown that if sender 1 is supposed to announce L(x), then

announcing L(y) instead is not a profitable deviation (and similarly with R(x) and R(y)).

Suppose sender 1’s signal is s1 and that she is supposed to announce L(x). Let c(s1)

be the cell of L(x) that would be communicated in stage 2 on the equilibrium path. Then

announcing L(y) instead would make sender 1 uncertain about sender 2’s message in stage

2. Specifically, the revealed s1 will be either:

(a) slightly different, if coordination is successful (i.e. one of the two cells of L(y) that

overlaps with c(s1) is communicated in stage 2); or

(b) almost one block away or further, in the event of miscoordination.

Without loss of generality, let L(y) be the partition that should be announced if sender 1

had signal s1 + ∆, where s2(s1 + ∆) ∈ (s2(s1), s2(s1)). The probability of miscoordination is

at least νr∆, so the expected loss from miscoordination (point b) is at least νr∆ Λ
νr
M(s1) =

Λ∆M(s1) by the definition of n in step 1. We will show below that the gain from point (a)

cannot exceed this amount.

We assume that in stage 2, the cell communicated by sender 1 is the rightmost of the two

cells of L(y) that overlaps with c(s1). This is done without loss of generality as the left case

is symmetric, and any other announcement causes miscoordination for sure, which cannot

be profitable.

Note that ∆ < 4ε, which allows us to use the bound M(s1). The expected gain from

point (a) is thus:
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∫
[u1(θ, a(s1 + ∆))− u1(θ, a(s1))]f(θ|s1, s2 ∈ [s2(s1 + ∆), s2(s1)])dθ

≤ Λ∆M(s1)

It is therefore not profitable for sender 1 to deviate. �
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