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Abstract

We investigate competition in a delegation framework. An uninformed principal is unable to
perform a task herself and must choose between one of two experts to do the job. The experts,
who are biased and imperfectly informed, propose action choices simultaneously. In equilibrium
experts may exaggerate their biases, taking into account the expected information content of the
rival’s proposal and the fact that the principal’s optimal choice serves to offset this exaggeration
- similar to bidders reacting to the winner’s curse phenomenon in common value auctions. We
show that having a second expert can benefit the principal, even if the two experts have the
same biases or if the first expert is known to be unbiased. In contrast with other models of
expertise, in our setting the principal prefers experts with equal rather than opposite biases.
The principal may also benefit from commitment to an “element of surprise,” making an ex
post suboptimal choice with positive probability.

1 Introduction

There are many situations in which a principal lacks the knowledge and expertise to perform a certain

task, and therefore has to delegate the job to a qualified expert. Examples include a candidate

running for office who has to hire an expert to work out her economic agenda, or the CEO of

a pharmaceutical company who must delegate building a research and development division to a

scientist. Further complicating the principal’s situation is that experts tend to have systemic biases,

preferring suboptimal actions from the principal’s perspective.

In this paper we investigate a model in which a principal has to delegate a task to one of two

experts. The need to delegate differentiates our model from models of expertise in which experts send

cheap talk recommendations to the principal, such as Krishna and Morgan (2001b). In particular,

we consider the following game. First, experts receive noisy and conditionally independent signals

of a single dimensional state variable. The principal’s ideal action is equal to the state, but each

expert has a constant bias (either positive or negative) and a resulting ideal point different from

the sender’s. Next, the experts simultaneously propose actions. A proposal is assumed to bind the

expert to perform the given action whenever the principal delegates the task to him.1 The principal

then chooses one of the two offers, and the corresponding action is taken by the given expert. We are

motivated by situations in which the principal originally has much less knowledge about the state

∗We thank Peter Landry, Xiao Yu Wang, Navin Kartik, Ricardo Alonso, David McAdams, Curtis Taylor and Scott
Kominers for useful feedback. All errors are our own.

1Even if the principal might not have the knowledge to verify whether the expert indeed chose the action that he
proposed, outside experts might be able to verify if that was the case and hence penalties can be imposed on experts
deviating from their proposals.
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than the experts, and correspondingly we assume that the principal’s prior is improper uniform

(diffuse) over a state space represented by the real line.

Our model best applies to situations in which the principal lacks the knowledge to implement or

initiate changes in the proposed actions, so all she can do is solicit different proposals and choose

one of them. The assumption that proposals commit the experts corresponds to common law,

according to which an offer is a statement of terms on which the offeror is willing to be bound,

and it shall become binding as soon as it is accepted by the person to whom it is addressed.2 A

different application for our model is political competition: starting from Downs (1957), most papers

on political competition in a Hotelling (1929) framework assume that candidates are committed to

the policies they announce in the campaign, and the electorate can only choose between the policies

announced by the candidates.3 In this context the bonus corresponds to the rents from being in office.

Yet another application for our model is a setting where a legislative body (floor) seeks legislative

proposals for the same bill from multiple committees, using a modified rule (see Gilligan and Krehbiel

(1989), Krishna and Morgan (2001a)), meaning that the floor cannot amend the proposals and can

only accept one of the proposed bills without modification, conforming to the basic assumptions of

our model.4

We also extend the above baseline model, in which experts only care about the policy outcome

(the implemented action relative to the state), to situations in which experts also benefit from being

selected. In particular, we allow for a bonus to the chosen expert, either as a monetary payment or

as a non-monetary benefit, such as increased prestige in his profession. We investigate two cases,

with the bonus amount given exogenously in one case and optimally chosen by the principal in the

other.

The above game is very complex in general, due to the size of the strategy space. In this paper

we restrict attention to equilibria in which the experts’ strategies are relatively stationary with

respect to signals, meaning that each expert’s proposal is equal to his signal plus a constant. We

consider focusing on such strategies, that treat states symmetrically, natural in a game with diffuse

prior and preferences that are relatively stationary in the state, in which all states are perfectly

symmetric. A further motivation comes a companion paper (Ambrus et al., 2016), in which we

examine the possibility of extending the concept of ex ante expected payoffs to a larger class of

games with diffuse prior (and hence bringing them into the realm of traditional game theory, in

which payoffs have to be well-defined for any strategy profile). The companion paper shows that

in our game expert strategies need to be restricted to be constant markup in order for well-defined

ex ante expected payoffs to exist. In particular, given some weak conditions on the principal’s set

of strategies, essentially constant markup strategies are the only strategies for which well-defined

limit expected payoffs exist for any strategy profile when taking a sequence of proper priors diffusing

(converging in a formal sense to the diffuse prior), with the limit not depending on the particular

choice of sequence. This result shows that in order to obtain well-defined ex ante expected payoffs

2See Treitel (1999), p8.
3For theoretical motivations for this assumption, and empirical relevance in the political competition context, see

Pétry and Collette (2009), Kartik et al. (2015), and papers cited therein.
4Gilligan and Krehbiel (1989) analyze this situation with an additional option to the floor, in the form of not

accepting either of the proposals and opting for a status quo outcome. As opposed to our model, Gilligan and Krehbiel
(1989) assume perfectly informed experts (committees), which fundamentally changes the strategic interaction.
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corresponding to all strategy profiles, one would need to restrict experts’ strategies to constant

markup ones. In the current paper we do not restrict experts’ strategies, simply focus on equilibria

in which they play constant markup strategies, and similarly to existing game theoretical models

of improper prior (Friedman (1991), Klemperer (1999), Morris and Shin (2002, 2003), Myatt and

Wallace (2014)), we only evaluate payoffs in the interim stage (after signal realizations).

Our first result shows that if experts play constant markup strategies then we can restrict atten-

tion to the following simple strategies for the principal: always choosing expert 1’s offer (effectively

delegating the action choice to expert 1), always choosing expert 2’s offer, always choosing the mini-

mum of the two offers, and always choosing the maximum of the two offers. In particular, whenever

the sum of markups by the experts is positive, the unique best response of the principal is always

choosing the smaller of the two offers, while if the sum of the two markups is negative, the unique

best response of the principal is always choosing the larger of the two offers.5

It is easy to show that a (Bayesian Nash) equilibrium with constant markup strategies always

exists in our model, in the form of delegating the task to one of the experts. Formally, one expert

always proposing his ideal action conditional on the signal he observes (equal to the signal plus his

bias), the other expert proposing his signal minus the first expert’s bias, and the principal always

delegating the task to the first expert constitutes an equilibrium.6 The question is whether there

exist other equilibria of the game, in which the principal either always chooses the minimum or

always chooses the maximum of the two proposals - hence her choice depends nontrivially on the

proposals. We assume without loss of generality that the sum of the biases of the two experts is

nonnegative.

In our baseline model (only policy preferences), there always exists an equilibrium in which

the principal chooses the minimum of the two offers and the experts apply markups above their

biases; if both biases are positive, this means that both experts exaggerate their biases. This result

is contrary to a naive intuition that experts in competition should move toward the center. We

call this equilibrium “upward,” as the experts on average exaggerate their signals upwards in their

proposals. This result extends to the case where an exogenous bonus is given to the selected expert,

as long as the bonus is not too large. To illustrate, suppose that experts have the same biases and

the bonus is small. Then in this upward equilibrium both experts propose actions strictly above

their ideal actions based purely on their private signals. This is because, similarly to the winner’s

curse phenomenon in common value auctions, being selected by the principal contains information

on the other expert’s signal (namely that his signal is higher), changing the optimal action of the

expert. In equilibrium, proposals have to be optimal conditional on the event that the other expert’s

action proposal is higher.

We also show that if the experts’ signals are noisy enough then, for a subset of the range of bonuses

for which an upward equilibrium exists, there also exists a “downward” equilibrium in which experts

5These strategies are also feasible for a principal who can only process information in a coarse way, being only
able to make binary comparisons between two offers and lacking the ability to measure the difference between them,
as consumers in Kamenica (2008). Therefore such information processing constraints would not hurt the principal in
the equilibria we investigate.

6There are other Bayesian Nash equilibria on mixed strategies with the same outcome, in which one expert always
proposes his ideal point, the other expert “babbles” (randomizes over possible messages he can send), and the principal
always delegates the task to the first expert.
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propose actions on average below their signals, and the maximum of the two proposals is selected

by the principal. The strategic forces are similar to those in upward equilibrium: the fact that the

maximum of the two offers is selected pushes proposals downwards, and for noisy signals on average

experts modify their proposals downward relative to their signals.7 This type of equilibrium does not

exist when the signals are very precise, because then the information conveyed from being selected

does not shift the optimal proposals of the experts enough to make markups negative on average. We

show that even when the downward equilibrium exists, the principal prefers the upward equilibrium

to it, and thus for further welfare comparisons we need only consider upward equilibrium and simple

delegation to the less-biased expert.

The feature of the above equilibria that similarly biased experts exaggerate in a particular direc-

tion (and hence the principal should choose the proposal least in the direction of the exaggeration)

is in line with empirical evidence. For example, Zitzewitz (2001), Bernhardt et al. (2006) and Chen

and Jiang (2006) find that financial analysts systematically exaggerate their forecasts relative to

unbiased forecasts based on the analysts’ information sets, while Iezzoni et al. (2012) report that

55% of doctors in a survey said that in the previous year they had been more positive about patients’

prognoses than their medical histories warranted.

We compare the principal’s welfare between upward equilibrium and simple delegation in order to

find the principal-optimal equilibrium. In general, the comparison is complicated and can go either

way, but for several focal cases of interest, the optimum is the upward equilibrium. The principal is

always better off in the upward equilibrium when the experts have the same biases (as in settings

where all available experts have similar agendas), or when the experts have exactly opposite biases.8

This result holds even when the bonus is zero and hence there is no competition among experts for

being selected. The principal also prefers upward equilibrium to simple delegation when one expert’s

bias is positive and the other’s is zero; this is despite the fact that under simple delegation the

unbiased expert’s incentives are perfectly aligned with the principal’s. The intuition for the result

is that in the upward equilibrium the principal extracts some additional information the second

expert, which reduces the variance of the chosen action, and this benefit always outweighs any cost

associated with higher markups. Applied to a political setting, the latter comparison between upward

equilibrium and simple delegation helps explain what voters may otherwise perceive as corruption

– a politician may want to seek advice from a biased expert, even if it is common knowledge that

she already has access to an unbiased expert.

We also compare the principal’s payoffs when experts have equal versus opposite biases, and

our results here are in contrast with some of the existing literature. In our model, assuming the

upward equilibrium is played, having two experts with identical biases yields a higher payoff than

having two antagonist experts with opposite biases. In general, the expected bias of the implemented

action is smaller with antagonist experts than with experts having the same bias, but this benefit is

outweighed by a higher variance of the implemented action that arises because the expert with the

7There can also be an equilibrium in which the principal mixes with a particular probability between accepting
the lower or the higher proposal. We provide a partial characterization of such mixed equilibria in the Supplementary
Appendix.

8The principal’s payoffs are continuous in the parameters of the model for a particular type of equilibrium, hence
the above comparisons are the same when the absolute values of the biases are close to each other but not exactly
equal.
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lower bias is selected most of the time, and so the information from the other expert’s signal is only

utilized to a limited extent. This result contrasts models of competition in persuasion (Milgrom and

Roberts (1986), Gentzkow and Kamenica (2015)), in which antagonist experts benefit the principal

by pressing each other to reveal more information,9 and with the multi-sender cheap talk model of

Krishna and Morgan (2001b), in which having a second sender with the same bias does not benefit

the receiver.10 See also Shin (1998) and Dewatripont and Tirole (1999) for different types of models

making the case for adversarial procedures.

The principal’s expected payoff depends in a complicated way on the noise in the experts’ signals,

and on the amount of the bonus. Hence, for these comparative statics we focus on the case of equally

biased experts. Even in this case, the effect of the variance of the experts’ signals is ambiguous. An

increased precision of experts’ signals reduces the variance of the implemented action conditional on

the state. For small bonuses, this unambiguously increases the principal’s expected payoff. However,

for larger bonuses, it might benefit the principal in the upward equilibrium if the experts increase

their markups,11 which can result from increasing the variance of the signals. We provide an exact

characterization (for equally biased experts) for when a decrease in the variance of experts’ signals

benefits the principal.

Increasing the bonus reduces the absolute values of the experts’ markups, hence bringing their

proposals closer to truthful reporting, both in the upward and downward equilibria. Intuitively,

a higher bonus increases competition among experts, leading them to decrease their proposals in

the upward equilibrium and increase their proposals in the downward equilibrium. In the upward

equilibrium, this initially improves the principal’s expected payoff by decreasing the expected bias

of the implemented action. There is a threshold level of bonus though at which the expected bias

of the implemented action becomes zero, and increasing the bonus above this threshold decreases

the principal’s payoff. When the bonus comes from exogenous sources, the optimal bonus from the

principal’s perspective is always strictly positive, and is on the interior of the interval of bonuses for

which the upward equilibrium exists. When the bonus is paid by the principal, the optimal bonus

amount is always strictly smaller than in the previous case, and depending on the parameters it can

be either strictly positive or zero.

In the political competition application of the model the result implies that a small amount

of office-seeking motivation can be beneficial for voters, but at higher levels a further increase in

office-seek motivation can adversely affect voters’ welfare.

We consider two extensions of our model, for equally biased experts. In the first one we allow

the principal to commit ex ante to any mixture of simple strategies, and show that for bonuses that

9Experts with identical agendas can be better for the principal than experts with opposing agendas in the persuasion
model of Bhattacharya and Mukherjee (2013). The mechanism is rather different than in our paper, though: with
similar experts an undesirable default action can provide strong incentives for both experts to reveal information.

10As opposed to cheap talk models with multiple senders and one receiver, where it tends to be better for information
revelation if the senders are oppositely biased from the point of view of the receiver, in committee settings, where
committee members can reveal information to each other, it helps information revelation if members have more similar
preferences - see for example Li and Suen (2009).

11This is related to the chunkiness of the principal’s possible choices in our model: for certain parameter values
sticking with choosing the minimum of two proposed actions is still optimal for the principal, even though it leads to
the implemented action being negatively biased. This can happen if choosing the maximum offer would lead to an
even larger positive bias. These are the cases when an increase in the expectation of the minimum offer benefits the
principal.
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are not too large, such commitment leads to the same outcome as in the upward equilibrium of the

original game, hence the ability to commit does not improve the principal’s welfare. On the other

hand, we show how committing to choosing an inferior offer with some small probability - introducing

an element of surprise - can improve the principal’s welfare in the case of opposite biases of large

magnitude. The intuition is that in upward equilibrium, the expert with the positive bias faces a

very large winner’s curse, and applies a markup well above his bias. The other expert faces an almost

negligible winner’s curse and applies a markup just slightly above his bias. Now by threatening to

choose the higher offer some of the time, the principal induces the first expert to reduce his markup

drastically and the second expert to raise his markup, so both markups move closer to zero. The

cost of this deviation to the principal lies in mistakenly choosing the higher offer, but when the

magnitude of the biases is sufficiently large, the benefit outweighs the cost. The finding that the

principal can benefit from committing to a mixed strategy in certain situations is consistent with an

observed pattern of regulatory uncertainty. Ederer et al. (2014) show similarly that commitment to

an opaque reward scheme reduces temptation to game the system in a principal-agent environment.

In the second extension we drop the dependence of the unselected expert’s payoff on the imple-

mented action, and instead assume that the expert gets a fixed outside option payoff. This variant of

the model is more realistic in market transaction situations, such as when experts are car mechanics

or doctors. A car mechanic might be biased towards larger repairs than necessary, but typically

he does not care about what type of repair is chosen in case a different mechanic is selected to

do the job. The analysis of this version of the model is more involved, but we show that under

some parameter restrictions similar upward and downward equilibria exist as in the baseline model.

The fact that the unselected expert gets a fixed outside payment increases the experts’ proposals in

upward equilibrium, and decreases them in downward equilibrium.

2 Related Literature

The literature on delegation so far mainly focused on either the question of delegating the action

choice versus retaining the right to take the action (Dessein (2002), Li and Suen (2004)) or on

optimally constraining the action choices of a particular expert (Holmström (1977), Melumad and

Shibano (1991), Alonso and Matouschek (2008)). Krishna and Morgan (2008) investigate how

monetary incentives can be used optimally in delegation to a single agent. More related to our

investigation are papers introducing policy-relevant private information on the part of candidates

into the context of the classic Downs (1957) model of political competition: Heidhues and Lagerlöf

(2003), Laslier and Van der Straeten (2004), Loertscher et al. (2012), Gratton (2014), and closest to

our model Kartik et al. (2015), as the latter focuses on cases when voters are relatively uninformed.

Similarly to our setting, in the above papers politicians receive independent private signals about

the state of the world and hence the optimal policy from the electorate’s point of view. The main

difference relative to our model is that the politicians in the above models do not have policy

preferences, and they are purely office-motivated. For this reason neither the own private information

nor the rival’s private information directly affects their expected payoffs, and the candidates play a

zero-sum game. In contrast, in our model the experts’ signals are directly payoff-relevant for them,
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and their interests are partially aligned, as in higher states they would both like to induce higher

actions. This leads to different equilibrium dynamics than in Kartik et al. (2015), and to distinct

conclusions: in particular, in their model the electorate can never strictly benefit from the presence

of a second candidate (relative to just a single one).12

There is also a line of literature extending the Downs (1957) model framework to politicians

having mixed motivation (having both policy preferences and wanting to win), as in our model,

starting with Wittman (1983) and Calvert (1985). Schultz (1996), Martinelli (2001) and Martinelli

and Matsui (2002) introduce asymmetric information in this context, but as opposed to our paper,

with perfectly informed politicians. This leads to different conclusions, including that full revelation

of information is possible in equilibrium when policy preferences are not too extreme. Callander

(2011) considers a model of sequential elections with imperfectly informed politicians having mixed

motivations, but the issues investigated are different from ours and inherently dynamic: searching

for a good policy in a complex environment, by trial and error.

Outside the delegation literature, Prendergast (1993) considers a context in which both a worker

and a manager observes the state with noise, and the worker also receives a noisy signal about the

manager’s observation. In this model the worker has an incentive to cater to the manager and bias

her report toward what she thinks the manager’s observation is. Gerardi et al. (2009) investigates

aggregation of expert opinions through a particular mechanism that approximates the first best

outcome if signals are very accurate. Pesendorfer and Wolinsky (2003) investigate the effects of

being able to solicit a second opinion from a different expert, in a dynamic model in which experts

are not biased but it is costly for them to gather information.

Another line of literature investigates multi-sender extensions of the cheap talk model of Crawford

and Sobel (1982), and finds that under certain conditions there can be equilibria in which the receiver

can extract full or almost full information from the senders (Gilligan and Krehbiel (1989), Austen-

Smith (1993), Wolinsky (2002), Battaglini (2002, 2004), Ambrus and Takahashi (2008), Ambrus

and Lu (2014)). As opposed to the above papers, we investigate settings in which the principal

cannot solicit information from experts and then take the action choice herself. Lastly, Ottaviani

and Sørensen (2006) consider a model with multiple experts with reputational concerns reporting

sequentially on privately observed signals. The issues they focus on (potential herding behavior of

experts) are very different than in the current paper.

3 Base Model

We consider the following multi-stage game with incomplete information. There are three players:

a principal and two experts. The set of states of the world is R, and we assume that the common

12Our model approximates the model in Kartik et al. (2015) when the bonus payment is very large and so the
agents mainly care about being selected. We find that for very large bonuses the only equilibria in our model involve
delegating the action choice to a single agent, which is in line with the result on maximum informativeness of political
competition in Kartik et al. (2015). Correspondingly, Kartik et al. (2015) discuss an extension of their model in which
they show that allowing a small amount of ideological motivation for the candidates, and assuming that they are
close to unbiased from the electorate’s point of view implies that in equilibrium one candidate must be winning ex
ante with probability close to 1. These results suggest that there is no discontinuity between no policy preference
versus a small amount of policy preference for the agents. Our paper mainly focuses on cases in which agents’ policy
preferences are relatively important.
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prior distribution of states is diffuse (improper uniform).

In stage 0 state θ ∈ R realizes. In stage 1 each expert i = 1, 2 receives a noisy private signal

about the state of the world si = θ + εi, where εi ∼ N(0, σ2), and ε1 and ε2 are independent. In

stage 2 each expert i proposes an action ai ∈ R to the principal. In stage 3 the principal chooses

one of the two experts, who then implements the action he proposed in stage 2.

Let real-valued functions a1(s1) and a2(s2) denote the strategies of expert 1 and expert 2 respec-

tively, while C(a1, a2) ∈ {1, 2} is the principal’s choice strategy. If action a = ai is taken then the

principal’s payoff is V (a, θ) = −(a−θ)2, and the payoff of expert j = 1, 2 is Uj(a, θ) = −(a−θ−bj)2.

In Section 5, we extend the model to include a bonus payment B to the chosen expert. We call bi

the bias of expert i. Without loss of generality, we assume that b1 + b2 ≥ 0 and b1 ≥ b2. We further

assume that all parameters of the game are common knowledge.

In the analysis below, we focus on perfect Bayesian equilibria in which experts’ strategies are

stationary in the following sense: ai(si) = si + ki, where k1, k2 ∈ R. In words, each expert applies a

constant mark-up to his signal when forming a proposed action. With slight abuse of notation, we

use simply (k1, k2, C(a1, a2)) to denote a strategy profile with constant markup strategies.

4 Stationary Equilibria in the Base Model

In this section we characterize all pure strategy stationary equilibria in the delegation game. We

start with determining the best response of the principal to all possible pairs of constant markup

strategies by the experts, and then investigate the candidate equilibria consistent with this best

response behavior.

4.1 Best Responses to Stationary Sender Strategies

Here we analyze the principal’s best response to constant markup strategies, and show that it only

depends on the sum of markups. As the principal has a quadratic loss function, her expected payoff

can be decomposed into losses from the uncertainty about the true state (which is independent of

her action) and the losses from the expected difference between the chosen action and the true state.

Therefore the principal prefers the offer which is closer to her posterior expectation of the true state.

After observing the offers, the principal’s expectation about the true state is lower (higher) than the

average of the experts’ offers if and only if the sum of the markups is positive (negative). Figure 1

illustrates a case where the markups have positive sum.

Let arg min{a1, a2} be defined as {1} if a1 < a2, {2} if a1 > a2, and {1, 2} if a1 = a2. Similarly,

let arg max{a1, a2} be defined as {1} if a1 > a2, {2} if a1 < a2, and {1, 2} if a1 = a2.

Theorem 1. If experts follow constant markup strategies ai(si) = si + ki, then

• if k1 + k2 > 0, the principal strictly prefers the lower offer, and C(a1, a2) ∈ arg min{a1, a2};

• if k1 + k2 < 0, the principal strictly prefers the higher offer, and C(a1, a2) ∈ arg max{a1, a2};

• if k1 + k2 = 0, the principal is indifferent between the offers.
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Proof. After observing both offers, the principal updates her belief: θ|a1, a2 ∼ N( 1
2 (a1+a2)− 1

2 (k1+

k2), σ
2

2 ). Therefore the principal’s expected utility from choosing offer a1 or a2 is:

V (a1) = E[−(θ − a1)2] = −Var(θ)− (E[θ]− a1)2 = −σ
2

2
−
[

1

2
(a2 − a1)− 1

2
(k1 + k2)

]2
V (a2) = E[−(θ − a2)2] = −Var(θ)− (E[θ]− a2)2 = −σ

2

2
−
[

1

2
(a1 − a2)− 1

2
(k1 + k2)

]2
.

Hence, V (a1)−V (a2) = (a2−a1)(k1+k2), which immediately implies the statements in the theorem.

s1 a1 a2 s2s1+s2
2

Figure 1: k1 > 0, k2 < 0, k1 + k2 > 0. The principal chooses the lower offer a1, which lies closer to
her expectation s1+s2

2 .

An equilibrium (k1, k2, C(a1, a2)) is said to be an upward equilibrium, if on average experts adjust

their signals upwards and the lower proposal is accepted: k1+k2 ≥ 0 and C(a1, a2) ∈ arg min(a1, a2).

In upward equilibrium, the principal’s updated expectation of the state of the world is lower than

the average of the two offers. Her best response is to choose the lower offer, which is closer to

her expectation, as demonstrated in Figure 1. Likewise, an equilibrium (k1, k2, C(a1, a2)) is said

to be a downward equilibrium if k1 + k2 ≤ 0 and C(a1, a2) ∈ arg max(a1, a2). Note that when

k1 + k2 = 0 then the principal’s posterior expectation of θ is exactly the average of the two offers,

and she is indifferent between the two. This raises the possibility of equilibria in which the experts

play constant markup strategies and the expert mixes between the lower and the higher offer with

some fixed probability. We investigate such equilibria in the Supplementary Appendix.

4.2 Simple delegation

In our game there always exist simple pure strategy equilibria in which the principal always chooses

the same expert, independently of two offers, in effect delegating the decision to her. In particular,

Theorem 1 implies that if expert i chooses constant markup bi and the other expert chooses constant

markup −bi then the principal is always indifferent between the two offers, and she might as well

always choose expert i. Given this strategy of the principal, expert i’s best response is choosing

exactly markup bi, which in expectation implements his ideal action. The other expert has no

profitable deviation since his proposal is never accepted. While such an equilibrium exists for each

of the two experts, it is more natural to consider the one in which the principal always chooses

the expert with the smaller absolute bias, who is expert 2 by convention. These observations are

summarized in the next proposition.
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Proposition 1. For i ∈ {1, 2}, an equilibrium exists in which the principal always chooses expert i

and markups are ki = bi and kj = −bi for j 6= i. The principal’s expected payoff in this equilibrium

is E[−(s+ bi)
2] = −σ2 − b2i , where s ∼ N(0, σ2).

In the rest of the section we examine equilibria in which the principal’s choice between the experts

depends in a nontrivial way on the pair of offers proposed.

4.3 Upward equilibrium

Here we investigate strategy profiles {(k1, k2, a ∈ arg min{a1, a2}) : k1 + k2 ≥ 0}. We start by

computing players’ payoffs under such strategy profiles. Let b(k1, k2, L) = E(a − θ) denote the

expected bias of the chosen offer and V ar(k1, k2, L) = Var(a− θ) denote the variance of the chosen

offer. Then the principal’s utility is: V (k1, k2, L) = −E(a − θ)2 = −b2(k1, k2, L) − V ar(k1, k2, L).

Proposition 2 below provides the expanded forms of these expressions, which are useful to our

analysis. Here and throughout the rest of the paper, let f and F denote the PDF and the CDF of

the distribution N(0, 2σ2) and let z = k1 − k2. Note that the expected bias b(k1, k2, L) is strictly

less than the expected value of the selected markup, k1(1−F (z))+k2F (z); this is because the lower

offer is associated with a noise term which is normally distributed but truncated above and thus has

negative expectation.

Proposition 2. If both experts follow constant markup strategies aj(sj) = sj + kj and the principal

always chooses the lower offer, then

b(k1, k2, L) = −2σ2f(z) + k1(1− F (z)) + k2F (z);

V ar(k1, k2, L) = σ2 − 4σ4f2(z)− 2σ2zf(z)(2F (z)− 1) + z2F (z)(1− F (z));

V (k1, k2, L) = −σ2 + 2(k1 + k2)σ2f(z)− k21(1− F (z))− k22F (z);

Ui(k1, k2, L) = −σ2 + 2σ2(ki + kj − 2bi)f(z)− (kj − bi)2F (ki − kj)− (ki − bi)2F (kj − ki).

Denote the hazard rate f(x)
1−F (x) by v(x) and let w(x) := f(x)

F (x) . The hazard rate plays an important

role in our analysis. It represents the instantaneous probability that experts’ signals differ by x,

conditional on differing by at least x.

In upward equilibrium, the principal’s choice of the lower offer implies that offers affected by

negative realizations of noise are accepted more frequently. Therefore conditional on being chosen,

an expert must revise his belief about θ upwards. This induces experts to increase their markups,

similarly to bidders shading their bids downwards in a common value auction environment.13

Let z∗ denote the unique solution14 to the equation

z − σ2 [v(z)− w(z)] = b1 − b2. (1)

13A similar shading behavior emerges in the welfare-maximizing (first best) outcome in Kartik et al. (2015), as
interestingly the latter outcome implies always selecting the politician with the larger signal in absolute terms.

14That there is a unique solution is shown in the proof of Theorem 2* in the Appendix, which is a generalization
of Theorem 2.
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Theorem 2. There exists a unique upward equilibrium, characterized by markups kU1 = b1+σ2v(z∗)

and kU2 = b2 + σ2w(z∗) with kU1 − kU2 = z∗ ≥ b1 − b2 ≥ 0.

Notice that the equilibrium markup difference z∗ as well as Var(a − θ) depend on the biases of

the experts only through b1 − b2. In upward equilibrium expert 1 wins the bonus with probability

1−F (z∗), which is reflected in the expression for bU . The bonus affects the expected bias in two ways:

through the change in experts’ probabilities of winning and through the change in markups. In the

appendix (Corollary A.1), we give the full expansion of the players’ utilities in upward equilibrium.

4.4 Downward equilibrium

Recall that an equilibrium is a downward equilibrium when it belongs to {(k1, k2, a ∈ arg max(a1, a2)) :

k1 + k2 ≤ 0}. Proposition 3 is analogous to Proposition 2. Note that b(k1, k2, H) now exceeds the

expected chosen markup because it is associated with a normally distributed noise term truncated

from below.

Proposition 3. If both experts follow constant markup strategies aj(sj) = sj + kj and the principal

always chooses the higher offer, then

b(k1, k2, H) = k1 + k2 − b(k1, k2, L);

V ar(k1, k2, H) = V ar(k1, k2, L);

V (k1, k2, H) = V (−k1,−k2, L);

Ui(k1, k2, H) = −σ2 − 2σ2(ki + kj − 2bi)f(z)− (ki − bi)2F (ki − kj)− (kj − bi)2F (kj − ki).

In downward equilibrium, the principal’s strategy of choosing the higher offer implies that, con-

ditional on being chosen, an expert must revise his belief and his markup downward. This downward

force must be sufficiently large to ensure that the sum of markups is negative, so that the principal’s

choice of the higher offer is a best response. Hence, noise must be sufficiently large for downward

equilibrium to exist.

Theorem 3. A downward equilibrium exists if and only if b1 + b2 ≤ σ2(v(z∗) + w(z∗)). When it

exists, it is unique and characterized by kD1 = b1− σ2w(z∗) and kD2 = b2− σ2v(z∗), with kD1 − kD2 =

z∗ ≥ b1 − b2.

4.5 Principal-Optimal Equilibrium

In this section we compare the principal’s expected utility in upward and downward equilibria, and in

the case of simple delegation. We also investigate how the principal’s expected payoff in equilibrium

depends on the biases of the experts.

Note that the equilibrium markup difference z∗ and Var(a − θ) stay the same as in upward

equilibrium. In downward equilibrium expert 1 wins the bonus with probability F (z∗), which is

higher than 1−F (z∗) in upward equilibrium, and this shifts the expected bias higher. Furthermore,

in downward equilibrium the bonus motivates experts to increase their markups, as opposed to

11
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Figure 2: Depending on the biases (b1, b2), the principal’s strategy under commitment is either
simple delegation to expert 2 (shaded region) or choosing the lower offer (unshaded).

upward equilibrium in which the bonus motivates experts to decrease their markups. As a result of

the above effects, the expected bias is higher in downward equilibrium. In Corollary A.2 we provide

expressions for the players’ utilities.

Proposition 4. The principal prefers upward equilibrium to downward equilibrium whenever both

exist.

Given the above result, we now compare the principal’s utility in upward equilibrium and simple

delegation to the expert with the smaller absolute bias. In general this comparison is complicated,

but in the next proposition we show that for upward equilibrium to be better for the principal, it

has to be the case that either both experts have high enough biases, or that they are equally biased.

Proposition 5. Parameterize biases as b1 = b + x and b2 = b − x for some x, b ≥ 0. For all

x > 0, there exists a threshold b̄ > 0 such that the principal prefers simple delegation to the upward

equilibrium if and only if b1 > b̄. The principal always prefers upward equilibrium in the following

cases: (i) biases are equal, i.e. x = 0, and (ii) b2 = 0.

For intuition behind the above result, first consider the case x > 0. The variance of the chosen

action in upward equilibrium is always lower than that in simple delegation, and both are independent

of b. As b increases, the expected bias b−(2F (z∗)−1)x in upward equilibrium and b−x in downward

equilibrium increase at the same rate. Since the former is higher than the latter, and losses are

quadratic, this increase hurts more in upward equilibrium than in simple delegation. Once b is high

enough, this disadvantage outweighs the initial advantage of lower variance.

5 Stationary Equilibria with Bonus Payments

Here we generalize the base model, assuming that the chosen expert receives a bonus payment

B ≥ 0 in addition to his quadratic loss. Experts now have two contradictory incentives. To illustrate,

recall the upward equilibrium, in which the principal always chooses the lower offer and the resulting

winner’s curse phenomenon exerts an upward force on experts’ offers, leading them to apply markups

above their biases. Introducing a positive bonus B > 0 induces experts to decrease their markups

12



in order to be selected more frequently. Hence, if the bonus is small, the first force prevails, and

the expert sets a markup higher than her bias. If the bonus is large then the second force prevails,

and the expert sets a markup lower than his bias. These conclusions are confirmed by formulas

in Theorem 2*. If B < 2σ2, then the markups are higher than the corresponding biases, and if

B > 2σ2, the situation reverses. When the bonus becomes sufficiently high, markups become lower

than the biases to an extent that the sum of markups is negative. Then the principal prefers to

choose the higher offer. Therefore, for very high bonuses upward equilibria do not exist.

Let ρ := σ2 − B
2 . Equation (1) extends to

z − ρ [v(z)− w(z)] = b1 − b2. (2)

Theorem 2*. There exists a threshold BU > 0 such that an upward equilibrium exists if and only

if B ≤ BU . When it exists, it is unique and characterized by markups kU1 = b1 + ρv(z∗) and kU2 =

b2 +ρw(z∗) with kU1 −kU2 = z∗ ≥ 0. Moreover, BU lies in the interval [2σ2 +2
√
πσmax(0, b2), 2σ2 +

√
πσ(b1 + b2)]. For B ≤ BU ,

• z∗ ≥ b1 − b2 ⇐⇒ B ≤ 2σ2 ⇐⇒ ρ ≥ 0;

• b(kU1 , kU2 , L) = bU := b1(1− F (z∗)) + b2F (z∗)−Bf(z∗);

• V ar(kU1 , kU2 , L) = σ2 − 4σ4f2(z∗)− 2σ2z∗f(z∗)(2F (z∗)− 1) + (z∗)2F (z∗)(1− F (z∗)).

In the case of equally biased experts, we can obtain a closed form solution for strategies in upward

equilibrium.

Proposition 6. Consider b1 = b2 = b > 0. Then BU = 2σ2 + 2
√
πσb, and in upward equilibrium,

we have the following:

• kU1 = kU2 = kU = b+ ρ
σ
√
π

;

• b(kU , kU , L) = b− B
2
√
πσ

;

• V ar(kU , kU , L) =
(
1− 1

π

)
σ2;

• V (kU , kU , L) = −
(
b− B

2
√
πσ

)2
− σ2 + σ2

π ;

• Ui(kU , kU , L) = −ρ+ σ2

π −
B2

4πσ2 for i = 1, 2.

The next theorem characterizes downward equilibrium. Note that if BD < 0, no downward

equilibrium exists. Recall the definition of z∗ from (2).

Theorem 3*. There exists a threshold BD such that a downward equilibrium exists if and only if

B ≤ BD. When it exists, it is unique and characterized by kD1 = b1 − ρw(z∗) and kD2 = b2 − ρv(z∗),

with kD1 − kD2 = z∗ ≥ b1 − b2 and BD ∈ [2σ2 −
√
πσ(b1 + b2), 2σ2 − 2

√
πσmax(0, b2)]. For B ≤ BD,

• b(kD1 , kD2 , H) = bD = b1F (z∗) + b2(1− F (z∗)) +Bf(z∗);
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• V ar(kD1 , kD2 , H) = σ2 − 4σ4f2(z∗)− 2σ2z∗f(z∗)(2F (z∗)− 1) + (z∗)2F (z∗)(1− F (z∗)).

The following corollaries are immediate from Theorems 2* and 3*.

Corollary 1. A downward equilibrium exists only if an upward equilibrium exists; that is, BD ≤ BU .

Corollary 2. For B ≤ BD, kU1 − b1 = b2 − kD2 and kU2 − b2 = b1 − kD1 .

As before, we can obtain a closed form solution for the case of equally biased experts.

Proposition 7. Consider b1 = b2 = b > 0. Then BD = 2σ2−2
√
πσb, and in downward equilibrium,

we have the following:

• kD1 = kD2 = kD = b− ρ
σ
√
π

;

• b(kD, kD, H) = b+ B
2
√
πσ

;

• V ar(kD, kD, H) =
(
1− 1

π

)
σ2;

• V (kD, kD, H) = −
(
b+ B

2
√
πσ

)2
− σ2 + σ2

π ;

• Ui(kD, kD, H) = −ρ+ σ2

π −
B2

4πσ2 for i = 1, 2.

First we establish that whenever both upward and downward equilibria exist, the principal always

prefers the former.

Proposition 4*. For any fixed B ≥ 0, the principal prefers upward equilibrium to downward equi-

librium whenever both exist.

The intuition for the above result can be summarized as follows. As we pointed out earlier, in any

state θ variances of the expected offer Var(a−θ) in upward and downward equilibria coincide, but the

expected bias E(a−θ) is higher in downward equilibrium: bD = b1F (z∗)+ b2(1−F (z∗))+Bf(z∗) ≥
b1(1−F (z∗))+b2F (z∗)−Bf(z∗) = bU . Hence, to conclude that the principal is better off in upward

equilibrium it is enough to show that |bD| ≥ |bU | or, taking into account above, bU +bD ≥ 0. Markup

differences in upward and downward equilibria coincide, but the choice rule is opposite, therefore for

both experts the probabilities of winning in upward and downward equilibria are complementary.

The direct effects of the bonus on bU and bD are opposite and equal in absolute value. Therefore

bU + bD = b1 + b2 ≥ 0, implying that the principal is better off in upward equilibrium.

In the Supplementary Appendix we show that in case the two experts are not equally biased, the

expert with the lower bias also prefers upward equilibrium to downward equilibrium, while the expert

with the higher bias has the opposite preferences. This is both because the expected action is closer

to expert 2’s ideal point in upward equilibrium, and closer to expert 1’s ideal point in downward

equilibrium, and because expert 2 is chosen (and hence receives the bonus) with higher probability

in upward equilibrium, and expert 1 is chosen with higher probability in downward equilibrium.

For equal biases, the intuition for why upward equilibrium, when it exists, yields a higher ex-

pected payoff to the principal than simple delegation generalizes for B ≥ 0 as follows. With simple

delegation, the expected utility of the principal is V = −b2−σ2. In contrast, in upward equilibrium
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the expected bias of the action is b − B
2
√
πσ

< b, and the variance is σ2 − σ2

π < σ2. The decreased

variance of the action implies that the principal prefers upward equilibrium to simple delegation,

even when B = 0 and therefore the expected action is the same in upward equilibrium as in simple

delegation.

6 Comparative Statics

We start this section with comparing the expected payoff the principal can achieve with two equally

biased experts, b1 = b2 = b, to the expected payoff she can achieve with two oppositely biased

experts, b1 = −b2 = b. Theorem 2* implies that the expected bias of the action in the case of

equally biased experts is equal to b. In the case of oppositely biased experts the expected bias of

the action is b(1− 2F (z∗))−Bf(z∗), simplifying to b(1− 2F (z∗)) when B = 0. Hence, with B = 0

the absolute value of the expected bias in the case of oppositely biased experts is lower than in the

case of equally biased experts. However, the next Proposition shows that the variance of the action

is lower in the symmetric case, and in fact this effect dominates, resulting in the principal preferring

to have two equally biased experts. Let Vsymm(b) be the principal’s expected payoff in upward

equilibrium when b1 = b2 = b, let Vopp(b) be the principal’s expected payoff in upward equilibrium

when b1 = −b2 = b, and let Vsim(b) = −σ2 − b2 be the principal’s expected payoff in the case of

simple delegation to an expert with absolute bias b.

Proposition 8. For any b > 0, Vsymm(b) ≥ Vopp(b) ≥ Vsim(b).

Proof. Upward equilibrium for opposite biases exists only if B ≤ BU = 2σ2. From Theorem 2*

Vsymm(b) = −σ2 − b2 + 2Bbf(0) + (4σ4 −B2)f2(0)

Vopp(b) = −σ2 − b2 +

(
σ4 − B2

4

)
f2(z∗opp)

F (z∗opp)(1− F (z∗opp))
≥ −σ2 − b2 = Vsim(b),

where z∗opp is the upward equilibrium markup difference in the case of oppositely biased experts. As

2Bbf(0) ≥ 0 and f2(z)
F (z)(1−F (z)) reaches its maximum at z = 0, we get Vsymm(b) ≥ Vopp(b)

6.1 Equally Biased Experts

For the remainder of this section we focus on the case when the experts are equally biased: b1 = b2 =

b > 0. In this setting we can derive closed form solutions for the marginal affects of various parameter

values on the principal’s expected payoff, greatly simplifying comparative statics exercises.

Recall from Proposition 5 that in the case of equal biases, the principal always prefers upward

equilibrium to simple delegation to one of the biased experts. Moreover, using the formula derived in

Proposition 8 for the principal’s expected utility in upward equilibrium, we can exactly characterize

when it is the case that the principal prefers upward equilibrium with two equally biased experts to

simple delegation to an unbiased expert.

Corollary 3. The principal prefers upward equilibrium with equally biased experts to unconstrained

delegation to an unbiased expert if and only if B ∈ [2
√
πσb− 2σ2, Bu]. For B = 0 this condition is

15



equivalent to bias-to-noise ratio being low enough:

b

σ
≤ 1√

π
.

Proof. It is enough to compare Vsymm = −(b− B
2
√
πσ

)2− σ2 + σ2

π with utility from single delegation

to unbiased expert −σ2.

From here on we investigate comparative statics of the principal’s expected payoff in upward

equilibrium. First we look at how the principal’s expected payoff depends on b, the common bias of

the experts. Recall that upward equilibrium exists only for B ≤ Bu = 2σ2 +2
√
πσb. The principal’s

expected payoff in upward equilibrium is V (kU , kU , L) = −(b− B
2
√
πσ

)2− (1− 1
π )σ2. This expression

is maximized at b∗ = B
2
√
πσ

, taking the value −(1− 1
π )σ2. This implies that for B = 0, it is optimal

for the principal to have nonbiased experts, but for B > 0, the optimal bias level is strictly positive

and increasing in B.

Next we consider how the principal’s expected payoff depends on the precision of the experts’

signals. The expected bias of the action bU = b − B
2
√
πσ

is increasing in σ. Nevertheless, the

equilibrium utility of the principal, V (kU , kU , L) = −(b− B
2
√
πσ

)2 − σ2 + σ2

π , is nonmonotonic in σ,

for the following reason. If σ increases, then the expected variance of the action (1− 1
π )σ2 increases,

leading to a decrease in the principal’s expected payoff. At the same time when the variance of

noise σ is small, the value of the expected bias b − B
2
√
πσ

stays negative and increases, leading to

a decrease in absolute value of the expected bias, which increases the principal’s expected payoff.

After σ reaches the value when B is optimal in exogenous case (B = 2
√
πσb) the value of expected

bias turns positive and further increase in σ leads to decrease in utility. Hence, optimal value for

principal lies on the interval (0, B
2
√
πb

). The next proposition provides the formal comparative statics

of the principal’s utility in the precision of the experts’ signals.

Let B > 0 and σ∗ denote the unique positive solution to the equation (4π−4)σ4+2
√
πbBσ = B2.

Proposition 9. Consider b1 = b2 = b > 0.

If 0 < B < 2(π−1)π
(π−2)2 b

2, there exists a non-empty interval σ ∈ [
√
πb2+2B−

√
πb

2 , σ∗), where upward

equilibrium exists and the principal’s expected payoff is increasing in σ; when σ > σ∗, the principal’s

expected payoff is decreasing in σ.

If B = 0 or B ≥ 2(π−1)π
(π−2)2 b

2, the principal’s expected payoff is always decreasing in σ.

For a concrete example when the principal’s expected payoff increases in σ, consider b1 = b2 =

b = 2 and B = 9 < 8(π−1)π
(π−2)2 . Then V (σ) is increasing on an interval containing (0.992, 1.085).

Lastly, we address the question of how the principal’s expected payoff depends on the bonus

payment. We start with the case when the bonus payment comes from exogenous sources, and

therefore only indirectly affecting the principal’s payoff, through influencing experts’ strategies in

upward equilibrium. While the variance of the action V ar(kU , kU , L) = σ2 − σ2

π does not depend

on B, the expected bias bU = b − B
2
√
πσ

is decreasing in B. The principal prefers the expected

bias to be as close to 0 as possible, so her expected payoff in upward equilibrium is maximized at

B = 2
√
πσb, where it is equal to −σ2[1 − 1

π ]. At B = 0, bU = b − B
2
√
πσ

= b ≥ 0 and a small
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increase in bonus decreases the experts’ markup and benefits the principal. However, at B = Bu

bU = b − B
2
√
πσ

= − σ√
π
< 0 and principal prefers to increase markups and correspondingly lower

bonus. As a consequence, an intermediate point B = 2
√
πσb is optimal.

bU

0
3 6 9

0.5

−0.5

−1

Bonus

Expected bias

Vupward

Vunconstr.

0 3 6 9 12

−2

−4

Bonus

Utility

Figure 3: The Expected Bias and the Principal’s Payoff (exogenous bonus) for b = 0.5, σ = 2

Next we consider the situation, when the bonus is paid from the principal’s pocket. For this

investigation, we append our game (described in Section 2) with a stage 0, preceding stage 1, in

which the principal chooses B. We assume that the principal’s choice of B becomes public knowledge

by stage 1. We also modify the principal’s payoff to V (a, θ) = −(a− θ)2 −B, corresponding to the

assumption that the principal has to pay the bonus.

The next proposition characterizes the optimal bonus choice of the principal in this case.

Proposition 10. Suppose that bonus B is paid by the principal. The principal’s optimal choice of

B depends on the bias-to-noise ratio.

If b
σ ≤
√
π, then the principal pays no bonus: B = 0.

If b
σ >
√
π, then the principal chooses bonus B = 2

√
πσ2

[
b
σ −
√
π
]
. The increase in the principal’s

expected payoff, relative to when the bonus is restricted to be 0, is equal to (b−
√
πσ)2.

Therefore, if the bias-to-noise ratio is high enough, it is optimal for the principal to offer a

positive bonus.

At B = Bu: bU = kU − σ√
π

= − σ√
π
< 0 and the principal would like to to decrease the bonus, in

order to increase experts’ markups and drive the expected bias closer to 0.

At B = 0: bU = b ≥ 0, and if the principal increases the bonus then the expected bias decreases.

Therefore a marginal increase of B from 0 improves the principal’s expected payoff whenever the

marginal gain from the decrease in expected bias ( b√
πσ

) exceeds the marginal expense from increasing

the bonus (1).

Proposition 10 is illustrated on Figure 3: the principal chooses a strictly positive bonus if the

decrease in expected bias exceeds the marginal disutility from increasing bonus: b√
πσ

> 1. This for

example holds for b = 2, σ = 0.5, but not for b = 1, σ = 1.

17



Vupward

Vunconstr.

0 2 4

−2

−4

−6

Bonus

Utility

Vupward

Vunconstr.

0 2 4

−2

−4

−6

Bonus

Utility

Figure 4: The Principal’s Payoff (bonus paid by Principal) for b = 1, σ = 1 on the left; for b = 2,
σ = 0.5 on the right

7 Extensions

7.1 Ex Ante Commitment by the Principal

The analysis in the previous sections assumes that the principal plays a best response to the strategies

of the experts. Alternatively, we can consider situations in which the principal can ex ante commit

to a simple strategy. In particular, assume that the principal can credibly commit to choose the

lower offer with any probability p ∈ [0, 1] and the higher offer with probability 1 − p. In this

section we provide two results. When biases are equal, as long as the bonus is small, commitment

power does not help the principal; the principal would choose p = 1, which is already an (upward)

equilibrium without commitment. On the other hand, when biases are opposite and sufficiently large

in magnitude, the principal benefits from commitment to an interior p.

For the moment, restrict attention to the case of equally biased experts: b1 = b2 = b. In this

case we show that for B ≤ 2σ2 commitment does not improve the principal’s payoff, relative to the

expected payoff in upward equilibrium in the game without commitment.

If the principal commits to choosing the lower offer with probability p, the experts’ FOCs are

k1 = b+ ρ
f(z)(2p− 1)

p(1− F (z)) + (1− p)F (z)

k2 = b+ ρ
f(z)(2p− 1)

pF (z) + (1− p)(1− F (z))
,

where z = k1 − k2.

As B ≤ 2σ2, by Lemma S.1 from Supplementary Appendix, the only equilibrium of the game

between the two experts, given the pre-committed strategy of the principal, involves k1 = k2 = k =
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b+ (2p− 1) 2σ2−B
2
√
πσ

. The principal’s utility is

V = p

[
−σ2 − k2 +

2σ√
π
k

]
+ (1− p)

[
−σ2 − k2 − 2σ√

π
k

]
=
ρ(2σ2 +B)

2πσ2
(2p− 1)2 +

bB√
πσ

(2p− 1)− σ2 − b2.

The next proposition follows from inspection of the expression above.

Proposition 11. For B ≤ 2σ2 and b1 = b2, p = 1 is an optimal strategy of the principal under

commitment.

In particular, commitment by the principal results in the same outcome as in the upward equi-

librium of the game without commitment.

Next, consider oppositely biased experts and a bonus of B = 0. As the common magnitude b of

the biases increases, expert 1’s winner’s curse in the upward equilibrium becomes more severe, and

his markup very large. By introducing a small probability of choosing the higher offer, expert 1 is

incentivized to reduce his markup, benefiting the principal. The cost to the principal of doing so is

in choosing the wrong offer. When b is large, the markup reduction is large and outweighs the cost,

and thus the principal can profitably deviate from p = 1 to an interior p.

Proposition 12. Let b1 = b > 0, b2 = −b, and B = 0. For sufficiently large b, the optimal p under

commitment satisfies p ∈ (0, 1).

7.2 Unselected Expert Indifferent over Actions

In the baseline model we assumed that an expert whose offer is not selected is still affected by

principal’s action. While this is a reasonable assumption in some contexts, in other situations it is

more realistic to assume that the expert not selected by the principal receives an outside payoff that

is independent of the state and the implemented action. For instance, a car mechanic is unlikely to

care what kind of maintenance is done if he is not the one selected for the job. In this extension we

assume that if expert i is chosen then expert j’s realized payoff is normalized to be 0. We restrict

attention the case of equally biased experts: b1 = b2 = b > 0.

In this version of the model we assume that B is large enough that an expert’s expected payoff

under simple delegation to that expert is nonnegative; that is, he prefers simple delegation to not

being selected at all. Under this condition, the same simple delegation equilibria exist in this version

of the model as in the baseline model. Below we show that under some conditions there also exist

symmetric pure strategy equilibria that are similar to the ones characterized in the baseline model.

For this to be the case, the bonus payment must be neither too low nor too large.

First we examine the conditions for the existence of upward equilibrium. Using the same notation

as before, we investigate strategy profiles {(k1, k2, C(a1, a2) ∈ arg min{a1, a2}) : k1 +k2 ≥ 0}. While

for any such profile the principal’s payoff does not change, the experts’ expected payoffs should be
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recalculated:

Ui(ki, kj , L) =

∞∫
ki−kj

[
B −

(
ki − b−

t

2

)2

− σ2

2

]
f(t) dt

=
[
B − σ2 − (ki − b)2

]
(1− F (ki − kj)) +

[
2σ2(ki − b)−

1

2
σ2(ki − kj)

]
f(ki − kj).

Notice that for a fixed constant markup strategy of the other expert, an expert can choose arbitrarily

high constant markup and guarantee an expected payoff arbitrarily close to 0.15 Hence, 0 is a lower

bound for experts’ equilibrium payoffs.

In what follows, define β :=
√
π + B

σ2 − 5
2 .

Proposition 13. A symmetric upward equilibrium kU1 = kU2 = kU exists if and only if B ∈[(
5
2 −

3π(8π−11)
16(π−1)2

)
σ2, 52σ

2 + 2
√
πbσ + b2

]
. When it exists, it is characterized by:

• kU1 = kU2 = kU = b+ (
√
π − β)σ;

• b(kU , kU , L) = b+
(√

π − β − 1√
π

)
σ;

• V ar(kU , kU , L) =
(
1− 1

π

)
σ2;

• V (kU , kU , L) = −
[
b+

(√
π − β − 1√

π

)
σ
]2
− σ2 + σ2

π ;

• Ui(kU , kU , L) =
[
π−1√
π
β + 7

4 − π
]
σ2 for i = 1, 2.

In the Appendix we show that kU = b + (
√
π − β)σ > kbas.U = b + (1 − B

2σ2 ) σ√
π

, hence in this

version of the model experts select higher markups in upward equilibrium than in the baseline model

(for parameter values for which upward equilibrium exists in both model versions). The intuition

behind this result is that in this alternative version of the model, the relative gain from being

selected is reduced by the policy loss (that is not imposed on the expert if not selected). Since

we consider B sufficiently large that expected payoffs are nonnegative, the resulting “net bonus” is

still nonnegative; being selected is still preferable, conditional on having made the lower offer. It

follows that an expert’s equilibrium offer in either version is lower than what is ex-post optimal for

that expert – that is, optimal after conditioning on both the expert’s signal and having the lower

offer. The smaller net bonus in the alternative version reduces the expert’s incentive to marginally

lower his offer in order to more frequently earn the net bonus. This reduction must be met by an

offsetting reduction in his incentive to raise his offer, which is enforced through his bidding higher

and thus closer to his ex-post optimum; due to quadratic losses, marginal movements toward the

ex-post optimum have decreasing marginal benefits.

We note that the qualitative comparison between this extension and the baseline model is de-

pendent upon the modeling of preferences over policy outcomes through losses. Such a model is

appropriate for applications where an expert would prefer not to be associated with the project if

15For this reason, we do not introduce an explicit participation constraint in this version of the model, even though
such a constraint would be natural in many applications.
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his action would be sufficiently far from the true state; for example, this would be the case if the

expert has a reputation at stake. Alternatively, one could model preferences through gains, using

some single-peaked, nonnegative utility function of the distance between the action and the true

state. In that model, the comparison above would be reversed, as being selected enhances the bonus

and thus experts compete more aggressively by lowering their offers.

Next we turn attention to characterizing the conditions under which a downward equilibrium

exists in which the principal always chooses the higher offer. Experts’ expected payoffs can be

calculated as:

Ui(ki, kj , H) =

ki−kj∫
−∞

[
B −

(
ki − b−

t

2

)2

− σ2

2

]
f(t) dt

=
[
B − σ2 − (ki − b)2

]
F (ki − kj)−

[
2σ2(ki − b)−

1

2
σ2(ki − kj)

]
f(ki − kj)

As in upward equilibrium, 0 is a lower bound for experts’ equilibrium payoffs.

Proposition 14. Consider b1 = b2 = b > 0. If b
σ >

3
√
π

4(π−1) , then no symmetric downward equilib-

rium exists. If b
σ ≤

3
√
π

4(π−1) , then a symmetric downward equilibrium kD1 = kD2 = kD exists if and

only if B ∈
[(

5
2 −

3π(8π−11)
16(π−1)2

)
σ2, 52σ

2 + 2
√
πbσ + b2

]
. When it exists, it is characterized by:

• kD1 = kD2 = kD = b− (
√
π − β)σ;

• b(kD, kD, H) = b−
(√

π − β − 1√
π

)
σ;

• V ar(kD, kD, H) = (1− 1
π )σ2;

• V (kD, kD, H) = −
[
b−

(√
π − β − 1√

π

)
σ
]2
− σ2 + σ2

π ;

• Ui(kD, kD, H) =
[
π−1√
π
β + 7

4 − π
]
σ2 for i = 1, 2.

For downward equilibrium, the difference relative to the baseline model is the mirror image of the

difference described earlier for upward equilibrium. Again, the bonus is reduced by quadratic losses,

but in downward equilibrium this causes markups to decrease, as experts compete less aggressively

to make the higher offer.

8 Conclusion

We proposed a model in which a principal can choose between two imperfectly informed experts,

introducing the possibility of competition in a delegation framework. We showed that a principal

with limited knowledge of the decision environment can benefit from the presence of two experts,

relative to a simple unconstrained delegation to one of them, even if the experts have exactly the same

bias. The main reason is that in equilibria in which the selection of the expert depends nontrivially

on the experts’ proposals, information is utilized from both experts’ private signals. The option

of offering a bonus payment to the selected expert can improve the principal’s payoff, by inducing
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the experts to report more truthfully, but only to a certain point. Lastly, committing with a small

probability to choose the (in expectation) inferior proposal can benefit the principal.

As this is the first step in investigating the benefits of multiple choices of experts in a delegation

problem, there are many avenues of future research. One is examining multi-dimensional environ-

ments, in which different experts differ in their dimensions of specialization. Another direction

would be investigating the problem of choosing an expert to delegate a task to with a more general

mechanism design approach.

A Appendix

A.1 Proofs for Sections 4 and 5

We first provide an auxiliary lemma, which is proved in Supplementary Appendix.

Lemma A.1. Let ε1, ε2 ∼ N(0, σ2), where ε1 and ε2 are independent, and define

ξ(k1, k2) := min(ε1 + k1, ε2 + k2), η(k1, k2) := max(ε1 + k1, ε2 + k2). Then

Eξ(k1, k2) = −2σ2f(k1 − k2) + k1(1− F (k1 − k2)) + k2F (k1 − k2);

Eη(k1, k2) = 2σ2f(k1 − k2) + k1F (k1 − k2) + k2(1− F (k1 − k2));

Eξ2(k1, k2) = σ2 − 2(k1 + k2)σ2f(k1 − k2) + k21(1− F (k1 − k2)) + k22F (k1 − k2);

Eη2(k1, k2) = σ2 + 2(k1 + k2)σ2f(k1 − k2) + k21F (k1 − k2) + k22(1− F (k1 − k2)).

Proof of Proposition 2. After observing the signal si, expert i does a Bayesian update of his beliefs:

θ|si ∼ N(si, σ
2) and sj |si ∼ N(si, 2σ

2).

Since the principal chooses the lower offer, she accepts ai iff sj > si + ki− kj . Denote by g the PDF

of N(si, 2σ
2). Hence, the expected utility of expert i

Ui(k1, k2, L) =

∫ ∞
si+ki−kj

E
[
B − (ai − θ − bi)2|si, sj

]
g(sj) dsj

+

∫ si+ki−kj

−∞
E
[
−(aj − θ − bi)2|si, sj

]
g(sj) dsj

As (θ|si, sj) ∼ N(
sj+sj

2 , σ
2

2 ), ai = si + ki, aj = sj + kj , we obtain

Ui(k1, k2, L) =

∞∫
si+ki−kj

[
B −

(
ki − bi −

sj − si
2

)2

− σ2

2

]
g(sj) dsj

+

si+ki−kj∫
−∞

[
−
(
kj − bi +

sj − si
2

)2

− σ2

2

]
g(sj) dsj .
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Now make a substitution t = sj − si and denote by f and F the PDF and CDF of N(0, 2σ2).

Ui(k1, k2, L) =

∞∫
ki−kj

[
B −

(
ki − bi −

t

2

)2

− σ2

2

]
f(t) dt+

ki−kj∫
−∞

[
−
(
kj − bi +

t

2

)2

− σ2

2

]
f(t) dt.

Note that Ui(k1, k2, L) does not depend on signal si, which is intuitive for the improper prior.

As
∞∫
a

tf(t) dt = 2σ2f(a) and
∞∫
−∞

t2f(t) dt = 2σ2, we get the expression for Ui(ki, kj , L).

Now in state θ, the principal’s action a is distributed as θ + ξ, where ξ = min(ε1 + k1, ε2 + k2);

ε1, ε2 ∼ N(0, σ2), ε1 and ε2 are independent.

Therefore, from Lemma A.1 the expected bias of the accepted offer is

b(k1, k2, L) = Eξ(k1, k2) = −2σ2f(k1 − k2) + k2F (k1 − k2) + k1(1− F (k1 − k2))

and the expected utility of the principal is

V (k1, k2, L) = −E(a− θ)2 = −E(θ + ξ − θ)2 = −Eξ2(k1, k2)

= −σ2 + 2(k1 + k2)σ2f(k1 − k2)− k22 − (k21 − k22)(1− F (k1 − k2)).

Finally, the variance of the chosen offer is

V ar(k1, k2, L) =− V (k1, k2, L)− b2(k1, k2, L)

=σ2 − 4σ4f2(z)− 2σ2zf(z)(2F (z)− 1) + z2F (z)(1− F (z)).

The following lemma provides several useful bounds. The statements are immediate corollaries

of Sampford (1953).

Lemma 1. The following inequalities hold for all x ∈ R:

• 0 < v′(x) < 1
2σ2 ;

• 0 > w′(x) > − 1
2σ2 ;

• v′′(x) > 0.

Proof of Theorem 2*. We start by showing that Ui(k1, k2, L) is a single-peaked function of ki. Taking

a derivative w.r.t. ki yields

U ′i(ki) = −2 [(ki − bi)(1− F (ki − kj))− ρf(ki − kj)]

= −2(1− F (ki − kj))
[
ki − bi − ρ

f(ki − kj)
1− F (ki − kj)

]
.
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Let g(ki) denote the term in square brackets above. Lemma 1 implies that g′(ki) = 1−ρλ(ki−kj) ≥
1− σ2λ(ki − kj) > 0. Additionally, we have limx→±∞ g(x) = ±∞. Combining these facts, Ui has a

unique critical point, which is a global maximum.

We now look for upward equilibria. The FOCs for the experts are equivalent to:

k1 − b1 − ρ
f(k1 − k2)

1− F (k1 − k2)
= 0 (3)

k2 − b2 − ρ
f(k1 − k2)

F (k1 − k2)
= 0. (4)

Subtracting (4) from (3) substituting z = k1 − k2, we get

z − ρ
[

f(z)

1− F (z)
− f(z)

F (z)

]
= b1 − b2. (5)

Denote l(z) = −ρ
[

f(z)
1−F (z) −

f(z)
F (z)

]
+ z. Using a) from Lemma 1, we obtain

l′(z) = 1− ρ [v′(z)− w′(z)] + 1 ≥ 1− σ2[v′(z)− w′(z)] > 0

Now l(z) is continuous, strictly increasing on R, and ranges from −∞ to +∞. Therefore (2) has a

unique solution, z∗; we use z(B) to denote explicitly the dependence on B.

Using this solution, we get (kU1 , k
U
2 ) as the only critical point and check that this point satisfies both

initial FOCs. As Ui(ki, kj , L) is a single-peaked function of ki, (kU1 , k
U
2 ) is a pair of best responses.

As it was shown in Theorem 1, choosing the lower offer is the BR strategy for the principal iff

k1 + k2 ≥ 0, or equivalently

b1 + b2 −
[

f(z∗)

1− F (z∗)
+
f(z∗)

F (z∗)

]
≥ 0.

Also the LHS of (2) is equal to 0 at z = 0, and therefore z∗ ≥ 0 and kU1 − kU2 ≥ 0.

Define a function m(B) = b1 + b2 + ρ[v(z(B)) + w(z(B)]; the upward equilibrium exists if and

only if m(B) ≥ 0.

1) For B ≤ 2σ2: m(B) ≥ 0, therefore the upward equilibrium exists.

2) Next, we show that m(B) is decreasing in B in the region B ≥ 2σ2.

m′(B) = −1

2
[v(z(B)) + w(z(B))] + ρ[λ(z(B))− λ(−z(B))]z′(B). (6)

Differentiating equation (2) at point B, we get:

z′(B)− ρ[λ(z(B)) + λ(−z(B))]z′(B) +
1

2
[v(z(B))− w(z(B))] = 0. (7)
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By substituting (7), the second term of (6) becomes

+ ρ[λ(z(B))− λ(−z(B))]
− 1

2 [v(z(B))− w(z(B))]

1− ρ [λ(z(B)) + λ(−z(B))]

≤ −ρ[λ(z(B))− λ(−z(B))]
1
2 [v(z(B))− w(z(B))]

−ρ [λ(z(B)) + λ(−z(B))]

=
1

2

λ(z(B))− λ(−z(B))

λ(z(B)) + λ(−z(B))
[v(z(B))− w(z(B))]

=⇒ m′(B) ≤ −1

2
[v(z(B)) + w(z(B))] +

1

2
[v(z(B))− w(z(B))] = −w(z(B)) < 0.

3) From Lemma 1 the hazard rate v is convex, so for any real x, v(x) + w(x) = v(x) + v(−x) ≥
2v(0) > 0, and m(B) tends to −∞ as B tends to ∞.

From 1)-3) follows that there exists BU : m(B) ≥ 0 iff B ≤ BU . Also(
BU
2
− σ2

)
[v(z(BU )) + w(z(BU ))] = b1 + b2. (8)

As z(BU ) satisfies equation (2), we have:(
BU
2
− σ2

)
[v(z(BU ))− w(z(BU ))] + z(BU ) = b1 − b2. (9)

From the previous discussion and (8) we have BU ≥ 2σ2. Also, (8) and the inequality v(x) +w(x) =

v(x) + v(−x) ≥ 2v(0) = 2√
πσ

give an upper bound on BU :

(
BU
2
− σ2

)
2√
πσ
≤ b1 + b2.

Subtracting (9) from (8), we get a lower bound on BU :

2b2 = (BU − 2σ2)w(z(BU ))− z(BU ) ≤ (BU − 2σ2)w(0) = (BU − 2σ2)
1√
πσ

.

Finally, we calculate the expected bias of the chosen offer, its variance, and players’ utilities:

b(kU1 , k
U
2 , L) = −2σ2f(z∗) + kU2 F (z∗) + kU1 (1− F (z∗))

= −2σ2f(z∗) + b2F (z∗) + ρf(z∗) + b1(1− F (z∗)) + ρf(z∗)

= b1(1− F (z∗)) + b2F (z∗)−Bf(z∗);

V ar(kU1 , k
U
2 , L) = σ2 − 4σ4f2(z∗)− 2σ2z∗f(z∗)(2F (z∗)− 1) + (z∗)2F (z∗)(1− F (z∗)).

Corollary A.1. In upward equilibrium,

• V (kU1 , k
U
2 , L) = −σ2 − b21(1− F (z∗))− b22F (z∗) +B(b1 + b2)f(z∗) +

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) ;
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• U1(kU1 , k
U
2 , L) = −σ2−(b1−b2)2F (z∗)+B(1−F (z∗))−B(b1−b2)f(z∗)+

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) ;

• U2(kU1 , k
U
2 , L) = −σ2−(b1−b2)2(1−F (z∗))+BF (z∗)+B(b1−b2)f(z∗)+

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) .

Proof. Immediate from applying Proposition 2 to the markups given by Theorem 2*.

Proof of Proposition 3. Since the principal chooses the highest offer, she chooses ai iff sj < si+ki−
kj . Using arguments similar to used in Proposition 2, we find the expected utility of expert i:

Ui(k1, k2, H) =

∫ ∞
ki−kj

E[−(aj − θ − bi)2|sj ]f(sj) dsj +

∫ ki−kj

−∞
E[B − (ai − θ − bi)2|sj ]f(sj) dsj

=

∫ ∞
ki−kj

[
−
(
kj − bi +

sj
2

)2
− σ2

2

]
f(sj) dsj +

∫ ki−kj

−∞

[
B −

(
ki − bi −

sj
2

)2
− σ2

2

]
f(sj) dsj

= (B − (ki − bi)2)F (ki − kj)− σ2 − (kj − bi)2[1− F (ki − kj)]− 2σ2(ki + kj − 2bi)f(ki − kj).

In state θ the principal’s action a is distributed as θ + η, where η ∼ max(ε1 + k1, ε2 + k2); ε1, ε2 ∼
N(0, σ2), ε1 and ε2 are independent.

From Lemma A.1 the expected bias of the accepted offer is

b(k1, k2, H) = Eη(k1, k2) = 2σ2f(k1 − k2) + k2(1− F (k1 − k2)) + k1F (k1 − k2).

The expected utility of the principal is

V (k1, k2, H) = −E(a− θ)2 = −Eη2(k1, k2)

= −σ2 − 2(k1 + k2)σ2f(k1 − k2)− k22 − (k21 − k22)F (k1 − k2).

The variance of the chosen offer is

V ar(k1, k2, H) =− V (k1, k2, H)− b2(k1, k2, H)

=σ2 − 4σ4f2(z)− 2σ2zf(z)(2F (z)− 1) + z2F (z)(1− F (z)).

Proof of Theorem 3*. The proof is analogous to that of Theorem 2*. The FOCs for experts are

now:

k1 − b1 + ρ
f(k1 − k2)

F (k1 − k2)
= 0 (10)

k2 − b2 + ρ
f(k1 − k2)

1− F (k1 − k2)
= 0. (11)

Subtracting equation (10) from equation (11) yields (5). Principal optimality holds if and only if

k1 + k2 ≤ 0, or equivalently

n(B) := b1 + b2 +

[
f(z∗)

1− F (z∗)
+
f(z∗)

F (z∗)

]
≤ 0, (12)
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where z(B) is given by equation (2). For B > 2σ2, we have n(B) > 0, and thus a downward

equilibrium does not exist. Observe further that n(2σ2) = b1+b2 ≥ 0. Sincem(B)+n(B) = 2(b1+b2)

and m′(B) < 0, we have n′(B) > 0. It follows that if n(0) ≤ 0, then there exists BD ∈ [0, 2σ2] such

that n(B) ≤ 0 iff B ≤ BD. Therefore(
BU
2
− σ2

)
[v(z(BD)) + w(z(BD))] = −(b1 + b2). (13)

Also z(BD) satisfies equation (2), and therefore(
BU
2
− σ2

)
[v(z(BD))− w(z(BD))] + z(BD) = b1 − b2. (14)

From the previous discussion and (13) we have BD ≤ 2σ2. Also (13) and the inequality v(x)+w(x) ≥
2v(0) = 2√

πσ
give the lower bound

(
BD
2
− σ2

)
2√
πσ
≥ −(b1 + b2).

Summing (14) and (13), we get the upper bound

−2b2 =

(
BU
2
− σ2

)
v(z(BD)) + z(BD) ≥ (BD − 2σ2)2v(0).

Finally, we compute the following:

b(kD1 , k
D
2 , H) = 2σ2f(z∗) + kD1 F (z∗) + kD2 (1− F (z∗))

= 2σ2f(z∗) + b1F (z∗)− ρf(z∗) + b2(1− F (z∗))− ρf(z∗)

= b1F (z∗) + b2(1− F (z∗)) +Bf(z∗);

V ar(kD1 , k
D
2 , H) = σ2 − 4σ4f2(z∗)− 2σ2z∗f(z∗)(2F (z∗)− 1) + (z∗)2F (z∗)(1− F (z∗)).

Corollary A.2. In downward equilibrium,

V (kD1 , k
D
2 , H) = −σ2 − b21F (z∗)− b22(1− F (z∗))−B(b1 + b2)f(z∗) +

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) ;

U1(kD1 , k
D
2 , H) = −σ2−(b1−b2)2(1−F (z∗))+BF (z∗)+B(b1−b2)f(z∗)+

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) ;

U2(kD1 , k
D
2 , H) = −σ2−(b1−b2)2F (z∗)+B(1−F (z∗))−B(b1−b2)f(z∗)+

(
σ4 − B2

4

)
f2(z∗)

F (z∗)(1−F (z∗)) .

Proof. Proposition 3 applied to Theorem 3*.

Proof of Proposition 4*. From Theorems 2* and 3*

Vupw. − Vdownw. = (2F (z∗)− 1)(b21 − b22) + 2B(b1 + b2)f(z∗) ≥ 0,

with equality if and only if either b1 + b2 = 0 or both B = 0 and b1 = b2.
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Proof of Proposition 5. Delegation to expert 2 alone yields principal utility V S(b, x) = −σ2−(b−x)2,

while upward equilibrium yields

V U (b, x) = −σ2 − b2 − x2 + (2F (z∗)− 1)2bx+ (k1 − b− x)(k2 − b+ x).

The difference between these is

V U (b, x)− V S(b, x) = −2(1− F (z∗))bx+ (k1 − b− x)(k2 − b+ x)

= −2(1− F (z∗))bx+ σ4v(z∗)w(z∗).

Recall that z∗ is independent of b. If x = 0, then the above expression is always positive. For fixed

x > 0 then the existence of b̄ follows from the fact that this expression is decreasing linearly in b

and positive for b = 0.

Next, consider b2 = 0 and b1 = b > 0. The principal’s utility in upward equilibrium is

V = −σ2 + 2(k1 + k2)σ2f(z)− k21(1− F (z))− k22F (z),

which we aim to show is greater than −σ2 as under simple delegation to expert two. Using the

expressions k1 = b+ σ2 f(z)
1−F (z) and k2 = σ2 f(z)

F (z) , this is true if and only if

2

(
b+ σ2 f

1− F
+ σ2 f

F

)
σ2f >

(
b2 + 2bσ2 f

1− F
+ σ4

(
f

1− F

)2
)

(1− F ) + σ4

(
f

F

)2

F.

Using b = z − σ2 f(2F−1)
F (1−F ) and simplifying, this is equivalent to

σ4(4F − 1) > z(zF (1− F )− 2σ2f(2F − 1)).

As z > 0, the left hand side is positive; we now show that the right hand side is negative. Let

h(z) := 2σ2f(2F − 1)− zF (1−F ), which we aim to show is positive. Then h′(z) = 2f2−F (1−F ).

As shown in Sampford (1953), k(z) := f2

F (1−F ) is decreasing for z ≥ 0. It is easy to verify that

2k(0) > 1 and that limz→+∞ k(z) = 0. It follows that there is a unique positive solution to

h′(z) = 0. It is also easy to check that h′(0) > 0 and that limz→+∞ h(z) = 0. Together these facts

imply that h(z) > 0 for all z > 0, as desired.

Proof of Proposition 6. If b1 = b2 = b > 0, then upper and lower bounds on BU coincide, and thus

BU = 2σ2 + 2
√
πσb. From Theorem 2*, the experts’ markups are kU1 = kU2 = kU = b + ρσ

σ
√
π

and

z∗ = 0. The other results follow immediately.

Proof of Proposition 7. If b1 = b2 = b > 0, then upper and lower bounds on BD from Theorem 3*

coincide, so BD = 2σ2 + 2
√
πσb. The experts’ markups are kD1 = kD2 = kD = b− ρ

σ
√
π

and z∗ = 0,

which implies all other results.
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A.2 Proofs for Section 6

Proof of Proposition 9. From Proposition 6, the symmetric upward equilibrium exists if B ≤ 2σ2 +

2
√
πbσ or, equivalently, σ ≥

√
πb2+2B−

√
πb

2 . The principal’s expected payoff in upward equilibrium is

equal to V = −(b− B
2
√
πσ

)2− (1− 1
π )σ2. Then V ′(σ) = B√

πσ2 ( B
2
√
πσ
− b)− 2(1− 1

π )σ = − 1
2πσ3 [(4π−

4)σ4 + 2
√
πbBσ −B2] > 0 if and only if σ < σ∗.

If B = 0, V ′(σ) < 0. Otherwise, denote σ0 =
√
πb2+2B−

√
πb

2 > 0.

The interval [σ0, σ
∗) is non-empty if and only if 0 > (4π − 4)σ4

0 + 2
√
πbBσ0 − B2 = (4π −

4)σ4
0 − 2Bσ2

0 + B[2σ2
0 + 2

√
πbσ0 − B] = (4π − 4)σ4

0 − 2Bσ2
0 or, equivalently, 0 > (2π − 2)σ2

0 − B =

(2π − 2)σ2
0 − (2σ2

0 + 2
√
πbσ0) = (2π − 4)σ2

0 − 2
√
πbσ0. The latter holds if and only if σ0 <

√
πb

π−2 or,

equivalently, B = 2σ2
0 + 2

√
πbσ0 <

2(π−1)π
(π−2)2 b

2.

Proof of Proposition 10. By Proposition 4*, only upward equilibrium should be considered. There-

fore, we seek to maximize the quadratic function V (kU , kU , L)−B = −
(
b− B

2
√
πσ

)2
− σ2 + σ2

π −B
on the interval B ∈ [0, 2σ2 + 2

√
πσb].

a) First consider b
σ ≤

√
π. In this case the maximum is achieved at B = 0 and is equal to

V (kU , kU , L|B = 0) = −b2 −
(
1− 1

π

)
σ2.

Hence, if b
σ <
√
π, then the principal pays no bonus.

b) Now consider b
σ ≥
√
π. In this case the principal achieves maximum in upward equilibrium at

BR = 2
√
πσ (b−

√
πσ) (upward equilibrium exists for this point) and is equal to V (kU , kU , L|B =

BR) = (π − 1 + 1
π )σ2 − 2

√
πσb.

Her gains comparatively to B = 0 (if she is legally restricted from paying bonuses) are equal to:

V (kU , kU , L|B = BR)− V (kU , kU , L|B = 0) =
(
b−
√
πσ
)2
.

A.3 Proofs for Section 7

Proof of Proposition 12. Let V (p) denote the principal’s utility from commitment to p. That b1 +

b2 = 0 implies V (0) = V (1) is shown in the proof of Proposition 4*. Therefore, it suffices to show

that V ′(1) < 0. Given p, the markups satisfy

k1(p) = b+
(2p− 1)f(z(p))

W (p)

k2(p) = −b+
(2p− 1)f(z(p))

1−W (p)

=⇒ z(p) = 2b+
(2p− 1)f(z)(1− 2W (p))

W (p)(1−W (p))
,

where W (p) := p(1 − F (z(p))) + (1 − p)F (z(p)). Differentiating with respect to p and solving for

z′(1) yields

z′(1) =
f(4F + 1)(2F − 1)

F 2(1− F )2 − F (1− F )(f ′(2F − 1) + 2f2)− f2(2F − 1)2
.
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The principal’s utility is

V (p) = 2(2p− 1)f(k1 + k2)− k21W − k22(1−W ).

By differentiating with respect to p, evaluating at p = 1, substituting in the above expression for

z′(1) and simplifying, we obtain

V ′(1) =
f2

F 2(1− F )2

(
1 +

g1
g2

)
, where

g1 := (2F − 1)(2F (1− F )f ′ + f2(2F − 1)),

g2 := F 2(1− F )2 − f2(2F 2 − 2F + 1)− f ′(2F − 1)F (1− F ).

We claim that g2 > 0, and thus it suffices to show that g2 < −g1 for sufficiently large z. To see this,

note that by Lemma 1, f ′ < 1−F
2 − f2

1−F , and thus

g2 > F (1− F )2
[

1

2
− f2

F (1− F )

]
.

It is easy to verify that f2

F (1−F ) <
1
2 holds globally, and thus g2 > 0 as desired. To see that g2 < −g1

for sufficiently large z, note that by algebra this comparison is equivalent to

F (1− F ) + f ′(2F − 1) ≤ 2f2. (15)

Using Lemma 1 again and simplifying, a sufficient condition for (15) is 2F − 1
2 <

f2

(1−F )2 . The left

hand side is bounded above by 3
2 , while the right hand side is increasing and unbounded above; thus

for sufficiently large z, (15) holds. Finally, since z is increasing and unbounded above as a function

of b, the proposition holds.

Proof of Proposition 13. First, we calculate marginal utilities:

U ′i(ki) = −2(ki − b)[1− F (ki − kj)] +

[
1

2
σ2 + 2ρ+

1

4
(ki + kj − 2b)2

]
f(ki − kj).

Here, setting U ′i(k) = 0 gives two critical points:

k = b+
√
πσ −

√(
π − 5

2

)
σ2 +B and k = b+

√
πσ +

√(
π − 5

2

)
σ2 +B.

The second derivative is:

U ′′i (ki) = −2[1− F (ki − kj)]

+

[
2(ki − b) +

1

2
(ki + kj − 2b) +

(
B

2σ2
− 5

4

)
(ki − kj)−

1

8σ2
(ki − kj)(ki + kj − 2b)2

]
f(ki − kj).

We get that only k∗ = b +
√
πσ −

√(
π − 5

2

)
σ2 +B is a local maximum of experts’ utility

functions.

Optimality for the principal holds if and only if k∗ ≥ 0 or, equivalently, B ≤ b2 + 2
√
πbσ + 5

2σ
2.
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Calculating, we get that Ui(k
∗, k∗, L) = (π−1)σ√

π

√(
π − 5

2

)
σ2 +B−(π− 7

4 )σ2. As we noted earlier,

a necessary condition for equilibrium is Ui(k
∗, k∗, L) ≥ 0 or, equivalently, B ≥ ( 5

2 −
3π(8π−11)
16(π−1)2 )σ2.

Therefore, upward equilibrium may exist only if B ∈
[(

5
2 −

3π(8π−11)
16(π−1)2

)
σ2, 52σ

2 + 2
√
πbσ + b2

]
.

To finish the proof, we show that if B lies on this interval, then k = k∗ is a global maximum of

U1(k, k∗, L).

Denote g(k) = −2(k − b) +
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
v(k − k∗).16

Then U ′1(k) = −2(k−b)[1−F (k−k∗)]+
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
f(k−k∗) = [1−F (k−k∗)]g(k)

and sign(U ′1(k)) = sign(g(k)).

The first and second derivatives of g are

g′(k) = −2 +

[
σ2

2
+ 2ρ+

1

4
(k + k∗ − 2b)2

]
v′(k − k∗) +

1

2
(k + k∗ − 2b)v(k − k∗)

g′′(k) =

[
σ2

2
+ 2ρ−B +

1

4
(k + k∗ − 2b)2

]
v′′(k − k∗) + (k + k∗ − 2b)v′(k − k∗) +

1

2
v(k − k∗).

Consider two cases.

1. B ∈
[(

5
2 −

3π(8π−11)
16(π−1)2

)
σ2, 52σ

2
]
. Here k∗ ≥ b.

a) On the interval k < b, U ′1(k) > 0 and hence there is no point of maximum there.

b) On the interval k ≥ b we also have that k+k∗−2b ≥ 0. As all v, v′ and v′′ are strictly positive

functions, g′′(k) > 0. As g′(k∗) < 0 and g′(+∞) > 0, hence there exists k∗∗ > k∗: for k < k∗∗ g(k)

is decreasing; for k > k∗∗, g(k) is increasing. As g(b) > 0, g(k∗) = 0, g(k∗∗) < 0 and g(+∞) > 0,

then there exists k0 > k∗∗ : g(k0) = 0. In summary, g(k) is negative only on (k∗, k0). Consequently,

U1(k) is increasing on [b, k∗), decreasing on (k∗, k0), increasing for k > k0. Hence, to show that k∗

is a maximum on the interval k ≥ b it is sufficient to verify that U1(k∗) ≥ U1(+∞) = 0, which was

already done.

2. B ∈
[
5
2σ

2, 52σ
2 + 2

√
πbσ + b2

]
. Here k∗ ≤ b.

a) On the interval k < k∗: U ′1(k) > 2(b−k∗)[1−F (k∗−k∗)]+
[
σ2

2 + 2ρ+ 1
4 (k∗ + k∗ − 2b)2

]
f(k−

k∗) = b − k∗ − b−k∗
f(0) f(k − k∗) (as k∗ is a solution of 5

2σ
2 − B + (k∗ − b)2 = k∗−b

f(0) ). Therefore

U ′1(k) > b− k∗ − b−k∗
f(0) f(k − k∗) ≥ b− k∗ − b−k∗

f(0) f(0) = 0.

b) On the interval k ∈ (k∗, b]:
U ′1(k)
f(k−k∗) = −2(k − b) 1−F (k−k∗)

f(k−k∗) +
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
<

2(b− k∗) 1−F (k∗−k∗)
f(k∗−k∗) +

[
σ2

2 + 2ρ+ 1
4 (k∗ + k∗ − 2b)2

]
= b−k∗

f(0) −
b−k∗
f(0) = 0, hence U ′1(k) < 0.

c) On the interval k ∈
(
b, 2b− k∗ + 2

√
B − 5

2σ
2
]

we also have σ2

2 + 2ρ + 1
4 (k + k∗ − 2b)2 ≤ 0.

Then U ′1(k) = −2(k − b)[1− F (k − k∗)] +
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
f(k − k∗) < 0.

d) On the interval k > 2b − k∗ + 2
√
B − 5

2σ
2 we also have k + k∗ − 2b > 0. Hence, on this

interval g′′(k) > 0. Also notice that g(2b − k∗ + 2
√
B − 5

2σ
2) < 0. Then two cases are possible:

(i) g′(2b − k∗ + 2
√
B − 5

2σ
2) ≥ 0. Then on the whole interval g′(k) > 0 and g(k) is increasing. As

g(2b− k∗ + 2
√
B − 5

2σ
2) < 0 and g(+∞) > 0, there exists k0: g(k) < 0 for k < k0 and g(k) > 0 for

16Recall that v(k − k∗) =
f(k−k∗)

1−F (k−k∗) ).
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k > k0. Now U1(k) is decreasing for k < k0 and increasing for k > k0. Hence, to show that k∗ is a

global maximum it is enough to check that U1(k∗) ≥ U1(+∞) = 0, which was already done.

(ii) g′(2b − k∗ + 2
√
B − 5

2σ
2) < 0. Then there exists k∗∗ > 2b − k∗ + 2

√
B − 5

2σ
2: for k < k∗∗

g(k) is decreasing; for k > k∗∗ g(k) is increasing. As g(+∞) > 0, there exists k0: g(k) < 0 for k < k0

and g(k) > 0 for k > k0. Then U1(k) is decreasing for k < k0 and increasing for k > k0 and k∗ is a

global maximum as U1(k∗) ≥ U1(+∞) = 0.

We now verify that kU = k∗ > kbas.U :

kU = b+

(
√
π −

√
π +

B

σ2
− 5

2

)
σ > kbas.U = b+

(
1− B

2σ2

)
σ√
π

⇐⇒
√
π −

√
π +

B

σ2
− 5

2
>

(
1− B

2σ2

)
1√
π
⇐⇒

√
π +

1√
π

(
B

2σ2
− 1

)
>

√
π +

B

σ2
− 5

2

⇐⇒ π +
B

σ2
− 2 +

1

π

(
B

2σ2
− 1

)2

> π +
B

σ2
− 5

2
⇐⇒ 1

2
+

(
B

2σ2
− 1

)2

> 0.

Proof of Proposition 14. Start with calculation of marginal utilities:

U ′i(ki) = −2(ki − bi)F (ki − kj)−
[
σ2

2
+ 2ρ+

1

4
(ki + kj − 2b)2

]
f(ki − kj)

Consider the symmetric case: k1 = k2 = k. The FOCs give two critical points:

k = b−
√
πσ −

√(
π − 5

2

)
σ2 +B and k = b−

√
πσ +

√(
π − 5

2

)
σ2 +B.

Next, calculate second derivatives:

U ′′i (ki) = −2F (ki − kj)

−
[
2(ki − bi) +

1

2
(ki + kj − 2bi) +

(
B

2σ2
− 5

4

)
(ki − kj)−

1

8σ2
(ki − kj)(ki + kj − 2bi)

2

]
f(ki − kj)

We get that only k∗ = b−
√
πσ +

√(
π − 5

2

)
σ2 +B satisfies SOCs.

In order to satisfy principal optimality we need k∗ ≤ 0 or, equivalently, both b
σ ≤

√
π and

B ≤ b2 −
√
πbσ + 5

2σ
2.

Calculating, we get that Ui(k
∗, k∗, H) = (π−1)σ√

π

√(
π − 5

2

)
σ2 +B− (π− 7

4 )σ2 (the same as in up-

ward equilibrium). As in upward equilibrium case, a necessary condition is B ≥
(

5
2 −

3π(8π−11)
16(π−1)2

)
σ2.

From previous arguments downward equilibrium may exist only if B ∈
[
( 5
2 −

3π(8π−11)
16(π−1)2

)
σ2, b2−

2
√
πbσ + 5

2σ
2) and b

σ ≤
√
π. This interval is non-empty if and only if b

σ ≤
3
√
π

4(π−1) . Note also that

B ≤ b2 − 2
√
πbσ + 5

2σ
2 ≤ 5

2σ
2.

To finish the proof we show that if B lies on this interval, then k = k∗ is not only a local, but

also a global maximum of U1(k, k∗, L).

Denote r(k) = −2(k − b) −
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
w(k − k∗) (remind that w(k − k∗) =

f(k−k∗)
F (k−k∗) ).
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Then U ′1(k) = −2(k− b)F (k− k∗)−
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
f(k− k∗) = F (k− k∗)r(k) and

sign(U ′1(k)) = sign(r(k)).

First and second derivatives of r(k) are:

r′(k) = −2−
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
w′(k − k∗)− 1

2 (k + k∗ − 2b)w(k − k∗);

r′′(k) = −
[
σ2

2 + 2ρ+ 1
4 (k + k∗ − 2b)2

]
w′′(k − k∗)− (k + k∗ − 2b)w′(k − k∗)− 1

2w(k − k∗).

Notice that as b
σ ≤
√
π, B ≤ b2−

√
πbσ+ 5

2σ
2 ≤ 5

2σ
2 and k∗ = b−

√
πσ+

√(
π − 5

2

)
σ2 +B ≤ b.

a) On interval k > b U ′(k) < 0, so there is no candidate for maximum there.

b) On interval k < b we also have k+ k∗− 2b ≤ 0. As w > 0, w′ < 0, w′′ > 0, we have r′′(k) < 0.

As r′(−∞) > 0 and r′(k∗) < 0, there exists k∗∗ < k∗ < b: r(k) is increasing for k < k∗∗, r(k)

is decreasing for k > k∗∗. As also r(−∞) < 0, r(k∗ − 0) > 0 and r(k∗ + 0) < 0, there exists

k0: r(k) > 0 only on (k0, k
∗). Therefore, U1(k) is decreasing on k < k0, increasing on (k0, k

∗),

decreasing on (k∗, b). Hence, k∗ is a global maximum if U1(k∗) ≥ U1(−∞) = 0, which has already

been shown.
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