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Abstract

This paper extends the concept of coalitional rationalizability of Ambrus(01)
to incorporate sequential rationality in multi-stage games with observable ac-
tions and incomplete information. Agreements among players are implicit, it
is assumed that players cannot communicate with each other during the game.
They re°ect a reasoning procedure which entails restricting strategies in a mu-
tually advantegous way. They can be conditional on observed histories and
players' types, which corresponds to allowing players to make agreements ex
post and along the course of play. An agreement that is conditioned on a his-
tory is evaluated from the point of view of that history. This introduces a
dynamic interaction among coalitional agreements with features of both back-
ward and forward induction. Coalitional agreements iteratively de¯ne the set
of extensive form coalitionally rationalizable strategies. This solution concept
has a number of analogous properties with normal form coalitionally rational-
izability. It is always nonempty. The set of outcomes consistent with it is
a subset of the outcomes consistent with extensive form rationalizability, and
it is robust to the order in which agreements are made. In games of perfect
information extensive form coalitional rationalizability is outcome equivalent
to extensive form rationalizability. Perfect coalition-proof Nash equilibria and
renegotiation-proof Nash equilibria do not have to be contained in the solution
set, even in two-player games, because those concepts do not imply forward
induction reasoning. An alternative notion of extensive form coalitional ratio-
nalizability is also provided, assuming that coalitional agreements can only be
made ex ante, but sequential individual rationality is maintained.
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1 Introduction

Coalitional reasoning in noncooperative games means that subgroups of play-
ers with similar interest make an explicit or implicit agreement regarding what
strategies to play in the game. In an equilibrium framework this reasoning leads
to the concept of coalitional deviations, and to re¯nements of Nash equilibrium
along the lines of requiring stability against coalitional deviations. The two main
solution concepts proposed in the literature that address the issue of coalitional
deviations are strong Nash equilibrium (see Aumann[59]) and coalition-proof
Nash equilibrium (see Bernheim, Peleg and Whinston[87]). Unfortunately nei-
ther of these conepts can guarantee existence of a solution in any natural class
of games, suggesting that coalitional reasoning imposed on top of Nash equi-
librium might lead to contradictions. Nonexistence of strong Nash equilibrium
is especially severe. Coalition-proof Nash equilibrium cannot solve the problem
of existence either, despite putting restrictions on the set of allowable coali-
tional deviations in a manner that raises various conceptual problems (see Am-
brus[01]).

Ambrus[01] proposes to deal with coalitional agreements in normal form
games in a non-equilibrium framework. Instead of imposing equilibrium players
are just required to be Bayesian decision makers and play best responses to
conjectures that are compatible with the theory and these conjectures are not
required to be correct. In this setting groups of players make implicit agreements
to restrict their play to certain subsets of the strategy set. Ambrus shows that
these agreements are always compatible with each other, and he proposes the
solution concept of coalitional rationalizability which is obtained through an
iterative procedure of agreements among subgroups of players to restrict their
play to subsets of the strategy space. The set of coalitionally rationalizable
strategies is always nonempty and it is a coherent set (every strategy in it is a
best response to some conjecture with support inside this set, and every best
response to every conjecture with support inside the set is in the set). The
solution concept is a re¯nement of rationalizability. There is no containment
relationship between the set of Nash equilibria and the set of coalition-proof
Nash equilibria on one hand, and the set of coalitionally rationalizable strategies
on the other hand. But every game has a Nash equilibrium that is inside the
set of coalitionally rationalizable strategies. Furthermore it is shown that the
solution set is insensitive to the order in which coalitional agreements are made,
the same way as iterated deletion of strategies that are never best responses is
insensitive to the order of deletion.

This paper addresses the issue of how coalitional rationalizability can be
extended to extensive form games in a way that players are sequentially rational
and foresee the coalitional agreements that are going to be made throughout
the game. The assumptions that players are Bayesian decision makers and that
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subgroups of players make all restrictions that are mutually advantegous for
them is maintained, and sequential rationality is added as a new requirement.
This introduces a dynamic element to coalitional agreements. Players can make
an agreement that restrict their play at di®erent stages of the game. Players can
make an agreement at some stage of the game because they foresee that another
coalitional agreement will be made at a subsequent stage of the game. Finally,
players can make an agreement to jointly signal strategic intent to in°uence
other players' choices at subsequent stages of the game.

The agreements players can make during the game are implicit in our con-
struction, they re°ect a reasoning procedure on the part of players that what
restrictions on strategies are mutually advantageous at a certain stage of the
game. This reasoning procedure is based on the publicly known description
of the game. It is assumed that players cannot communicate to each other
during the game. Communication during the game crucially changes the analy-
sis. First, it can introduce correlation into play, while in this paper we assume
that players choose their strategies independently of each other. Second, it can
make players to revise their conjectures on other players' strategies even if they
were not surprised by observed action choices, and therefore invalidate signaling
strategic intent by action choices made before communication.1 But we claim
that communication before the game does not invalidate our results, in the sense
that outcomes that are inconsistent with extensive form coalitional rationaliz-
ability will not be played by coalitionally rational players even in the presence
of pre-play communication. There are a lot of examples though in which it is
reasonable to expect players to make more restrictions on strategies played if
they can communicate to each other before the game.

We restrict attention to multi-stage games with observable actions and in-
complete information. Later we brie°y discuss the additional issues that arise
in general extensive form games. In this class of games we de¯ne the concept of
history-based restrictions. A history-based restriction is an implicit agreement
among a subgroup of players - a coalition - to restrict the continuation strate-
gies that they play from that history on. History-based strategies are evaluated
from the point of view of the history they are based on. This corresponds to
assuming that players can make agreements along the course of play as the game
progresses, or equivalently that they cannot commit themselves not to make a
coalitional agreement if it becomes desireable at some stage of the game. A
history-based restriction by a coalition is de¯ned to be supported if every player
in the coalition has a higher expected payo® conditional on the history being
reached if players make the restriction and switch to playing only continuation
strategies that are compatible with the restriction than if he plays a strategy
which is outside the restriction. Based on this de¯nition an iterative proce-
dure is proposed, in which at every stage every coalition makes all supported

1The introduction of public randomization devices during the game has similar e®ects, as
shown by Gul and Pearce[96] in the context of equilibrium analysis.
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history-based restrictions. The set of extensive form coalitionally rationalizable
strategies is de¯ned to be the set of strategies that survive the above procedure.

We show that extensive form coalitional rationalizability is a generalization
of normal form coalitional rationalizability, and that it has similar properties to
the latter. It is always nonempty. The set of oucomes that are consistent with
extensive form coalitional rationalizability is always a subset of the outcomes
that are consistent with extensive form rationalizability. The set of outcomes
that are consistent with the solution set is insensitive to the order in which
supported restrictions are made. A generalization of the concept of a coherent
set is provided for a nested sequence of restrictions and it is shown that the
iterative procedure de¯ning the set of extensive form coalitionally rationalizable
strategies gives a nested sequence of restrictions that is coherent. This gives an
interpretation to the set of coalitionally rationalizable strategies that is similar
to the interpretation that Battigalli[97] provides for the set of extensive form
rationalizable strategies. It corresponds to the strategies that can be weak
sequential best responses if players' conjectures at every information set are
required to be consistent with the highest level of coalitional rationalizability
that is consistent with the information set.

There is no containment relationship with Nash equilbrium, sequential equi-
librium or trembling hand perfect equilibrium, but it is shown that every multi-
stage game has a sequential equilibrium which is contained in the set of extensive
form coalitionally rationalizable strategies. Perfect coalition-proof Nash equi-
libria, de¯ned in Bernheim, Peleg and Whinston[87], do not have to be inside
the set of extensive form coalitionally rationalizable strategies either. Unlike in
normal form games, this is true even in two-player games, and in two-player
¯nitely repeated games as well, where perfect coalition-proof Nash equilibrium
coincides with renegotiation-proof Nash equilibrium (see for example Bernheim,
Peleg andWhinston[87] and Benoit and Krishna[93]). This is shown to be part of
a more general issue, that perfect coalition-proof and renegotiation-proof Nash
equilibria might fail to be extensive form rationalizable, because they do not
capture forward induction considerations that extensive form rationalizability
and extensive form coalitional rationalizability do.

In games of perfect information extensive form coalitional rationalizability
is shown to be outcome-equivalent to extensive form rationalizability. This
establishes that in games of perfect information there are no possibilities for
players to make coalitional agreements.

Extensive form coalitional rationalizability is de¯ned for multi-stage games
with incomplete information. This makes it possible to analyze coalitional agree-
ments among players which are conditional on players' types. We allow for re-
strictions to be conditioned over types, or equivalently we allow for agreements
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among types of players. This corresponds to assuming that just like players can-
not commit not to make an agreement at a history if that agreement is mutually
advantegous at the history, they cannot commit not to make an agreement that
restricts the play of some of their types, if ex post the agreement is mutually
advantegous from the point of the view of the types involved. We consider this
assumption to be the natural extension of sequential rationality to coalitional
agreements in incomplete information environments. Nevertheless we provide
an alternative de¯nition of coalitional rationalizability, ex ante coalitional ratio-
nalizability that takes the position that coalitional agreements are not credible
if they are not mutually advantegous ex ante. This implies players cannot make
coalitional agreements ex post and along the course of play, and every agree-
ment is evaluated from an ex ante point of view. However the assumption of
sequential (individual) rationality is maintained and shown to interact with ex
ante coalitional agreements in a nontrivial way.

2 Motivating examples and an informal account
of extensive form coalitional rationalizability

The examples in this section are intended to demonstrate the richness of coali-
tional interaction in multi-stage games with observable actions. The formal
de¯nition of this class of games, presented in the next section, requires that
after every publicly observed nonterminal history every player takes an action.
This is only for notational convenience though, since some players can have
trivial action choices after a given history, which is equivalent to assuming that
those players do not make an action choice at that history. In the examples
below if a player has a trivial action choice after some history, we leave that
action choice out from the description of the game.

If players can make coalitional agreements as the game progresses, condi-
tional on a given history being reached, and we assume that players foresee these
agreements, then there is a dynamic interaction among coalitional agreements.
An agreement that is made at some history might trigger another agreement at
an earlier stage of the game, as the game of Figure 1 below demonstrates. This
is an analogue, in the context of coalitional agreements, of the backward induc-
tion logic implied by sequential rationality. Furthermore, players might make
a coalitional agreement to jointly signal strategic intent at some later stage of
the game, as the game of Figure 2 shows. Therefore coalitional agreements
to restrict strategies in extensive form games are intertwined with the type of
forward induction logic implied by extensive form rationalizability.
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1,1,3,3 0,0,0,0 0,0,0,0 
3 

4 

2,2,2,2 0,0,0,0 0,0,0,0 1,1,1,1 

L 

L   R 

R 

l   r l  r 

l  r   l   r 

Figure 1

In the game of Figure 1, if the information sets of player 3 and player 4
are reached, then (L; l) yields the best payo® that they can get, so it is mutu-
ally advantegous for them to make an implicit agreement not to play R and r.
Knowing this, it is mutually advantegous for players 1 and 2 to make an implicit
agreement not to play R and r. This is along the lines of backward induction
or sequential logic, combined with coalitional agreements. Note that coalitional
rationalizability in the normal form of this game does not eliminate any strate-
gies. In particular playing (L; l) is not a supported restriction for players 3 and
4, because they might think that player 1 plays R or player 2 plays r with proba-
bility 1, in which case it does not matter what strategies players 3 and 4 choose.
But then (L; l) is not a supported restriction for players 1 and 2, since they can-
not be sure that players 3 and 4 play (L; l). Finally, the coalition of all players
doesnot have a supported restriction, because the favorite outcome of players 3
and is not (L; l; L; l), but (R; r;R; r). Even applying perfect coalitional ratio-
nalizability (see Ambrus[01]) to the normal form of the game does not eliminate
any strategies. In ¯nite games perfect coalitional rationalizability is equivalent
to one round of elimination of weakly dominated strategies and taking the set
of coalitionally rationalizable strategies of the remaining set. Since no strategy
is weakly dominated in the normal form representation, the previous argument
establishes that perfect coalitional rationalizability does not put any restriction
on strategies that can be played.
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  I O   I  O 

L R 

 L   R   L   R 

L  R L   R L R   L R 

Figure 2

In the game of Figure 2, it is undominated for player 1 to choose I only if
he plans to play L afterwards. Similarly for player 2. Knowing this, player 3
should play L after observing (I; I). Therefore if play starts with (I; I), the
only reasonable outcome is the one belonging to the endnode on the left, giving
a payo® vector (3; 3; 1) which is the best possible payo® to players 1 and 2.
Coalitional reasoning should then induce players 1 and 2 to start out by playing
I. Note that extensive form rationalizability doesnot eliminate other strategies
by player 1 and player 2, because O is a best response for each of them if
they allocate a high enough probability to the other choosing O. Some form of
coalitional reasoning is needed to get around the coordination problem. Also
note that coalitional rationality in the normal form of the game is ine®ective in
deleting strategies, because it cannot reproduce the forward induction argument
needed in the ¯rst place. And since player 3's favorite outcome is when players
1 and 2 play (O;O), he cannot be part of a mutually advantegous agreement.
We call the above reasoning procedure \coalitional forward induction", because
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players 1 and 2 make a coalitional agreement that involves signaling their joint
strategic intent to player 3.

Another implication of players using sequential logic in making coalitional
agreements is that in games of incomplete information players evaluate coali-
tional agreements conditional on their realized types. If an agreement is advan-
tegous for a realized type of some player, then it is advantegous for him to make
the agreement even if the same agreement is not advantegous for some other
type of the same player. Consider the game of Figure 3.

 
C 

2 

  3,3  0,0   0,0  1,1 

A B 

 L R L R 

1/2 1/2 

1 1 

 l r  l  l l   r   r     r 

 0,3   0,1   0,0 0,0 

Figure 3

In the above game player 1 has two possible types, type A and type B,
which are realized with equal probability. Consider now the implicit agreement
between players 1 and 2 to play strategies R and r. This is de¯nitely a desireable
agreement from the point of view of type B of player 1, since it yields him the
highest possible payo® in the game, but not from the point of view of type
A of player 1. Note however that the agreement is a desireable one from the
point of view of player 2 even if he assumes that only type B of player 1 follows
the agreement. If type B of player 1 plays R and he plays r, then he gets an
expected payo® of at least 3=2, while playing l can never yield an expected
payo® of higher than 1. Therefore it is in the interest of player 2 to make an
implicit agreement with type B of player 1 to play (R; r). Getting back to type
B of player 1, although the agreement is advantegous for him, he knows that
it is not advantegous for type A. This, however does not mean that it is not
in his interest to make the agreement to play (R; r). If nature selected type B
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for player 1, then player 1, when called upon to choose an action knows that
type B was realized and not type A. Therefore sequential logic suggests that
he evaluates the agreement from type B's point of view, ignoring whether the
agreement would have been advantegous for type A had he been realized.

The formal construction of extensive form coalitional rationalizability, pre-
sented in the next section, allows players to make coalitional agreements con-
ditional on realized types and conditional on histories being reached. Since
agreements are conditional on realized types, formally we allow types of players
to evaluate and make restrictions. This can be interpreted literally as well, that
it is the types of players who evaluate and possibly make coalitional agreements
with each other. In most of the paper our terminology re°ects this view and
in verbal analysis we will talk about \agreements among types". This is only
for ease of exposition though, as our view is that these agreements represent
agreements among players conditional on realized types. If a player makes an
implicit agreement with some, but not all types of another player, then just like
in the example of Figure 3, the agreement is only advantegous for him if it is
advantegous for him even if the types who are not part of the agreement play
some other strategies than those speci¯ed by the agreement. Since this evalua-
tion is done using expected payo®s, the more likely a player considers that he
is facing the types who are involved in the agreement, the more likely it is that
the agreement is advantegous for him. This introduces an interesting interplay
with allowing the agreements to be conditioned on histories being reached. If at
a given history a player thinks that it is very likely that he faces certain types of
the other players, then an agreement with those types conditional on the history
can be advantegous even if at the beginning of the game he didnot think that
those types were very likely. Consider the game of Figure 4.
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1 

0,1,2,0   1 

2 

3,0,0,3  1,0,0,0   1,0,0,0 2,1,0,1 

  L   R 

   l  r 

l r   l   r 

Figure 4

In this game player 1 has three possible types: A, B and C, but for ease
of exposition nature's move is not made explicit in the ¯gure. At every ¯nal
outcome, the ¯rst payo® belongs to type A of player 1, the second to type B of
player 1, the third to type C of player 1 and the fourth to player 2. Assume that
nature chooses each type of player 1 with probability 1=3. Note that playing r
at the beginning of the game is a dominant action for type C of player 1. On
the other hand, playing l at the beginning of the game is a dominant action
for type A of player 1. Therefore after history l was observed, player 2 should
allocate at least probability 1=2 to facing type A of player 1. He should allocate
probability 0 at that stage to type C of player 1 being realized, and some
probability between 1=2 and 1 to type A being realized, depending on what he
thinks about the action choice at the beginning of the game of type B of player
1. But then playing (L; l) after history l is an advantegous agreement for player
2 and type A of player 1. It is advantegous for type A of player 1 because it
yields the highest possible payo® for him in the game. And it is advantegous
for player 2 because given that history l was reached the agreement guarantees
him an expected payo® of at least 3=2, while playing r could yield at most a
payo® of 1. Note that the agreement is supported only because conditional on l
being reached the probability of type A of player 1 being realized is higher than
1=3, the prior probability of type A.
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The next example points out that agreements that are advantegous condi-
tional on a history might trigger another agreement that causes that history
never being reached, just like sequential rationality reasoning applied to con-
tinuation strategies from a history can ultimately rule out that history being
reached.

 
1 

3 

2,1,1 2,1,1 2,1,1 0,2,2 

L R 

l r l r 

2 

O I 

1,0,0 

Figure 5

In the game of Figure 5, conditional on the subgame consisting of player 2's
and player 3's information set is reached, (L; l) gives a higher payo® to both of
them than what any other strategies yield. Therefore if the subgame is reached,
it is mutually advantegous for them to coordinate play accordingly. This is not
changed by the fact that player 1, anticipating the above agreement is better
of playing O, which gives the worst payo® to players 2 and 3. Players 2 and 3
would like player 1 to beleive that they will not coordinate on (L; l), but if their
subgame is reached they have every incentive to play those strategies.

In the previous game an agreement conditional on a history ultimately hurts
the players because it causes another player to restrict his play at an earlier
stage of the game in a way that is not advantegous for the players making the
¯rst agreement. The next example demonstrates a di®erent con°ict of interest
between a player's interests at di®erent points of a game, in games of incomplete
information.
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Figure 6

The game of Figure 6 has the same structure as the game of Figure 3, and
similarly (R; r) is an advantagous agreement for player 2 and type B of player
1. But note that in this game the agreement is not only disadvantegous from
the point of view of type A of player 1, but from an ex ante point of view as
well. Ex ante player 1 is clearly worse o® if player 2 plays R (then player 1's
ex ante expected payo® is at most ¡7=2) than if player 2 plays L (a guaranteed
nonnegative ex ante expected payo®). This means that if ex ante player 1 could
commit not to make the agreement (R; r) then he would be better o® doing
that. But if he cannot make such a commitment, then since for type B of player
1 it is still unambigously advantagous to make the agreement and therefore he
is willing to make it. This makes type A so much worse o® that o®sets the
positive payo® e®ect for type B from an ex ante point of view. This re°ects a
con°ict of interest between a player's interest ex ante and her ex post interest
after a certain type realization.

In the next section we formally de¯ne a solution concept, the set of extensive
form coalitionally rationalizable strategies, that is consistent with the considera-
tions in the above examples. This section concludes with an informal descrition
of the construction of extensive form coalitional rationalizability.

The key element in de¯ning extensive form coalitional rationalizability is
de¯ning the coalitional agreements in extensive form games that are unam-
biguously in the interest of the participants. Since the type of agreements we
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consider are those in which participants agree upon restricting their play to a
certain subset of the strategy space, we call these agreements \supported re-
strictions." The de¯nition of supported restrictions in multi-stage games has
to confront two issues not present in the normal form. First, the game has a
sequential structure, so making an agreement can become strictly in the interest
of the members of a coalition at a certain stage of the game, even if it was not
necessarily so at the beginning of the game. Second, in multi-stage games with
incomplete information the realized type of a player is private information, and
the interest of di®erent types of the same player might be very di®erent. In
the formal construction of the next section these two issues are taken up si-
multaneously and the de¯nitions allow for both multiple stages and incomplete
information. But here we separate the two issues and ¯rst provide an infor-
mal description of supported restrictions in multi-stage games with complete
information.2

The de¯nition of supported restriction has to specify for any proposed re-
striction that from what point of view the players involved evaluate the restric-
tion. Since in the class of games we examine past actions are observable, the
natural points of evaluation (and the one compatible with the usual concept of
sequential rationality) are the histories which have the feature that the restric-
tion is essentially on continuation strategies from that history. In particular
every restriction can be evaluated from the null history, but to be evaluated
from any other history, the restriction has to satisfy the above requirement. By
evaluation from the point of view of a certain history we mean that players who
contemplate the restriction compare updated expected payo®s conditional on
that history being reached.

A restriction is unambiguously advantegous for a player if his updated ex-
pected payo® at the history from which the restriction is evaluated is strictly
lower if the agreement is not made and it is optimal for him to play a contin-
uation strategy that is outside the restriction, then if the agreement is made
and every other player in the coalition only plays strategies that are inside the
restriction. This implies that only those scenarios are considered in the pay-
o® comparison in which it is optimal for the player to play a strategy outside,
and in all these scenarios the player should be strictly better o® by switching
to making the agreement once the above information set is reached. By the
strategy being optimal we mean that it is a weak sequential best response to
a consistent conjecture (for the formal de¯nition of these concepts see the next
section).

Just like in normal form games, the payo® comparison is done by ¯xing the
marginal conjecture concerning players outside the coalition, but switching to
making the agreement is required to be strictly in the interest of the player for

2Section 5 provides a more formal analysis both in games of sequential nature but no
private information (multi-stage games with complete information) and games with private
information but no sequentiality (normal form Bayesian games).
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every ¯xed marginal that is compatible with the optimality of playing a strategy
outside the restriction. This corresponds to the assumption that players outside
the coalition cannot observe whether an agreement is made or not and therefore
cannot condition their strategies on that event.

A restriction is supported if it is unambiguously advantegous for all players
involved.

Given this de¯nition of a supported restriction the iterative procedure that
de¯nes the set of extensive form coalitionally rationalizable strategies is similar
to the corresponding iterative procedure that de¯nes the set of coalitionally
rationalizable strategies in normal form games. Players ¯rst consider the set of
all strategies. Then it is assumed that all restrictions that are supported from
the point of view of some history are made. In the next step, players' conjectures
are assumed to be concentrated on strategies that are not eliminated in the ¯rst
step. Given that assumption, again all restrictions that are supported from
some history are made. The procedure continues in this manner until it reaches
a set from which there are no history-based restrictions. That set, which is
shown to be always nonempty, is called the set of extensive form coalitionally
rationalizable strategies.

Incomplete information is incorporated in the framework essentially by al-
lowing di®erent types of the same player to make di®erent agreements. Essen-
tially the set of players is extended to be the set of possible types. Section 5
shows that this analogy is exact in Bayesian normal form games. The set of
extensive form coalitionally rationalizable strategies in these games is the same
as the set of coalitionally rationalizable strategies in the normal form game that
is obtained from the Bayesian game by treating types as separate players and
de¯ning their payo®s using expected payo®s of the original game. In general,
the de¯nition of supported restriction allows for the possibility of agreements
among general coalition of types, including coalitions which involve some but
not all types of a given player. But keeping the central feature of the de¯ni-
tion from the complete information context, such a restriction is only supported
if it is unambiguously in the interest of all types involved in the restriction,
even in cases when the types outside the coalition play strategies that are not
compatible with the restriction.

3 Construction and basic properties

We consider ¯nite multi-stage game of incomplete information with observed
actions. At the beginning of the game chance makes a move, selecting the
type of each player. Then the realized types play a multi-stage game, where
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at each nonterminal stage players observe all previous action choices and then
simultaneously choose actions. At any stage the set of feasible actions for a
player is allowed to be a singleton, in which case that player e®ectively does not
choose an action at that stage.3

A multi-stage game of incomplete information with observed actions G is
formally de¯ned as a structure hN; (¨i)i2N ; ('i)i2N ;H; (ui)i2Ni; where N is
the set of players, ¨i is the set of possible types of player i, 'i is player i's
belief, conditional on his type, over the types of other players, H is the set of
feasible public histories and ui is the payo® function of player i over terminal
histories, conditional on his type. We de¯ne these concepts formally below.4

For every i 2 N , 'i is a function ¨i ! ¢( £
j2N=fig

¨j)., where ¢( £
j2N=fig

¨j) is

the set of probability distributions over ( £
j2N=fig

¨j): 'i(¿ i) represents the belief

of type ¿ i over the distribution of types of the other players. We do not assume
in the construction that this function is derived from a prior common probability
distribution on ¨, although we make this assumption in most concrete examples
we present in the paper.5 Furthermore, even if the functions 'i can be derived
from a common prior probability distribution ' on ¨, ' does not have to be a
product measure (types of di®erent players do not have to be independent).
H is the set of possible public histories. It consists of the null history ; and

sequences of the form (a11; :::; a
1
N ; a

2
1; :::; a

2
N ; :::; a

k
1 ; :::; a

k
N) ´ (a1; :::; ak) for some

k ¸ 1. The member of the sequence ami (for 1 · m · k; i 2 N) represents
the action chosen at stage m by player i. History h = (a1; :::; ak) is terminal
if there is no ak+1 such that (a1; :::; ak; ak+1) 2 H. Let HZ denote the set of
terminal histories. It is assumed that if k ¸ 2 and (a1; :::; ak) 2 H, then also
(a1; :::; ak¡1) 2 H. Furthermore, for every i 2 N if (a1; :::; ak¡1; ak) 2 H and
(a1; :::; ak¡1; bk) 2 H, then (a1; :::; ak¡1; ak1 ; :::; aki¡1; bki ; aki+1; :::; akN) 2 H:
For every i 2 N , ui is a function ¨i £ HZ ! R. For every ¿ i 2 ¨i and

h 2 HZ ; ui(¿ i; h) represents the payo® of type ¿ i of player i at terminal history
h.

We assume that N; ¨ ´ £
i2N

¨i and H are ¯nite.

3changing the formal de¯nition of the class of games to explicitly allow for the possibility
that only a subset of players make action choices after some history is inconsequential for the
analysis presented below, but it would make the notation more cumbersome.

4for a more elaborate construction of extensive form games and multi-stage games in par-
ticular see for example the textbook of Osborne and Rubinstein[94].

5Starting from some prior common prior ' 2 ¢(¨) which has the property that every type
of every player is realized with positive probability (8 i 2 N , ¿ i 2 ¨i it holds that there
is À 2 ¨ such that Ài = ¿ i and '(À) > 0) it is straightforward to construct the posterior
beliefs of a type on other players' types: for every i 2 N , ¿ i 2 ¨i and &¡i 2 £

j2N=fig
¨j

'i(¿ i)(&¡i) = '(&¡i; ¿ i)=
P

À:Àj=¿j

'(À).
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Action sets and strategies

The above de¯nition of histories implies that at every h 2 H=HZ there is a
nonempty set of feasible actions Ai(h) for every i 2 N , such that (h; a1; :::; aN) 2
H i® ai 2 Ai(h) 8 i 2 N . The construction implies that the set of feasible actions
after some history is the same for all types of the same player. This assumption is
not crucial though and made primarily for notational convenience. Furthermore,
a game in which di®erent types of the same player have di®erent action sets can
be incorporated in this framework for the purposes of our analysis by de¯ning
payo®s for infeasible actions such that choosing those actions are always strictly
dominated for the corresponding types.
A pure strategy of player i 2 N is a function that allocates an element of

Ai(h) to every h 2 H=HZ . Let Si be the set of pure strategies of player i and let
S = £

i2N
Si: Every s 2 S is associated with a unique terminal history h(s) 2 HZ

and therefore u¿i(s) = ui(h(s); ¿ i); the payo® that type ¿ i of player i gets if the
realized types play strategy s is a well-de¯ned function.

Extended strategy pro¯les
Below we assume that player types can make coalitional agreements and

therefore we extend the set of strategies from the set of players to the set of
types. An extended strategy pro¯le speci¯es a strategy for every type of every
player. Let S be the set of strategy pro¯les: S = £

i2N
S¨ii : S is just the product

of players' strategy sets, where the number of components that are equal to
a particular player's strategy set is the number of types the given player has.
Formally, S¿i = S¿ 0i = Si 8 i 2 N and ¿ i; ¿

0
i 2 ¨i: In the construction below

coalitional agreements make restrictions on S such that the resulting A ½ S
typically does not have the property that A¿i = A¿ 0i 8 i 2 N and ¿ i; ¿

0
i 2 ¨i:

From now on we will use underlying to indicate that a pro¯le or a set of
pro¯les belongs to S. In particular we denote a typical element of S by s
and a typical subset of S by A. Furthermore, de¯ne S¡i ´ £

j2N=fig
£

¿j2¨j

S¿j :

Similarly for s 2 S let s¡i = £
j2N=fig

£
¿j2¨j

s¿j and for A = £
j2N

£
¿j2¨j

A¿j ½ S

let A¡i = £
j2N=fig

£
¿j2¨j

A¿j :

Beliefs and belief processes concerning strategies

We treat players' beliefs concerning the distribution of other players' types
and concerning the strategies played by those types separately. Above we de¯ned
beliefs over the distribution of other players' types as part of the description of
the game.

The set of beliefs that at a given point of the game a type of player i can
have over the strategy choices of other players types is the set of probability
distributions over S¡i. Let ¡i = ¢(S¡i).
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Note that we allow for correlated conjectures over strategies played by the
others. The qualitative results of the paper would remain unchanged though if
we restricted conjectures to be independent.

Let £¡i be the set of functions mapping H=HZ into ¡i: We call £¡i the
belief processes of player i.6 A belief process μ¡i speci¯es a belief for player i
concerning other players' strategies after every history. Let μ¡i[h] denote the
belief that μ¡i speci¯es after h 2 H=HZ :

A belief process of player i speci¯es conjectures only on strategies of other
players' types and therefore £¡i is the set of belief processes for every type
of player i. On the other hand we do not require the conjectures of di®erent
types of the same player to be necessarily the same. The latter assumption,
often made in the literature on signaling games, would put extra restrictions on
strategy pro¯les that can be expected to be played in the game and would lead
to a stronger solution concept than that presented below. In some contexts, in
particular if players' beliefs over types come from a prior probability distribution
over types that is independent (and therefore di®erent types of the same player
have the same beliefs over the other players' types) this extra assumption is
more appealing than in others. For a more detailed discussion of this issue, see
Sobel, Stole and Zapater[90] and Battigalli and Siniscalchi[01].

Note that although we allow for correlated conjectures concerning strate-
gies of other players, the framework above does not allow correlation between a
player's belief concerning other players' types and the conjecture he has concern-
ing other players' strategies. Our model could be extended though to allow for
this kind of correlation as well. A related generalization of our framework would
be to de¯ne belief processes over both types and strategies of other players7 and
therefore allow players to change their beliefs concerning the distribution of
other players' types, not just concerning their strategies, after surprise events.
In the model we present the belief of a player type over the distribution of other
players' types is ¯xed throughout the game. This does not imply that after any
history a player type's belief over what types of other players he is facing in the
game is constant, only that the di®erences are obtained solely by Bayesian up-
dating based on the belief process over strategies of other players' types. Players
do make inferences on what types of other players were realized, but they do
not change their belief concerning the a priori distribution of types.

Similarly to the above, imposing the stronger requirement of \strategic in-
dependence" (see Battigalli[96]), on top of independent conjectures, does not
change the qualitative results of the paper.

6elsewhere in the literature these functions are called updating systems or conditional
(probability) systems.

7for a construction of belief processes along these lines, see Battigalli and Siniscalchi[01].
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Expected payo®
Let u¿i(si; !¡i) be the expected payo® of type ¿ i of player i if he plays

strategy si and has belief !¡i 2 ¡i :
u¿i(si; !¡i) =

P
À¡i2¨¡i

[
P

s¡i2S¡i

P
t:t(À¡i)=s¡i

u¿ i(si; s¡i) ¢ !¡i(t)] ¢ '(¿ i)(À¡i):

A history being reached
We say that h0 = (b1; :::; bm) 2 H is a predecessor of h = (a1; :::; ak) 2 H

if k < m and bl = al 8 l = 1; :::;m. Let pred(h) be the set of predecessors of
any h 2 H. We say that h0 2 H is a successor of h 2 H if h is a predecessor of
h0. Let succ(h) be the set of successors of any h 2 H. We say that h0 2 H is
an immediate predecessor of h 2 H if h0 is a predecessor of h and there is no
h00 2 H such that h00 is a predecessor of h a successor of h0: Let imp(h) be the
immediate predecessor of any h 2 H=f;g.

Next we formally de¯ne that a strategy and a strategy pro¯le reaches a
given history, and that a belief reaches a given history for a player type. These
concepts are needed for the construction for two reasons. First, to de¯ne con-
sistency of belief processes. Second, to de¯ne formally whether a restriction of
strategies is supported by a player type. This is because we assume that when
a player type evaluates a coalitional agreement on restricting strategies condi-
tional on a history, he only considers scenarios that make it possible that play
reaches that history.

Let i 2 N; h = (a1; :::; ak) and h0 = (a1; :::; am) 2 pred(h): Then ai(h; h0) ´
am+1i ; the action that h speci¯es for player i after the sub-history h0. We say that
si 2 Si reaches h if si(h0) = ai(h; h0) 8 h0 2 pred(h): Similarly, s 2 S reaches h
if si(h0) = ai(h; h0) 8 h0 2 pred(h) and i 2 N:We say that !¡i 2 ¡i reaches h
for type ¿ i 2 ¨i if there is À¡i 2 ¨¡i and s¡i 2 S¡i such that '(¿ i)(À¡i) > 0,
!¡i(s¡i) > 0 and sÀj (h

0) = aj(h; h0) 8 j 2 N=fig:

Consistent belief processes
We only consider belief processes that satisfy two consistency properties. If

a player's belief after some history reaches a subsequent history, then after the
latter history the player shouldn't revise his conjecture. And after any history
a player should have a belief that reaches that history.

De¯nition: a belief process μ¡i 2 £¡i is consistent if
(i) if h; h0 2 H=HZ , h0 2 pred(h) and μ¡i(h0) reaches h, then μ¡i(h) =

μ¡i(h0)
(ii) 8 h 2 H=HZ ; μ¡i(h) reaches h:

Let £c¡i be the consistent belief processes of player i.
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Belief processes concentrated on a subset of strategies and sequences of nested
restrictions

In what follows we assume that players make a series of agreements on
restricting their set of strategies, resulting in a nested sequence of subsets of the
original strategy space. At each stage of this procedure we assume that players
believe that all previously agreed upon restrictions are indeed made. Below
it is formally de¯ned that a player believes that a restriction or a sequence of
restrictions is made, in terms of conditions on his belief process.
Let A = £

i2N
( £
¿ i2¨i

A¿ i) be such that A¿ i ½ Si and A¿ i 6= ; 8 i 2 N and

¿ i 2 ¨i. Then for every i 2 N let ¡i(A) ´ f!¡i 2 ¡i j !¡i(s¡i) = 0 8
s¡i =2 A¡ig: We call ¡i(A) the set of beliefs of player i that are concentrated
on A. Similarly let £c¡i(A) ´ fμ¡i 2 £c¡i j μ¡i(h) 2 ¡i(A) 8 h 2 H=HZ such
that A¡i reaches hg: We call £c¡i(A) the set of consistent belief processes of
player i that are concentrated on A.
Let now k ¸ 1 and (B1; :::;Bk) be such that for every m = 1; :::; k it holds

that Bm = £
i2N

( £
¿ i2¨i

Bm¿i) where B
m
¿i ½ Si and B

m
¿i 6= ; 8 i 2 N and ¿ i 2 ¨i.

Assume furthermore that Bm ¾ Bm+1 8 m = 1; :::; k ¡ 1. We call sequences of
strategy sets like that sequences of nested restrictions. Then £c¡i(B

1; :::; Bk) ´
\

m=1;:::;k
£c¡i(B

m): The belief systems in £c¡i(B
1; :::; Bk) are such that at histo-

ries reached by Bk¡i the belief speci¯ed at the history is concentrated on B
k
¡i;

at histories not reached by Bk¡i but reached by B
k¡1
¡i the belief speci¯ed at

the history is concentrated on Bk¡1¡i and so on, so that at any history the be-
lief speci¯ed at the history is concentrated on the last member of the sequence
(B1; :::; Bk) that is compatible with the history.

Updated payo® expectations after histories

Let h 2 H=HZ and μ¡i 2 £c¡i. Let S¡i[h] be the set of pro¯les in S¡i
that reach h. Then ph¿i(s¡i j μ¡i) is the probability that type ¿ i of player
i, having belief process μ¡i, allocates to other players playing pro¯le s¡i af-
ter observing history h: ph¡i(s¡i j μ¡i) = 0 if s¡i =2 S¡i[h] and ph¡i(s¡i j
μ¡i) =

qh(s¡ijμ¡i)P
s¡i2S¡i(h)

qh(s¡ijμ¡i) if s¡i 2 S¡i[h], where qh(s¡i j μ¡i) ´
P

À¡i2¨¡iP
s:s(Àj)=sj 8 j2N=fig

μ¡i[h](s) ¢ '(¿ i)(À¡i).

Let si 2 Si, ¿ i 2 ¨i, h 2 H=HZ and μ¡i 2 £c¡i. Assume h is reached
by si. Then the updated expected payo® of type ¿ i of player i, having belief
process μ¡i and playing strategy si, after observing history h is uh¿i(si; μ¡i) ´P
s¡i2S¡i

u¿i(si; s¡i) ¢ ph¡i(s¡i j μ¡i):

Replacement strategies and sequential best responses
Let h 2 H=HZ . We call si 2 Si to be an h-replacement of ti 2 Si if

si(h
0) = ti(h0) for every h0 2 H=HZ such that h0 =2 h [ succ(h).
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Then si 2 Si is a best response for ¿ i 2 ¨i to μ¡i 2 £c¡i among h-
replacements if uh¿i(si; μ¡i) ¸ uh¿ i(ti; μ¡i) for every ti 2 Si such that ti is a
h-replacement of si:
Let μ¡i 2 £c¡i. Strategy si 2 Si is a weak sequential best response for

¿ i 2 ¨i to μ¡i if si is a best response for ¿ i to μ¡i among h-replacements for
every h 2 H=HZ that is reached by si.
A weak sequential best response (from now on just best response for ease

of exposition) of a player type to a belief system is a strategy that is a best
response among replacement strategies after every history not excluded by the
strategy.
Let BR¿i(μ¡i) denote the set of strategies si 2 Si which are best responses

for ¿ i to μ¡i:
It is straightforward to establish that there always exists a best response

against a consistent belief process.

History-based restrictions
A history-based restriction by a group of types represents an implicit agree-

ment among these types that restricts the set of continuation strategies from
a certain history. First we de¯ne the criterion that a restriction is based on a
given history. The construction below assumes that a restriction that is based
on some history is evaluated from the point of view of that history.

We say that © is a coalition of types if © = [
i2N

©i 6= ;, where ©i ½ ¨i 8
i 2 N:
Let A = £

i2N
( £
¿ i2¨i

A¿ i) be such that A¿ i ½ Si and A¿ i 6= ; 8 i 2 N and

¿ i 2 ¨i. Let h 2 H=HZ . Let © be a coalition of types.

De¯nition: B = £
i2N

( £
¿i2¨i

B¿i) is a h-based restriction by © given A if

B ½ A, B 6= ; and
(i) B¿i = A¿ i 8 ¿ i =2 ©
(ii) 8 ¿ i 2 © and ai 2 A¿i=B¿ i it holds that ai reaches h and 9 bi 2 B¿ i

such that bi is a h-replacement of ai.

Condition (i) requires that a restriction by a coalition of types © should only
restrict strategies played by those types. Condition (ii) requires that for every
type in the coalition and every strategy that the restriction rules out for this
type, the strategy reaches the history and that it has a replacement strategy
from that history that is not ruled out by the restriction. The motivation behind
this requirement is that an agreement should only be evaluated from a history h
only if it is an agreement concerning continuation strategies from h. Otherwise
the restriction a®ects what action choices can be chosen at histories that are
outside h[succ(h) and therefore it is incorrect to evaluate the agreement from h.
Note that any nonempty product subset can be a null-history based restriction,
so the de¯nition does not rule out any possible restriction from the starting set.
But in order to be labeled as an h-based restriction for some history h di®erent
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than the null history, the restriction has to satisfy the property that it only
restricts the set of continuation strategies from that history.

De¯nition: B is a restriction by © given A if it is a h-based restriction for
some h 2 H=HZ .

Outcomes compatible with a restriction
Let A = £

i2N
( £
¿ i2¨i

A¿ i) be such that A¿ i ½ Si and A¿ i 6= ; 8 i 2 N and

¿ i 2 ¨i. Then for any pro¯le of types ¿ 2 ¨ the outcomes reached by A for
type pro¯le ¿ , denoted by O¿ (A) is the set of ¯nal histories that are reached
by strategy pro¯les in £

i2N
A¿ i : O¿ (A) = fh 2 HZ j 9 s¿1 2 A¿1 ; :::; s¿N 2 A¿N

such that (s¿1 ; :::; s¿N ) reaches hg. If players play strategies in A and ¿ is the
pro¯le of realized types, then O¿ (A) is the set of ¯nal histories that play can
reach.

Sequences of restrictions that are closed under rational behavior
Let (B1; :::; Bk) be a nested sequence of restrictions. We say (B1; :::; Bk)

is closed under rational behavior if for every i 2 N and ¿ i 2 ¨i it holds that
μ¡i 2 £c¡i(B1; :::; Bk) and si 2 BR¿ i(μ¡i) implies si 2 Bk¿ i .
A nested sequence of restrictions is closed under rational behavior if for

every type of every player it holds that for every consistent belief system that is
concentrated on the sequence, all best responses to this belief system are inside
the last set in the sequence (and therefore in every set of the sequence).

The above de¯ned notion is a generalization of the well-known concept of sets
closed under rational behavior to extensive form games. Consider the normal
form game G = (N; (Si)i2N ; (ui)i2N), where N is the set of players, Si is the set
of strategies of player i and ui is the payo® function of player i. Then B = £

i2N
Bi

is closed under rational behavior if for every i 2 N the set of best responses
to any conjecture of player i with support in B¡i is contained in Bi. In the
normal form there is no need to consider nested sequences of restrictions, since
the trivial information structure implies that a conjecture is concentrated on a
sequence of restrictions if and only if it is concentrated on the last member of the
sequence. In the extensive form one has to keep track of previous restrictions
in order to establish paralells between a sequence of restrictions on beliefs and
a corresponding sequence of restrictions on players' conjectures.8

Let M denote the nested sequences of restrictions that are closed under
rational behavior.

Supported restrictions
Next the de¯nition of a supported restriction by a coalition is provided.

Supported restriction formalizes the concept of an implicit agreement among a

8See Battigalli[97] for a more detailed discussion.
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group of players that is unambiguously in the interest of every player in that
group once an information set is reached.

Let A = £
i2N

( £
¿ i2¨i

A¿ i) be such that A¿ i ½ Si and A¿ i 6= ; 8 i 2 N and

¿ i 2 ¨i. Let © be a coalition of types.

De¯nition: B is an h-based supported restriction by © given A if
(i) B is an h-based restriction by © given A
(ii) 8 ¿ i 2 ©, si 2 A¿i=B¿ i and μ¡i 2 £c¡i(A) such that si 2 BR¿ i(μ¡i) it

holds that uh¿ i(si; μ¡i) < u
h
¿i(ti; Ã¡i)

8 ti; Ã¡i such that Ã¡i 2 £c¡i(B); μ¡©(h) = Ã¡©(h); ti 2 A¿i and ti is a best

response to Ã¡i among h0-replacement strategies of ti for every h0 2 h[succ(h)
that is reached by ti:

De¯nition: B is a supported restriction by © given A if it is a h-based
supported restrcition for some h 2 H=HZ . A supported restriction B by ©
given A is nontrivial if B 6= A:

A h-based supported restriction has the property that the updated expected
payo® of any type at h if he plans to play a continuation strategy that is ruled
out by the restriction is strictly lower than his updated expected payo® at
h if he has a belief process that is concentrated on the restriction and plays
a best response to that among h-continuation strategies, ¯xing the part of his
conjecture concerning types outside the coalition. This corresponds to requiring
that any type in the coalition who plays a strategy which is ruled out by the
restriction would prefer to make the restriction once h is reached, assuming that
this does not a®ect what types outside the coalition play. Since it is required
for every scenario that is consistent with h being reached, and for every type
in the coalition, it is then unambiguously in the interest of the coalition to
make any h-based supported restriction once h is actually reached. Making
a h-based supported restriction then corresponds to the players foreseeing at
the beginning of the game that this implicit agreement would be made if h
is reached. Fixing the part of the conjecture that concerns types outside the
coalition corresponds to the assumption that since the agreement is implicit,
types outside the coalition cannot make their strategies contingent on whether
the coalition made the restriction or not. Of course those players observe the
previous action choices at any stage of the game and they update their beliefs
at every stage. In particular they update their beliefs on whether types in the
coalition made a particular agreement or not. The point is that on top of what
has been revealed by past actions (and their strategies are already conditioned on
that) there is no way that they can get information on whether the restriction
has been made or not.
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Note that the de¯nition implies that if B is an h-based supported restriction
by © given A and there is ¿ i 2 ¨i and si 2 A¿i such that si =2 B¿ i and si 2
BR¿i(μ¡i) for some μ¡i 2 £c¡i(A), then it has to be the case that A¡i reaches
h, otherwise (ii) cannot hold for type ¿ i. Essentially, supported restrictions
have to be based on histories that the participants consider to be possible to be
reached.

Also note that in the payo® comparison at the de¯nition of a supported
restriction the expected payo® on the left hand side of the inequality (the one
corresponding to a scenario when the restriction is violated) is required to be
an updated expected payo® resulting from playing a best response strategy that
reaches the given information set. On the right hand side though the payo® ex-
pectation is only required to result from playing a best response strategy among
replacement strategies from the above information set. This is the formaliza-
tion of the idea that a type in the coalition who plays a strategy outside the
restriction (which is a best response against a conjecture) would always prefer
to switch to making the agreement, and therefore switch to a new conjecture
and play a best response to it among replacement strategies, at the history on
which the agreement is based. Below we provide two examples to make clear
some subtleties of this de¯nition.

 1 

2 

0,0,0 0,-1,0 -1,0,0 

3,3,0 

  L  R 

  L R  L R 

A1 0,0,0 

0,0,0 1,1,0 

  -2,-2,0 -2,-2,0 

-1,-2,0 -1,-1,0 A2 

  B1  B2   B1  B2 
 C1 C2 

Figure 7
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Consider the game of Figure 7. Player 3 has only one action choice in the
¯rst stage, so we omit it from the picture and from the description of stage-2
histories.

Note that playing (A1; B1) after history (LL) (or excluding the play of A2
and B2 after history (LL)) is a supported restriction given S by players 1 and
2 (both players have just one type in this game). To check this, note that
for both player 1 and 2 it holds that he only plays L in the ¯rst stage if he
expects player 3 to play C1 after history (L;L) with at least probability 2=5,
because otherwise playing L in the ¯rst stage gives him a negative payo®, while
playing R in the ¯rst stage guarantees a payo® of 0 for him. But if player 3
is expected to play C1 after history (L;L) with at least probability 2=5, then
(A1; B1) gives a strictly higher payo® to both player 1 and 2 than any payo®
they could obtain by playing A2 or B2. So in all scenarios in which history LL
is reached, agreeing upon playing (A1; B1) is mutually advantegous for players 1
and 2. This is true despite the fact that A2 and B2 are the unique best response
continuation strategies continuation for players 1 and 2 (independently of what
the other player does) after history (LL) if they believe that player 3 plays C2
with high enough probability. The point is that in those cases the history (LL)
is never reached, therefore they do not matter for a coalitional agreement that
concerns what to do after history (LL) occured.

 1 

2 

2,2,0 2,0,0 0,2,0 

4,4,0 

  L  R 

  L R  L R 

A1 0,0,0 

0,0,0 0,0,0 

  0,0,0 0,0,0 

0,0,0 3,3,0 A2 

  B1  B2   B1  B2 
 C1 C2 

Figure 8
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Consider now the game of Figure 8. Again we omit the trivial ¯rst stage
move by player 3 in the description.

There is no supported restriction by any coalition in this game. In particular
playing (A1;B1) after history (LL) is not a supported restriction by players 1
and 2, because for example player 1 can play a strategy that plays L and then
B2 if history (LL) occured if he expects players 2 and 3 playing B2 and C2
with probability 1 after history (LL). This gives an expected payo® of 2 to
him. And in this case switching to an agreement to play (A1; B1) after (LL)
would give a strictly worse payo® expectation of 0, contradicting requirement
(ii) in the de¯nition of a supported restriction. Consider though modifying the
previous requirement in the de¯nition the following way:

(i) B is an h-based restriction by © given A
(ii) 8 μ¡i 2 £c¡i(A), ¿ i 2 ©, si 2 BR¿i(μ¡i) it holds that uh¿i(si; μ¡i) <

uh¿ i(ti; Ã¡i)
8 ti; Ã¡i such that Ã¡i 2 £c¡i(B); μ¡©(h) = Ã¡©(h); ti 2 A¿ i and ti is a

best response to Ã¡i.

In (ii') the expected payo® on the right hand side as well is required to
come from playing a best response strategy (not just among h-replacement
strategies) against a conjecture concentrated on B, which reaches h. Modifying
the de¯nition this way makes playing (A1; B1) after history (LL) a supported
restriction by players 1 and 2. This is because if player 1 believes that player 2
plays L in the ¯rst stage with positive probability and then plays B1 after (LL)
with probability 1, then he only plays L in the ¯rst stage if he believes that player
3 plays C1 with high enough probability. But if his beliefs are like that after
(LL), then no best response strategy can specify L in the ¯rst stage and then
A2 after (LL). Therefore there are no belief systems μ¡1 2 £c¡1(A) and Ã¡1 2
£c¡1(B) that together satisfy the conditions in (ii'), making the latter trivially
satis¯ed. Similarly for player 2. But clearly this just makes the agreement
boot strapping! If players anticipate this agreement, then indeed in every case
that they play L and therefore make it possible that history (LL) occurs, after
(LL) they would agree upon the agreement. This does not make the agreement
mutually advantegous though, even conditional on the given information set
being reached. One can check for example that playing (A2; B2) after history
(LL) is similarly \supported" by players 1 and 2 according to the new de¯nition.
If players anticipate that agreement, then it is in their interest to make it after
history (LL).
Boot strapping agreements which are not unambiguously in the interest of

participating types (players) do not satisfy the requirement in the de¯nition
of a supported restriction, which tests for whether it would be in the interest
of players to make an agreement after a certain history, even if they didn't
anticipate it beforeand.
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Having de¯ned supported restrictions for coalitions, given any product sub-
set of strategies, we are ready to de¯ne the iterative procedure that de¯nes the
set of extensive form coalitionally rationalizable strategies. The procedure ex-
actly corresponds to the one that de¯nes the set of coalitionally rationalizable
strategies in normal form. It starts out from the set of all possible strategies
for types, S. Then all strategies are discarded that are ruled out by some his-
tory based supported restriction by some coalition of types, given S. In each
subsequent step, all strategies are discarded that are ruled out by some history
based supported restriction by some coalition of types, given the strategies that
survived the previous step. The procedure corresponds to the assumption that
at every step every coalition makes every history based restriction that is sup-
ported. Below we show that this assumption does not lead to contradictions
and that at each step every type of every player has a nonempty set of strategies
that is not discarded.

For every A = £
i2N

( £
¿i2¨i

A¿i) such that A¿i ½ Si and A¿ i 6= ; 8 i 2 N
and ¿ i 2 ¨i, let z(A) be the set of supported restrictions given A. Then let
A0 = S and Ak = \

B2z(Ak¡1)
B. The decreasing sequence of sets A0;A1; :::

represents iterated elimination of strategies that are never sequential coalitional
best responses.

De¯nition: The set of extensive form coalitionally rationalizable strate-
gies, denoted by A¤ is the set of strategies that survive iterated elimination of
strategies that are never sequential coalitional best responses. A¤ = \

k¸0
Ak:

It is easy to show that in one-stage multi-stage games with complete infor-
mation (each player has only one type) the set of extensive form coalitionally
rationalizable strategies is exactly the same as the set of coalitionally rational-
izable strategies of the normal form of the game. Since there is only one history
(the null history) in these games, the concept of history based restrictions is
equivalent in these games to the concept of restrictions. A belief process for
any player is just a conjecture at the null history. Furthermore, a best response
among replacement strategies from the null history to a certain conjecture is sim-
ply a best response strategy to the same conjecture. Therefore the de¯nition of
a supported restriction is essentially the same in the normal and the extensive
form, and a restriction is supported in the extensive form game if and only if
the corresponding restriction is supported in its normal form. This implies the
equivalence of iterated elimination of strategies that are never sequential coali-
tional best responses in the original game with iterated elimination of strategies
that are never coalitional best responses in its normal form. This establishes
that extensive form coalitional rationalizability is indeed an extension of normal
form coalitional rationalizability.

Now we show compatibility of history based supported restrictions. Claim 1
establishes that from any set of strategies that is reached by a nested sequence
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of restrictions that is closed under rational behavior the intersection of all sup-
ported restrictions is nonempty, and adding it to the sequence gives another
sequence that is closed under rational behavior. This is the key step in estab-
lishing nonemptyness of the set of extensive form coalitionally rationalizable
strategies.
The proof establishes that for every type there is a belief process concen-

trated on the sequence of restrictions such that every best response strategy to
this process has to be in every supported restriction by any coalition. There-
fore the intersection of supported restrictions gives a nonempty set of strategies
for every type. The above belief process can be created the following way. At
the null history let the belief speci¯ed by the process be such that it yields at
least as much expected payo® as any other belief that is concentrated on the
sequence. At any subsequent history let the belief speci¯ed there be the same
as the belief speci¯ed in its immediate predecessor history if the latter reaches
the given history. Otherwise let it be a belief which gives the highest possible
updated payo® at the history among those which reach the history and concen-
trated on the set in the sequence with the highest possible index. Informally
this process is the \most optimistic" one that the type can have among the
ones concentrated on the sequence. It starts out with the most optimistic belief
and when there is a surprise, the belief is changed to the most optimistic one
possible given the history that is reached. It is then not surprising that at no
history it can be unambiguously in the interest of the type to agree upon giving
up a best response strategy to this belief process.

All the proofs are in the appendix.

Claim 1: Let (B1; :::; Bk) 2 M and C ´ \
B2z(Bk)

B. Then C 6= ; and

(B1; :::; Bk; C) 2M.

Claim 2 establishes the central result of the paper, that the set of extensive
form coalitionally rationalizable strategies is nonempty. It also states that the
procedure of iterated elimination of strategies that are never sequential coali-
tional best responses stops after a ¯nite number of sets and yields a sequence
of nested restrictions that is closed under rational behavior.

Claim 2: A¤ 6= ; and 9 K ¸ 0 such that A¤ = Ak 8 k ¸ K: Furthermore,
(A0; :::; AK) 2M.

Claim 3 establishes that a restriction is supported by a one player coalition
given some starting set if and only if the strategies that it rules out are never
best responses to conjectures concentrated on the starting set.

Claim 3: Let A ½ S such that A = £
i2N

£
¿i2¨i

A¿i 6= ;. Let i 2 N and

¿ i 2 ¨i: Then B is a supported restriction by singleton coalition f¿ ig given A
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i® B is a restriction by f¿ ig given A and for every si 2 A¿ i=B¿i it holds that
there is no μ¡i 2 £c¡i(A) such that si 2 BR¿ i(μ¡i):

De¯nition: The nested sequence (B1; :::; Bk) is coherent if it is closed under
rational behavior and for every i 2 N , ¿ i 2 ¨i and si 2 Bk¿ i it holds that 9
μ¡i 2 £c¡i(B1; :::; Bk) such that si 2 BR¿i(μ¡i):

A nested sequence is coherent if for every type of every player, the union of
strategies that can be best responses against belief processes concentrated on the
sequence is exactly the subset of strategies for the type that are included in each
member of the sequence. It is a generalization of the concept of coherence in
normal-form games (see Ambrus[01]). The next claim establishes that iterated
elimination of strategies that are never sequential coalitional best responses
yields a coherent sequence of restrictions.

Claim 4: Let K ¸ 0 be such that AK = A¤: Then (A0; :::; AK) is coherent.

The set of extensive form coalitionally rationalizable strategies is obtained
via a speci¯c iterative procedure, which makes every supported restriction by
every coalition at each round. The next claim establishes that if players' beliefs
concerning other players' types allocate positive probability to the actual real-
ized type pro¯le of the others, then the ¯nal outcomes that can be reached for
the type pro¯le is insensitive to the order of restrictions speci¯ed by the itera-
tive procedure. There are two highlighted cases in which the former assumption
holds. The ¯rst is when every player type allocates positive probability to every
type pro¯le of the other players, in which case the result holds for every type
pro¯le. A particular case of this is games of complete information (when every
player has only one possible type). The second is when the beliefs of player types
on other players' types are derived from a common prior probability distribu-
tion over the type space. In that case the above result holds for type pro¯les to
which the common prior probability distribution allocates positive weight.

Claim 5: let B0 = S. If there is no nontrivial supported restriction given
B0; then let B1 = B0: Otherwise let ª0 be a nonempty collection of nontrivial
restrictions given B0 and let B1 = \

B:B2£0
B: In a similar fashion once Bk is

de¯ned for some k ¸ 1; let Bk+1 = Bk if there is no nontrivial supported
restriction given Bk, otherwise let ªk be a nonempty collection of nontrivial
restrictions given Bk and let Bk+1 = \

B:B2ªk
B: Suppose ¿ 2 ¨ is such that

'i(¿ i)(¿¡i) > 0 8 i 2 N . Then there is L such that O¿ (Bk) = O¿ (A¤); 8 k ¸ L:

The next example demonstrates that the assumption that realized types'
beliefs allocate positive probability to the actual realized type pro¯le is necessary
in Claim 5. The intuition is that the order of restrictions only has an a®ect on
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possible action choices at histories that players never expect to be reached if
they play the game with coalitionally rational opponents. But if a player type
plays the game with other player types that he does not consider possible to be
realized, then even if players are extensive form coalitionally rational, play can
reach histories that she did not consider possible to be reached. And in that
case the set of outcomes that can be reached depends on restrictions a®ecting
histories that she considers impossible to be reached, which can depend on the
order of restrictions.
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Figure 9

In the game of Figure 1 player 1 has two types, I and II, while player 2
has only one possible type. For ease of exposition the picture only contains the
public histories in the game (which are the same after both possible moves of
nature). The payo® vectors at ¯nal histories are such that the ¯rst component
denotes the payo® of type I of player 1, the second one denotes the payo® of
type II of player 1 and the third denotes player 2's payo®. Assume that player 2
believes it with probability 1 that player 1's type is I. Then fLr;Rl;Rrg£S1£fr
after L and l after R; r after L and r after Rg is a h = (L) based supported
restriction for 1=I and 2 given S. Furthermore, S1 £ S1 £ fr after L and r
after R; l after L and r after Rg is a (null history based) supported restriction
for the singleton coalition of 2 given S. Therefore A1 = fLr;Rl;Rrg £ S1 £ fr
after L and r after Rg. Then A2 = fLrg £ S1 £ fr after L and r after Rg is
a (null history based) supported restriction for the singleton coalition of 1=I
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given A1. There is no more supported restriction in this game, so A¤ = A2.
Note that if players play strategies in A¤ and the realized type of player 1 is is
II (which player 2 considers impossible), the the set of possible ¯nal histories
is f(L; rl); (L; rr); (R; r)g. But now consider an alternative iterative procedure
in which at the ¯rst round only the supported restriction B1 = S1 £ S1 £ fr
after L and r after R; l after L and r after Rg by the singleton coalition of 2 is
made. Then B2 = fLrg £ S1 £ fr after L and r after R; l after L and r after
Rg is a supported restriction by the singleton coalition of 1=I given B1, and
there is no supported restriction given B2. But if players play strategies in A¤

and the realized type of player 1 is is II, the the set of possible ¯nal histories is
f(L; rl); (L; rr); (L; ll); (L; lr); (R; r)g, which is di®erent from the ¯nal histories
compatible with A¤. The di®erent order of restrictions changed the restrictions
that a®ect only histories that players consider impossible to be reached at the
end of the procedure. But if the realized types are such that one of these types
allocates zero probability to the realized pro¯le, then these histories can be
reached by play and therefore it matters what restrictions were made at these
histories at early stages of the iterative procedure.

Battigalli[97] de¯nes correlated rationalizability in extensive form games as a
natural modi¯cation of Pearce's extensive form rationalizability when one allows
for correlated beliefs. Below this de¯nition is stated using the terminology
of this paper. Claim 6 establishes that if the realized types' beliefs allocate
positive probability to the actual type pro¯le of other players, then the ¯nal
outcomes that are compatible with extensive form coalitional rationalizability
is a subset of the outcomes that are compatible with extensive form correlated
rationalizability9.

Let R1 = S: For any k ¸ 1 let Rk = fs 2 Rk¡1 j 8 i 2 N; ¿ i 2 ¨i 9
μ¡i 2 £c¡i(Rk¡1) such that s¿i 2 BR¿i(μ¡i)g. The decreasing set of strate-
gies (R0; R1; :::) represents iterated deletion of strategies that are never weak
sequential best responses to correlated conjectures.

De¯nition: the set of extensive form rationalizable strategies is R¤ ´
\

k=0;1;2;:::
Rk.

For more on extensive form rationalizability, see Pearce[84] and Battigalli[97].

Claim 6: Suppose ¿ 2 ¨ is such that 'i(¿ i)(¿¡i) > 0 8 i 2 N . Then
O¿ (A

¤) ½ O¿ (R¤):

9similarly, if extensive form coalitional rationalizability is de¯ned on independent conjec-
tures, then the outcomes compatible with it is a subset of the outcomes compatible with
extensive form rationalizability (de¯ned on independent conjectures).
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4 Relationship to extensive form equilibrium

concepts

4.1 Perfect coalition-proof and renegotiation-proof equi-
libria

Ambrus[01] establishes that in normal form games there is no inclusion rela-
tionship between the set of pro¯les that can be part of some coalition-proof
Nash equilibrium and the set of coalitionally rationalizable strategies. It is easy
to extend this result to extensive form rationalizability, and perfect coalition-
proof Nash equilibrium (see Bernheim, Peleg and Whinston[87]). Since, as we
showed in section 3, extensive form coalitional rationalizability is a generaliza-
tion of normal form coalitional rationalizability, and perfect coalition-proof Nash
equilibrium is a generalization of coalition-proof Nash equilibrium, the examples
provided in the above paper also establish that there is no inclusion relationship
between the set of pro¯les that can be part of some perfect coalition-proof Nash
equilibrium and the set of extensive form coalitionally rationalizable strategies.

But there are di®erences between perfect coalition-proof Nash equilibrium
and extensive form coalitional rationalizability that are caused by the di®erences
of imposing sequential (coalitional) rationality in an equilibrium framework and
in a non-equilibrium framework. Ambrus[01] shows that if every restriction of
a normal form game has a coalition-proof Nash equilibrium, then all coalition-
proof Nash equilibria of the game are contained in the set of coalitionally ratio-
nalizable strategies. In particular every coalition-proof Nash equilibrium of ev-
ery two-player game is contained in the set of coalitionally rationalizable strate-
gies. Below we provide an example of a two-player extensive form game in which
a perfect coalition-proof Nash equilibrium is not contained in the set of extensive
form rationalizable, and therefore in the set of extensive form coalitionally ratio-
nalizable strategies. The reason is that perfect coalition-proof Nash equilibrium
does not entail the type of forward induction reasoning implied by extensive
form rationalizability and extensive form coalitional rationalizability.
One di±culty involved in comparing perfect coalition proof Nash equilibria

and the set of coalitionally rationalizable strategies is that sequential considera-
tions in perfect coalition-proof Nash equilibrium, as de¯ned in Bernheim, Peleg
and Whinston[87], are subgame based. The given candidate pro¯le has to be a
(perfect) coalition-proof Nash equilibrium in every proper subgame of the orig-
inal game. This means that perfect coalition-proof Nash equilibrium does not
re¯ne coalition-proof Nash equilibrium in multi-stage games in which at least
one player has more than one type. Although it is possible to provide a mod-
i¯cation of the de¯nition of coalition-proof Nash equilibrium which is e®ective
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in incomplete information games,10 we do not pursue that direction here and
analyze a game with complete information below.

B1 B2

A1
A2
A3

100,10 9,0
0,9 10,100
1,0 1,0

Figure 10

Consider the twice repeated version of the game of Figure 10. The claim
below establishes that extensive form rationalizability implies that players have
to play (A1; B1) in the second stage if the realized history in the ¯rst stage is
(A2; B2): Since by Claim 6 the ¯nal outcomes consistent with extensive form
coalitional rationalizability is a subset of the ¯nal outcomes consistent with
extensive form rationalizability, this establishes that the strategy of choosing
A2 in the ¯rst period and then A2 independently of the ¯rst period history is
not coalitionally rationalizable for player 1. Similarly, the strategy of choosing
B2 in the ¯rst period and then B2 independently of the ¯rst period history is
not coalitionally rationalizable for player 2. But note that the above pro¯les
constitute a perfect coalition-proof Nash equilibrium. In every second period
subgame (A2; B2) is played, which is a coalition-proof Nash equilibrium. And
there is no Nash equilibrim which Pareto dominates the above equilibrium, since
it yields the highest possible payo® for player 2, and therefore the above pro¯le
is a perfect coalition-proof Nash equilibrium.11

Denote the above game by eG.
Claim 7: There is no extensive form rationalizable strategy of player 1 ineG which speci¯es choosing A2 with positive probability in the ¯rst stage and

then choosing A2 with positive probability after a ¯rst stage history (A2; B2):
Furthermore, There is no extensive form rationalizable strategy of player 2 ineG which speci¯es choosing B2 with positive probability in the ¯rst stage and
then choosing B2 with positive probability after a ¯rst stage history (A2; B2):

10Kahn and Mookherjee[95] o®er a de¯nition of coalition-proof Nash equilibrium in a class
of games with private information. But the games they consider di®er from standard Bayesian
games in that all types of all players are actually present in the game and their action choices
are payo® relevant and di®erent types of the same player are only connected by being indistin-
guishable for the other players. Their construction also assumes explicit communication for
coalitional deviations, while we concentrate on the case when no communication is possible
among players during the game.
11the above pro¯le is also strong perfect Nash equilibrium, according to the de¯nition pro-

vided in Rubinstein[80] applied to ¯nitely repeated games, showing that not all strong perfect
Nash equilibria can be extensive form coalitionally rationalizable.

32



The intuition behind Claim 7 is the following. It can be shown that playing
A2 or A3 in the ¯rst period can only be optimal for player 1 if he expects player
2 to play B2 with positive probability in that period. This implies that player 1
cannot be surprised after histories (A2; B2) and (A3; B2) and therefore playing
A2 or A3 can be an unambiguous signal of strategic intent of what he plans
to play in the second period. And it is indeed the case, because playing A3
in the ¯rst period can only be rational for him if he plans to play A1 after
history (A3; B2). Therefore the only rationalizable second period outcome after
a ¯rst stage history (A3; B2) is (A1; B1). But it is possible to show that then
it can never be optimal for player 1 to play a strategy that plays A2 in the
¯rst period and then not A1 in the second period if the realized history was
(A2; B2). Therefore the only rationalizable second period outcome after a ¯rst
stage history (A2; B2) is (A1; B1).

Forward induction implied by extensive form rationalizability or related con-
cepts of iterated domination is analyzed extensively in the literature on games
where a player has an outside option at the beginning of the game and in
\money-burning" games (see for example Ben-Porath and Dekel[92] and Shi-
moji[02]). Furthermore, equilibrium re¯nements that incorporate forward in-
duction logic were proposed and analyzed in games where players can potentially
move simultaneously in every stage of the game (see Kohlberg and Mertens[86],
VanDamme[89] and Osborne[90]). In games in which players move simulta-
neously at every stage of the game, in particular in ¯nitely repeated games,
extensive form rationalizability is less e®ective in restricting the set of strate-
gies using forward induction considerations, because if a player can be surprised
by the other players' actions, then his past actions might not re°ect strategic
intent in future periods. But as the game of Figure 10 demonstrates, exten-
sive form rationalizability can imply forward induction type restrictions even in
these games.

Since in two-player ¯nitely repeated games perfect coalition-proof Nash equi-
librium coincides with renegotiation-proof Nash equilibrium (see Benoit and
Krishna[93], Bernheim and Ray[89] and Bernheim, Peleg and Whinston[87]),
the above example also demonstrates that even in two-player games not all
renegotiation-proof Nash equilibria have to be included in the set of extensive
form rationalizable, and therefore in the set of extensive form coalitionally ratio-
nalizable strategies. This observation is less relevant if renegotiation-proofness is
considered as an extra requirement in contexts where players indeed get together
and explicitly negotiate over continuation strategies. If that is the case, forward
induction considerations implied by extensive form rationalizability and exten-
sive form coalitional rationalizability might lose their force, since a player can
change his mind during the negotiation phase and therefore his action choices
earlier in the game might not re°ect strategic intent in the remaining game.
This is the main reason we consider extensive form rationalizability to be a
relevant solution concept in multi-stage games if players cannot communicate
during the game. But the above example challenges the view that the concept

33



of renegotiation-proofness is valid even if players do not explicitly negotiate over
strategies after each stage of the game12.

4.2 Perfect equilibrium concepts

It is easy to ¯nd examples that show that there is no containment relationships
between the set of extensive form coalitionally rationalizable strategies on one

hand and the set of perfect Bayesian equilibria, sequential equilibria and trem-
bling hand perfect equilibria13. Furthermore, we show below that it is possible
that no trembling hand perfect equilibrium of a game is included in the set of
extensive form coalitionally rationalizable strategies. However, we show that
every ¯nite multi-stage game has at least one sequential equilibrium which is
fully contained in the set of extensive form coalitionally rationalizable strategies.
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Figure 11

12this view is suggested for example in Benoit and Krishna[93] by their statement \We em-
phasize that the assumption of explicit communication is made for the purposes of motivation
only...".
13given that extensive form coalitional rationalizability is an extension of normal form

coalitional rationalizability (as established in the previous section) the examples provided
in Ambrus[01] that show that in normal form games not every coalitionally rationalizable
outcome pro¯le has to be part of some Nash equilibrium and that not every Nash equilib-
rium is contained in the set of coalitionally rationalizable strategies su±ce here, since in
simultaneous-move games every Nash equilibrium is trivially sequential and trembling-hand
perfect equilibrium.
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In the game of Figure 11 the set of extensive form coalitionally rationaliz-
able strategies is the same as the set of extensive form rationalizable strategies:
fOL;OR; IRg£fm; rg. In the ¯rst round of iterated deletion of strategies that
are never sequential (coalitional) best responses, strategy IR of player 1 is elim-
inated, and in the second round strategy l of player 2 is deleted, resulting in the
above set. This corresponds to a standard forward induction reasoning. But
the unique trembling hand perfect equilibrium of the game is (OL; l), in which
player 2 plays a strategy that is not extensive form rationalizable. It is because
against any strictly mixed strategy of player 1, r can never be a best response to
player 2 (who has only one information set and therefore one agent in the agent
normal form of the game). But then in every trembling hand perfect equilibrium
player 1 has to choose L at her second information set (decision node), which
in turn implies that she has to play O at her ¯rst information set and player 2
has to play l.

The example shows the di®erence between how extensive form coalitional ra-
tionalizability (and extensive form rationalizability) and trembling hand perfect
equilibrium gives interpretation to players to a history being reached. Accord-
ing to extensive form coalitional rationalizability, player 1 choosing I at the
beginning of the game should be interpreted as a signal that she plans to play R
at her second decision node and that justi¯es player 2 playing r. According to
trembling hand perfection there is some (in¯nitesimal) chance that this move is
a result of a mistake, and furthermore there is some chance of player 1 choosing
either of the two actions at her second decision node. Therefore in the context of
trembling hand perfection player 2 should never play r. The forward induction
reasoning implied by extensive form coalitional rationalizability assumes that
players try to attach a rational explanation to every observed history. Trem-
bling hand perfection invalidates this type of reasoning and as shown above
can lead to predictions that are not compatible with extensive form coalitional
rationalizability.

Sequential equilibrium (see Kreps and Wilson[82]) is a re¯nement of Nash
equilibrium in extensive form games that is de¯ned by putting restrictions on
players' conjectures and is therefore much closer to the framework provided in
this paper. In that sense it is not surprising that as opposed to trembling hand
perfect equilibrium, every multi-stage game has a sequential equilibrium that is
fully contained in the set of extensive form coalitional rationalizable strategies.
This also implies that every multi-stage game has a perfect Bayesian equilibrium
that is fully contained in the set of extensive form coalitional rationalizable
strategies.

To be compatible with traditional equilibrium analysis, in the following claim
we make the assumption that players' conjectures on types come from a common
prior probability distribution on types14.

14this is not essential. The claim holds for subjective sequential equilibrium in multi stage
games with incomplete information without the common prior assumption.
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Let § = £
i2N

§i be the set of mixed strategies.

Claim 8: there is ¾ 2 § such that ¾ is a sequential equilibrium of G and
supp¾ ½ A¤:

5 Special classes of multi-stage games

5.1 Complete information, perfect information

This subsection considers the subset of multi-stage games in which information
is complete. The multi-stage game G is of complete information if every player
has only one type: k¨ik = 1 8 i 2 N . To simplify notation, we associate the only
element of ¨i with i, 8 i 2 N . Therefore any coalition of types © = f¿ j j j 2 Jg
will be associated with the coalition of players J . Furthermore, since S = S,
only the latter notation is used. Similarly, a typical subset of S = S is denoted
by A instead of A. Since there is a unique pro¯le of types in the game, for every
A ½ S we just use O(A) to denote the set of ¯nal histories reached by strategy
pro¯les in A, instead of O¿ (A).
The de¯nition of a history-based supported restriction is then simpli¯ed as

follows.

Let A = £
i2N

Ai be such that A ½ S and A 6= ;. Let J ½ N: Let h 2 H=HZ .

De¯nition: B is an h-based supported restriction by J given A if
(i) B is an h-based restriction by J given A
(ii) 8 j 2 J , sj 2 Aj=Bj and μ¡j 2 £c¡j(A) such that sj 2 BRj(μ¡j) it

holds that uhj (sj ; μ¡j) < u
h
j (tj ; Ã¡j)

8 tj ; Ã¡j such that Ã¡j 2 £c¡j(B); μ¡j(h) = Ã¡j(h); tj 2 Aj and tj is a best

response to Ã¡j among h0-replacement strategies of sj for every h0 2 h[succ(h)
that is reached by tj :

A special case of complete information is perfect information. A multi-stage
game is of perfect information if besides every player having only one possible
type, at every history there is at most one player who has more than one action
choice at the history.

De¯nition: G is of perfect information if k¨ik = 1 8 i 2 N and at every
h 2 H=HZ if kAi(h)k ¸ 2 and kAj(h)k ¸ 2 for i; j 2 N , then i = j.
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Claim 9 below establishes that in games of perfect information extensive
form coalitional rationalizability is outcome-equivalent to extensive form ratio-
nalizability. In games of perfect information without relevant ties extensive form
rationalizability is outcome equivalent to the unique backward induction solu-
tion (see for example Battigalli[97] for the de¯nition of games without relevant
ties and the proof of the above claim) and then Claim 6 immediately implies
outcome equivalence of extensive form rationalizability and extensive form coali-
tional rationalizability. But Claim 9 establishes the equivalence result for every
game of perfect information. This means that in games of perfect information
there is no room for non-singleton coalitions to make credible agreements. The
intuition is that extensive form rationalizability only does not pin down a unique
outcome in a perfect information game if at some relevant information set the
player who moves there is indi®erent between more than one action choices. So
any coalitional agreement would involve breaking ties. This might be strictly
advantegous for some players. But at the last information set a®ected by the
restriction the player who moves there does not have a strict incentive not to
play a strategy outside the restriction, which undermines the credibility of the
restriction.

Claim 9: If G is a game of perfect information, then O(A¤) = O(R¤):

5.2 Normal form Bayesian games

A multi-stage game is called a normal form Bayesian game if the only nonter-
minal history is the null history. In these games every restriction is null-history
based. Belief processes are trivial, £¡i = £c¡i = ¡i 8 i 2 N . This simpli¯es
the de¯nition of a supported restriction the following way.

Let A = £
i2N

( £
¿ i2¨i

A¿ i) be such that A¿i ½ Si and A¿i 6= ; 8 i 2 N and

¿ i 2 ¨i. Let J ½ N and ©j ½ ¨i 8 j 2 J: Let © = [
j2J
©j :

De¯nition: B is a supported restriction by © given A if
(i) B = £

i2N
( £
¿ i2¨i

B¿ i) ½ A; B 6= ; and B¿ i = A¿i 8 i 2 N and ¿ i =2 ©:
(ii) 8 ¿ i 2 ©, si 2 A¿i=B¿i and !¡i 2 ¡i(A) such that si 2 BR¿i(!¡i) it

holds that ui(¿ i; si; !¡i) < ui(¿ i; ti; !0¡i)
8 ti; !0¡i such that !0¡i 2 ¡i(B); !¡© = !0¡©; ti 2 A¿ i and ti 2 BR¿ i(!0¡i):

This de¯nition is similar to the de¯nition of supported restriction in normal
form games, with types replacing players. Claim 10 below makes this connection
formal and provides insight on what coalitional agreements are supported in an
incomplete information environment. It establishes that the set of extensive
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form coalitionally rationalizable strategies of of a Bayesian game exactly corre-
sponds to the set of normal form rationalizable strategies of the game obtained
by letting types of players in the original game be players in the normal form
game and de¯ning payo®s appropriately.15

Let bG = ( bN; bS; bu) be the normal form game obtained from G as follows. The
set of players is bN = [

i2N
¨i; the set of strategies for every ¿ i 2 bN is bS¿ i = Si

(therefore bS = S); and the payo® function of every ¿ i 2 bN and s 2 £
¿i2 bNS¿i isbu(s) = P

¿ 0¡i2¨¡i
ui(¿ i; s¿ 01 ; :::; s¿ 0i¡1 ; s¿ i ; s¿ 0i+1 ; :::; s¿ 0N ) ¢ '

¿i¡i(¿
0
¡i):

The payo® of player ¿ i in the above de¯nition is independent of the strategies
played by players corresponding to other types of the same player i in the original
game G. Otherwise the payo® of player ¿ i is a weighted average of payo®s from
G, corresponding to possible type pro¯les of the other players in G. The weights
used are the probabilities that the posterior belief of type ¿ i allocates to possible
type pro¯les of the other players in G. This corresponds to a scenario in which
every realized player type knows that other player types of the same player are
not realized, and his beliefs on what types of other players are realized are given
by his posterior belief concerning types.

Let A0¤ denote the set of coalitionally rationalizable strategies of G0.
Claim 10: Let A ½ S such that A = £

i2N
( £
¿ i2¨i

A¿ i) 6= ;. Let B ½ A such
that B = £

i2N
( £
¿i2¨i

B¿i) 6= ;. Then B is a supported restriction by J ½ N

given A in Bayesian game G i® it is a supported restriction by J given A in
normal form game G0: Furthermore, A0¤ = A¤.

6 Ex ante coalitional agreements and sequential

rationality

Extensive form coalitional rationalizability takes the view that groups of players
can make supported restrictions conditional on information sets being reached
and consitional on players' types. This means that new coalitional agreements
can be made as the game progresses, after nature selected players' types and
after any observed history of play. We consider this construction to be the nat-
ural extension of sequential rationality to the context of coalitional agreements.

15Imposing the additional restriction that di®erent types of the same player have to have the
same belief processes over other players' strategies would of course break down this equivalence.
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But as the motivating examples of Figure 5 and Figure 6 in section 2 show,
coalitional agreements in this setting might not be advantegous for the players
involved from an ex ante point of view. Therefore if players can commit to
making coalitional agreements only at the beginning of the game, they might
choose to do so.
This section provides an alternative construction, in which coalitional agree-

ments can only be made at the beginning of the game and are evaluated from an
ex ante perspective. The latter corresponds to the assumption that players can
only make implicit coalitional agreements that are advantegous for the players
involved before their types are realized. The assumption of sequential individ-
ual rationality is maintained though, and it is allowed to interact with ex ante
coalitional agreements. The game of Figure 12 below demonstrates that this
interaction is nontrivial, in the sense that iterative deletion of strategies that
are not sequential best responses might make ex ante coalitional restrictions
supported and then that restriction might make new strategies never sequential
best responses.

To be able to make ex ante payo® comparisons, in this section it is assumed
that there is a common prior probability distribution over the set of types, '(¿).

For every i 2 I and ¿ i 2 ¨i let '¿ i =
P

À2 £
j2N

Àj : Ài=¿ i

'(À), the marginal

probability of type ¿ i of player i being realized. Let h0 denote the null history.
Let A = £

i2N
( £
¿ i2¨i

A¿ i) be such that A¿i ½ Si and A¿i 6= ; 8 i 2 N and

¿ i 2 ¨i. Let J ½ N .

De¯nition: B is an ex ante supported restriction by J given A if
(i) B = £

i2N
( £
¿ i2¨i

B¿ i) ½ A; B 6= ; and Bi = Ai 8 i =2 J:
(ii) 8 j 2 J; μ¡j 2 £c¡j(A) and s : ¨j ! Sj for which s¿j 2 A¿j and

s¿j 2 BR¿j (μ¡j) 8 ¿ j 2 ¨j and there is ¿j 2 ¨j such that s¿j =2 B¿j it holds
that

P
¿j2¨j

'¿j ¢ uj(¿ j ; s¿j ; μ¡j) <
P

¿j2¨j

'¿j ¢ uj(¿j ; t¿j ; μ
0
¡j)

8 μ0¡j 2 £c¡j(B) and t : ¨j ! Sj for which t¿j 2 A¿j and t¿j 2 BR¿j (μ
0
¡j)

8 ¿j 2 ¨j , and μ0¡J(h0) = μ¡J(h0):

A restriction is supported by a coalition of players if every player in the
coalition has a strictly higher ex ante expected payo® if he expects the restriction
to be made (if his belief process is concentrated on the restriction) than if at least
one of his types plays outside the restriction (if he has a belief process against
which at least one of his types has a best response outside the restriction),
holding null-history conjectures concerning players outside the coalition ¯xed.
The de¯nition (just like the de¯nition of a history based supported restriction
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in section 3) implies that an ex ante supported restriction is self-enforcing. For
every type of every player it holds that if he believes that the other players play
according to the agreement, then a strategy that is ruled out by the agreement
can never be a best response for him.

For every A = £
i2N

( £
¿ i2¨i

A¿ i) be such that A¿i ½ Si and A¿ i 6= ; 8 i 2
N and ¿ i 2 ¨i let ze(A) be the set of ex ante supported restrictions given
A, and let R(A) be such that R(A) = £

i2N
( £
¿i2¨i

R¿ i(A)) where R¿ i(A) =

[
μ¡j2£c

¡j(A)
(BR¿i(μ¡j)\A¿ i): For every i 2 N and ¿ i 2 ¨i R¿i(A) is the set of

strategies in A¿ i which can be best responses to some belief process concentrated
on A.

Let E0 = S. For k ¸ 1 de¯ne Ek iteratively as Ek = \
B2ze(Ek¡1)

B \R(A).

The set of strategies Ek is obtained from Ek¡1 by making all ex ante supported
restrictions given Ek¡1 and deleting all strategies in Ek¡1 that are never (weak
sequential) best responses against belief processes concentrated on Ek¡1 .

De¯nition: the set of ex ante coalitionally rationalizable strategies is E¤ =
\
k¸0
Ek:

The set of ex ante coalitionally rationalizable strategies have similar prop-
erties as the set of extensive form coalitionally rationalizable strategies. In
particular E¤ 6= ;, there is L ¸ 0 such that Ek = EL = E¤ 8 k ¸ L, the se-
quence of restrictions (E0; :::; EL) is coherent, and O(E¤) ½ O(R¤): The proofs
of these claims are similar to the proofs of corresponding claims concerning A¤

in section 2 and therefore ommitted.
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Figure 12

The game of Figure 12 shows that there can be nontrivial interaction between
ex ante supported restrictions and elimination of never sequential best response
strategies.
In this game no coalition has an ex ante supported restriction given S. But

any strategy which speci¯es action r for player 3 after history (r; r) is never a
sequential best response for her. Eliminating those strategies gives E1 = S1 £
S2 £ fLl;Rlg. Every strategy for every player in E1 is a best response to some
belief process concentrated on E1. But flL;mL;mRg£flL;mL;mRg£fLl;Rlg
is an ex ante supported restriction for the coalition of player 1 and player 2
given E1: There is no other ex ante supported restriction given E1, therefore
E2 = flL;mL;mRg£ flL;mL;mRg£ fLl;Rlg. There is no ex ante supported
restriction given E2: But Rl is not a sequential best response for player 3 to any
belief process concentrated on E2. Every other strategy for every player in E2

can be a best response to some belief process concentrated on E2 and therefore
E3 = flL;mL;mRg £ flL;mL;mRg £ fLlg. There is no ex ante supported
restriction given E3 and every strategy for every player in E3 can be a best
response to some belief process concentrated on E3 and therefore E¤ = E3.
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Note that in the above game iterated elimination of never sequential best
response strategies and ex ante supported restrictions are intertwined in a non-
trivial manner. A procedure of ¯rst taking the extensive form rationalizable
strategies of the game and then iteratively making all possible ex ante sup-
ported restrictions does not eliminate all outcomes that are eliminated above.
Similarly, a procedure of ¯rst iteratively making all possible ex ante supported
restrictions and then iteratively eliminating strategies that are never sequential
best responses fails to eliminate all outcomes that are not compatible with ex
ante coalitional rationalizability.

7 Conceptual issues in general extensive form
games

In multi-stage games with observable actions players can condition a coalitional
agreement on a history being reached because it is public knowledge if the
history was reached and so are players' possible choices in the remainder of
the game (the continuation strategies from that history). In general extensive
form games it is less obvious what should be the right conditioning events for
coalitional agreements and how (from the point of view of which information
set) players should evaluate these agreements. We do not attempt to provide a
satisfactory answer to these questions in this paper, just provide two examples
below to show some of the di±culties associated with sequential coalitional
reasoning in general extensive form games.
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Figure 13
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Consider the restriction fLg £ fI;Og £ flg by f1; 2g in the game of Figure

13. In words, an agreement between players 1 and 3 to play L and l respectively.
Is this a mutually advantegous agreement? It certainly is for player1, since the
agreement guarantees him a payo® of at least 2, while if he plays R, he can
never get a payo® higher than 1. As far as player 3 is concerned though, the
answer depends on whether he evaluates this agreement from the point of view
of the beginning of the game or from the point of view of his information set.
If the agreement is evaluated from the point of view of the beginning of the
game, then the ¯rst problem with the agreement is that player 3's information
set might not be reached and therefore it might be immaterial whether he plans
to play l or r. Second, if player 2 plays O with high probability, then he gets a
higher payo® if player 1 plays R and he plays r than if they play according to the
agreement. So the agreement does not seem to be unambiguously advantegous
for player 3. But now consider the following argument. Player 3 should evaluate
the agreement fLg£ fI;Og£ flg from the point of view of his information set,
because whether he would agree upon making the agreement and play l is only
relevant if his information set is reached. But then note that conditional on his
information set being reached player 3's highest payo® is when player 1 played
L and he plays l. If his information set is reached, player 1 would agree to make
the above agreement and play l, because it becomes irrelevant for him what
happens in scenarios when his information set is not reached.

 
1 

2 

3,3,3 

0,4,1 0,0,0 

0,0,0 

L R 

 O I I O 

3 

0,0,0 4,0,2 

l l r r 

2 

Figure 14

Compatibility of coalitional agreements becomes a tricky issue as well in
general extensive form games, as the game of Figure 14 demonstrates. The
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restriction fRg £ S2 £ flg (agreeing upon playing R and l) given S seems to
be a mutually advantegous one for players 1 and 3, since for every ¯xed mixed
strategy of player 2 this agreement guarantees the highest possible expected
payo® for both players 1 and 3. Similarly, the agreement fL;Rg £ fI after L
and O after Rg £ frg (player 2 agreeing upon playing I after L and O after R,
and player 3 agreeing upon playing l) seems to be a mutually advantegous one
for players 2 and 3, because for every ¯xed strategy of player 1 it guarantees
the highest possible expected payo® for both players 2 and 3. But note that
if both of these agreements are made, then player 3 made an agreement with
player 1 not to play l, and he made an agreement with player 2 not to play
r! Therefore the two agreements seem to be incompatible. On the other hand
note that if these agreements are made then player 3's information set is never
reached. Therefore he can promise to player 1 not to play r and to player 2 not
to play l, because he is guaranteed not to get into a position in which he had to
break one of the promises. This suggests to consider coalitional agreements in
general extensive form games with the feature that players agree upon restricting
their set of strategies as long as play does not reach an information set which is
incompatible with the restrictions (as long as the player did not receive evidence
that some other player violated an agreement).

Because of the above described complications arising from allowing players in
a coalition to evaluate the same agreement from di®erent information sets, even
if allowing for that seems natural in general extensive form games, one might
want to insist on players evaluating the agreement from the same point of view.
In the above two games the natural point would be the beginning of the game. In
general the right common conditioning event for evaluating the agreement would
have to be an event which, informally speaking, is compatible with all players
knowing that none of the information sets \a®ected by the agreement" have been
reached yet. This claim is of course just informal without de¯ning formally the
information sets a®ected by a restriction. Formalizing this requirement and
investigating wehether there is a maximal conditioning event like that is left
to future investigation. This question is particularly involved in games without
an explicit time structure, where the same information sets can be reached
both before and after the ones that are \a®ected by the agreement", unless the
de¯nition of information sets a®ected by a restriction automatically implies that
once an information set is a®ected by a restriction then all information sets that
can possible succeed it are a®ected by the restriction too.

8 Related literature

Section 4 provides references to papers proposing equilibrium re¯nements in
extensive form games that are related to the concept of coalitional agreements.
The same section provides references to the literature on forward induction
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implied by inferences on strategic intent from past actions of a player. This
section gives an overview of other segments of the literature that are connected
to extensive form coalitional rationalizability.

Battigalli and Siniscalchi[01] proposes a class of re¯nements of extensive
form rationalizability in games of incomplete information with observable ac-
tions, by explicitly imposing additional assumptions on ¯rst order beliefs. They
collectively call the resulting concepts strong ¢-rationalizability. By Claim 4 of
Section 3 above the sequence of restrictions (A0; :::; A¤) is coherent and therefore
extensive form coalitional rationalizability can be regarded as a result of extra
restrictions on ¯rst order beliefs - players' conjectures are required to be concen-
trated on the nested sequence (A0; :::; A¤). Battigalli and Siniscalchi consider
more general belief processes (conditional probability systems in their terminol-
ogy) than those we allow for. Belief processes in their framework are de¯ned
over both types and strategies of other players. This implies that after being
surprised, a player (type) is allowed to change his belief on the original distri-
bution over other players' types too, not only on their strategies. Furthermore,
correlation is allowed between the beliefs concerning types and strategies. But
it is easy to show that our framework results from putting extra assumptions
on ¯rst order beliefs in their general framework, and therefore extensive form
coalitional rationalizability is a strong ¢-rationalizability concept.

Extensive form coalitional rationalizability is a theory of implicit agreements
by players along the course of play. A complementary research agenda is char-
acterizing reasonable outcomes in extensive form games if players have explicit
communication possibilities. Myerson[89] investigates Bayesian games in which
at most one player has more than one possible type and only this player can send
a message to the other players before playing the game. Because of the special
features of the model, the solution concept proposed does not treat players sym-
metrically. In particular groups of players that do not involve the player who
can send messages do not have the opportunity to make agreements with each
other. Myerson[86] combines the concept of communication equilibrium (see for
example Forges[86]) with the requirement of sequential rationality in multi-stage
games with communication mechanisms. His paper is primarily concerned with
how communication can expand the possibilities of players, subject to sequential
rationality constraints, and not with the issue of what agreements will actually
be made by players. A major di®erence between our framework and that of the
above papers' is that communication mechanisms introduce the possibility of
correlated play, while in this paper we allow for correlated conjectures, but not
correlated play.

Extensive form coalitional rationalizability implies that the implicit agree-
ments that di®erent types of players make are self-enforcing in the sense that if
a player type assumes that other types play according to the agreement, then
it is strictly in his interest to play according to the agreement. Holmstrom
and Myerson[83] provides analysis of incentive compatibility in the context of
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incomplete information in a cooperative environment. The notion of the incen-
tive compatible core (see for example Vohra[99] and Dutta and Vohra[01] and
Forges, Minelli and Vohra[02]) combines this analysis with coalitional contracts
through the concept of the core. The cooperative framework enables players
to make binding agreements with the constraint that private information is not
veri¯able. Our paper on the other hand assumes that players cannot make any
kind of binding agreements before or during the play of the game. The issue
of incentive compatibility in a noncooperative incomplete information contract-
ing game is taken up by Maskin and Tirole[90] and Maskin and Tirole[92], but
without considering coalitional agreements.

The relationship between extensive form rationalizability and iterated dele-
tion of weakly dominated strategies in the normal form representation is inves-
tigated in Marx and Swinkels[97] and Shimoji and Watson[98]. Related is the
idea of normal form information sets of Mailath, Samuelson and Swinkels[94]. It
is possible to extend the analysis of coalitional rationalizability to normal form
information sets and obtain similar results to those in the above papers. In par-
ticular, it is straightforward to provide a notion of weak supported restriction
to get a parelell concept with weakly dominated strategies (with strategies that
are never best reponses to conjectures that have full support over a certain set of
strategies). For ease of exposition we give the de¯nition for games of complete
information.

For every j 2 N and f¡j 2 ¡j ; let buj(f¡j) ´ uj(sj ; f¡j) for some sj 2
BRj(f¡j):
Let A and B be such that A ½ S; A = £

i2I
Ai and A 6= ;; B ½ A; B = £

i2I
Bi

and B 6= ;: Let J ½ N:

De¯nition: B is a weakly supported restriction by J given A if
1) Bi = Ai; 8 i =2 J; and
2) 8 j 2 J; f¡j 2 ¡j(A) such that there is sj 2 Aj=Bj for which

sj 2 BRj(f¡j) it is the case thatbuj(f¡j) · buj(g¡j) 8 g¡j such that g¡j 2 ¡j(B) and g¡J¡i = f¡J¡i ; and 9
g¡j 2 ¡j(B) such that g¡J¡i = f

¡J
¡i and buj(f¡j) < buj(g¡j):

A supported restriction is weakly supported by some coalition if, ¯xing the
conjecture concerning strategies played by players outside the coalition, making
the restriction is weakly preferred by every player in the coalition to playing a
strategy that violates the restriction.

The well-known problems associated with iterated deletion of weakly domi-
nated strategies apply equally to the iterative removal of strategies that are not
part of some weakly supported restriction. In particular the set of strategies
obtained by the procedure depends on the order in which restrictions are made.
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An additional issue which arises is that the intersection of weakly supported
restrictions can yield an empty set. Consider the game of Figure 15.

C1 C2
B1 B2 B1 B2

A1
A2

2,1,2 2,2,2
2,2,1 1,1,1

A1
A2

1,1,1 1,1,1
2,2,1 1,1,1

Figure 15

In the above game fA1g£fB1; B2g£fC1g is a weakly supported restriction
by f1; 3g given S. Similarly, fA2g £ fB1g £ fC1; C2g is a weakly supported
restriction by f1; 2g given S. The intersection of these restrictions is the empty
set because there is no strategy of player 1 that is inside both restrictions.

This example is in contrast with the result that the set of extensive form
coalitionally rationalizable strategies is always nonempty. One could try to iden-
tify conditions on normal form games under which iterated removal of strategies
that are not part of some weakly supported restriction is insensitive to the order
of restrictions and leads to a nonempty set. Furthermore, one could look for
conditions on extensive form games that guarantee the above conditions in the
normal form representation of the game, and conditions which guarantee that
the set of outcomes that are consistent with extensive form coalitional rational-
izability is equivalent to the set of outcomes consistent with iterated removal
of strategies that are not part of a weakly supported restriction in the normal
form representation of the game. This project is left for future research.

9 Conclusion

This paper shows that coalitional and sequential rationality considerations can
be incorporated simultaneously in a non-equilibrium framework in multi-stage
games in a manner that existence is guaranteed, even in incomplete information
environments. We consider this to be a step in understanding the structure of
coalitional agreements in general extensive form games. An important future
direction is investigating the case when coalitionally rational players to be able
to communicate to each other during the play of an extensive form game. If this
analysis involves making assumptions on how communication a®ects the beliefs
of players' involved, one should also consider whether players have the option
not to participate in such communication.
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10 Appendix

Lemma 1: Let (B1; :::; Bk; B0) 2M and (B1; :::; Bk; B00) 2M. If B0 \B00 6= ;
then (B1; :::;Bk; B0 \B00) 2M.
Proof: Take an arbitrary i 2 N , ¿ i 2 ¨i and μ¡i 2£c¡i(B1; :::; Bk; B0\B00):

Let si 2 BR¿ i(μ¡i). Since μ¡i 2 £c¡i(B1; :::; Bk; B0) and μ¡i 2 £c¡i(B1; :::; Bk;
B00); by the starting hypotheses si 2 B0¿ i and si 2 B

00
¿i
and hence si 2 B0¿i\B

00
¿i
.

Since i and ¿ i were arbitrary, this establishes the lemma. QED

Proof of Claim 1: For every i 2 N , ¿ i 2 ¨i and !¡i 2 ¡i de¯nebu¿ i(!¡i) ´ max
si2Si

u¿ i(si; !¡i). Fix some i 2 N and ¿ i 2 ¨i: Construct μ¿i¡i 2 £¡i
the following way. Let μ¿i¡i(;) be such that μ¿i¡i(;) 2 ¡i(Bk) and bu¿i(μ¿ i¡i(;)) ¸bu¿ i(!¡i) 8 !¡i 2 ¡i(Bk): Standard arguments establish that there exists
such a belief μ¿ i¡i(;). Let H¿i

0 ´ fh 2 H=HZ j h is reached by μ¿ i¡i(h0)g: Let
μ¿i¡i(h) = μ¿i¡i(h0) 8 h 2 H¿i

0 : Next, we give an iterative method to de¯ne
beliefs at remaining histories. Assume H¿i

k is de¯ned for some k ¸ 0: Then
let I¿ik+1 ´ fh 2 H=HZ j h =2 H¿i

k ; but imp(h) 2 H¿ i
k g: For any h 2 I¿ik+1

de¯ne μ¿i¡i(h) the following way. Let m (where 0 · m · k) be the highest
index such that Bm¡i reaches h. Then let μ

¿i¡i(h) be such that μ
¿ i¡i(h) reaches

h, μ¿i¡i(h) 2 ¡i(Bm) and buh¿i(μ¿ i¡i(h)) ¸ buh¿i(!¡i) 8 !¡i 2 ¡i such that
!¡i reaches h and !¡i 2 ¡i(Bm): Again it is straightforward to establish
the existence of such a belief μ¿ i¡i(h): Let H

¿ i
k+1(h) ´ fh0 2 h [ succ(h) j h0

is reached by μ¿i¡i(h)g: For all h0 2 H¿i
k+1(h) let μ

¿i
¡i(h

0) = μ¿ i¡i(h): Finally, let
H¿ i
k+1 ´ [

h2I¿ik+1
H¿ i
k+1(h).

By construction μ¿ i¡i 2 £c¡i(B
1; :::; Bk): Let now si 2 BR¿i(μ

¿ i
¡i). Since

(B1; :::; Bk) 2 M, si 2 Bk¿ i . Suppose now that si =2 C¿ i . That means there
is h 2 H=HZ ; B ½ Bk and © ½ [

i2N
¨i such that B is an h-based supported

restriction by © given Bk and si =2 B¿i . By the de¯nition of the supported
restriction then si reaches h. For every j 2 N=fig and Àj 2 ¨j let TÀj : Sj ! Sj
be such that for every sj 2 BkÀj=CÀj that reaches h it holds that TÀj (sj) 2 CÀj
and TÀj (sj) is an h-replacement of sj , and for every other sj 2 Sj it holds

that TÀj (sj) = sj . Let now Ã
¿ i
¡i 2 £¡i be such that Ã¿ i¡i 2 £c¡i(B1; :::; Bk; C)

and for every h0 =2 succ(h) it holds that Ã¿ i¡i[h
0](s) = 0 if there is no t 2

S for which tÀj = TÀj (sÀj ) 8 j 2 N=fig and Àj 2 ¨j and let Ã
¿i
¡i[h

0](s) =P
t2S:tÀj=TÀj (sÀj ) 8j2N=fig;Àj2¨j

μ¿ i¡i[h
0](t) otherwise. The existence of such a belief

system Ã¿i¡i is straightforward from μ¿ i¡i 2 £c¡i(B1; :::; Bk) and the de¯nition
of T . Note that by construction μ¿i¡©[h] = Ã¿i¡©[h]. Since si 2 BR¿i(μ

¿ i¡i)
and (B1; :::; Bk) =2 M, by the construction of Ã¿i¡i it follows that 9 bi 2 Bk¿ i
such that bi(h

0) = si(h
0) 8 h0 =2 h [ succ(h). Since Ã¿i¡i 2 £c¡i(B1; :::; Bk; B),
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bi 2 B¿i by the de¯nition of a supported restriction. Then since B is a supported
restriction by © given Bk, uh¿ i(Ã

¿ i
¡i(h); bi) > u

h
¿i(μ

¿ i
¡i(h); si): But by construction

uh¿ i(μ
¿i¡i(h); si) ¸ uh¿i(Ã

¿i¡i(h); bi), a contradiction! This implies that si 2 C¿i .
Since ¿ i was arbitrary, this implies C 6= ;:
Now suppose B 2 z(Bk) and (B1; :::; Bk; B) =2 M. Since (B1; :::; Bk) 2 M

this implies 9 i 2 N , ¿ i 2 ¨i, si 2 Bk¿ i=B¿ i and μ¡i 2 £c¡i(B1; :::; Bk; B) such
that si 2 BR¿i(μ¡i): But that contradicts that B is a supported restriction from
Bk by some coalition of types. Therefore (B1; :::; Bk; B) 2 M 8 B 2 z(Bk):
Then Lemma 1 implies that (B1; :::; Bk; \

B2z(Bk)
B) 2M. QED

Proof of Claim 2: The sequence (Ak)k=0;1;::: is decreasing, so ¯niteness of

S implies that 9 K ¸ 0 such that A¤ = Ak 8 k ¸ K: Since the trivial sequence
(A0) = (S) 2 M, Claim 1 implies that Ak 6= ; and (A0; :::; Ak) 2 M 8 k ¸ 0:
In particular then AK = A¤ 6= ; and (A0; :::;AK) 2M: QED

Proof of Claim 3: If B is a restriction by f¿ ig given A and for every
si 2 A¿i=B¿ i it holds that there is no μ¡i 2 £c¡i(A) such that si 2 BR¿i(μ¡i)
then the de¯nition of a supported restriction trivially implies that B is a null-
history based supported restriction. Suppose now that B is a h-based sup-
ported restriction by f¿ ig for some h 2 H=HZ : Then the de¯nition of sup-
ported restriction implies that no si 2 A¿i=B¿ i can be a best response among
h-replacement strategies to any μ¡i 2 £c¡i(A). Therefore si =2 BR¿i(μ¡i) for
every si 2 Bk¿ i=B¿i and μ¡i 2 £c¡i(A). QED

Lemma 2: For every k ¸ 1; i 2 N; ¿ i 2 ¨i and si 2 Ak¿i it holds that there
is μ¡i 2 £c¡i(A0; :::; Ak¡1) such that si 2 BR¿i(μ¡i):
Proof: Claim 3 implies that the claim holds for k = 1. Suppose now it

holds for some k ¸ 1. Then for every i 2 N; ¿ i 2 ¨i and si 2 Ak¿i it holds that
there is μ¡i 2 £c¡i(A0; :::; Ak¡1) such that si 2 BR¿i(μ¡i): Furthermore Claim
3 implies that there is μ0¡i 2 £c¡i(Ak) such that si 2 BR¿i(μ0¡i): Now construct
μ00¡i 2 £¡i such that μ00¡i(h) = μ0¡i(h) 8 h such that h is reached by Ak¡i.
At any other history h, let μ00¡i(h) = μ¡i(h). Belief process μ00¡i is consistent
because μ¡i and μ0¡i are consistent and because μ

0
¡i 2 £c¡i(Ak) implies that

there can be no h 2 H=HZ such that there is h0 reached by Ak¡i and μ0¡i(h0)
reaches h. By construction μ00¡i is concentrated on (A

0; :::; Ak). Finally, si 2
BR¿i(μ

00
¡i) since at every h 2 H=HZ either μ00¡i(h) = μ¡i(h) or μ00¡i(h) = μ0¡i(h),

so si 2 BR¿i(μ¡i) and si 2 BR¿i(μ0¡i) imply that si is a best response among
h-replacements to μ00¡i(h) at every h 2 H=HZ . QED

Proof of Claim 4: By Claim 2 (A0; :::; AK) 2M. Furthermore by Claim 2
there is no nontrivial supported restriction by any coalition given AK . Claim 3
then implies that for every i 2 N , ¿ i 2 ¨i and si 2 AK¿ i there is μ

K
¡i 2 £c¡i(AK)

such that si 2 BR¿i(μK¡i). Furthermore, note that si 2 Ak¿ i 8 k = 1; :::;K and

then Claim 3 and the de¯nition of the sequence (A0; :::; AK) implies that for
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every k = 0; 1; :::;K ¡ 1 9 μk¡i 2 £c¡i(Ak) such that si 2 BR¿i(μk¡i). Let nowbμ¡i 2 £¡i be such that bμ¡i[h] = μK¡i[h] if h is reached by A
K
¡i; and for every

k = 0; :::;K¡ 1 bμ¡i[h] = μk¡i[h] if h is reached by A
k
¡i but not reached by A

k+1
¡i :

By construction bμ¡i 2 £c¡i(A0; :::; AK) and si 2 BR¿ i(bμ¡i), which establishes
the claim. QED

Proof of Claim 5: Essentially the same proofs as for the ones for Claims
1 through 4 establish that there is L ¸ 0 such that Bk = BL; 8 k ¸ L, that
BL 6= ;, that (B0; :::; Bl) 2M 8 l = 0; 1; 2; ::: and that (B0; :::; BL) is coherent.
De¯ne H¿i = fh 2 H=HZ j 9 t 2 S reaching h and À¡i 2 ¨¡i for which

ti 2 A¤¿i and 8 j 2 N=fig tj 2 A
¤
Àj and 'i(¿ i)(À¡i) > 0g.

Suppose that k ¸ 0 is such that 8 i 2 N , ¿ i 2 ¨i and si 2 A¤¿i 9 s0i 2 B
k
¿ i

such that s0i(h) = si(h) 8 h 2 H¿i : Note that this implies that O¿ (B
k) ¾ O¿ (A¤)

8 ¿ 2 ¨ for which 'i(¿ i)(¿¡i) > 0 8 i 2 N:
Suppose now that 9 h 2 H=HZ and C ½ Bk such that C is an h-based

supported restriction by © given Bk and that 9 i 2 N , ¿ i 2 ¨i and si 2 A¤¿ i
such that there is no s0i 2 Bk¿ i for which s0i(h) = si(h) 8 h 2 H¿ i :
By the de¯nition of supported restriction it has to be that h 2 H¿i :

For every i 2 N , ¿ i 2 ¨i let S
k
¿i = fti 2 A¤¿i j 9 t0i 2 Bk¿ i for which

t0i(h) = ti(h) 8 h 2 Hr;¿ig and let ©0 = [
i2N

f¿ i 2 ¨i \© j Sk¿i 6= A
¤
¿ig.

Suppose ¯rst that 8 i 2 N , ¿ i 2 ¨i it holds that Sk¿ i 6= ;. Let Sk = £
i2N

£
¿i2¨i

Sk¿ i and consider the restriction S
k by ©0 given A¤. By construction this

restriction is h-based. Let i 2 N , ¿ i 2 ¨i\©0; μ¡i 2 £c¡i(A¤) and si 2 A¤¿ i=S
k
¿ i

be such that si reaches h and si 2 BR¿ i(μ¡i). Let ti; Ã¡i such that Ã¡i 2
£c¡i(S

k); μ¡©0(h) = Ã¡©0(h); ti 2 A¿ i and ti is a best response to Ã¡i among
h0-replacement strategies of si for every h0 2 h[succ(h) that is reached by ti. For
every i 2 N and ¿ i 2 ¨i let T¿i : Si ! Si such that for every ai 2 A¤¿i it holds
that T¿ i(ai) 2 Bk¿i and T¿i(ai)(h0) = ai(h0) 8 h0 2 H¿i and for every bi =2 A¤¿ i
it holds that T¿ i(bi) = bi: By the starting assumption above there is a function
T¿ i like this. Let now μ0¡i such that μ

0
¡i 2 £c¡i(B1; :::; Bk) and 8 h0 2 H¿ i

it holds that μ0¡i[h0](bi) = 0 if there is no ai 2 A¤¿ i for which T¿i(ai) = bi
and let μ0¡i[h0](bi) =

P
ti:T¿i(ti)=bi

μ¡i[h0](ai) otherwise. The construction of such

belief process μ0¡i is tedious, but straightforward. Similarly let Ã
0
¡i such that

Ã0¡i 2 £c¡i(B1; :::; Bk; C) and 8 h0 2 H¿ i it holds that μ0¡i[h0](bi) = 0 if there is
no ai 2 A¤¿i for which T¿i(ai) = bi and let Ã

0
¡i[h0](bi) =

P
ti:T¿i(ti)=bi

Ã¡i[h0](ai)

otherwise. Since Ã¡i 2 £c¡i(Sk); 9 Ã0¡i 2 £c¡i(B1; :::; Bk; Cr) like this. Note
that by construction μ¡¨r\©(h) = Ã¡¨r\©(h). Since (B

1; :::; Bl) 2 M, 9 s0i 2
BR¿i(μ

0
¡i) such that s0i(h

0) = si(h
0) 8 h0 2 H¿i . By construction s0i =2 C¿i :

Similarly, 9 t0i 2 BR¿i(μ0¡i) such that t0i(h0) = ti(h
0) 8 h0 2 H¿i . But then

the fact that C is an h-based supported restriction by © given Bk implies that
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uh¿ i(t
0
i; μ

0
¡i) < uh¿i(s

0
i; Ã

0
¡i): Since uh¿ i(t

0
i; μ

0
¡i) = uh¿i(ti; μ¡i) and u

h
¿i(s

0
i; Ã

0
¡i) =

uh¿ i(si; Ã¡i); this implies u
h
¿i(ti; μ¡i) < uh¿i(si; Ã¡i): But that means S

k is a
nontrivial supported restriction by ©0 given A¤, contradicting that there is no
nontrivial supported restriction given A¤:
Suppose now that for some 8 i 2 N , ¿ i 2 ¨i it holds that Sk¿ i = ;. That

implies A¤ \ C = ;. Let now l ¸ 0 be such that 8 i 2 N , ¿ i 2 ¨i there is
si 2 Al¿i \ C¿ i that reaches h, while there is some i 2 N , ¿ i 2 ¨i for which

there is no si 2 Al+1¿ i \C¿ i that reaches h:

For every Àj 2 ¨j let bCÀi = fsi 2 CÀi j si reaches hg. Assume that for
l ¸ 0 it holds that bCÀi \ AlÀi 6= ;. Let i 2 N and ¿ i 2 ¨i such that h 2 H¿i .

Let μ¡i 2 £c¡i(A1; :::; AK) and ai 2 A¤¿i be such that ai 2 BR¿i(μ¡i) and ai
reaches h. The existence of such μ¡i and ai is guaranteed by (A1; :::; AK) being
coherent and because h 2 H¿i . For every j 2 N=fig and Àj 2 ¨j de¯ne the
collection of functions TÀj such that TÀj 2 TÀj i® TÀj : Sj ! Sj ; and for every

sj 2 A¤Àj that reaches h it holds that TÀj (sj) 2 bCÀi \ AlÀi and TÀj (sj) is an
h-replacement of sj , and for every other sj 2 Sj it holds that TÀj (sj) = sj .

The starting assumption on Al guarantees that TÀj is nonempty. For every
T = £

j2N=fig
£

Àj2¨j

TÀj 2 £
j2N=fig

£
Àj2¨j

TÀj let bμT¡i be such that bμT¡i[h0](s) =P
t2S:tÀj=TÀj (tÀj ) 8 j2N=fig and Àj2¨j

μ¡i[h0](t) 8 h0 =2 succ(h). For h0 2 succ(h)

de¯ne bμT¡i[h0] iteratively such that bμT¡i[h0] = bμT¡i[imp(h0)] if bμT¡i[imp(h0)] reaches
h0, otherwise such that bμT¡i[h0] 2 ¡i(C \Al) if C¡i \Al¡i reaches h0, for every
k = 1; :::; l bμT¡i[h0] 2 ¡i(Ak) if Ak¡i reaches h0, and there is ai 2 Al¿i such that
uh

0
¿ i(ai;

bμT¡i) ¸ u¿i(bi; !¡i) 8 bi 2 Al¿i and !¡i 2 ¡i such that !¡i 2 ¡i(C \
Al) if C¡i \ Al¡i reaches h0, and for every k = 1; :::; l !¡i 2 ¡i(Ak) if Ak¡i
reaches h0. It is straightforward to establish the existence of such belief processbμT¡i: By construction bμT¡i 2 £c¡i(A1; :::; Al; bC). Since £c¡i(A1; :::; Al; bC) 2 M,

for any ci 2 BR¿ i(bμT¡i) it holds that ci 2 C¿i . Since ai 2 BR¿ i(μ¡i) and the
way bμT¡i is created from μ¡i, there is c¤i 2 BR¿ i(bμT¡i) such that c¤i (h0) = ai(h0)
8 h0 =2 h [ succ(h). Since ai reaches h, this implies that c¤i reaches h. Now for
every T 2 £

j2N=fig
£

Àj2¨j

TÀj let c¤i (T ) 2 BR¿i(bμT¡i) be such that c¤i (T ) reaches h.
Let T ¤ =2 £

j2N=fig
£

Àj2¨r
j

TÀj be such that uh¿i(c¤i (T ¤);bμT¤¡i ) ¸ uh¿ i(c¤i (T );bμT¡i) 8
T 2 £

j2N=fig
£

Àj2¨j

TÀj . The existence of such T ¤ is guaranteed by the ¯niteness of

the type space. Since C\A¤ = ; by the starting assumption, uh¿i(c¤i (T ¤);bμT¤¡i ) >
uh¿ i(ai; μ¡i). Since c

¤
i (T

¤)(h0) = ai(h
0) 8 h0 =2 h [ succ(h) and ai 2 A¤¿i ; this

implies for any h0 =2 h [ succ(h) there is no h0-based supported restriction
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D given Al such that c¤i (T
¤) =2 D¿i . Similar arguments as in the proof of

Claim 1 establish that the construction of c¤i (T
¤) and bμT¤¡i imply that for any

h0 =2 h[ succ(h) there is no h0-based supported restriction D given Al such that
c¤i (T

¤) =2 D¿i . This establishes that c¤i (T ¤) 2 A
l+1
¿i . This concludes that for

every i 2 N and ¿ i 2 ¨i for which h 2 H¿i it holds that bC¿i \ Al+1¿i 6= ;. But
then since bC¿ i \ A0¿ i = bC¿ i 6= ; 8 bCr¿ i , it follows that bC¿i \ A¤¿ i 6= ;. But this
contradicts the starting hypothesis that for some 8 i 2 N , ¿ i 2 ¨i it holds that
Sk¿i = ;.

This concludes that 8 i 2 N , ¿ i 2 ¨i and si 2 A¤¿i 9 s0i 2 B
k+1
¿ i such that

s0i(h) = si(h) 8 h 2 H¿ i . Since 8 i 2 N , ¿ i 2 ¨i and si 2 A¤¿ i 9 s0i 2 B
0
¿ i such

that s0i(h) = si(h) 8 h 2 H¿i ; by induction 8 i 2 N , ¿ i 2 ¨i and si 2 A¤¿i 9
s0i 2 BL¿i such that s0i(h) = si(h) 8 h 2 H¿i . This implies thatO¿ (B

L) ¾ O¿ (A¤)
8 ¿ 2 ¨ for which 'i(¿ i)(¿¡i) > 0 8 i 2 N:
A symmetric argument to the above establishes that O¿ (B

L) ½ O¿ (A
¤) 8

¿ 2 ¨ for which 'i(¿ i)(¿¡i) > 0 8 i 2 N: QED

Proof of Claim 6: Let K0 ¸ 0 be such that Rk 6= Rk¡1 8 k · K and
Rk = R¤ 8 k ¸ K0: It is easy to establish the existence of such a K from
the ¯niteness of the game. Let Bk = Rk for k = 0; ::;K0. For k > K0 de¯ne
Bk iteratively such that Bk = \

B2z(Bk¡1)
B. Note that B0 = S. By Claim 3

(Bk)k=0;1;2;::: is such that for any k ¸ 0 Bk+1 = Bk if there is no nontrivial

supported restriction given Bk, otherwise there is some £k nonempty collection
of nontrivial restrictions given Bk for which Bk+1 = \

B:B2£k
B: Let ¿ 2 ¨ be

such that 'i(¿ i)(¿¡i) > 0 8 i 2 N . Then by Claim 5 there is L such that
Bk = BL 8 k ¸ L and O¿ (B

L) = O¿ (A
¤). Since B0; B1; ::: is a decreasing

sequence, this implies O¿ (A
¤) = O(BL) ½ O(BK

0
) = O(R¤): QED

Proof of Claim 7: If player 1 expects player 2 to play B1 in the ¯rst stage
with more than probability 1¡ 1000

10201 ¼ 0:902, then his best responses have to
specify A1 in the ¯rst stage. To see this, note that player 1's expected ¯rst
stage payo® is 100x + 9(1 ¡ x) when playing A1 and 10(1 ¡ x) when playing
A2, where x is the probability that he expects player 1 to play B1 in the
¯rst stage. His minimal expected payo® in the second stage is 1000

101 (when
player 2 plays B1 with probability 1

101 , making player 1 indi®erent between
A1 and A2). His maximal expected payo® in the second stage is 100. So if
100x+9(1¡ x) + 1000

101 > 10(1¡ x) + 100, which is exactly when x > 1¡
1000
10201 ,

player 1 is always better o® playing A1 in the ¯rst round, no matter what his
conjectures are concerning continuation strategies of player 2. This implies that
player 1 cannot be surprised after (A2; B2) and (A3; B2), because he can only
play A2 or A3 if he expects player 1 to play B2 with positive probability. Next
note that if player 1's strategy speci¯es playing A2 with positive probability
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in stage 2 after (A2; B2) in the ¯rst stage, then playing A2 in the ¯rst stage
cannot be a best response if x > (11 ¡ 1000

101 )=11 ¼ 0:1. This is because his
payo® is at least 100x+9(1¡x)+ 1000

101 if playing A1, while his payo® is at most
100x+20(1¡x) if he plays A2 in the ¯rst stage and then A2 in the second stage
after (A2; B2) in the ¯rst stage. Also note that if player 1's strategy speci¯es
playing A2 with positive probability in stage 2 after (A3; B2) in the ¯rst stage,
then playing A1 in the ¯rst stage is always (for any conjecture) better for him
then playing A3. This is because 100x+9(1¡x)+ 1000

101 is strictly higher for every
x 2 [0; 1] than 1+100x+10(1¡x), which is player 1's highest possible payo® if
he plays A3 in the ¯rst period and then A2 in the second stage after (A3; B2) in
the ¯rst one. Therefore it is only rational for player 1 to play A3 if he plans to
play A1 with probability 1 after (A3; B2). But then a strategy in which player
2 plays B2 with positive probability can only be extensive form rationalizable
if he plays B1 after (A3; B2). So in any rationalizable outcome (A1; B1) has
to follow (A3; B2). But then whenever player 1's strategy speci¯es playing A2
with positive probability in stage 2 after (A2; B2) in the ¯rst stage, it is better
for him to play A3 than A2 in the ¯rst stage if x < 81

180¡ 1000
101

¼ 0:476. This is
because by the previous observation his payo® is at least 1+ 1000

101 x+100(1¡x)
if he plays A3, while his payo® is at most 20(1 ¡ x) + 100x if he plays A2
in the ¯rst stage and then A2 in the second stage after (A2; B2) in the ¯rst
stage. Combining the above observations yields that it can only be extensive
form rationalizable to for player 1 to play A2 in the ¯rst stage if he plans to
play A1 with probability 1 after the outcome (A2; B2). But then it can only be
extensive form rationalizable for player 2 to play B2 with positive probability
in the ¯rst stage if he plans to play B1 in the second stage after (A2;B2) in
the ¯rst stage. This establishes that in any extensive form rationalizable (and
therefore in every extensive form coalitionally rationalizable) outcome (A1; B1)
has to follow in the second stage the play of (A2; B2) in the ¯rst stage. QED

Proof of Claim 8: For every i 2 N , ¿ i 2 ¨i and A = £
i2N

( £
¿i2¨i

A¿ i) ½ S;

h 2 H=HZ reached by A¡i, and À¡i 2 ¨¡i let S v
¡i(A¡i; À¡i) = fs ¡i 2

S ¡i j sÀ1 =2 AÀ1 for some j 6= i and sÀ1 reaches h 8 j 6= ig and let S
h¡i(A¡i; À¡i) = fs ¡i 2 S ¡i j sÀ1 reaches h 8 j 6= ig: Then for every " 2 (0; 1) letb£¡¿ i(A; ") = fμ¡i 2 £c¡i j

Ã P
À¡i2¨¡i

'(¿ i)(À¡i)
P

s¡i2Sv¡i(A¡i;À¡i)
μ¡i[h](s¡i)

!
=0@ P

À¡i2¨¡i
'(¿ i)(À¡i)

P
s¡i2Sh¡i(A¡i;À¡i)

μ¡i[h](s¡i)

1A < "8h 2 H=HZ such that 9

À¡i 2 ¨¡i and s 2 S such that sÀ1 reaches h 8 j 6= ig.
From the de¯nition of a supported restriction if for some k ¸ 0 B is an

h-based nontrivial supported restriction by © given Ak and i 2 N , ¿ i 2 ©
are such that Ak¿ i=B¿i 6= ; and bi 2 B¿ i and μ¡i 2 £c¡i(B) are such that
bi 2 BR¿i(μ¡i) and bi reaches h, then uh¿ i(bi; μ¡i) > max

ai2Ak¿i=B¿i

uh¿ i(ai; μ¡i).
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Since uh¿ i is continuous in μ¡i (with respect to the weak topology) there is
"(Ak; B;©) > 0 such that if i 2 N , ¿ i 2 © are such that Ak¿ i=B¿i 6= ; and
bi 2 B¿i and μ¡i 2 b£¡i(B; ") are such that bi 2 BR¿ i(μ¡i) and bi reaches
h, then uh¿i(bi; μ¡i) > max

ai2Ak¿i=B¿i

uh¿i(ai; μ¡i). Since there are a ¯nite number

of nontrivial supported restrictions given Ak for ant 0 · k · K ¡ 1; there isb" > 0 such that for every 0 · k · K ¡ 1; i 2 N , ¿ i 2 ©, B ½ Ak; h 2 H=HZ ;

μ¡i 2 b£¡i(B;b") and bi 2 BR¿i(μ¡i) for which B is an h-based nontrivial
supported restriction by © given Ak, Ak¿i=B¿i 6= ; and bi reaches h it holds that
uh¿ i(bi; μ¡i) > max

ai2Ak¿i=B¿i

uh¿i(ai; μ¡i).

Let now "1; "2; ::: be such that the following three conditions hold:
(i) for every k ¸ 1 "k = ("k¿ i;si)i2N;¿i2¨i;si2Si such that "k¿i;si > 0 8 i 2

N; ¿ i 2 ¨i; si 2 Si and
P

i2N;¿i2¨i;si2Si
"k¿i;si < 1

(ii) 8 i 2 N; ¿ i 2 ¨i; si 2 Si it holds that "k¿i;si ! 0 as k !1

(iii) 8 i 2 N; ¿ i 2 ¨i; k ¸ 1 and 1 · m · K it holds that "k¿i;si > b" ¢ "k¿i;s0i if
si 2 Am¿i and s0i =2 A

m
¿ i .

For every k ¸ 1 construct the following perturbed game Gk from G. Let the
set of players be ¨. For every i 2 N and ¿ i 2 ¨i let the set of strategies of ¿ i
in Gk be §k¿i = f¾i 2 ¢(Si) j ¾i(si) ¸ "k¿i;si 8 si 2 Si and ¾i(si) = "k¿ i;si 8
si =2 A¤¿ig. It is the set of mixed strategies of ¿ i that allocate exactly probability
"k¿ i;si to every strategy si =2 A

¤
¿i and at least probability "

k
¿ i;si to every strategy

si 2 A¤¿i . Let the payo® function of ¿ i in Gk, denoted by uk¿ i ; be the relevant
restriction of the mixed strategy extension of u¿ i(s). Let ¾ denote a typical
strategy pro¯le in Gk.
Note that ¾¿ i is strictly mixed for every i 2 N; ¿ i 2 ¨i; k ¸ 1 and ¾¿i 2 §k¿ i

and therefore for every ¾ 2 §k and for every i 2 N; the belief process μ¡i which
is de¯ned by μ¡i[h] = ¾¡i 8 h 2 H=HZ is consistent. Denote this belief process
for every ¾ 2 §k and i 2 N by μ

¾
¡i. Note that every μ

¾
¡i de¯nes an assessment (a

probability distribution over decision nodes at every information set) for every
¿ i 2 ¨i through the beliefs over types 'i(¿ i). Denote this assessment by a

¾
¿i :

Since strategy sets are compact, convex and nonempty and payo® functions
are linear, by Kakutani's ¯xed point theorem every Gk has a Nash equilibrium
¾k¤. Since ¾k¤ is strictly mixed, ¾k¤¿i is a (strong) sequential best response to
¾k¤¡¿i 8 k ¸ 1; i 2 N and ¿ i 2 ¨i: Therefore ¾k¤¿i is a best response to assessment
a
¾k¤
¿i : Since ¢(Si) is compact, (¾

k¤)k=1;2;::: has a convergent subsequence. Then
without loss of generality assume that (¾k¤)k=1;2;::: is convergent, and let ¾¤ =

lim
k!1

¾k¤: Then a¾
k¤
¿ i is convergent too for every i 2 N and ¿ i 2 ¨i: Let a¤¿i =

lim
k!1

a
¾k¤
¿i : Note that a

¤
¿ i is consistent with ¾

¤. Also note that by construction

supp¾¤¿ i ½ A
¤
¿i 8 i 2 N and ¿ i 2 ¨i:

By construction μ
¾
¡i 2 b£¡i(Am;b") for every i 2 N; k ¸ 1; ¾ 2 §k and

1 · m · K. Therefore if si 2 BR¿ i(μ
¾
¡i) in G, then si 2 A¤¿i . This implies that
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¾i 2 BR¿ i(μ
¾
¡i) in G

k, then ¾i is not only a sequential best response to μ
¾
¡i

among strategies in §k¿i , but among the larger set of strategies f¾i 2 ¢(Si) j
¾i(si) ¸ "k¿i;si 8 si 2 Sig as well. But then ¾k¤¡¿i is a best response to a¤¿i in G
for every i 2 N and ¿ i 2 ¨i, establishing that ¾¤ is a sequential equilibrium of
G. QED

Proof of Claim 9: Suppose that for some hB 2 H=HZ and J ½ N there
is a hB-based nontrivial supported restriction B by J given R¤. Without loss
of generality assume that Bj 6= R¤j 8 j 2 J .
If there is no i 2 N and si; s

0
i 2 Bi such that si and s0i reach hB, but si(hB) 6=

s0i(h
B); then let h0 be the unique information set such that hB = imp(h0) and B

reaches h0. If h0 2 HZ , then there is i 2 N such that B is a nontrivial supported
restriction by fig given R¤, which by Claim 3 contradicts the de¯nition of R¤:
Therefore h0 2 H=HZ and then trivially B is an h0-based supported restriction
by J given R¤:
Assume now there is i 2 N and si; s

0
i 2 Bi such that si and s0i reach hB,

but si(hB) 6= s0i(hB). If i =2 J; then take any h0 such that hB = imp(h0): By the
de¯nition of a supported restriction B is an h0-based supported restriction by
J given R¤: Assume next that i 2 J . Let H 0 = fh0 2 H j hB = imp(h0) and 9
μ¡i 2 £c¡i(Bi) and si 2 BRi(μ¡i) such that si reaches h0g. For any h0 2 H 0 and
j 2 N let Vj(h

0) = fsj 2 R¤j=Bj j sj reaches h0g and let B0j(h0) = R¤j=Vj(h0). By
construction B0j(h0) is nonempty 8 h0 2 H0 and j 2 N: Let B0(h0) = £

j2N
B0j(h0)

8 h0 2 H 0: It cannot be that B0(h0) = R¤j 8 h0 2 H 0; since B is a nontrivial
supported restriction given R¤:
Fix h0 2 H0 and consider the restriction B0(h0) by J given R¤. For every

j 2 J=fig if sj 2 BRj(μ¡j), μ¡j 2 £c¡j(B) and sj reaches hB, then also sj
reaches h0 since j has a trivial action choice at hB. Then for every j 2 J=fig it
holds that B0j(h

0) = Bj :
Take any bsj 2 BRj(μ¡j), μ¡j 2 £c¡j(B) such that bsj reaches hB: Since Bj 6=

R¤j ; 9 sj 2 R¤j=Bj and μ0¡j 2 £c¡j(R¤) such that sj 2 BRj(μ¡j). Then by the
de¯nition of a supported restriction 9 bμ¡j 2 £c¡j(B) such that bsj 2 BRj(bμ¡j);
and bμ¡j [hB](s¡j) > 0; s¡j reaching hB implies that si reaches h0.
By the de¯nition of a supported restriction bsj 2 Bj . Let now s0j 2 R¤j be

such that s0j(h) = bsj(h) 8 h 2 hB [ succ(hB). Since (R1; :::; R¤) is coherent, 9
μ0¡j 2 £c¡j(R¤) such that s0j 2 BRj(μ0¡j). Let μ00¡j be such that μ00¡j [h] = bμ¡j [h]
8 h =2 succ(hB) and 8 h 2 hB [ h0 [ succ(h0), and μ00¡j[h] = μ0¡j [h] 8 h 2
succ(hB)=(h0 [ succ(h0)). By construction μ00¡j 2 £c¡j(R¤) and s0j 2 BRj(μ00¡j).
Also by construction uhj (s

0
j ; μ

00
¡j) = uhj (bsj ;bμ¡j). The de¯nition of a supported

restriction then implies that s0j 2 Bj . This establishes that B0(h0) is an h0-based
restriction by J given R¤. Since for every j 2 J=fig it holds that B0j(h0) = Bj
and B is a supported restriction by J given R¤, B0(h0) is an h0-based supported
restriction by J given R¤.
This concludes that if B is an h-based nontrivial supported restriction by J
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given R¤; then 9 bh 2 succ(h) and C such that C is an bh-based nontrivial sup-
ported restriction by J given R¤. But since the game is of perfect information,
that implies that there is j 2 J and C such that C is a nontrivial supported
restriction by fjg given R¤. By Claim 3 that contradicts the de¯nition of R¤.
Therefore there is no nontrivial supported restriction given R¤. Claim 5 then

implies that O(R¤) = O(A¤): QED

Proof of Claim 10: For every i 2 N; ¿ i 2 ¨i; si 2 Si and !¡i 2 ¡i
let bu¿i(si; !¡i) = P

s0¡i2S¡i
bu¿ i(si; s0¡i)!¡i(s0¡i). Combining this with the de¯ni-

tion of bu¿i and rearranging gives bu¿i(si; !¡i) = P
À¡i2¨¡i

[
P

s:s(À¡i)=t¡i
u¿ i(si; t¡i) ¢

!¡i(s¡i)] ¢'i(¿ i)(À¡i) = u¿i(si; !¡i). Note that this also implies that si 2 Si is
a best response to !¡i for type ¿ i of player i in G i® si 2 Si is a best response
to !¡i for player ¿ i in G0. But then the requirements for B to be a supported
restriction by J given A are the same in G and G0. This implies that the in-
tersection of all supported restrictions given any set A ½ S such that A = £

i2N
( £
¿i2¨i

A¿i) 6= ; is the same in G and G0, implying A
0¤ = A¤. QED
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