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Abstract

We propose a finite-horizon continuous-time framework for coalitional bargaining,

in which players can make offers at random discrete times. In our model: (i) expected

payoffs in Markov perfect equilibrium (MPE) are unique, generating sharp predictions

and facilitating comparative statics; (ii) MPE are the only subgame perfect Nash equi-

libria (SPNE) that can be approximated by SPNE of nearby discrete-time bargaining

models. We investigate the limit MPE payoffs as the time horizon goes to infinity and

players get infinitely patient. In convex games, we establish that the set of these limit

payoffs achievable by varying recognition rates is exactly the core of the characteristic

function.

∗We would like to thank Jeremy Bulow, Drew Fudenberg, Vijay Krishna, Eric Maskin, Maria Montero,
Philip Reny, Larry Samuelson, József Sákovics, Muhamet Yildiz, two anonymous referees, and seminar
participants at Princeton University, IAS at Princeton, Harvard University, Chicago University, University
of Edinburgh, University of Nottingham, University of Essex, the 2008 AEA meetings, the John Nash 2008
conference, and the SED 2008 Conference on Economic Design for useful comments, and Niels Joaquin and
Peter Landry for valuable research assistance.
†Department of Economics, Duke University, Durham, NC 27708, USA; email: attila.ambrus@duke.edu
‡Department of Economics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; email: shi-

henl@sfu.ca

1



1 Introduction

Coalitional bargaining investigates situations in which different groups of players can reach

an agreement and divide the surplus generated by the coalition being formed. In these games,

a proposer has to choose both a coalition to approach and a division of the surplus that the

coalition generates. A relatively large literature investigates both general coalitional bar-

gaining situations and important subclasses thereof, such as the legislative bargaining model

of Baron and Ferejohn (1989) and its many applications. However, for general coalitional

values, the applicability of the proposed models is limited by (typically severe) multiplicity

of equilibria and analytical intractability.1

This paper proposes a continuous-time framework for general coalitional bargaining that,

as explained below, has several attractive properties that enhance its applicability.2 In our

model, players get random opportunities to approach others and make proposals, according to

independent Poisson processes.3 The model can be regarded as a limit of discrete-time models

in which the time duration between consecutive periods goes to zero, but the probability that

some player is recognized at a given time period also goes to zero. The possibility of no one

being recognized at a given period distinguishes discrete-time approximations of our model

from discrete-time random-recognition coalitional bargaining games typically considered in

the literature (see Okada (1996)). Another key feature of our model is that we assume a

fixed deadline for negotiations. Our motivation for this is twofold. First, in many real-

world bargaining situations, there are natural deadlines for negotiations.4 Second, we use

the resulting model to select among subgame perfect Nash equilibria (SPNE) of the infinite-

horizon model by studying equilibrium payoffs in the limit as the deadline gets infinitely far

1The models in this literature are multilateral extensions of the bilateral dynamic bargaining games of
Stahl (1972) and Rubinstein (1982). For an incomplete list of papers investigating coalitional bargaining
with general coalitional values, see Gul (1989), Chatterjee et al. (1993), Perry and Reny (1994), Moldovanu
and Winter (1995), Bloch (1996), Okada (1996), Ray and Vohra (1997) and (1999), Evans (1997), Konishi
and Ray (2003), and Gomes (2005). For a relatively recent synthesis of the literature, see Ray (2007).

2For other continuous-time bargaining games, see Perry and Reny (1993), Sákovics (1993), and Perry and
Reny (1994). These papers are set in infinite horizon. The first two focus on two-player bargaining, while
Perry and Reny (1994) studies stationary subgame-perfect equilibria (SSPE) in totally balanced games. An
important difference between our setting and the above models is that in the latter, players can make a
proposal at any point in time, after a fixed amount of delay following their previous proposal.

3Players with higher recognition rates can propose more frequently in expectation. This might be either
a consequence of institutional features, like certain members of a legislature (party leaders or other elected
offi cials within the legislature) enjoying preferential treatment in initiating proposals, or of how much atten-
tion and resources a player can devote to the bargaining procedure at hand. For models in which the right
to make an offer is endogenous, see Board and Zwiebel (2012) and Yildirim (2007).

4If a professional sports league and its players’association do not reach an agreement by a certain date,
then the season needs to be canceled, as happened to the 2004-2005 National Hockey League season. For
reaching an out-of-court settlement, the announcement of the verdict poses a final deadline.
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away.5

We also assume that, once an offer is made, the approached parties react immediately,

and all of them have to accept the proposal in order for an agreement to be reached.6 Once an

agreement is reached (by some coalition), the game ends. If a proposal is rejected by any of

the approached players, the game continues, and players wait for the next recognition. Two

highlighted special cases that fit into this framework are n-player group bargaining, where

only the grand coalition can generate positive surplus, and legislative bargaining, where any

large enough coalition of players (in the case of simple majority, voting coalitions involving

more than half of the players) can end the game by reaching an agreement. Another example

is a patent race in which several different coalitions have the opportunity to pool their insights

to develop the same technology, but the race ends after some coalition successfully obtains

a patent.

First, we show that our framework has some convenient features, for any specification

of coalitional values and recognition rates. In particular, a Markov perfect equilibrium

(MPE), which is an SPNE in which strategies only depend on the payoff-relevant part of

the game history, always exists, and expected MPE payoffs are uniquely determined. This

facilitates comparative statics with respect to the parameters of the model (the time horizon

for negotiations, recognition rates for proposals, and the characteristic function indicating

the values of different coalitions).7 Furthermore, we show that the MPE are the only SPNE

of the model that can be approximated by SPNE of nearby discrete-time bargaining models

satisfying a regularity condition, which holds generically for discrete-time approximations of

the continuous-time model. This provides a microfoundation for focusing on MPE in the

continuous-time model, if one regards the latter as a limit of discrete-time environments.

Our main results provide a characterization of the unique MPE payoffs in the limit

as the time horizon tends to infinity in games with convex characteristic functions, for

patient players. We show that, for any vector of recognition rates, the vector of limit MPE

payoffs converges, as the discount rate goes to zero, to a point in the core of the underlying

5Our paper is not the first to examine deadline effects in bargaining. Fershtman and Seidmann (1993)
examine bilateral bargaining with a particular commitment; Ma and Manove (1993) study bilateral bargain-
ing with imperfect control over the timing of offers; Norman (2002) investigates legislative bargaining with
a deadline; finally, Yildiz (2003) and Ali (2006) consider long finite horizon games in which players disagree
over their bargaining powers.

6The assumption that time only lapses between proposals, but not between a proposal and players’
responses, goes back to the original dynamic bargaining models of Stahl (1972) and Rubinstein (1982),
and it naturally holds in various settings. For example, in the legislative bargaining context of Baron and
Ferejohn (1989), it takes time to prepare a new bill and bring it to a vote, but once voting starts, results are
known essentially instantaneously.

7In a companion paper (Ambrus and Lu (2010)), we apply our model to legislative bargaining with a long
finite time-horizon, and conduct these comparative statics.
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characteristic function. Conversely, for any point in the core, there is a vector of recognition

rates such that, as the discount rate goes to zero, the limit MPE payoff vector converge

to the given point. Hence, by varying the recognition rates, we can establish an exact

equivalence between points of the core of the characteristic function and limit MPE payoffs

of the continuous-time bargaining game. We also show that limit MPE payoffs correspond

to stationary equilibrium payoffs of the infinite-horizon game.

Our findings complement existing results on noncooperative foundations of the core in

coalitional bargaining games, as in Chatterjee et al. (1993), Perry and Reny (1994) and Yan

(2003). However, our results are novel in that for any vector of recognition rates, the limit

MPE payoffs are unique, but varying the recognition rates establishes an exact equivalence

between limit MPE payoffs and the core. In some papers, such as Perry and Reny (1994), for

a given specification of the model, there can be a severe multiplicity of equilibrium payoffs

(including all points of the core), making comparative statics more diffi cult than in our

model. In other models, only one direction of the equivalence relationship holds: either all

equilibrium payoffs in a class of games correspond to points of the core (as in Chatterjee et

al. (1993)), or each point of the core can be supported as an equilibrium payoff vector, for

some specification of recognition probabilities (as in Yan (2003)).

In the case of symmetric recognition rates, with a convex characteristic function and

patient players, the limit MPE payoffs of our noncooperative game correspond to the point

in the core that preserves the highest amount of symmetry in the division of the surplus,

subject to the sum of payoffs of members of any coalition being at least the coalition’s value.

In particular, if equal division is a core allocation, then it is selected as the equilibrium payoff

vector.

By providing microfoundations for stationary SPNE in the infinite-horizon version of our

game, we contribute to the literature on selecting Markovian equilibria in games with asyn-

chronous moves (see Bhaskar and Vega-Redondo (2002) and Bhaskar, Mailath and Morris

(2013)). The literature on coalitional bargaining, and in particular the literature on leg-

islative bargaining, primarily focuses on analyzing stationary SPNE because of the severe

multiplicity and relative complexity of SPNE. However, despite the large number of papers

using the solution concept in multilateral bargaining games, there is little work on formally

justifying this practice.8 In fact, Norman (2002) provides negative results in this direction:

he shows that in legislative bargaining, there can be many non-Markovian SPNE, even if

8Baron and Kalai (1993) show that the stationary equilibrium is the unique simplest equilibrium in the
Baron and Ferejohn legislative bargaining game. Chatterjee and Sabourian (2000) show that noisy Nash
equilibrium with complexity costs leads to the unique stationary equilibrium in n-person group bargaining
games (that is, when unanimity is required for an agreement). See also Baron and Ferejohn (1989) for
informal arguments for selecting the stationary equilibrium in their game.
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the game is finite. Moreover, even when one restricts attention to specifications that have

unique SPNE in finite horizons, expected equilibrium payoffs in general do not converge, as

the horizon goes to infinity, to stationary SPNE payoffs of the infinite-horizon version of the

game.

Lastly, we note that our uniqueness result for MPE differs in important ways from exist-

ing uniqueness results in the bargaining literature. In finite-horizon coalitional bargaining

games, there generically is a unique SPNE, as shown in Norman (2002) in the context of

legislative bargaining. This holds because for generic vectors of recognition probabilities, no

player is ever indifferent between approaching any two coalitions of players, so strategies and

continuation payoffs can be simply computed by backward induction.9 This is not the case

in our continuous-time framework: in MPE, indifferences are generated endogenously, for

open sets of recognition rates, for nondegenerate intervals of time during the game. There-

fore, the arguments needed to show uniqueness of MPE in our game are unrelated to those

establishing generic uniqueness of SPNE in finite-horizon discrete games. Moreover, our

uniqueness result also differs from uniqueness results for stationary SPNE in special classes

of infinite-horizon coalitional bargaining games, such as the main result of Eraslan (2002) in

the Baron and Ferejohn (1989) legislative bargaining context, or the generalization of this

result in Eraslan and McLennan (2012). It is known that those uniqueness results do not

extend to all random-proposer coalitional bargaining games (for an explicit example, see Yan

(2001)). By contrast, the uniqueness of MPE payoffs in our finite-horizon games holds for

coalitional bargaining games with general characteristic functions.

2 The Model

The Cooperative Game

Consider a bargaining situation with set of players N = {1, 2, ..., n} and characteristic
function V : 2N → R+, where V (C) for C ⊂ N denotes the surplus that players in C can

generate by themselves (without players in N\C). We refer to elements of 2N as coalitions.

We assume that if C1 ⊂ C2, then V (C1) ≤ V (C2). The core of V is defined as: C(V ) =

{(x1, x2, ..., xn) ∈ Rn :
∑
i∈C

xi ≥ V (C) ∀ C ⊂ N and
∑
i∈N

xi = V (N)}.

The Dynamic Noncooperative Game

The dynamic bargaining game we investigate is defined as follows. The game is set in

continuous time, starting at −T < 0.10 There is a Poisson process associated with each

9The flipside of this simplicity is that strategies (including which coalitions to approach) and continuation
values typically do not converge as the time horizon goes to infinity, and instead “jump around.”
10We use the nonstandard notation of negative time because fixing the deadline at zero facilitates keeping
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player i, with rate parameter λi > 0. The processes are independent from each other. For

future reference, we define λ ≡
∑n

i=1 λi. (In an abuse of notation, we will also refer to λ

as the vector of rates.) Whenever the process realizes for a player i, she can make an offer

x = (x1, x2, ..., xn) to a coalition C ⊆ N satisfying i ∈ C. The offer x must have the following
characteristics:

1. xj ≥ 0 for all 1 ≤ j ≤ n;

2.
∑n

j=1 xj ≤ V (C).

Players in C\{i} immediately and sequentially accept or reject the offer (the order in
which they do so turns out to be unimportant). If everyone accepts, the game ends, and

all players in N are paid their shares according to x. If an offer is rejected by at least one

of the respondents, it is taken off the table, and the game continues with the same Poisson

parameters. If no offer has been accepted at time 0, the game ends, and all players receive

payoff 0.

We assume that players discount future payoffs using a constant discount rate r ∈
(0,∞).11

For a formal definition of strategies in the above game, see Appendix A.

3 Properties of Markov Perfect Equilibrium

In this section, we establish the existence of MPE and the uniqueness of MPE expected

payoffs. That is, while strategies in our model might not be uniquely determined in MPE,

they can only vary in a payoff-irrelevant way.12 We also show that for a generic sequence

of discrete-time games approximating a continuous-time game in our framework, the cor-

responding expected SPNE payoffs converge to the unique MPE payoffs of the limit game.

The latter result provides a microfoundation for focusing on MPE in our model, when we

think about the continuous-time game as a limit of discrete-time environments. We then

provide an example demonstrating that, for an open set of parameter specifications in our

model, there are multiple SPNE with different payoffs. This stands in contrast with the

uniqueness of MPE payoffs, and distinguishes our model from finite-horizon discrete-time

track of reservation values at time t, independently of the length of the game. This is because, in MPE, the
latter only depends on the time remaining before the deadline, not on when the game started. This notation
allows us to have increasing t as time progresses.
11The presence of a deadline, together with the possibility of no recognition occurring over any given time

horizon, implies that most of our conclusions also apply to a model with no discounting (r = 0). See an
earlier circulated version of this paper in which we focused on the case of no discounting.
12For example, if there are three players with equal recognition rates and reservation values, then it is

payoff-irrelevant whether all players approach the other two players with probability 1/2 each, or whether
player 1 always approaches player 2, player 2 always approaches player 3, and player 3 always approaches
player 1.
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bargaining games, in which there is generically a unique SPNE that can be obtained by

backward induction.

To formally state this section’s results, we define discrete-time coalitional bargaining

games and the convergence of such games to a continuous-time game.

Let k ∈ Z++, and fix a set of players N with |N | = n, a characteristic function V, a

discount rate r, and a vector of recognition rates λ ∈ Rn++. As usual, we abuse notation and

denote λ = λ1 + λ2 + ...+ λn.

Definition: A k-period discrete random recognition coalitional bargaining game with

time horizon T , denoted Gk(N, V, λ, T ), is a k-period random-recognition discrete game in

which T
k
units of time lapse between consecutive periods, and in each period, player i is

recognized with probability λi
λ

(1− e−λTk ), while with probability e−λ
T
k , no one is recognized.

The periods are denoted {1, 2, ..., k}.

Definition: A sequence of discrete coalitional bargaining games {Gk(j)
j (N, V, λj, T )}∞j=1

converges to continuous-time bargaining game G(N, V, λ, T ) if k(j) → ∞ and λj → λ as

j →∞.

If {Gk(j)
j (N, V, λj, T )}∞j=1 → G(N, V, λ, T ), then the recognition process indeed converges

to the Poisson process defined for the continuous game: see Billingsley (1995), Theorem 23.2

(p 302). For notational simplicity, we henceforth omit the superscript k(j) for discrete games

indexed by j.

Definition: Gk(N, V, λ, T ) is regular if it has a unique SPNE payoff vector.

If the game is regular, then expected continuation payoffs in SPNE are Markovian: they

depend only on the time remaining before the deadline. In Claim 1 (all Claims are formally

stated and proven in Appendix C), we show that regularity is a generic property among

k-period discrete random recognition bargaining games, in the sense that such games are

regular for an open and dense set of recognition vectors λ.13

We can now state this section’s main result. For the remainder of this paper, we denote

player i’s MPE continuation value at time t as wi(t).

Theorem 1: For every game G in our framework, the following hold:

(i) An MPE exists.

(ii) Every MPE has the same (wi(t))
n
i=1.

13Norman (2002) established an analogous result in the context of discrete-time legislative bargaining
games.
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(iii) Suppose that the sequence of regular discrete coalitional bargaining games G1, G2, ...

converges to G. Then the corresponding sequence of SPNE collection of continuation value

functions converges to the unique MPE collection of continuation value functions of G.

The formal proofs for this paper’s Theorems are in Appendix D. The arguments estab-

lishing Theorem 1 are sketched below.

To show (i), we prove that if a sequence of regular discrete coalitional bargaining games

converges to a continuous-time bargaining game, then there is a subsequence such that the

associated (unique) SPNE collections of continuation payoff functions converge uniformly to

an MPE collection of continuation payoff functions of the limit game.

We start by constructing strategy profiles in continuous time such that the associated

continuation value functions approximate the SPNE continuation payoff functions arbitrarily

well as k →∞. These generated functions are Lipschitz-continuous, with a uniform Lipschitz
constant given by the discount rate, the recognition rates, and V (N). Hence, by the Ascoli-

Arzela theorem, there is a subsequence of the games such that the associated continuation

payoffs uniformly converge to a limit function (which is Lipschitz-continuous with the same

constant) for each player. To establish that these limit functions constitute the continuation

payoff functions of an MPE of the limit game, we first prove a mathematical theorem: at

points t where both the continuation payoff functions along the sequence and the limit

functions are differentiable (which holds for almost all points of time), the derivatives of

the limit functions are in the convex hull of points that can be achieved as limit points

of derivatives at points t1, t2, ... along the sequence, where tk → t as k → ∞. Each of
these limit points correspond to (proposer) strategies that are played arbitrarily close to

t, and arbitrarily far along in the sequence. It follows that these corresponding strategies

are optimal in the limit game, assuming that the limit functions are indeed the continuation

payoff functions. We can use this fact to define strategies that are optimal if the continuation

payoff functions are given by the limit functions, and at the same time generate the limit

functions as the continuation payoff functions of the game.

We then show a simple result, Claim 2, that reveals an important feature of MPE in

our model, and is used in the proof of (ii) as well as in the next section. It states that at

any time t in an MPE, any recognized player only approaches coalitions C that maximize

V (C) −
∑

i∈C wi(t). In other words, players only approach coalitions that are the cheapest

to buy relative to the value they can generate.

We now describe the proof of (ii). Suppose that there are two MPE, A and B, with

different continuation payoff functions. Suppose that t is the earliest time such that contin-

uation payoffs in the two equilibria are equal for all times on the interval [t, 0] (note that

such time exists, as equilibrium continuation functions are continuous, and at time 0, all

8



players’ continuation payoffs are 0 in all equilibria). Let fj(τ) = wAj (τ) − wBj (τ) be the

difference between player j’s payoffs in equilibrium A and in equilibrium B, at time τ . Thus,

when fj(τ) > 0, player j is "more expensive" in equilibrium A than in equilibrium B, at

time τ . Similarly, let gj(τ) =
∑

i 6=j
λip

A
ij(τ)−

∑
i 6=j

λip
B
ij(τ), where pXij (τ) is the probability

that i approaches a coalition that includes j, conditional on i making an offer at time τ in

equilibrium X, be the difference in the density of j being approached by another player in

equilibrium A relative to equilibrium B.

The proof of (ii) is by contradiction. First, Lemma 3 shows that for all τ ,
∑

j∈N fj(τ)gj(τ) ≤
0. This derives from the fact that if fj(τ) > 0, it should become less attractive to approach

a coalition that includes j. However, Lemma 4 implies that in order for fj(τ) > 0 in the

first place, gj(s) must be generally positive for s ∈ (τ , t), at least when fj(τ) is not too small

relative to fi(s) for all i ∈ N and s ∈ (τ , t). This occurs because j’s payoffs are determined

by how often j is approached and by the surplus j receives when she is recognized. Near

t, the former dominates the latter, which must be similar in A and B. Thus, contrary to

Lemma 3, Lemma 4 suggests that f and g should be positively correlated during some time

period. The remainder of the proof, Lemma 5, formally pinpoints the contradiction between

Lemmata 3 and 4.

Taken together, the above results imply that if a sequence of regular discrete-time coali-

tional bargaining games converges to a continuous-time coalitional bargaining game, any

convergent subsequence of the SPNE continuation payoff functions converges to the unique

MPE payoff function of the limit game. This implies that the original sequence of SPNE

continuation payoff functions has to be convergent, with the same limit, which establishes

(iii).

In light of Theorem 1, one may ask whether, in the continuous-time game, there can be

SPNE payoffs that differ from MPE payoffs. The following example shows that the answer

is yes, which implies that SPNE payoffs are not unique.

Example 1: N = {1, 2, 3}, V (N) = 1, V ({1, 2}) = V ({1, 3}) = V ({2, 3}) = 3
4
, V ({1}) =

V ({2}) = V ({3}) = 0, λ1 = λ2 = λ3 = 1
3
and r = 0.
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Figure 1

In Example 1, each player’s marginal contribution to the grand coalition is 1
4
. In any MPE

of the game, for t > t∗ = ln1
4
, each player, when recognized, approaches the grand coalition,

and the continuation payoffs of players (that the recognized player has to offer) is 1
3
(1− et),

as shown in Figure 1, which depicts the players’MPE continuation value function. However,

when these values reach 1
4
(at t = t∗), in any MPE, players have to switch to proposing to

two-player coalitions with probabilities that keep everyone’s continuation payoff constant at

this level. A player’s continuation value cannot decrease below 1
4
when going back in time,

since then every proposer would include the player in the proposed coalition, which would

imply that the player’s continuation value should increase when going back in time, instead

of decreasing. Similarly, a player’s continuation value cannot increase above 1
4
, since then all

other recognized players would exclude the player from the proposed coalition, which would

imply that the player’s continuation value should decrease when going back in time, instead

of increasing.

Therefore, in Example 1, when the time horizon is long enough, the expected payoffs

in MPE are (1
4
, 1

4
, 1

4
). However, it is possible to create a non-Markovian SPNE with higher

expected payoffs for all players. After t∗, play follows an MPE. Before t∗, if no offer was
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rejected so far, any recognized player approaches the grand coalition and offers 0.25 to

each of the other players (keeping 0.5 for herself). In this phase, any approached player is

supposed to accept an offer if and only if she is offered at least 0.25. However, once an offer

is rejected, players switch to an MPE. Note that in the above profile, players’continuation

values, provided that no rejection occurred so far, increase strictly above 0.25 before t∗.

Nevertheless, they are willing to accept an offer of 0.25 because rejecting an offer moves play

to a different phase, in which players’continuation payoffs are exactly 0.25.

The qualitative conclusions from Example 1 carry through to an ε-neighborhood of λ

around (1
3
, 1

3
, 1

3
). In particular, for small enough ε > 0, there exists δ ≥ 0 such that before

time t∗ − δ, the MPE continuation payoff of all three players is 0.25. Nevertheless, using

exactly the same construction as above (with t∗ − δ instead of t∗ as the switching point

between the history-dependent and the history-independent phases of the game), one can

create an SPNE in which all players’expected payoffs converge to a value near 1
3
as t→ −∞.

This shows that there is an open set of recognition rates, for the given characteristic function,

for which there are multiple SPNE with distinct expected payoff vectors.14

We conclude this section by discussing a special class of games in our framework where

SPNE expected payoffs, and in fact strategies, are unique: V (C) = 0 ∀ C 6= N , and

V (N) > 0; we shall normalize V (N) to 1. This type of specification is often referred to as

group bargaining. Only the grand coalition has positive value, so every player’s acceptance

is needed for an agreement.

In Claim 3, we show that in any SPNE, the n-player group bargaining game ends at

the first realization of the Poisson process. SPNE payoff functions are unique, with player

i receiving λi+r
λ+r

+ λ−λi
λ+r

e(λ+r)t when she makes the offer at time t, and continuation payoff
λi
λ+r

(1 − e(λ+r)t) when she is not the proposer. This implies that player i’s expected payoff

converges to λi
λ+r

as T →∞. Moreover, a player’s expected payoff, both unconditionally and
conditionally on being recognized, is increasing in her recognition rate, at all times.15 Figure

2 depicts continuation payoffs for λ1 = 1
2
, λ2 = 1

3
, λ3 = 1

6
and r = 0. The proof uses a similar

argument as in Shaked and Sutton (1984).

14Slight changes in the characteristic function, or a small positive r, do not alter these conclusions either.
15This contrasts with predictions in Perry and Reny (1993) and Sákovics (1993), where being able to make

offers more frequently can be disadvantageous for a player.
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Figure 2

As is well-known in the literature, if the number of players is at least 3, then in an

alternating-offer bargaining game with infinite horizon, any division of the surplus can be

supported in SPNE if players are patient enough. The same conclusion holds in our frame-

work, again for infinite horizon.16 On the other hand, as claimed above, in the game with

deadline, there is a unique SPNE for any vector of recognition rates.

For the rest of the paper, we restrict attention to MPE.

4 Limit of MPE Payoffs for Long Time Horizon

In this section, we investigate MPE payoffs as the time horizon of the game goes to infinity.

To gain some intuition on how limit MPE payoffs depend on recognition rates and the

characteristic function, we start with the following example.

Example 2: N = {1, 2, 3}, V (N) = 1, V ({1, 2}) = 0.8, V ({1}) = 1
2
, V (C) = 0 for all

other coalitions C, λ1 = λ2 = λ3 = 1
3
and r = 0.

16In particular, the type of construction in p 63 of Osborne and Rubinstein (1990) supports even the most
extreme allocation in which one player gets all of the surplus.
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The MPE continuation payoffs are depicted in Figure 3. Going back in time from the

deadline, all players’payoffs initially increase at the same rate, as determined by the com-

mon Poisson recognition rate. In this region, since continuation values are low and therefore

coalitional partners are cheap to buy, players always approach the grand coalition when

recognized. However, when player 3’s continuation payoff reaches 0.2, her marginal contri-

bution to the grand coalition, the other two players stop approaching her with probability

1, in a way that keeps player 3’s continuation payoff constant at 0.2. The other two players’

continuation payoffs keep increasing until player 2’s payoff reaches 0.3, which is her mar-

ginal contribution to the value of coalition {1, 2}. At this point, player 1 starts proposing
with positive probability to the singleton coalition involving only herself (that is, excluding

player 2), and player 2’s continuation payoff is kept constant at 0.3. Finally, player 1’s payoff

converges to 1
2
, the value she can generate by herself. As t→ −∞, the probability that the

grand coalition is approached goes to 1, since as the proposer’s surplus shrinks, players 2

and 3 need to be excluded with lower probability for their expected continuation payoffs to

be held constant.

Figure 3

Example 2 demonstrates that the value of a coalition can act as a lower bound on how
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much players of that coalition can expect in MPE, if players are patient and the time horizon

is long. In the case of group bargaining, featured at the end of the Section 3, relative expected

payoffs are purely determined by relative likelihoods of being the proposer. In games with

more complicated characteristic functions, such as in Example 2, both the recognition rates

and the values of coalitions play a role in shaping expected MPE payoffs.

One feature of Example 2 is that, as the time horizon goes to infinity, the probability

that a recognized player approaches the grand coalition is 1 (limit effi ciency). Moreover, the

limit expected payoffs belong to the core of the characteristic form game: for every coalition,

the sum of members’limit expected payoffs is at least as much as the coalition’s value. We

show below that these features generalize to all convex games (games in which a member’s

marginal contribution to a coalition’s value increases in the coalition), and that, in fact,

there is a one-to-one mapping between the core and the set of limit payoffs achievable by

varying recognition rates when there is no discounting.

Definition: A bargaining game is convex if V (C ∪ A) − V (C) ≥ V (C ′ ∪ A) − V (C ′),

whenever C ⊃ C ′ and C ∩ A = C ′ ∩ A = ∅.
Let S(r, V ) be the set of limit MPE payoffs (as t→ −∞) obtained by varying λ ∈ Rn++,

and let S(V ) = limr→0 S(r, V ). Recall that C(V ) denotes the core of V .

Theorem 2: If V is convex, then S(V ) = C(V ).

One direction of Theorem 2, C(V ) ⊆ S(V ), can be established for all games with a

nonempty core, even nonconvex games. The idea is to take relative recognition rates pro-

portional to payoffs in a core allocation. Then, if every player always approaches the grand

coalition N , expected payoffs as T →∞ converge to the core allocation at hand, from below.

Because the sum of continuation payoffs of any coalition C’s members at no time exceeds

vC , approaching N is optimal. This part of Theorem 2 is similar to the main result in Yan

(2003) on ex ante expected payoffs in stationary SPNE of infinite-horizon random-proposer

discrete-time games, with the caveat that in our model, the discount rate has to converge

to 0 to achieve the core convergence result because in our model, the expected time before

the first proposal is positive. Therefore, the limit case of our model with infinitely patient

players can be compared to the model in Yan (2003).17

To establish S(V ) ⊆ C(V ) in convex games, we show that in the limit as r → 0 and

t → −∞, the sum of MPE payoffs of members of any coalition C is bounded below by

V (C). We first show that for any player i, wi(t) < V ({i}) implies that i is included in any
17Yan shows that if players are suffi ciently patient and the vector of recognition probabilities is outside the

core, the resulting stationary SPNE allocation is ineffi cient, but does not examine whether the ineffi ciency
vanishes as players become patient.
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coalition approached by any recognized player, from which it follows that wi(t) is bounded

below by a function converging to V ({i}). We then iteratively establish the result for all
larger coalitions.

We can say more about limit payoffs and how coalitions form far from the deadline in

convex games. Let S(t) = arg maxC⊆N{V (C) − wC(t)} be the set of optimal coalitions to
approach at time t, λC =

∑
i∈C λi, and wC(t) =

∑
i∈C wi(t).

Theorem 3: For a convex game V and small enough r, there exist a partition P ∗ of the
set of players N , a coalition C∗ ∈ P ∗ and a time t̂ < 0 such that, in MPE:

i) for all t < t̂, S(t) ≡ S∗ is constant, {C∗, N} ⊆ S∗, and every element of S∗ is the union

of C∗ and elements of P ∗;

ii) limt→−∞wi(t) = λi
r+λC

V (C∗) for all i ∈ C∗; and
iii) for any D ∈ P ∗ with D 6= C∗, there exists E ∈ S∗ such that wD(t) = V (E) −

V (E\D) ≡ wD for all t < t̂, and limt→−∞wi(t) = λi
λD
wD for all i ∈ D.

Theorem 3(i) states that for patient enough players, when the deadline is far, the set

of optimal coalitions to approach does not change and must include N . However, only a

subset of players C∗ is part of any optimal coalition. We will refer to to this set of players

as essential. Non-essential players, who are approached by others with probability strictly

less than 1 far from the deadline, are partitioned into cells of players with the property that

either all or none of them are in any coalition forming far from the deadline. Parts (ii) and

(iii) of Theorem 3 reveal that the limit payoffs of essential versus non-essential players are

determined differently. Essential players split the value that they can create by themselves,

while the total limit payoff of players in any non-essential cell is equal to that cell’s marginal

contribution. In both cases, within each cell, limit payoffs are proportional to recognition

rates.

In the focal case of symmetric recognition rates, Theorem 3 implies that the limit payoff

of player i, as r → 0 and t→ −∞, is 1
|C∗|V (C∗) if i ∈ C∗, and 1

|D|wD for all i ∈ D ∈ P
∗\{C∗}.

For example, when V (N)
|N | (1, 1, ..., 1) ∈ C(V ), it is the limit MPE payoffas r → 0 and t→ −∞:

in that case, as argued when proving Theorem 2, we have C∗ = N . In general, coalitions’

marginal contributions put upper bounds on the limit payoffs of different players, which

breaks the equality of the allocation in the limit payoff. However, within each partition cell

of P ∗, all players receive the same limit payoffs. Therefore, in convex games, our model’s

limit MPE payoffs with symmetric recognition rates motivate a solution concept that selects

the most symmetric allocation in the core compatible with coalitional constraints.

We now sketch the proof of Theorem 3. First, we show that for r and t small enough,

the extra surplus from being the proposer relative to being approached is small. We use
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this fact to show that wC(t) ≤ V (N)− V (N\C): otherwise, proposals by players outside C

would not include all of C, and without a suffi ciently large proposer surplus to compensate

for exclusion, wC(t) would drop as we move away from the deadline. This implies that when

players are patient enough, far away from the deadline, N is always an optimal coalition to

approach.

Next, we establish the partitional structure described in Theorem 3(i) by showing that

both the intersection (which must be nonempty) and the union of two sets from S(t) must

also be elements of S(t). We then show that, far away from the deadline, the proposer surplus

V (N) − wN(t) is weakly monotonic in t, and that therefore, before a certain time t̂, S(t)

is constant, which implies Theorem 3(i). Taking P ∗ to be the coarsest partition satisfying

Theorem 3(i) and solving for wi(t) for t ≤ t̂ yields the rest of Theorem 3.

Because arg maxC⊆N{V (C) − wC} is upper-hemicontinuous in wC , the set of optimal

coalitions to approach remains S∗ if the continuation values correspond to the limits in

Theorem 3. Claim 4 uses this fact to establish that the limit payoffs from Theorem 3

constitute stationary equilibrium payoffs in the infinite-horizon version of the game, when r

is low.

We conclude the section by showing that in non-convex games, even when the core is

nonempty, the limit equilibrium payoff vector might be outside the core, and that there can

be ineffi ciency in the limit, in that ineffi cient coalitions form with strictly positive probability.

Example 3: N = {1, 2, 3, 4}, V (N) = 1, V ({1, 2, 3}) = 1
2
, V ({1, 2}) = V ({2, 3}) =

V ({3, 1}) = 3
8
, λ1 = λ2 = λ3 = 1

15
, λ4 = 4

5
, and r = 0. This game has a nonempty core; for

example, (1
4
, 1

4
, 1

4
, 1

4
) ∈ C(V ). It can be shown that in the limit as the deadline gets infinitely

far away, expected payoffs converge to the ineffi cient allocation (1
8
, 1

8
, 1

8
, 1

2
), outside the core.

In particular, far away from the deadline, only player 4 approaches the grand coalition, and

all other players, when recognized, form ineffi cient two-player coalitions.18

5 Discussion: Extensions

Our model can be extended in many directions. Some extensions, like incorporating asym-

metric information, are beyond the scope of this paper. Others are relatively straightforward;

we discuss two of these below.
18This game is not totally balanced, because the restriction of the game with only players {1, 2, 3} has an

empty core (even though the whole game has a nonempty core). Claim 5 provides a totally balanced - but
nonconvex - game where limit MPE payoffs are also outside the core.
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5.1 Infinite Horizon

Without a deadline, our model yields very similar results to a discrete-time model in which

a proposer is selected randomly in every period (with perhaps a positive probability of no

one being selected). For example, in the group bargaining case, in both models, any given

allocation of the surplus can be supported in stationary SPNE for r low enough, and there

is only one stationary SPNE. In our framework, payoffs are characterized by:

wi =

∞∫
0

[λie
−(λ+r)τ (1−

∑
j∈N\{i}

wj) +
∑

j∈N\{i}

λje
−(λ+r)τwi]dτ .

The solution of this system is wi = λi
r+λ
, the same as the limit payoffs in the finite-horizon

model as the horizon goes to infinity.19

5.2 Gradually Disappearing Pies

Our model assumes that the surplus generated by any coalition stays constant until a cer-

tain point of time (the deadline) and then discontinuously drops to zero. Although there are

many situations in which there is such a highlighted point of time that makes subsequent

agreements infeasible, in other cases, it is more realistic to assume that the surpluses start

decreasing at some point, but only go to zero gradually. For example, agreeing upon broad-

casting the games of a sports season yields diminishing payoffs once the season started, but

if there are games remaining in the season, a fraction of the original surplus can still be

attained.

Some of our results can be extended to this framework. For example, the case of

group bargaining remains tractable when V (N) is time-dependent, even without assum-

ing specific functional forms. Indeed, if V (N)(t) is continuous and nonincreasing, and

there is some time t∗ at which V (N) becomes zero, our argument for the uniqueness of

SPNE payoffs applies with minor modifications. Continuation payoff functions are then

wi(t) = λi
∫∞
t
e−(λ+r)(τ−t)V (N)(τ)dτ , so payoffs remain proportional to recognition rates at

all times, and since the grand coalition always forms, the sum of expected payoffs across all

players is simply the expected size of the pie at the next recognition (0 after t∗). Even if

we do not assume that there is a time t∗ as above, but instead only that V (N)(t) is nonin-

creasing and limt→∞ V (N)(t) = 0, it is possible to show uniqueness of MPE payoffs. It is

an open question whether this uniqueness result for gradually disappearing pies extends to

general coalitional bargaining.

19For small r, this is a special case of Theorem 4, since group bargaining games are convex.
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6 Conclusion

In this paper, we propose a tractable noncooperative framework for coalitional bargaining,

which can be used to derive sharp predictions with respect to the division of the surplus. In

subsequent research, we plan to extend the framework to settings with asymmetric informa-

tion, as well as situations in which a successful agreement by a proper subcoalition does not

end the game, and the remaining players can continue bargaining with each other.

In a companion paper (Ambrus and Lu (2010)), we apply our model to legislative bar-

gaining, where there is a natural upper bound for negotiations: the end of the legislature’s

mandate. We characterize limit payoffs when the time horizon for negotiations goes to infin-

ity, and show that there is a discontinuity between long finite-horizon legislative bargaining

and infinite-horizon legislative bargaining. In particular, even in the limit, the model with

deadline puts restrictions on the distributions of surplus that can be achieved by varying

recognition probabilities of different players, leading to a lower-dimensional subset of all

feasible distributions.20 In future work, we also plan to extend our finite-horizon continuous-

time random recognition framework to spatial bargaining situations like in Baron (1991) and

Banks and Duggan (2000).

20In contrast, Kalandrakis (2006) shows that in the infinite-horizon Baron and Ferejohn legislative bargain-
ing model, any division of the surplus can be achieved as an expected stationary SPNE payoff if recognition
probabilities can be freely specified.
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8 Appendix A: Formal Definition of Strategies

First, we define the set of possible histories of the game formally. We need to consider two

types of histories.

For any t ∈ [−T, 0], a time-t proposer-history consists of:

(i) recognition times −T ≤ t1, ..., tk < t for k ∈ Z+;

(ii) proposers assigned to the above recognition times it1 , ..., itk ∈ N ;
(iii) feasible proposals (Ctm , xtm) by itm , where Ctm ⊆ N and xtm ∈ Rn+, for every m ∈

{1, ..., k}; and
(iv) acceptance-rejection responses (ytmjm,1 , ..., y

tm
jm,nm

) such that, for every m ∈ {1, ..., k}:
nm = |Ctm| − 1, jm,1, ..., jm,nm ∈ Ctm , jm,k′ 6= jm,k′′ if k′ 6= k′′, ytmjm,k′ ∈ {accept, reject} for

every k′ ∈ {1, ..., nm}, and ytmjm,k′ = reject for some k′ ∈ {1, ..., nm}.
Let Hp

t denote the set of all time-t proposer-histories, and let Hp = ∪
t∈[−T,0]

Hp
t .

For any t ∈ [−T, 0], a time-t responder-history of i ∈ N consists of:

(i) a time-t proposer history hpt ∈ Hp
t ;

(ii) a time-t proposer j ∈ N\{i};
(iii) a feasible proposal at time t : (Cj, xj) by j, where Cj ⊆ N and xj ∈ Rn+, such that

i ∈ Cj;
(iv) previous acceptance-rejection decisions at time t : (yj1 , ..., yjm) such that j1, ..., jm ∈

Cj\{i, j}, jk′ 6= jk′′ if k′ 6= k′′, and yjk′ ∈ {accept, reject} for every k′ ∈ {1, ...,m}.
Let Hri

t denote all time-t responder-histories of i, and let Hri = ∪
t∈[−T,0]

Hri
t .

Next we construct metrics on the spaces of different types of histories, which we will use

to impose a measurability condition on strategies.

Define a metric dp on Hp such that dp(hpt , h̃
p
t′) < ε for ε > 0 iff (i) |t− t′| < ε; (ii) hpt and

h̃pt′ have the same number of recognition times k ∈ Z+; (iii) denoting the recognition times

of hpt and h̃
p
t′ by t1, ..., tk and t

′
1, ..., t

′
k, |tl− t′l| < ε ∀ l ∈ {1, ..., k}; (iv) itl = i′t′l

∀ l ∈ {1, ..., k},
where itl is the proposer assigned at tl by h

p
t and i

′
t′l
is the proposer assigned at t′l by h̃

p
t ; (v)

Ctl = C ′t′l
∀ l ∈ {1, ..., k}, where Ctl is the approached coalition at tl in h

p
t and C

′
t′l
is the

approached coalition at t′l in h̃
p
t ; (vi) ||xtl − x′tl || < ε, where || · || stands for the Euclidean

norm in Rn, and xtl and x′t′l are the proposed allocations at tl in h
p
t and at t

′
l in h̃

p
t ; (vii)

ytl = ỹt
′
l ∀ l ∈ {1, ..., k}, where ytl and ỹt′l are the vector of acceptance-rejection responses at

tl in h
p
t and at t

′
l in h̃

p
t .

Define a metric dri on Hri such that dri(hrit , h̃
ri
t′ ) < ε for ε > 0 iff (i) |t − t′| < ε; (ii)

dp(hpt , h̃
p
t′) < ε, where hpt and h̃

p
t′ are the proposer-histories belonging to h

ri
t and h̃

ri
t′ ; (iii) the

time-t proposer in hrit and the time-t
′ proposer in h̃rit′ is the same player j ∈ N\{i}; (iv)

Cj = C ′j and ||xj − x′j|| < ε, where (Cj, xj) is the time-t proposal in h
ri
t and (C ′j, x

′
j) is the
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time-t′ proposal in h̃rit′ ; (v) (yj1 , ..., yjm) = (y′j1 , ..., y
′
jm), where (yj1 , ..., yjm) is the previous

acceptance-rejection responses in hrit and (y′j1 , ..., y
′
jm) is the previous acceptance-rejection

responses in h̃rit′ .

The set of proposer action choices of player i at any t ∈ [−T, 0], denoted by Api , is defined

as {(Ci, xi)|i ∈ Ci ⊆ N,
∑
j∈N

xji ≤ V (Ci), xi ≥ 0}. Define a metric dap,i on Api such that

dap,i((Ci, xi), (C
′
i, x
′
i)) < ε for ε > 0 iff Ci = C ′i and ||xi − x′i|| < ε.

Definition: A pure strategy of player i in game G is a pair of functions: a proposal

function Hp → Api that is measurable with respect to the σ-algebras generated by d
p and

dap,i, and a responder function Hri → {accept, reject} that is measurable with respect to
the σ-algebra generated by dri and the σ-algebra belonging to the discrete topology on

{accept, reject}.

The measurability requirement on pure strategies is imposed to ensure that the expected

payoffs of players are well-defined after any history.21

9 Appendix B: Embedding Continuation PayoffFunc-

tions of Discrete Games in Continuous Time

For regular discrete coalitional bargaining game Gk(N, V, λ, T ), let wki (m) be player i’s SPNE

continuation value before the realization of the recognition process in period m, for m ∈
{1, 2, ..., k} (thus, wki (k) = 1−e−λ

T
k

λ
λi). Let wki (k + 1) = 0. We extend these regular SPNE

continuation payoff functions to continuous time.

Definition: For all t ∈ [−T, 0], let wG
k

i (t) = e−r∆wki (
⌊
T+t
T
k
⌋

+ 1), where ∆ satisfies

e−r∆(1 − e−λ
T
k ) = λ

r+λ
(1 − e−(r+λ)T

k ). Thus, wG
k

i (t) is a step-function derived from the

discrete game payoffs.

Note that for k high enough, ∆ ∈ (0, T
k

). Also note that as k →∞, ∆→ 0.

The definition is consistent with the following setup: place the mth period of the discrete

game at time −k−(m−1)
k

T + ∆. For t ∈ [−k−(m−1)
k

T,−k−m
k
T ) (which corresponds to the

mth of the k T
k
-sized intervals in [−T, 0]), wG

k

i (t) is simply wki (m) discounted from the

perspective of time −k−(m−1)
k

T . At time −k−(m−1)
k

T , a player receiving an expected payoff x

21We do not need the measurability assumption to make sure that strategies lead to well-defined outcomes
for any realization of the Poisson processes. In contrast with differential games, the conceptual problems
pointed out in Alós-Ferrer and Ritzberger (2008) do not arise in our context.
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with density λe−λ(τ+
k−(m−1)

k
T ) throughout [−k−(m−1)

k
T,−k−m

k
T ) has value x

∫ T
k

0
λe−(λ+r)τdτ =

xλ(1−e−(λ+r)T
k )

r+λ
, while a player receiving the same expected payoff x at time −k−(m−1)

k
T + ∆

with probability
∫ T

k

0
λe−λτdτ = 1 − e−λTk has value xe−r∆(1 − e−λTk ). Thus, our definition

of ∆ implies that any player will be indifferent between the continuous and the discrete

recognition process specified above.

10 Appendix C: Additional Formal Results

Claim 1: U = {λ ∈ Rn++|Gk(N, V, λ, T ) is regular} is open and dense.
Proof of Claim 1: Let S = {v ∈ Rn+|∃C1, C2 ∈ 2N s.t. C1, C2 ∈ arg maxC3i(V (C) −∑
j∈C vj) for some i ∈ N}. This is the set of reservation payoff vectors for which at least one

player has at least two different optimal coalitions to approach.

Let vk(m) denote an SPNE reservation value vector in periodm ∈ {1, ..., k} inGk(N, V, λ, T ).

Since k is fixed in the following proof, we abbreviate by writing v(m). Note that in any

Gk(N, V, λ, T ), v(k − 1) = e−r
T
k V (N)

[
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

]
. When we vary λ, we will

write vλ(m).

Suppose that the reservation value is arbitrarily given to be v in periodm, and all players

play optimally in that period. Then, we denote the set of reservation value vectors attainable

in period m − 1 as F (v, λ), where F is a correspondence. Note that v /∈ S ⇔ F (v, λ) is

single-valued, in which case we denote its unique element as f(v, λ). Since S is a finite

collection of (n − 1)-dimensional hyperplanes, the set on which F is single-valued is open

and dense (call this set W ) within Rn+ × Rn++;
22 within W f is clearly continuous.

Openness: Suppose λ ∈ U . By definition, for all m ∈ {1, 2, ..., k − 1}, (vλ(m), λ) ∈

W , with vλ(k − 1) = e−r
T
k V (N)

[
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

]
and vλ(m) = f(vλ(m + 1), λ).

Now note that because f is continuous and W is open, for any λ′ close enough to λ,

we have that for all m ∈ {1, 2, ..., k − 1}, vλ′(m) is close to vλ(m), where vλ
′
(k − 1) =

e−r
T
k V (N)

[
1−e−λ

′ T
k

λ′ (λ′1, λ
′
2, ..., λ

′
n)

]
and vλ

′
(m) = f(v(m+1), λ′). Again due to the openness

of W , this implies that λ′ ∈ U .
Density: We show that a payoff vλ(t) can be changed in "any direction" in Rn by per-

turbing λ. To do so, we argue that in the linear approximation of changes in vλ(t) with

respect to changes in λ, the transformation has full rank. This will allow us to break any

indifferences at t using infinitesimal changes in λ.

22Obviously, if (v, λ) ∈W , then (v, λ′) ∈W as well.
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When v(m) /∈ S, we can write:

vi(m−1) =

[
λi
λ

(1− e−λTk ) max
C3i

(V (C)−
∑
j∈C

vj(m)) +
[
1− (1− pi(m))(1− e−λTk ))

]
vi(m)

]
e−r

T
k

where pi(m) is the probability that i is included in period m’s proposal given that there is

one. Note that in a neighborhood of v(m) /∈ S, arg maxC3i(V (C) −
∑

j∈C vj(m)) is single-

valued and constant. Fixing λ and in such a neighborhood, vi(m − 1) is linear in each

vj(m), so we can write f(v(m) + δ, λ) − f(v(m), λ) = Amδ, where Am is an n × n matrix.
Note that the ith column of Am must have a strictly positive ith element and have all

other elements weakly negative. Similarly, fixing v(m) /∈ S, we note that each vi(m − 1)

is infinitely differentiable in each component of λ, so we have the linear approximation

f(v(m), λ + γ) − f(v(m), λ) ≈ Bmγ, where Bm is an n × n matrix. Just like Am, the

ith column of Bm must have a strictly positive ith element and have all other elements

weakly negative. We have f(v(m) + δ, λ + γ) − f(v(m), λ) ≈ Amδ + Bmγ. Define Bk =

Dλ[e
−r T

k V (N)1−e−λ
T
k

λ
(λ1, λ2, ..., λn)].

Fix ε > 0, and suppose λ /∈ U . Then ∃τ such that v(τ) ∈ S. Let t be the largest such τ .
We still have that all m ∈ {t + 1, t + 2, ..., k − 1}, F (., .) is single-valued in a neighborhood

of (v(m), λ), with v(k− 1) = e−r
T
k V (N)

[
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

]
and v(m) = f(v(m+ 1), λ).

Let λ1 = λ+ γ be in a neighborhood of λ. Then we have the linear approximation vλ
′
(t) ≈

vλ(t) + (At+1At+2...Ak−1Bk +At+1At+2...Ak−2Bk−1 + ...+At+1Bt+2 +Bt+1)γ ≡ vλ(t) +Mγ.

Since the set of matrices with strictly positive diagonal entries and weakly negative entries

elsewhere is closed under addition and multiplication, M must retain that property. Thus,

M has full rank. Therefore, ∃λ1 within distance ε
2
of λ such that vλ

1
(τ) /∈ S for all τ ≥ t.

Now with λ1, go back in time until the next indifference point, and iterate the argument

with ε
4
, ε

8
, etc. Since there is a finite number of periods k + 1, there is a finite number, say

q, of indifferences to be broken. So λq, which is by construction within ε of λ, ensures that

Gk(N, V, λq, T ) is regular. �

Claim 2: In any MPE, at any t ≤ 0 where i ∈ N is recognized, she approaches a coalition

C ∈ arg max
D3i

V (D)−
∑

j∈D\{i}
wj(t) and offers exactly wj(t) to every j ∈ C\{i}. Furthermore,

the offer is accepted with probability 1.

Proof of Claim 2: Note that
∑
j∈N

wj(t) ≤ V (N)− eλt, where eλt > 0 is the probability

that no one has the chance to make an offer during [t, 0]. Furthermore, in any MPE, if

C ⊂ N is approached by i at t, and every j ∈ N\{i} is offered strictly more than wj(t),
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then the offer has to be accepted by everyone with probability 1. Therefore, player i can

guarantee a payoff strictly larger than wi(t) by approaching N and offering wj(t)+ε to every

j ∈ N\{i} for small enough ε > 0. On the other hand, a rejected offer results in continuation

payoff wi(t) for i. Next, note that approaching a coalition C and offering strictly less than

wj(t) to some j ∈ C results in rejection of the offer with probability 1, and is therefore not

optimal. Approaching a coalition C and offering wj(t) + ε for ε > 0 to some j ∈ C is also

suboptimal, because offering instead wj(t) + ε/n to every j ∈ C\{i} results in acceptance
of the offer with probability 1 and strictly higher payoff. Therefore, whatever coalition C

is approached, player i has to offer exactly wj(t) to every j ∈ C\{i}. It cannot be that
this offer is accepted with probability less than 1, since then player i could strictly improve

her payoff by offering slightly more than wj(t) to every j ∈ C\{i}, and that offer would be
accepted with probability 1. Finally, it cannot be that C /∈ arg max

D⊂N
V (D)−

∑
j∈D\{i}

wj, since

then approaching some C ′ ∈ arg max
D⊂N

V (D) −
∑

j∈D\{i}
wj instead, and offering slightly more

than wj(t) to every j ∈ C ′\{i} would result in a strictly higher payoff. �

Claim 3: In any SPNE, the n-player group bargaining game ends at the first realization
of the Poisson process for any player as follows: an offer is made to N and all players accept.

SPNE payoff functions are unique, with player i receiving λi+r
λ+r

+ λ−λi
λ+r

e(λ+r)t when she makes

the offer at time t, and λi
λ+r

(1− e(λ+r)t) when she is not the proposer.

Proof of Claim 3: Let vi(t) and vi(t) be the supremum and the infimum, respectively,

over all SPNE and all histories preceding t, of player i’s share when she makes an offer at

time t. Let wi(t) and wi(t) be the supremum and the infimum, respectively of player i’s

share when no player is making an offer, over all SPNE, histories and j 6= i.

Note that the density of i being the next recognized player, at x time units from the

current time, is λie−λx, and payoffs received at that point are discounted by a factor e−rx.

First, note that vi(t) +
∑

j 6=iwj(t) = 1, since this will be true in an SPNE where i offers

everyone wj(t) and takes the rest, and where, if any such offer by i is rejected, we move to

a SPNE giving a continuation value of wj(t) to the first rejector.23

Consider the following profile:

1. When any player k 6= i makes an offer, the offer to player i must be wi(t), and the

offer to all j 6= i, k is wj(t). If k offers less to any player, the offer is rejected by that player;

23Strictly speaking, at this point in the argument, it is possible that wj(t) is not attained in any SPNE.
However, since values arbitrarily close to it are attained in some SPNE, vi(t) can be arbitrarily close to
1 −

∑
j 6=i wj(t), which implies that vi(t) +

∑
j 6=i wj(t) = 1. To simplify the exposition, we proceed in the

proof as if all suprema and infima are attained, keeping in mind that we are referring to arguments analogous
to the one presented in this footnote.
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if player j 6= i, k is the rejector, we move to an SPNE giving player k an expected payoff of

wk(t), and if player i is the rejector, we move to an SPNE giving player i an expected payoff

of wi(t). If k makes the correct offer and player j is the first rejecting the offer, then we

move to an equilibrium giving wj(t) to j.

2. When i makes an offer, she gives herself vi(t) and gives wj(t) to all j 6= i, as specified

above.

To show that the profile is an SPNE, we need to verify that it indeed exists, i.e. that

offers are feasible. Note that player k’s offer is feasible if wi(t) +
∑

j 6=iwj(t) ≤ 1. But

this must be true since the sum of all continuation values in any SPNE must be less than

1, and the SPNE where wi(t) is attained has a sum of continuation values at t of at least

wi(t) +
∑

j 6=iwj(t). As established above, player i’s offer is feasible. We also need to check

that players’actions are optimal. The only case where this is not trivial is that when k

makes an offer, she may prefer to make one that is rejected by i. However, this will not be

the case in an interval close to 0 where the probability of any future recognition ≤ 1
n
, since

then wk(t) ≤ 1
n

= 1− n−1
n
≤ 1−

∑
i 6=k wi(t), so k will want the offer to be accepted. Denote

this interval [s, 0] (so s = 1
λ

ln(n−1
n

)).

The above profile is of course the best possible one for i, so on [s, 0] we have:

wi(t) =

∫ 0

t

[
λie
−(λ+r)(τ−t)vi(τ) +

∑
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

]
dτ

=

∫ 0

t

[
λie
−(λ+r)(τ−t)(1−

∑
j 6=i

wj(τ)) +
∑
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

]
dτ

Since wi(t) is the integral of a continuous function, its derivative exists, so:

wi
′(t) = −λi(1−

∑
j 6=i

wj(t))−
∑
j 6=i

λjwi(t)

+(λ+ r)

∫ 0

t

[
λie
−(λ+r)(τ−t)(1−

∑
j 6=i

wj(τ)) +
∑
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

]
dτ

= −λi(1−
∑
j 6=i

wj(t))−
∑
j 6=i

λjwi(t) + (λ+ r)wi(t)

= (λi + r)wi(t)− λi(1−
∑
j 6=i

wj(t)).

Similarly, we note that vi(t) +
∑

j 6=iwj(t) = 1 on [s, 0], since this occurs when i offers

everyone wj(t) and takes the rest, and where, if i gives any less than wj(t) to a player, we
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move to a SPNE giving a continuation value of wj(t) to the first rejector. On [s, 0], wj(t)

and the probability of a future recognition are close to 0, so it will be optimal for i to make

such an offer. By a similar argument as above, we can show that:

wi
′(t) = (λi + r)wi(t)− λi(1−

∑
j 6=i

wj(t))

Thus on a nontrivial interval [s, 0], we have a system of 2n differential equations con-

tinuous in t, and Lipschitz continuous in 2n unknown functions with initial values wi(0) =

wi(0) = 0. By the Picard-Lindelof theorem, this initial value problem has a unique solution.

It is easy to check that the following functions constitute the solution:

wi(t) = wi(t) =
λi

λ+ r
(1− e(λ+r)t) ≡ wi(t)

The above argument can be iterated for [2s, s] since the game ending at s with payoffs

wi(s) is simply a scaled version of the original game, and so on. �

Claim 4: In convex games, for small enough r, MPE limit payoffs (limτ→−∞wi(τ))

constitute stationary equilibrium payoffs.

Proof of Claim 4: Take P ∗ from the game with deadline, as defined in Theorem 3.

(Below, we refer to P ∗ and C∗ simply as P and C.) Suppose that limit stationary payoffs

are as follows: wi = λi
λD
vD for all i ∈ D ∈ P\{C}, and wi = λi

r+λC
V (C) for all i ∈ C. Let

qD be the stationary probability that D ∈ P is approached conditional on a player being

recognized. Note that
∫∞

0
e−(λ+r)τdτ = 1

λ+r
. We need to verify that the following condition

is satisfied: wi = 1
λ+r

(λi
r

r+λC
V (C) + λqDwi), where D is the cell of P containing i, with

qC = 1 and qD ∈ [0, 1] for all D ∈ P\{C}.
It is easy to check that our condition is satisfied for i ∈ C. For i /∈ C, the condition

becomes: qD = λ+r
λ
− λD
λvD

r
r+λC

V (C). This expression is clearly continuous in r and approaches

1 as r → 0. We need only check that it is decreasing in r in a right neighborhood of

0⇐⇒ 1 < λD
vD
V (C) 1

r+λC
for small enough r ⇐⇒ V (C)

λC
> vD

λD
.

In the game with deadline, we have the following upper bound for wi(t), corresponding

to the case where i is always approached prior to t̂:
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wi(t) < e−(λ+r)(t̂−t)wi(t̂) +

t̂∫
t

[
λie
−(λ+r)(τ−t)(V (C)− wC(τ)) + λe−(λ+r)(τ−t)wi(τ)

]
dτ

= [wi(t̂)−
λi
λC
wC(t̂)]er(t−t̂) +

λi
λC

[wC(t̂)− λC
r + λC

V (C)]e(r+λC)(t−t̂) +
λi

r + λC
V (C)

This bound converges to λi
r+λC

V (C). Thus, limτ→−∞wi(τ) = λi
λD
vD ≤ λi

r+λC
V (C) <

λi
λC
V (C), which implies V (C)

λC
> vD

λD
, as desired. �

Claim 5: Limit payoffs as r → 0 and t → −∞ can be outside the core in non-convex

but totally balanced games.

Proof of Claim 5: Consider the following example: N = {1, 2, 3, 4, 5, 6}, V ({1, 2, 3}) =

V ({3, 4, 5}) = V ({5, 6, 1}) = 2, V (C) = 2 for all C 6= N that includes at least two odd players

and an even player, V (N) = 3, V (C) = 0 for all other coalitions C, λ1 = λ3 = λ5 = 1
9
, and

λ2 = λ4 = λ6 = 2
9
.

Note that V has nonempty core {(1, 0, 1, 0, 1, 0)}. The core of the subgame with players
1 through 5 is also nonempty: {(0, 0, 2, 0, 0)}, and the same holds for all subgames with
three odd and two even players. Finally, any other subgame where surplus can be generated

includes only one surplus-generating three-player coalition, so any allocation where these

three players split the total surplus of 2 is in the core. Therefore, V is totally balanced.

We now verify that with r = 0, payoffs converge to 1
3
for all players, far from the core

allocation. The reasoning below can be extended to small positive r.

Going back in time from the deadline, all players will approach the grand coalition N

until the time t∗ where payoffs reach (.2, .4, .2, .4, .2, .4). Prior to t∗, all proposals shift to

three-player coalitions generating surplus 2. This is because for approaching N to be optimal

at a time t, the sum of continuation values for two even players and one odd player cannot

exceed 1, which implies
∑

iwi(t)+
∑

i is even wi(t) ≤ 3. Since all surplus-generating coalitions

other than N generate a surplus of 2, we must have
∑

iwi(t) ≥ 2 for all t < t∗, with strict

inequality if N is approached with positive probability between t and t∗. Therefore, N can

only be approached with positive probability between t and t∗ if
∑

i is even wi(t) < 1.

Standard computations then show that if all proposals prior to t∗ are made to three-

player coalitions generating surplus 2, all players’payoffs converge to 1
3
, so that, in fact, N

is not approached with positive probability before t∗. �
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11 Appendix D: Proofs of Theorems

11.1 Proof of Theorem 1

STATEMENT (i): There exists an MPE.
Proof of Statement (i): We prove the following result, which implies existence:
Suppose that the sequence of regular discrete coalitional bargaining games {Gj(N, V, λ

j, T )}∞j=1

(G1, G2, ... for short) converges to continuous-time bargaining game G(N, V, λ, T ). Then the

sequence has a subsequence {Gjh}∞h=1 such that {wGjh (.)}∞h=1, the sequence of SPNE payoff

functions, converges uniformly. Moreover, for any such subsequence, the limit of {wGjh (.)}∞h=1

corresponds to the continuation payoff functions of an MPE of G(N, V, λ, T ).

The following lemma is used in proving the result:

Lemma 1: Suppose f 1 ≡ (f 1
1 , ..., f

1
n), f 2 ≡ (f 2

1 , ..., f
2
n), ... is a sequence of collections

of functions, where fkj : [0, T ] → R are Lipschitz-continuous with Lipschitz-constant L, for
every k ∈ Z++ and j ∈ {1, ..., n}. Moreover, suppose that the sequence converges uniformly
to f ≡ (f1, ..., fn), where each fj is also Lipschitz-continuous with Lipschitz constant L.

Let Ξ be the set of all subsequences of f 1, f 2, ... For any t ∈ [0, T ], let D(t) = {x ∈ Rn|∃
(f j1 , f j2 , ...) ∈ Ξ and t1, t2, ... → t s.t. ∇f ji(ti) → x as i → ∞}. Then f differentiable at t
implies ∇f(t) ∈ co(D(t)), where co stands for the convex hull operator.

Proof of Lemma 1: First we show that co(D(t)) is closed. Consider a sequence of

points in D(t), x1, x2, ..., converging to x ∈ Rn. This means there are (f j
m
1 , f j

m
2 , ...) ∈ Ξ

and tm1 , t
m
2 , ... → t s.t. ∇f jmi (tmi ) → xm as i → ∞, for every m ∈ Z++. Let k(.) be

such that |∇f j
m
k(m)(tmk(m)) − xm| < ε

m
and |tm+1

k(m+1) − t| < |tmk(m) − t|. Then the sequence
∇f j

1
k(1)(t1k(1)),∇f

j2
k(2)(t2k(2)), ... converges to x, and t

1
k(1), t

2
k(2), ... → t, hence x ∈ D(t). This

implies that D(t) is closed. Since −L ≤ Di(t) ≤ L for every i ∈ N , D(t) is compact. Hence,

co(D(t)) is compact.

For every δ ≥ 0, let coδ(D(t)) = {x ∈ Rn|d (x, co(D(t))) ≤ δ}, where d (x, co(D(t))) is the

Hausdorff-distance between point x and set co(D(t)). Suppose the statement does not hold.

Then, since co(D(t)) is closed, there is δ > 0 such that ∇f(t) /∈ coδ(D(t)). By definition of

D(t), there exist nε(δ)(t), a relative ε(δ)-neighborhood of t in [0, T ], and k ∈ Z+ such that for

any k′ ≥ k and for any t′ ∈ nε(t) at which fk
′
is differentiable, ∇fk′(t′) ∈ coδ(D(t)). Then for

any t′ ∈ nε(t) and any k′ ≥ k, fk
′
(t′)−fk′(t) ∈ (t′−t)coδ(D(t)). However, ∇f(t) /∈ coδ(D(t))

implies that there is t′ ∈ nε(t) such that f(t′) − f(t) /∈ (t′ − t)coδ(D(t)). This contradicts

that f 1, f 2, ... converges uniformly to f . �

We first consider an arbitrary k-period regular discrete game of the form Gk(N, V, λk, T ).
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Notation: Let sk denote a pure strategy SPNE strategy profile in Gk(N, V, λk, T ), for

every k ∈ Z++. Let Ck
i (m) denote the coalition that player i approaches in sk in period m,

for m ∈ {1, ..., k}.
Based on sk, for every i ∈ N, define as follows strategy ŝki of i in the continuous-time

game G(N, V, λk, T ):

Divide [−T, 0] into m equal intervals. If i is recognized in the mth interval (i.e. at

t = −T + (m − α)T
k
for α ∈ [0, 1) and m ∈ {1, ..., k}), she approaches Ck

i (m) and offers

e−r
T
kwkj (m+ 1) to every j ∈ Ck

i (m)\{i}. If player i is approached in the mth interval by any

player, then she accepts the offer if and only if it is at least e−r
T
kwkj (m+ 1).

Let ŵki (t) be player i’s continuation value in the continuous-time game generated by the

profile ŝk = (ŝk1, ŝ
k
2, ..., ŝ

k
n), and let ŵk(t) = (ŵk1(t), ŵk2(t), ..., ŵkn(t)).

Fact 1: For any ε > 0, there is a kε ∈ Z++ such that for any k > kε, ŝk = (ŝk1, ŝ
k
2, ..., ŝ

k
n)

is an ε-perfect equilibrium of Gk.

Note that by construction, whenever t = −T + mT
k
, we have ŵk(t) = wG

k
(t), for every

m ∈ {1, ..., k}. (Recall that wGki (t) is a step-function derived from the discrete game payoffs.)

Second, note that given ŝk−i, strategy ŝ
k
i specifies an optimal action for i if she is recog-

nized, at every t ∈ [−T, 0].

Next, we bound the suboptimality of ŝki when i considers an offer. Observe that as we

approach the end of the mth interval (i.e. for t = −T + (m − α)T
k
, as α ↘ 0), ŵki (t) →

wG
k

i (−T + mT
k

) = e−r∆wki (m + 1). Given that ŝk is Markovian, the optimal action for i

in Gk when she is approached by any other player at t = −T + (m − α)T
k
for α ∈ [0, 1)

and m ∈ {1, ..., k} is, independently of payoff-irrelevant history, to accept the offer if it
is at least ŵki (t), and reject it otherwise. Instead, strategy ŝ

k
i specifies that i accepts the

offer if and only if it is at least e−r
T
kwki (m + 1); hence, after some histories, ŝki specifies a

suboptimal action for i. However, since ŵki (t) is between e
−r∆wki (m) and e−r∆wki (m + 1),

the difference between the expected payoff resulting from following ŝki versus choosing the

optimal action at t is bounded by
∣∣wki (m)− wki (m+ 1)

∣∣ + wki (m + 1)(e−r∆ − e−r Tk ). Given

that the probability of any recognition between t = −T + (m − 1)T
k
and t = −T + mT

k
is

1− e−λk Tk ,
∣∣wki (m)− wki (m+ 1)

∣∣ ≤ V (N)(1− e−(λk+r)T
k ). Thus, as k →∞, since ∆, T

k
→ 0,

we have
∣∣wki (m)− wki (m+ 1)

∣∣ + wki (m + 1)(e−r∆ − e−r
T
k ) → 0. This means that for any

ε > 0, there is a kε ∈ Z++ such that for any k > kε, ŝk specifies an ε-perfect equilibrium of

Gk (which is also Markovian, by construction).

We now return to our original sequence {Gk(j)
j (N, V, λj, T )}∞j=1 ≡ G1, G2, ...

Fact 2: Uniform convergence of ŵk(.) along a subsequence of G1, G2, ...
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Define t̂k(τ) =
⌈
(T + τ) k

T

⌉
. By construction,

ŵki (t) =

0∫
t

e−(r+λk)(τ−t)[λki

V [Ck
i (t̂k(τ))]−

∑
j∈Cki (t̂k(τ))\{i}

e−r
T
kwkj (t̂

k(τ) + 1)


+

∑
j 6=i:i∈Ckj (t̂k(τ))

λkj e
−r T

kwki (t̂
k(τ) + 1)]dτ .

It is easy to see that for every i ∈ N and k ∈ Z+, ŵki (.) is Lipschitz-continuous with Lipschitz

constant (r + λk)V (N). Moreover, all ŵki (.) are uniformly bounded by 0 below and V (N)

above. Therefore, returning to our sequence G1, G2, ... (and, for simplicity, now indexing

our continuation value functions by the index of the corresponding game rather than the

number of periods), by the Ascoli-Arzela theorem (see Royden (1988), p169), the sequence

of functions {ŵj(.)}∞j=1 has a subsequence {ŵjh(.)}∞h=1 that converges uniformly to functions

ŵ∗(.) = (ŵ∗1(.), ..., ŵ∗n(.)), as h → ∞. Moreover, because λjh → λ as h → ∞, each ŵ∗i (.)
is also Lipschitz-continuous with constant (r + λ)V (N). Without loss of generality, assume

that the original sequence G1, G2, ... is convergent.

Facts 1 and 2 taken together establish that if strategies are history-independent and

continuation payoff functions are given by ŵ∗(.), then when approached at t, an optimal

strategy for j′ is accepting the offer iff it gives her at least ŵ∗j′(t). Below, we complete the

proof by constructing optimal strategies for proposers that generate these payoff functions

Let T stand for the set of points in [−T, 0] where ŵ∗i (.) and ŵ
j
i (.) are differentiable, for

every i ∈ N and j ∈ Z++. Since the above functions are all Lipschitz-continuous, [−T, 0]\T
is a null set.

By Lemma 1, for any t ∈ T , ∇ŵ∗(t) ∈ co(D(t)). By Caratheodory’s theorem, there exist

points x1, ..., xn+1 ∈ co(D(t)) such that ∇ŵ(t) = α1x1 + ... + αn+1xn+1 for α1, ..., αn+1 ≥ 0

such that
n+1∑
i=1

αi = 1. For every m ∈ {1, ..., n + 1}, let Gm1 , Gm2 , ... be a subsequence

of G1, G2, ... and tm1 , tm2 , ... be a sequence of points in [−T, 0] converging to t such that

∇ŵmh(tmh) → xm. Because there are only a finite number of coalitions, Gm1 , Gm2 , ... has

a subsequence Gm̂1 , Gm̂2 , ... such that for every i ∈ N and m̂h ∈ Z++, C
m̂h
i (tm̂h) = Cm∗

i

for some Cm∗
i ∈ 2N . If approaching Cm∗

i and offering ŵm̂hp (tm̂h) to every player p ∈ Cm∗
i

is an optimal strategy for i in Gm̂h at t
m̂h given ŝm̂h , then by upper hemicontinuity of the

best-response correspondence, approaching Cm∗
i and offering ŵ∗p(t) to every p ∈ Cm∗

i is an

optimal strategy for i in G(N, V, λ, T ) at t, provided that any approached player p′ at any

point of time t′ accepts an offer iff the offer to her is at least ŵ∗p′(t
′).
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Since the above holds for allm ∈ {1, ..., n+1}, the strategy of approaching Cm∗
i with prob-

ability αm (and offering ŵ∗p to to every p ∈ Cm∗
i ) is an optimal strategy for i in G(N, V, λ, T )

at t, provided that any approached player p′ at any point of time t′ accepts an offer iff the

offer to her is at least ŵ∗p′(t
′).

Consider now the following Markovian strategy profile s∗ in G(N, V, λ, T ): (i) For any

i ∈ N and any t ∈ [−T, 0], if i is approached at t, she accepts the offer iff it gives her at

least ŵ∗i (t); (ii) For any i ∈ N and any t ∈ T , if i is recognized at t, she approaches Cm∗
i

with probability αm and offers ŵ∗p(t) to every p ∈ Cm∗
i \{i}, for every m ∈ {1, ..., n+ 1}; (iii)

For any i ∈ N and any t ∈ [−T, 0]\T , if i is recognized at t, she approaches some coalition
C ∈ arg max

C′∈2N :i∈C′
(V (C ′)−

∑
p∈C′\{i}

ŵ∗p(t)) and offers ŵ
∗
p(t) to every p ∈ C\{i}.

By construction, if all players follow the above Markovian strategies, then the gradient of

the continuation payoff function at t is exactly∇ŵ∗(t) at every t ∈ T . Note also that ŵ∗(0) =

0 and continuation payoffs at 0 are also equal to 0. Given that both the continuation payoff

functions given the above strategies, and ŵ∗i (.) for all i ∈ N are Lipschitz-continuous, this

implies that the continuation payoff functions generated by the above strategies are exactly

ŵ∗(.). Since we established above the optimality of these strategies given that continuation

payoffs are ŵ∗(.), we constructed an MPE of G(N, V, λ, T ) such that the continuation payoffs

defined by the MPE are given by ŵ∗(.).

Finally, note that sup
t∈[−T,0]

|wGji (t) − ŵji (t)| ≤ (r + λj)V (N) T
k(j)
, where the right-hand

sides goes to 0 as j → ∞. Hence, the sequence of SPNE continuation payoff functions
{wG

k(jh)

jh (.)}∞h=1 converges to the same limit as any convergent subsequence ŵ
j1(.), ŵj2(.), ...,

as Statement (i) claims. �

STATEMENT (ii): Every MPE has the same (wi(t))
n
i=1.

Proof of Statement (ii): We start with Lemma 2, a useful mathematical result for
proving Statement (ii).

Lemma 2: Suppose g(.) is an integrable function, w(.) is a Lipschitz continuous function,

and w(t) > 0. Let G(x) =
∫ x
t
g(τ)dτ and H(x) = maxs∈[t,x]

∣∣∫ s
t
g(τ)w(τ)dτ

∣∣.
There exist c, ε > 0 such that whenever δ ∈ [t, t+ ε], we have c |G(δ)| ≤ H(δ).
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Proof of Lemma 2:

|G(δ)| =

∣∣∣∣∫ δ

t

g(τ)dτ

∣∣∣∣
=

1

w(t)

∣∣∣∣∫ δ

t

g(τ)w(τ)dτ +

∫ δ

t

g(τ) [w(t)− w(τ)] dτ

∣∣∣∣
≤ 1

w(t)

(
H(δ) +

∣∣∣∣∫ δ

t

g(τ) [w(t)− w(τ)] dτ

∣∣∣∣)
=

1

w(t)

(
H(δ) +

∣∣∣∣∫ δ

t

g(τ)w(τ)

[
w(t)

w(τ)
− 1

]
dτ

∣∣∣∣)
Let f(τ) = w(t)

w(τ)
. Because w is Lipschitz continuous and w(t) 6= 0, f is Lipschitz con-

tinuous in a non-empty interval (t, t + ε); let L be f’s Lipschitz bound within (t, t + ε). A

Lipschitz continuous function is differentiable almost everywhere, so we can write:

∣∣∣∣∫ δ

t

g(τ)w(τ)

[
w(t)

w(τ)
− 1

]
dτ

∣∣∣∣ =

∣∣∣∣∫ δ

t

g(τ)w(τ) [f(τ)− f(t)] dτ

∣∣∣∣
=

∣∣∣∣∫ δ

t

g(τ)w(τ)

∫ τ

t

f ′(s)dsdτ

∣∣∣∣
=

∣∣∣∣∫ δ

t

f ′(s)

∫ δ

s

g(τ)w(τ)dτds

∣∣∣∣
≤

∫ δ

t

|f ′(s)|
∣∣∣∣∫ δ

s

g(τ)w(τ)dτ

∣∣∣∣ ds
≤ 2LH(δ)δ

The last step follows because
∣∣∣∫ δs g(τ)w(τ)dτ

∣∣∣ ≤ ∣∣∣∫ δt g(τ)w(τ)dτ
∣∣∣+∣∣∫ st g(τ)w(τ)dτ

∣∣ ≤ 2H(δ).

Thus,

|G(δ)| ≤ 1

w(t)
(1 + Lδ)H(δ)

Picking c = w(t)
1+Lε

completes the proof of Lemma 2. �

We proceed by contradiction. Suppose two MPE, A and B, of the same bargaining

game with characteristic function V and recognition rates (λ1, ..., λn) do not have the same

continuation value functions.

Let pij(t) be the probability of j receiving an offer at time t given that i is recognized at

that time.

Define fj(τ) = wAj (τ)− wBj (τ) and gj(τ) =
∑
i 6=j

λip
A
ij(τ)−

∑
i 6=j

λip
B
ij(τ).
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Lemma 3 is used in the proof of Lemma 5, which contradicts Lemma 4.

Lemma 3: For all τ ,
∑

j∈N fj(τ)gj(τ) ≤ 0.

Proof of Lemma 3: Let fC,C′(τ) ≡ fC(τ)− fC′(τ) ≡
∑

i∈C fi(τ)−
∑

i∈C′ fi(τ).

For k = A,B, let pkiC(t) be the probability of C (and only C) receiving an offer at time t

given that i is recognized at that time, in equilibrium k.

Let giC(τ) = pAiC(τ) − pBiC(τ), ∆i(τ) = {C|giC(τ) > 0}, and ∇i(τ) = {C|giC(τ) < 0}.
Define:24

giC,C′(τ) =


−giC(τ)giC′ (τ)∑
D∈∆i(τ) giD(τ)

if C ∈ ∆i(τ) and C ′ ∈ ∇i(τ)

−giC′,C(τ) if C ′ ∈ ∆i(τ) and C ∈ ∇i(τ)

0 if giC(τ) = 0, giC′(τ) = 0, or giC(τ)giC′(τ) > 0


Finally, let:

gC,C′(τ) =
∑
i∈N

λigiC,C′(τ)

Observe that gC,C′(τ) has a simple interpretation: it measures the frequency of proposals

gained by coalition C from C ′ in equilibrium A relative to equilibrium B. It is easy to verify

that
∑

C′∈2N gC,C′(τ) = −
∑

C′∈2N gC′,C(τ) ≡ gC(τ), and gi(τ) =
∑

C3i gC(τ).

By optimality, we must have fC,C′(τ)giC,C′(τ) ≤ 0 for all i. For example, if fC,C′(τ) > 0,

coalition C has become more expensive relative to C ′. It is therefore not optimal for any i

to approach C more often while simultaneously approaching C ′ less often; thus, in this case,

we cannot have giC,C′(τ) > 0. It follows that, for all C,C ′ ∈ 2N and τ < 0,

fC,C′(τ)gC,C′(τ) =
∑
i∈N

fC,C′(τ)λigiC,C′(τ) ≤ 0

24Since
∑
D∈∆i(τ) giD(τ) =

∑
D∈∇i(τ) giD(τ), this definition is symmetric.
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Now note that:

∑
(C,C′)∈2N×2N

fC,C′(τ)gC,C′(τ) =

∑
(C,C′)∈2N×2N fC(τ)gC,C′(τ)

−
∑

(C,C′)∈2N×2N fC′(τ)gC,C′(τ)

=
∑
C∈2N

fC(τ)gC(τ) +
∑
C′∈2N

fC′(τ)gC′(τ)

= 2
∑
C∈2N

(∑
i∈C

fi(τ)

)
gC(τ)

= 2
∑
j∈N

fj(τ)

(∑
C3j

gC(τ)

)
= 2

∑
j∈N

fj(τ)gj(τ)

Thus,
∑

j∈N fj(τ)gj(τ) ≤ 0, as Lemma 3 states. �

Observe that if λj = 0, the only possible MPE continuation value for j is 0 at all times.

The game is then equivalent to an alternative game with players N\{j} and characteristic
function V ′(C) = V (C ∪ {j}),∀C ⊆ N\{j}. So we assume without loss of generality that
λj > 0,∀j ∈ N .

The rest of the proof requires the introduction of some extra notation.

Let vj(τ) = maxC3i

v(C)−
∑

i∈C\{j}

wi(τ)

. Then we can write:
wj(t

′) =

0∫
t′

e−(λ+r)(τ−t′)

[
λjvj(τ) + wj(τ)

(∑
i 6=j

λipij(τ)

)]
dτ (1)

Let t = min{τ |fi(t′) = 0,∀t′ ∈ [τ , 0],∀i ∈ N}.
Since wj(0) = 0, there must be some nontrivial interval just before time 0 where proposing

to a coalition of value V (N) is strictly optimal for everyone. When the only such coalition

is N , MPE payoffs are clearly unique within this interval; the same can be shown if multiple

coalitions have value V (N).25 It follows that t < 0. Since λj > 0 for all j, we have wj(t) > 0.

25Note that at t = 0, the left derivative of continuation value functions must exist since wi(0) = 0 (so the
probability of being approached when someone is recognized, which may be discontinuous, does not affect the
rate of change of wi). In fact, we have w′i(0) = −λiV (N). So when there are coalitions C1, ..., Cm 6= N with
i ∈ Cj and V (Cj) = V (N) for j = 1, ...,m, it must be true that in a neighborhood of 0, i only proposes to Ck
with positive probability if

∑
l∈Ck λl ≤

∑
l∈Cj λl for j = 1, ...,m. When there are multiple such coalitions,

if feasible, they will be approached such that their continuation values are equalized; if equalization cannot
be achieved, those having the choice between many such coalitions will propose to the cheapest one.
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Let Fj(τ) = maxx∈[τ ,t] |fj(x)| and F (τ) = maxi∈N Fi(τ). We have Fj(t) = F (t) = 0, and

these functions are non-increasing.

Since wj(τ) exists, and all terms other than
∑
i 6=j

λipij(τ) in the integrand in (1) are

continuous in τ ,
∑
i 6=j

λipij(τ) must be integrable. Therefore, gj(τ) must be integrable as well.

Thus we can define:

hj(t
′) =

∫ t

t′
e−(λ+r)(τ−t′)wBj (τ)gj(τ)dτ

Let Hj(τ) = maxx∈[τ ,t] |hj(x)| and H(τ) = maxi∈N Hi(τ). Note that Hj(t) = H(t) = 0,

and these functions are non-increasing.

Finally, let R(t′) =
∑

j∈N
fj(t
′)hj(t′)

wBj (t′)
.

Lemma 4: For every ε > 0, there exists t′ ∈ [t − ε, t) such that R(t′) is positive and

at least on the order of magnitude of H(t′)2, and F (t′) and H(t′) share the same order of

magnitude.

Proof of Lemma 4: By (1), for any t′ < t, we can write:

fj(t
′) =

t∫
t′

e−(λ+r)(τ−t′)


λj(v

A
j (τ)− vBj (τ)) + (wAj (τ)− wBj (τ))

(∑
i 6=j

λip
A
ij(τ)

)

+wBj (τ)

(∑
i 6=j

λip
A
ij(τ)−

∑
i 6=j

λip
B
ij(τ)

)
 dτ

=

∫ t

t′
e−(λ+r)(τ−t′)

[
λj
(
vAj (τ)− vBj (τ)

)
+ fj(τ)

(∑
i 6=j

λip
A
ij(τ)

)]
dτ + hj(t

′) (2)

Using the triangle inequality and the facts that on τ ∈ [t′, t], e−(λ+r)(τ−t′) < 1 and
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∑
i 6=j

λip
A
ij(τ) < λ, we have the following bounds:

|fj(t′)| − |hj(t′)| ≤ |fj(t′)− hj(t′)|

|fj(t′)− hj(t′)| ≤
∣∣∣∣λj ∫ t

t′
e−(λ+r)(τ−t′) [vAj (τ)− vBj (τ)

]
dτ

∣∣∣∣
+

∣∣∣∣∣
∫ t

t′
e−(λ+r)(τ−t′)fj(τ)

(∑
i 6=j

λip
A
ij(τ)

)
dτ

∣∣∣∣∣
≤ λj(t− t′)

∑
i∈N\{j}

Fi(t
′) + λ(t− t′)Fj(t′)

< λ(t− t′)(n− 1)F (t′) + λ(t− t′)F (t′)

= λ(t− t′)nF (t′) (3)

Observation: If t− t′ < 1
λn
, we have:

F (t′) ≤ H(t′)

1− λ(t− t′)n

Proof of Observation: There must exist i ∈ N and τ ∈ [t′, t) such that:

F (t′) = |fi(τ)|
< |hi(τ)|+ λ(t− τ)nF (τ)

≤ H(t′) + λ(t− t′)nF (t′)

The observation is obtained by rearranging this inequality. �

By (3):

fj(t
′)hj(t

′) = hj(t
′)2 − hj(t′) [hj(t

′)− fj(t′)]
> hj(t

′)2 − |hj(t′)|λ(t− t′)nF (t′) (4)

Note that (4) is quadratic in |hj(t′)| and thus minimized if |hj(t′)| = λ(t−t′)nF (t′)
2

. So if

t− t′ < 1
λn
, we have:

fj(t
′)hj(t

′)

wBj (t′)
> − λ2n2

4wBj (t′)
(t− t′)2F (t′)2

≥ − λ2n2

4wBj (t′) [1− λ(t− t′)n]2
(t− t′)2H(t′)2 (5)
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The last step follows from the Observation.

Let S = {τ < t|H(τ) = maxi∈N |hi(τ)|}, and for all τ ∈ S, let i(τ) ∈ N be such that

H(τ) =
∣∣hi(τ)(τ)

∣∣. Because H is continuous and H(t) = 0, we have S ∩ [τ , t) 6= ∅ for all

τ < t.

By (4), for any t′ ∈ S ∩ (t− 1
λn
, t], we have:

fi(t′)(t
′)hi(t′)(t

′)

wBi(t′)(t
′)

>
1

wBi(t′)(t
′)

[
H(t′)2 − λ(t− t′)nH(t′)F (t′)

]
≥ 1

wBi(t′)(t
′)

[
1− λ(t− t′)n

1− λ(t− t′)n

]
H(t′)2 (6)

Again, the last step follows from the Observation.

Since wBj is Lipschitz continuous, w
B
j (t′) must be on the order of wBj (t) 6= 0. Thus, taking

(t− t′) small and combining (5) and (6) imply that R(t′) =
∑

j∈N
fj(t
′)hj(t′)

wBj (t′)
is at least on the

order of H(t′)2, as desired.

Furthermore, by (3), for t′ ∈ S, we have:

F (t′) ≥
∣∣fi(t′)(t′)∣∣ > ∣∣hi(t′)(t′)∣∣− λ(t− t′)nF (t′) = H(t′)− λ(t− t′)nF (t′)

Thus:

F (t′) ≥ H(t′)

1 + λ(t− t′)n

Combining the above inequality with the observation yields F (t′) ∈
[

H(t′)
1+λ(t−t′)n ,

H(t′)
1−λ(t−t′)n

]
for t′ ∈ S∩(t− 1

λn
, t). Therefore, as t′ → t, F (t′) and H(t′) have the same order of magnitude

when t′ ∈ S, as Lemma 4 states. �

Lemma 5: Suppose t− t′ is small. Then if R(t′) is positive, its order of magnitude is at

most F (t′)H(t′)(t− t′).
Note: Lemma 5 contradicts Lemma 4 and concludes the proof of Statement (ii).

Proof of Lemma 5: We have:

d

ds
fj(s)hj(s) |s=τ= f ′j(τ)hj(τ)− fj(τ)wBj (τ)gj(τ) + (λ+ r)fj(τ)hj(τ)
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Since fj and wBj are differentiable, R(τ) =
∑

j∈N
fj(τ)hj(τ)

wBj (τ)
is differentiable as well. Thus:

R′(τ) =
∑
j∈N

(
f ′j(τ)hj(τ)− fj(τ)wBj (τ)gj(τ) + (λ+ r)fj(τ)hj(τ)

wBj (τ)
−
fj(τ)hj(τ)wB′j (τ)

wBj (τ)2

)

= −
∑
j∈N

fj(τ)gj(τ) +
∑
j∈N

f ′j(τ)hj(τ)

wBj (τ)
+
∑
j∈N

fj(τ)hj(τ)

wBj (τ)

(
λ+ r −

wB′j (τ)

wBj (τ)

)

≥
∑
j∈N

f ′j(τ)hj(τ)

wBj (τ)
+
∑
j∈N

fj(τ)hj(τ)

wBj (τ)

(
λ+ r −

wB′j (τ)

wBj (τ)

)

The last step follows from Lemma 3.

We now derive a lower bound on R′(τ) near t. (Equivalently, we seek an upper bound on

how negative R′(τ) can be.) We examine the two terms in turn.

1. First, we focus on
∑

j∈N
f ′j(τ)hj(τ)

wBj (τ)
.

Differentiating (2) yields:

f ′j(τ) = −λj
[
vAj (τ)− vBj (τ)

]
− fj(τ)

(∑
i 6=j

λip
A
ij(τ)

)
− wBj (τ)gj(τ) + (λ+ r)fj(τ)

Thus:

f ′j(τ)

wBj (τ)
= −gj(τ) +

1

wBj (τ)

[
−λj

[
vAj (τ)− vBj (τ)

]
− fj(τ)

(∑
i 6=j

λip
A
ij(τ)

)
+ (λ+ r)fj(τ)

]

Also from (2):

hj(τ) = fj(τ)−
∫ t

τ

e−(λ+r)(s−τ)

[
λj
(
vAj (s)− vBj (s)

)
+ fj(s)

(∑
i 6=j

λip
A
ij(s)

)]
ds

Therefore,

∑
j∈N

f ′j(τ)hj(τ)

wBj (τ)

=
∑
j∈N


−fj(τ)gj(τ) + gj(τ)

∫ t
τ
e−(λ+r)(s−τ)

[
λj
(
vAj (s)− vBj (s)

)
+ fj(s)

(∑
i 6=j

λip
A
ij(s)

)]
ds

+
hj(τ)

wBj (τ)

[
−λj

[
vAj (τ)− vBj (τ)

]
− fj(τ)

(∑
i 6=j

λip
A
ij(τ)

)
+ (λ+ r)fj(τ)

]

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The first term
∑

j∈N −fj(τ)gj(τ) is nonnegative by Lemma 3, and can thus be ignored.

The second term (occupying the rest of the first line) will be examined later. The last term

(occupying the second line) has maximum order of magnitude H(τ)F (τ).

2. We now turn our attention to
∑

j∈N
fj(τ)hj(τ)

wBj (τ)

(
λ+ r − wB′j (τ)

wBj (τ)

)
. Again, since we are

only interested in orders of magnitude, and since wBj is Lipschitz continuous, the relevant

quantity is fj(τ)hj(τ). This term has order of magnitude at most F (τ)H(τ).

Denote a positive term on the order of x or less by O(x). Combining our examination of

the two terms, we see that there is a lower bound for R′(τ) equal to:

∑
j∈N

gj(τ)

∫ t

τ

e−(λ+r)(s−τ)

[
λj
(
vAj (s)− vBj (s)

)
+ fj(s)

(∑
i 6=j

λip
A
ij(s)

)]
ds

−O(F (τ)H(τ))

Therefore, there is an upper bound for R(t′) = R(t) −
∫ t
t′ R

′(τ)dτ = −
∫ t
t′ R

′(τ)dτ equal

to:

−
∑
j∈N

∫ t

t′
gj(τ)

(∫ t

τ

e−(λ+r)(s−τ)

[
λj
(
vAj (s)− vBj (s)

)
+ fj(s)

(∑
i 6=j

λip
A
ij(s)

)]
ds

)
dτ

+O(F (t′)H(t′)(t− t′))
≡ R(t′) +O(F (t′)H(t′)(t− t′))

To complete the proof, it suffi ces to show that R(t′) has order of magnitude at most

F (t′)H(t′)(t− t′).
Changing the order of integration for R(t′) yields:

R(t′) = −
∑
j∈N

∫ t

t′

(∫ s

t′
e−(λ+r)(s−τ)gj(τ)dτ

)(
λj
[
vAj (s)− vBj (s)

]
+ fj(s)

(∑
i 6=j

λip
A
ij(s)

))
ds

< λnF (t′)
∑
j∈N

∫ t

t′

∣∣∣∣∫ t

t′
e−(λ+r)(s−τ)gj(τ)dτ −

∫ t

s

e−(λ+r)(s−τ)gj(τ)dτ

∣∣∣∣ ds
We now apply Lemma 2, with e−(λ+r)(s−τ)gj(τ) playing the role of g(τ) andwBj (τ)e−(λ+r)(2τ−s−t′)

playing the role of w(τ). We have that
∣∣∣∫ tt′ e−(λ+r)(s−τ)gj(τ)dτ

∣∣∣ is of order at most Hj(t
′) ≤

H(t′). Similarly,
∣∣∣∫ ts e−(λ+r)(s−τ)gj(τ)dτ

∣∣∣ is of order at most H(s) ≤ H(t′). Therefore, the

summation has order at most (t−t′)H(t′), and thus R(t′) has maximum order F (t′)H(t′)(t−
t′). This concludes the proof of Statement (ii). �
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STATEMENT (iii): Suppose that the sequence of regular discrete coalitional bargain-
ing games G1, G2, ... converges to G. Then the corresponding sequence of SPNE collection of

continuation value functions converges to the unique MPE collection of continuation value

functions of G.

Proof of Statement (iii): Note that the functions ŵji (·) defined in the proof of Claim 2
are Lipschitz-continuous with Lipschitz constant (r+λj)V (N), with λj → λ. Moreover, they

are uniformly bounded, by 0 from below, and V (N) from above. Combining Claim 2 and

Theorem 2 implies that all convergent subsequences of continuation functions of G1, G2, ...

(with respect to the uniform topology) converge to the same limit, namely the unique MPE

continuation payoff functions of G(N, V, λ, T ). The set of uniformly bounded Lipschitz-

continuous functions on [−T, 0] with Lipschitz constant (r + λ + ε)V (N) is compact with

respect to the uniform topology for any ε > 0, from which it follows that the sequence

ŵ1(.), ŵ2(.), ... itself converges uniformly to the unique MPE continuation payoff functions

of G(N, V, λ, T ). Again, note that sup
t∈[−T,0]

|wGji (t) − ŵji (t)| ≤ (r + λj)V (N) T
k(j)
, where the

right-hand sides goes to 0 as j → ∞. Hence, the SPNE continuation payoff functions of
games in the sequence G1, G2, ... converge to the same limit as the sequence ŵ1(.), ŵ2(.), ...

�

11.2 Proof of Theorem 2

Theorem 2: If V is convex, then S(V ) = C(V ).

Theorem 2 is the combination of Lemma 6 (which implies C(V ) ⊆ S(V )) and Lemma 7

(which implies S(V ) ⊆ C(V )).

Lemma 6: For every x ∈ C(V ), there exist recognition rates {λi}i∈N such that the

expected MPE payoffs converge to x
1+r

as T →∞.
Proof of Lemma 6: The statement holds vacuously if C(V ) = ∅, so we assume C(V ) 6=

∅. Normalize payoffs with V (N) = 1. Let x ∈ C(V ), set λi = xi (so
∑

i λi = V (N) = 1),

and specify strategy profile σ as follows:

For every i ∈ N , if player i is recognized at t ∈ [−T, 0], she approaches N and offers

exactly wj(t) to every j ∈ N\{i}. If player i is approached at t, then independently of who
approached her and what coalition was approached, she accepts the offer if and only if she

is offered at least wi(t).

By Claim 3, if play proceeds according to σ, expected payoffs are given by xi
1+r

(1−e(1+r)t)

for every i ∈ N . Note that wj(t) < xj ∀ t ∈ [−T, 0] and j ∈ N . Since x ∈ C(V ), this implies

that
∑
j∈C

wj(t) <
∑
j∈C

xj = V (N) −
∑

j∈N\C
xj ≤ V (N) − V (N\C) for any C ⊂ N . Therefore,
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when recognized, the optimal coalition to approach is always N .

Combining the above observation with Claim 2, we conclude that σ is an MPE. Thus,

the MPE expected payoffs are given by xj
1+r

(1 − e−(1+r)T ) for every i ∈ N . As T → ∞, the
expected MPE payoff of player i converges to xi

1+r
. �

Lemma 7: Let λM = mini∈N λi. If V is convex, then for any ε > 0, there exists

T ∗ such that in any MPE of a game with T > T ∗, continuation values satisfy
∑
i∈C

wi(t) ≥
λM
λM+r

V (C)− ε, ∀ C ⊆ N and t ≤ −T ∗.
Proof of Lemma 7: We proceed by induction. First, note that for any i ∈ N and any

t ≤ 0, wi(t) < V ({i}) implies that V (C ∪ {i}) − wi(t) > V (C) for any i /∈ C. This and

Claim 2 imply that at any time where wi(t) < V ({i}) in a MPE, any recognized player j 6= i

will include player i in the approached coalition and offer her exactly wi(t). Furthermore,

note that if player i has the chance to make an offer at t, then she can guarantee a payoff

of at least V ({i}) by approaching herself. This implies that wi(t) is bounded below by
0∫
t

[λie
−(λ+r)(τ−t)V ({i})+

∑
j 6=i

λje
−(λ+r)(τ−t)wi(τ)]dτ . It is easy to check that this implies wi(t) ≥

λi
λi+r

V ({i})(1− e(λi+r)t) in every MPE. Therefore, if T1(ε) = min
i∈N

1
λi+r

ln ε(λi+r)
λiV ({i}) , then for any

t ≤ T1(ε) and i ∈ N , wi(t) ≥ λi
λi+r

V ({i})− ε, for every ε > 0.

Assume now that for someK ∈ {1, ..., n−1}, there exists a finite TK(ε) for any ε > 0 such

that for every C ⊂ N with |C| ≤ K, it holds that
∑
i∈C

wi(t) ≥ λM
λM+r

V (C) − ε, ∀ t ≤ TK(ε).

We show below that this implies that for any ε > 0, there exists a finite TK+1(ε) such that

for every C ⊂ N with |C| ≤ K + 1, it holds that
∑
i∈C

wi(t) ≥ λM
λM+r

V (C)− ε,∀ t ≤ TK+1(ε).

Fix any ε > 0 and any C with |C| = K + 1. From the induction assumption,
∑
i∈C′

wi(t) ≥
λM
λM+r

V (C ′) − ε, ∀ t ≤ TK(ε) and C ′ $ C. Consider now any such t, and assume that∑
i∈C

wi(t) <
λM
λM+r

V (C) − ε. Suppose that there is i ∈ N such that i does not approach

everyone in C with probability 1 at t. Let D be such that there is a positive probability that

D is approached at t by i, and C * D. Since t ≤ TK(ε),
∑

i∈C∩D
wi(t) ≥ λM

λM+r
V (C ∩D)− ε.

Then
∑
i∈C

wi(t) <
λM
λM+r

V (C)−ε implies
∑

i∈C\D
wi(t) <

λM
λM+r

V (C)− λM
λM+r

V (C∩D). Convexity

of V then implies
∑

i∈C\D
wi(t) <

λM
λM+r

[V (D∪C)−V (D)]. By Claim 2, i could strictly improve

her payoff by approaching D ∪ C instead of D, a contradiction. Therefore, for any C ⊂ N

for which |C| ≤ K + 1,
∑
i∈C

wi(t) <
λM
λM+r

V (C) − ε and t ≤ TK(ε) imply that everyone in

C is approached by every player at t with probability 1. By the same argument as in the

first step, there exists TCK+1(ε) such that
∑
i∈C

wi(t) ≥ λM
λM+r

V (C) − ε, ∀ t ≤ TCK+1(ε). Then
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for TK+1(ε) = min

{
min

C:|C|=K+1
TCK+1(ε), TK(ε)

}
, for every C ⊂ N with |C| ≤ K + 1, it holds

that
∑
i∈C

wi(t) ≥ λM
λM+r

V (C)− ε, ∀ t ≤ TK+1(ε). �

Proof of Theorem 2: Taking r → 0 in the statement of Lemma 6 yields C(V ) ⊆ S(V ).

Taking r → 0 in the statement of Lemma 7 implies that limr→0 limt→−∞
∑
i∈C

wi(t), if

defined, cannot be below V (C). This in turn implies S(V ) ⊆ C(V ) if S(V ) is well-defined,

which is guaranteed by Theorem 3. �

11.3 Proof of Theorem 3

STATEMENT (i): For a convex game V and small enough r, there exist a partition P ∗

of the set of players N , a coalition C∗ ∈ P ∗, and a time t̂ < 0 such that, in MPE, for all

t < t̂, S(t) ≡ S∗ is constant, {C∗, N} ⊆ S∗, and every element of S∗ is the union of C∗ and

elements of P ∗.

Let vC = V (N)− V (N\C), the marginal contribution of coalition C to the value of the

grand coalition, for any C ∈ 2N .

Lemma 8: If V is convex, there exists r̂ such that whenever r ∈ (0, r̂), ∃ t such that
∀t′ ≤ t, N ∈ S(t′).

Proof of Lemma 8: It is suffi cient to show that ∃ t such that wC(t′) ≤ vC , for every

t′ < t and C ⊂ N . We proceed by induction.

First, suppose |C| = 1. Note that conditional on a player being recognized t′, player i’s

expected payoff is λi
λ

maxD3i{V (D) − wD(t′)} + pi(t
′)wi(t

′), where pi(t′) is the probability

that i is included in the proposal (which may or may not be her own) at t′. If wi(t′) > v{i},

then no one in N\{i} would include i in a proposal at t′, and player i’s expected payoff
becomes λi

λ
maxD3i{V (D)− wD(t′)}+ λi

λ
wi(t

′). By Lemma 7, for r low enough, ∃δ < 1 and

ti such that at all t′ < ti where wi(t′) > v{i} (and hence no one in N\{i} includes i in a
proposal), maxD3i{V (D) − wD(t′)} is small enough that player i’s expected payoff is less
than δwi(t′). This implies that going back in time, wi will eventually reach v{i}, and can

then never increase from that value. Thus, with low enough r, ∃ t1 s.t. our claim holds for

all |C| = 1.

Now let tm be such that our claim holds for all coalitions of size at most m. Let |C| =

m + 1, and t′ < tm. Note that if wC(t′) > vC , we have wC(t′) > V (D) − V (D\C) for all

D ⊃ C. Thus C cannot be entirely included in the proposal of anyone outside C. Moreover,

for any E ⊂ C, wC\E(t′) ≤ vC\E by the induction hypothesis, so wE(t′) > vC − vC\E =

V (N\(C\E))− V (N\C) ≥ V (D ∪ E)− V (D) for all D ⊆ N\C. Thus no part of C can be
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included in the proposal of anyone outside C. Due to Lemma 7, by an argument similar to

the |C| = 1 case, it follows that ∃ tm+1 such that our claim holds for |C| = m+ 1. �

Lemma 9: Let D,E ∈ S(t). If V is convex, for all t ≤ 0:

a) D ∩ E ∈ S(t), and

b) D ∪ E ∈ S(t).

Proof of Lemma 9: Suppose that D ∩ E /∈ S(t). Then V (D ∩ E) − wD∩E(t) <

V (E) − wE(t), so wE\(D∩E)(t) < V (E) − V (D ∩ E). By convexity, V (E) − V (D ∩ E) ≤
V (D ∪ E) − V (D). Therefore, we have wE\(D∩E)(t) < V (D ∪ E) − V (D), which implies

that it is strictly better to approach D ∪ E than D, contradicting D ∈ S(t). Note that this

implies D ∩ E 6= ∅ and ∩S∈S(t)S ∈ S(t).

Similarly, if D ∪E /∈ S(t), then V (D ∪E)−wD∪E(t) < V (E)−wE(t), so wD\(D∩E)(t) >

V (D ∪ E) − V (E). By convexity, V (D ∪ E) − V (E) ≥ V (D) − V (D ∩ E). Therefore, we

have wD\(D∩E)(t) > V (D) − V (D ∩ E), which implies that it is strictly better to approach

D ∩ E than D, contradicting D ∈ S(t). �

Proof of Statement (i): By Lemma 8, we only consider r < r̂ and t small enough such

that N ∈ S(t). Let C(t) = ∩C∈S(t)C, and let P (t) be the coarsest partition of N such that

each element of S(t) can be expressed as a union of cells defined by P (t). By Lemma 9a,

C(t) ∈ P (t). Therefore, to prove Theorem 3(i), it suffi ces to show that S(t) is constant for

small enough t. We need two more lemmata for our argument.

Lemma 10: For small enough t, for all D ∈ P (t)\{C(t)}, we have wD(t) = V (D ∪E)−
V (E), where E = ∪C∈S(t):D∩C=∅C.

Proof of Lemma 10: By Lemma 9, E ∈ S(t). It suffi ces to show thatD∪E ∈ S(t): once

that is done, we have V (D ∪E)−wD∪E(t) = V (E)−wE(t) =⇒ wD(t) = V (D ∪E)− V (E).

By Lemma 8, we take t small enough so that N ∈ S(t). We proceed by contradiction:

suppose D ∪E /∈ S(t), so that D ∪E 6= N . By the definition of P (t), for any F ∈ P (t) with

F ⊆ N\(D ∪ E), there must exist an optimal coalition C(D,F ) ∈ S(t) such that either:

- D ⊂ C(D,F ) and F * C(D,F ); or

- F ⊂ C(D,F ) and D * C(D,F ).

However, if the latter were the case, we would have F ⊆ E. Thus for any F ∈ P (t) with

F ⊆ N\(D∪E), there exists C(D,F ) ∈ S(t) such thatD ⊂ C(D,F ) and F * C(D,F ). This

implies that ∩F⊆N\(D∪E)C(D,F ) ≡ C(D) contains D and no one outside D ∪E. Therefore,
C(D) ∪ E = D ∪ E, and by Lemma 9, it is an element of S(t). �

Lemma 11: There exists a time to the left of which V (N)−wN(·) is weakly monotonic.
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Proof of Lemma 11: Note that within a time interval [t1, t2] where C(·) = C, we have:

wC(τ) = e−(λ+r)(t2−τ)wC(t2)+

t2∫
τ

[
λCe

−(λ+r)(τ ′−τ)(V (C)− wC(τ ′)) + λe−(λ+r)(τ ′−τ)wC(τ ′)
]
dτ ′.

Thus, w′C(τ) = rwC(τ)−λC(V (C)−wC(τ)), which implies that wC(·) is monotonic (increas-
ing if and only if wC(·) > λC

r+λC
V (C)), so the proposer surplus V (C)−wC(·) = V (N)−wN(·)

is monotonic. It follows that any non-monotonicity in V (N) − wN(·) can only occur when
C((·) changes.
Suppose C(t) = C, somaxD:C(t)*D{V (D)−wD(t)} < V (C)−wC(t). Because continuation

value functions are Lipschitz continuous, ∃δ > 0 such that C ⊆ C(t′) for all t′ ∈ (t− δ, t+ δ).

There are therefore two (not mutually exclusive) ways in which C(·) can change at t:
a) for all ε > 0, there exist t′ ∈ (t, t + ε) and D ⊆ N\C (with D 6= ∅) such that

C(t′) = C ∪D; and
b) for all ε > 0, there exist t′ ∈ (t − ε, t) and D ⊆ N\C (with D 6= ∅) such that

C(t′) = C ∪D.
By continuity of wD(.), at t, it must be equally attractive to approach C and C ∪ D.

Therefore, we must have wD(t) = V (C ∪D)− V (C).

Let fE(τ) denote the hypothetical derivative of wE(·) at τ , assuming that at τ , E is

always approached and obtains V (E) when one of its members is recognized. We have:

fC∪D(t) = (r + λC + λD)(wC(t) + wD(t))− (λC + λD)V (C ∪D)

= [rwC(t)− λC(V (C)− wC(t))] + [rwD(t)− λD(v(C)− wC(t))]

+(λC + λD)(wD(t)− [V (C ∪D)− V (C)])

= fC(t) + [rwD(t)− λD(v(C)− wC(t))].

Since C(t′) = C ∪D, we have wD(t′) < V (C ∪D)− V (C) = wD(t).

- If we are in scenario a), this implies w′D(τ) = rwD(τ) − λD(v(N) − wN(τ)) < 0 for

some τ ∈ (t, t′). Because v(N) − wN(t) = v(C) − wC(t) and by continuity, we must have

rwD(t)− λD(v(C)− wC(t)) ≤ 0. Thus fC∪D(t) = fC(t′)(t) ≤ fC(t)(t), where t′ > t.

- If we are in scenario b), by a similar argument, we have fC(t′)(t) ≥ fC(t)(t) where t′ < t.

Going back in time (t′ to t in case a, t to t′ in case b), we see that the derivative fC(.)(t)

cannot decrease from changing C(·). Therefore, w′C(·)(·) cannot jump downward at t when
we go back in time. Because w′C(·)(·) maintains its sign when C(·) does not change, it cannot
go from positive to negative, going back in time - thus it will eventually maintain its sign all

the way to −∞. Because V (C(·))−wC(·)(·) is always continuous (even when C(·) changes),
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we conclude that V (C(·))− wC(·)(·), and hence V (N)− wN(·), must be monotonic before a
certain time. �

Now we conclude the proof of Theorem 3(i) by showing that S(t) is constant before a

certain time. As mentioned earlier, throughout our argument, we only consider early enough

t such that N ∈ S(t).

Each S(t) corresponds to a partition P (t) where, by Lemma 10, the continuation value of

every cell except C(t) is uniquely determined. Therefore, going back in time, for S(t) to last,

it must be that w′D(.) = 0 for all D ∈ P (t)\{C(t)}. w′D(.) depends on wD(.), which is fixed,

the proposer surplus V (N) − wN(.), and the frequency with which D is approached, which

we denote qD. The set of feasible qD is limited by finitely many weak linear inequalities

corresponding to the structure of S(t) and the fact that when a player is recognized, the sum

of her proposal probabilities must equal 1. Therefore the range of V (N) − wN(.) for which

S(t) can be maintained is the union of finitely many closed intervals - denote it R(S(t)).

By Lemma 11, V (N) − wN(.) is monotonic for early enough times - the rest of the

argument only considers these times. Since V (N)−wN(.) is also bounded, it must converge

to some limit v∗.

If V (N) − wN(.) → v∗ from above (which we will assume for the rest of the argument;

the other case is symmetric) and [v∗, V (N)−wN(t)] ⊆ R(S(t)) for some t, then S(t) will be

maintained forever, and we are done. If not, then at some time before t, S(.) will change.

Since S(.) must exist at all times, ∪t′≤tR(S(t′)) must include [v∗, V (N) − wN(t)]. Because

N is finite, the set of possible S(.) is finite as well. Therefore, there must exist t̂ < t such

that [v∗, V (N)− wN(t̂)] ⊆ R(S(t̂)), which implies that S(t̂) will be maintained forever. �

STATEMENTS (ii) AND (iii): For a convex game V , small enough r, and P ∗, C∗

defined as in Theorem 3(i):

ii) limt→−∞wi(t) = λi
r+λC

V (C∗) for all i ∈ C∗; and
iii) for any D ∈ P ∗ with D 6= C∗, there exists E ∈ S∗ such that wD(t) = V (E) −

V (E\D) ≡ wD for all t < t̂, and limt→−∞wi(t) = λi
λD
wD for all i ∈ D.

Proof of Statement (ii): For each i ∈ C∗ and t < t̂, we have:

wi(t) = e−(λ+r)(t̂−t)wi(t̂) +

t̂∫
t

[
λie
−(λ+r)(τ−t)(V (C∗)− wC∗(τ)) + λe−(λ+r)(τ−t)wi(τ)

]
dτ .

Thus w′i(t) = rwi(t) − λi(V (C∗) − wC∗(t)) and w′C∗(t) = rwC∗(t) − λC∗(V (C∗) − wC∗(t)).

Therefore, wC∗(t) = (wC∗(t̂) − λC∗
r+λC∗

V (C∗))e(r+λC)(t−t̂) + λC∗
r+λC∗

V (C∗). Algebraic manipula-
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tions yield:

wi(t) = [wi(t̂)−
λi
λC∗

wC∗(t̂)]e
r(t−t̂)+

λi
λC∗

[wC∗(t̂)−
λC∗

r + λC∗
V (C∗)]e(r+λC∗ )(t−t̂)+

λi
r + λC∗

V (C∗).�

Proof of Statement (iii): Wemake two observations. First, by Lemma 10 and Theorem
3(i), at all times t < t̂ and for allD ∈ P ∗\{C∗}, we must have wD(t) = V (E)−V (E\D) ≡ wD

for some E ∈ S∗. Thus, by similar computations as in the proof of statement (ii),

w′D(t) = −λD(V (C∗)− wC∗(t))− λpD(t)wD + (λ+ r)wD = 0,

where pD(t) is the probability that a proposal at time t includes D. Second, for all i ∈ D,
we have:

w′i(t) = −λi(V (C∗)− wC∗(t))− λpD(t)wi(t) + (λ+ r)wi(t).

Combining these two observations yields w′i(t) = (V (C∗) − wC∗(t))(
λD
wD
wi(t) − λi). Since

V (C∗)−wC∗(t) = V (N)−wN(t) > 0, wi(.) is monotonic as t→ −∞, so it converges. Since
limt→−∞(V (C∗)− wC∗(t)) > 0, we must have limt→−∞

λD
wD
wi(t)− λi = 0, as desired. �
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