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Abstract

This paper analyzes multi-sender cheap talk when the state space

might be restricted, either because the policy space is restricted, or

the set of rationalizable policies of the receiver is not the whole space.

We provide a necessary and sufficient condition for the existence of a

fully revealing perfect Bayesian equilibrium for any state space. We

show that if biases are large enough and are not of similar directions,

where the notion of similarity depends on the shape of the state space,

then there is no fully revealing perfect Bayesian equilibrium. The

results suggest that boundedness, as opposed to dimensionality, of

the state space plays an important role in determining the qualitative

implications of a cheap talk model. We also investigate equilibria that

satisfy a robustness property, diagonal continuity.
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1 Introduction

Sender-receiver games with cheap talk have been used extensively in both

economics and political science to analyze situations in which an uninformed

decision-maker acquires advice from an informed expert whose preferences

do not fully coincide with those of the decision-maker. The seminal paper of

Crawford and Sobel (1982) has been extended in many directions. In particu-

lar, Milgrom and Roberts (1986), Gilligan and Krehbiel (1989), Austen-Smith

(1993), and Krishna and Morgan (2001a, 2001b) investigate the case when

the decision-maker can seek advice from multiple experts. More recently,

Battaglini (2002) extended the analysis to multi-dimensional environments

(the decision-maker seeks advice in multiple issues), and called attention to

the importance of equilibrium selection in multi-sender cheap talk games.

In this paper, we further investigate the existence of fully revealing equi-

librium, and the existence of informative equilibrium, for general state spaces.

These issues might have seemed to be settled, given that Battaglini (2002)

provided a fairly complete analysis of two-sender cheap talk with unidimen-

sional state spaces, and showed that if the state space is a multi-dimensional

Euclidean space, then generically a fully revealing perfect Bayesian equilib-

rium can be constructed in which there are no out-of-equilibrium messages,

hence these equilibria survive any refinement that puts restrictions on out-of-

equilibrium beliefs. The construction provided is simple and intuitive: each

sender only conveys information in directions along which her interest co-

incides with that of the receiver (directions that are orthogonal to the bias

of the expert). Generically these directions of common interest span the

whole state space; therefore, by combining the information obtained from

the experts, the decision-maker can perfectly identify the state of the world.

The point where we depart from the above analysis is allowing for the

state space in multiple dimensions that is not the whole Euclidean space,

but a closed subset of it. The standard interpretation of states in sender-

receiver games is that they represent circumstances under which a given
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policy action is optimal for the receiver. Given this, a restricted state space

emerges naturally if either the set of available policies are restricted, or if the

set of rationalizable actions of the receiver is not the whole Euclidean space

(that is, there are some policies that would not be chosen by the receiver

under any circumstances). In this way, the analysis of multi-dimensional

cheap talk is more comparable to earlier work in one-dimensional cheap talk,

where the state space is standardly assumed to be a compact interval.

To illustrate the difference between bounded and unbounded state spaces,

consider the following example. A policymaker needs to allocate a fixed bud-

get to “education,” “military spending,” and “healthcare,” and this decision

depends on factors that are unknown to her. Suppose she can ask for advice

from two perfectly informed experts, a left-wing analyst and a right-wing

analyst. Assume that the left-wing analyst has a bias towards spending

more on education, while the right-wing analyst has a bias towards spending

more on the military; both of them are unbiased with respect to health-

care. If the state space was unbounded, corresponding to no nonnegativity

constraints on spendings, a fully revealing equilibrium can be constructed

following Battagini (2002). In this equilibrium the amount to be spent on

education only depends on the right-wing analyst’s report, while the amount

to be spent on military only depends on the left-wing analyst’s report (while

the remaining budget is allocated to healthcare).

However, suppose that there is a nonnegativity constraint on the amount

of money that can be spent on different types of expenditure, as in a standard

budget allocation problem. The situation can be depicted as in Figure 1: B

corresponds to a state in which it is optimal for the policymaker to spend the

whole budget on the military; C corresponds to a state in which it is optimal

to spend all money on education; while A corresponds to a state in which

it is optimal to spend no money on either education or military. Note that

the state space, represented by the triangle ABC, is bounded. The left-wing
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Figure 1: Nonnegativity constraints.
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analyst’s bias is orthogonal to AB, in the direction of C. The right-wing

analyst’s bias is orthogonal to AC, in the direction of B. According to the

construction that yielded a fully revealing equilibrium for an unbounded state

space, the left-wing analyst is expected to report along a line parallel to AC.1

Similarly, the right-wing analyst is expected to report along a line parallel to

AB. Consider state θ in the figure. If the left-wing analyst sends a truthful

report, then the right-wing analyst can send reports that are incompatible

with the previous message in the sense that the only point compatible with

the message pair is outside the state space (like θ0 in the figure). Intuitively,

these incompatible messages call for a combined expenditure on military and

education that exceeds the budget. Such message pairs of course never arise if

the experts indeed play according to the candidate equilibrium. Nevertheless,

it is important to specify what action the policymaker takes after receiving

a message like that, in order to make sure that both of the experts have

the incentive to tell the truth. We confront this and other issues in our

characterization of fully revealing equilibria.

To extend the analysis to models with restricted satate spaces, we first

observe that Battaglini’s characterization result for the existence of fully

revealing perfect Bayesian equilibrium for one-dimensional compact state

spaces can be applied to arbitrary state spaces in any dimension. The result

implies that the existence of fully revealing equilibrium is monotonic in the

magnitude of biases, and that such equilibria always exist if the state space

is large enough relative to the biases.

We also characterize the existence of fully revealing equilibria for a com-

pact state space if biases are large. The case of senders with large biases is

relevant in various applications: for example specialized committees of deci-

sion making bodies frequently consist of preference outliers. We show that

1The most convenient way to think about this is taking a coordinate system in which
the horizontal axis is parallel to AB, while the vertical axis is parallel to AC. Then the
left wing analyst is reports the true state’s horizontal coordinate (which corresponds to a
line parallel to the vertical axis, that is parallel to AC).
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a fully revealing equilibrium exists for arbitrarily large biases if and only if

the senders have similar biases. Similarity of biases is defined relative to the

shape of the state space: two biases are similar if the intersection of the min-

imal supporting hyperplanes to the state space that are orthogonal to the

biases contains a point of the state space. The intuition is that this point can

be used to punish players if they send contradicting messages to the receiver.

If the state space has a smooth boundary, then directions are similar if and

only if they are exactly the same.

This result reconciles the seeming discontinuity between multi-sender

cheap talk with one versus multi-dimensional state space. In one dimension,

there are only two types of biases, the same direction and opposite direc-

tions. Biases of the former type are always similar, and biases of the latter

type are never similar. Just as for multidimensional state spaces, biases with

similar directions imply that full revelation is always possible in equilibrium,

while non-similar directions imply that if biases are small enough, then full

revelation is possible; otherwise, it is not.

Battaglini (2002) emphasizes that in cheap talk games with multiple

senders perfect Bayesian equilibrium puts only very mild restrictions on out-

of-equilibrium beliefs. Hence, not all equilibria are equally plausible: for

example some equilibria might only be supported by beliefs after out-of-

equilibrium message pairs that induce the policymaker to choose a policy

that is far away from states that are compatible with any of the messages

sent. Motivated by this concern, we proceed by imposing a robustness prop-

erty, called diagonal continuity, on beliefs. We demonstrate that imposing

this extra restriction on equilibria can reduce the possibility of full revelation

in equilibrium drastically. For example, if the state space is a two-dimensional

set with a smooth boundary, and biases are not in the same direction, then

there does not exist a fully revealing diagonally continuous equilibrium, no

matter how small the biases are. As a counterpart of this result, we show

that if the senders’ biases are not in completely opposite directions, then
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under mild conditions information transmission in the most informative di-

agonally continuous equilibrium can be bounded away from zero, no matter

how large the biases are. The latter result is in contrast with the case of only

one sender, where Crawford and Sobel (1982) show that in a unidimensional

state space no information can be transmitted if the bias of the sender is

large enough, and Levy and Razin (2007) show that in a multidimensional

state space there is an open set of environments in which the most infor-

mative equilibrium approaches the noninformative equilibrium as the size of

bias goes to infinity.

2 The model

The model we consider has the same structure as that of Battaglini (2002),

with the exception that the state space may be a proper subset of a Euclidean

space. There are two senders and one receiver. The senders, labeled 1 and

2, both perfectly observe the state of the world θ ∈ Θ. Θ is referred to as

the state space, which is a closed subset of Rd. The prior distribution of θ

is given by F . After observing θ, the senders send messages m1 ∈ M1 and

m2 ∈ M2 to the receiver. The receiver observes these messages and chooses

a policy y ∈ Y ⊆ Rd that affects the utility of all players. We assume that

the policy space Y includes the convex hull of Θ, co(Θ).

For any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, x ·y =
Pd

j=1 x
jyj denotes

the inner product, and |x| =
√
x · x denotes the Euclidean norm.

For state θ and policy y, the receiver’s utility is −|y − θ|2, while sender
i’s utility is −|y − θ − xi|2. xi ∈ Rd is called sender i’s bias. At state

θ, the optimal policy of the receiver is θ, while the set of optimal policies

of sender i are the points in Y that are the closest to θ + xi according

to the Euclidean distance (which is exactly policy θ + xi if the latter is

included in the policy space).2 Note that the magnitude of a sender’s bias

2If θ + xi is outside the policy space, then the point θ + xi does not have a direct
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does not just change his optimal policies; it also changes his preferences

over the whole policy space. Intuitively, as the magnitude of bias increases,

the indifference manifolds (curves when d = 2) of sender i at any state get

closer and closer to hyperplanes (lines) that are orthogonal to xi. We note

that this formulation can be generalized without affecting the main results

of the paper. In particular, the quadratic loss functions can be changed to

any smooth quasiconcave utility function, and some of the results can be

extended to state-dependent biases as well.

Let si : Θ→Mi denote a generic strategy of sender i in the above game,

and let y : M1 ×M2 → Y denote a generic strategy of the receiver. Fur-

thermore, let μ(m1,m2) denote the receiver’s probabilistic belief of θ given

messages m1, m2. Strategies s1, s2, y constitute a perfect Bayesian equilib-

rium if there exists a belief function μ such that (i) si is optimal given s−i

and y for each i ∈ {1, 2}; (ii) y(m1,m2) is optimal given μ(m1,m2) for each

(m1,m2) ∈ M1 ×M2; and (iii) s1 and s2 are measurable and μ is a condi-

tional probability system, given s1, s2, and F : if s−11 (m1) ∩ s−12 (m2) has a

positive probability with respect to F , then μ(m1,m2) is derived from Bayes’

rule. Note that μ(m1,m2) can be any distribution that puts probability 1 on

s−11 (m1) ∩ s−12 (m2) if the latter is nonempty. Beliefs μ satisfying (iii) above

are said to support the perfect Bayesian equilibrium (s1, s2, y).

Note that the receiver’s quadratic utility function implies that condition

(ii) above is equivalent to requiring that y(m1,m2) be equal to the expec-

tation of θ under μ(m1,m2). Let μ(m1,m2) denote this expectation. The

above implies that in perfect Bayesian equilibrium the receiver always plays

a pure strategy. On the other hand, the senders might use mixed strategies

in equilibrium, although the scope of this is rather limited in fully revealing

equilibria, which are in the center of our investigation. In the main part of

the paper we ignore this possibility, and focus on pure strategy equilibria.

interpretation. In particular it is not the “ideal point” of the sender. Preferences are only
defined over Y .
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See subsection 5.2 for extending the results to the case when the senders use

mixed strategies. From now on we, refer to a pure strategy perfect Bayesian

equilibrium simply as an equilibrium.

3 Existence of fully revealing equilibrium

3.1 General biases

Similarly to the well-known revelation principle in mechanism design, we do

not lose generality by concentrating on truthful equilibria when investigating

the existence of fully revealing equilibria. This makes our task much easier.

An equilibrium (s1, s2, y) is fully revealing if s1(θ) = s1(θ
0) and s2(θ) =

s2(θ
0) imply θ = θ0. In this case, by the definition of conditional probability

system, μ(s1(θ), s2(θ)) is the point mass on θ. An equilibrium (s1, s2, y) is

truthful if M1 = M2 = Θ and s1(θ) = s2(θ) = θ for every θ ∈ Θ. A truth-

ful equilibrium is fully revealing. In the next three claims we build heavily

on results from Battaglini (2002): Lemma 1 below is essentially the same

as Lemma 1 in Battaglini, while Propositions 2 and 3 below are straight-

forward generalizations of Battaglini’s Proposition 1 from one-dimensional

line-segment state spaces to arbitrary state spaces in any dimension.

Lemma 1 (Battaglini (2002, Lemma 1)) For any fully revealing equilib-
rium, there exists a truthful equilibrium which is outcome-equivalent to the

fully revealing equilibrium.

In cheap talk games, sequential rationality is a weak requirement. In

particular, in truthful equilibria, after incompatible reports θ 6= θ0, belief

μ(θ, θ0) can be an arbitrary distribution on Θ. The only restriction is that

no sender has a strict incentive not to report the true state, to change the

beliefs of the receiver, given that the other sender reports the truth.
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Let B(x, r) = {y ∈ Rd | |y − x| < r} be the open ball with center x
and radius r. For each sender i, B(θ + xi, |xi|) is the set of policies that are
preferred to θ by sender i at state θ.

Proposition 2 Belief μ supports a truthful equilibrium if and only if, for

every θ, θ0 ∈ Θ,

μ(θ, θ) is a point mass on θ, (1)

μ(θ, θ0) /∈ B(θ0 + x1, |x1|), (2)

μ(θ, θ0) /∈ B(θ + x2, |x2|). (3)

Proof. (2) is the condition for sender 1 not to strictly prefer reporting θ to
reporting truthfully when the true state is θ0. (3) is similar to (2).

Figure 2 illustrates this graphically: in order to keep incentive compati-

bility at state θ and θ0, it is necessary that the policy chosen after message

pair (θ, θ0) be a point that is both outside B(θ0+x1, |x1|) (otherwise, sender 1
would find it profitable to pretend that the state is θ in case the true state is

θ0) and B(θ+x2, |x2|) (otherwise, sender 2 would find it profitable to pretend
that the state is θ0 in case the true state is θ).

The above conditions give necessary and sufficient conditions for the ex-

istence of fully revealing equilibrium, stated in the next proposition.

Proposition 3 There exists a fully revealing equilibrium if and only if B(θ0+
x1, |x1|) ∪B(θ + x2, |x2|) + co(Θ) for all θ, θ0 ∈ Θ.

Proof. By Lemma 1 and Proposition 2, a fully revealing equilibrium exists

if and only if there exists μ(θ, θ0) satisfying (1)—(3). Since μ(θ, θ0) is in the

convex hull of Θ, if B(θ0 + x1, |x1|) ∪ B(θ + x2, |x2|) ⊇ co(Θ) for some θ,

θ0 ∈ Θ then (2)—(3) cannot hold simultaneously for any μ(θ, θ0). Otherwise,

for every θ 6= θ0 ∈ Θ, let μ(θ, θ0) be an arbitrary element of co(Θ) \ (B(θ0 +
x1, |x1|) ∪B(θ + x2, |x2|)).
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Figure 2: Constructing a fully revealing equilibrium.
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Figure 3: Nonexistence of fully revealing equilibrium.

There cannot be a fully revealing equilibrium whenever there exists a pair

(θ, θ0) of states such that the open balls B(θ0 + x1, |x1|) and B(θ + x2, |x2|)
cover the convex hull of the state space. Figure 3 depicts a pair like that.

Note that the existence of fully revealing equilibrium depends only on the

shape of the state space Θ and the biases x1, x2, not on the prior distribution

F .

In the case of biases in the same direction, Proposition 3 implies that a

fully revealing equilibrium always exists, independently of the state space.

The intuition is that (B(θ0 + x1, |x1|) ∪B(θ + x2, |x2|)) in this case does not
contain at least one of θ and θ0 (the one being minimal in the direction of

the biases).

Definition 4 x1 and x2 are in the same direction if x1 = αx2 for some
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α ≥ 0 or x2 = 0.

Proposition 5 If x1 and x2 are in the same direction, then there exists a

fully revealing equilibrium.

Proof. Let μ be the following point belief:

μ(θ, θ0) =

½
θ if x2 · θ > x2 · θ0,
θ0 if x2 · θ ≤ x2 · θ0.

Then μ supports a fully revealing equilibrium.

There are two more general consequences of Proposition 3 that we point

out. Both of them follow from the proposition in a straighforward manner,

therefore we ommit the proofs from here. The first one is that the existence

of fully revealing equilibrium depends monotonically on the magnitudes of

biases: if there exists no fully revealing equilibrium for biases x1, x2 ∈ Rd,

then there exists no fully revealing equilibrium for biases (t1x1, t2x2) for any

t1, t2 ≥ 1. The other one is that there is a fully revealing equilibrium if the

biases are small enough relative to the size of the state space. Formally, if

|x1| + |x2| ≤ (supθ,θ0∈Θ |θ − θ0|)/2, then there exists a fully revealing equi-
librium. This in particular implies that there always exists a fully revealing

equilibrium if the state space is unbounded.

We close this subsection by showing that the nonexistence part of Propo-

sition 3 can be strengthened, in the sense that if there is no fully revealing

equilibrium then there is an open set of states such that the implemented

policy at these states is bounded away from the optimal policy of the receiver.

Proposition 6 There exists no fully revealing equilibrium if and only if there
exist ε > 0 and open sets U and U 0 satisfying U ∩ Θ 6= ∅ and U 0 ∩ Θ 6= ∅
such that, for any equilibrium (s1, s2, μ), either |μ(s1(θ), s2(θ)) − θ| > ε for

all θ ∈ U or |μ(s1(θ0), s2(θ0))− θ0| > ε for all θ0 ∈ U 0.
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Proof. The if part is trivial. For the only if part, suppose that there exists
no fully revealing equilibrium. Then Θ is bounded, and there exist eθ, eθ0 ∈ Θ

such that

B(eθ0 + x1, |x1|) ∪B(eθ + x2, |x2|) ⊇ co(Θ).

Then there exist ε > 0 and neighborhoods U of eθ and U 0 of eθ0 such that
B(θ0 + x1, |x1|− ε) ∪B(θ + x2, |x2|− ε) ⊇ co(Θ)

for any θ ∈ U and θ0 ∈ U 0.

For any equilibrium (s1, s2, μ) and any θ ∈ U , θ0 ∈ U 0, we must have either

|μ(s1(θ), s2(θ))− θ| > ε or |μ(s1(θ0), s2(θ0))− θ0| > ε because otherwise we

haveB(θ0+x1, |θ0 + x1 − μ(s1(θ
0), s2(θ

0))|)∪B(θ+x2, |θ + x2 − μ(s1(θ), s2(θ))|) ⊇
co(Θ), where the first ball is the set of policies sender 1 strictly prefers to

μ(s1(θ
0), s2(θ

0)) at state θ0, and the second ball is the set of policies sender

2 strictly prefers to μ(s1(θ), s2(θ)) at state θ. Therefore, similarly to Propo-

sition 3, no matter what μ(s1(θ), s2(θ0)) is, either sender 1 wants to report

θ at state θ0 or sender 2 wants to report θ0 at state θ, which contradicts the

equilibrium condition.

Therefore, if |μ(s1(θ), s2(θ))− θ| ≤ ε for some θ ∈ U , then |μ(s1(θ0), s2(θ0))−
θ0| > ε for all θ0 ∈ U 0. Otherwise, |μ(s1(θ), s2(θ))− θ| ≤ ε for all θ ∈ U .

The proof establishes that if there is no fully revealing equilibrium, then

there exist two open balls and a positive constant such that if in an equilib-

rium the implemented policy for at least one state in one ball is closer than ε

to the state itself, then at every state in the other ball, the difference between

the implemented policy and the state is at least as much as this constant.

Note that the balls are defined independently of the equilibrium at hand;

hence the above property applies to all equilibria. This is worth pointing out

because typically there are many different types of equilibria, and it is hard

to find nontrivial properties that hold for every equilibrium.
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3.2 Examples

Our primary goal is to characterize conditions for full information revelation

for large biases. Before providing the general result, it is useful to look at

some concrete examples to develop intuition on how the possibility of full

revelation depends on the shape of the state space and the directions and

magnitudes of biases.

We analyze closed balls and hypercubes. In the next subsection, closed

balls will be generalized to compact spaces with smooth boundaries and

hypercubes to compact spaces with kinks.

Let Dd be the d-dimensional unit closed ball {θ ∈ Rd | |θ| ≤ 1}.

Proposition 7 Suppose Θ = Dd with d ≥ 2. There exists a fully re-

vealing equilibrium if and only if x1 and x2 are in the same direction or

max(|x1|, |x2|) ≤ 1.

Proof. If part: By Proposition 5, we can assume that max(|x1|, |x2|) ≤ 1.
For any given (θ, θ0), since d ≥ 2, there exists a unit vector v perpendicular
to θ0 + x1. Let w = −v. We have v, w ∈ Dd. Since |x1| ≤ 1, (2) is satisfied
both by μ(θ, θ0) = v and by μ(θ, θ0) = w. Since |v − w| = 2 and |x2| ≤ 1,
either v or w satisfies (3).

Only-if part: Suppose that x1 and x2 are in different directions and that

max(|x1|, |x2|) > 1. Without loss of generality, we can assume |x1| > 1.

By rotating the state space, we also have x1 = (−a, 0, . . . , 0) with a > 1

without loss of generality. Substituting θ0 = e := (1, 0, . . . , 0) into (2), we

have |μ(θ, e) − (e + x1)| ≥ a. By the triangle inequality, μ(θ, e) ∈ Dd, and

|e+ x1| = a− 1, we have

a ≤ |μ(θ, e)− (e+ x1)| ≤ |μ(θ, e)|+ |e+ x1| ≤ 1 + (a− 1) = a.

Therefore, all the inequalities above hold with equality. Because |μ(θ, e)| = 1,
and μ(θ, e) and −(e + x1) are in the same direction, we have μ(θ, e) = e.
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However, this violates (3) when θ is chosen appropriately. Again, without

loss of generality, we have x2 = (b, c, 0, . . . , 0) with c 6= 0, or b > 0 and c = 0.
For c > 0, we choose θ = (

√
1− ε2,−ε, 0, . . . , 0) for small ε > 0. For

c < 0, we choose θ = (
√
1− ε2, ε, 0, . . . , 0) for small ε > 0. For b > 0 and

c = 0, we choose θ = (1− ε, 0, . . . , 0) for small ε > 0. In each case, we have

e ∈ B(θ + x2, |x2|), which violates (3).
Therefore, when Θ is a closed ball, as long as x1 and x2 are in different

directions, whether a fully revealing equilibrium exists or not is determined

by how large biases are. If the biases are small enough, then we can construct

a fully revealing equilibrium. If at least one of the biases is large enough,

though, then there is no such equilibrium.

Consider next [0, 1]d, the unit hypercube in d dimensions. We say that

x1 and x2 are in the same orthant if x
j
1x

j
2 ≥ 0 for every j ∈ {1, . . . , d}.

Proposition 8 Suppose Θ = [0, 1]d.

1. If x1 and x2 are in the same orthant, then there exists a fully revealing

equilibrium.

2. If x1 and x2 are in different orthants and maxi∈{1,2}minj∈{1,...,d} |xji | >
1/2, then there does not exist a fully revealing equilibrium.

Proof. For the first claim, without loss of generality, we can assume that
xji ≥ 0 for all i ∈ {1, 2} and j ∈ {1, ..., d}. Let μ(θ, θ0) = (0, . . . , 0) for any
θ 6= θ0. Then (1)—(3) are satisfied.

For the second claim, without loss of generality, we can assume that

xj1 > 1/2 for all j ∈ {1, ..., d}, and x12 < 0. Then, when θ0 = (0, . . . , 0) in

(2), we have μ(θ, (0, . . . , 0)) = (0, . . . , 0) for any θ ∈ [0, 1]d. However, this
violates (3) when θ = (ε, . . . , 0) for 0 < ε < min(−2x12, 1).
The second part of the proposition establishes that if one of the biases xi

is large enough such that there is a state θ such that B(θ + xi, |xi|) covers
the whole hypercube with the exception of θ, then no matter how small the
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Figure 4: Square state space.
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other bias x−i is, as long as it is in a different orthant, there is a state θ
0 such

that B(θ0 + x−i, |x−i|) covers θ (see Figure 4 for illustration).
For biases that are in different orthants, the qualitative conditions for the

existence of fully revealing equilibrium are similar to the case when the state

space is a d-dimensional unit closed ball. However, for the case of biases

from the same orthant, the qualitative conclusion is different. Note that

the proof–that, in this case, independent of the magnitudes of biases, there

always exists a fully revealing equilibrium–uses the fact that for these biases,

there is a point in the state space that is minimal among points of the state

space in both directions of biases. This point can serve as a punishment after

any incompatible messages, which deters both senders from not revealing the

true state.

3.3 Large biases

A qualitative conclusion from Crawford and Sobel (1982) is that the amount

of information that can be transmitted in equilibrium decreases when the

sender’s preferences diverge from the receiver’s. In particular, if the sender’s

bias is sufficiently large, then no information transmission is possible in equi-

librium. Krishna and Morgan (2001a) show that a similar insight holds for

two-sender cheap talk games with one-dimensional state spaces, in the sense

that the existence of fully revealing equilibrium depends on the magnitudes

of biases. However, Battaglini (2002) shows that if the state space is a multi-

dimensional Euclidian space, then generically there exists a fully revealing

equilibrium, no matter how large the biases are. We analyze the case of large

biases to revisit the above question. Furthermore, large biases are relevant

in certain applications. For example, distributive theories of committee for-

mation in political science predict that specialized committees of a decision

making body consist of preference outliers.3 In general, experts who have

specialized knowledge are for many reasons (self-selection in the decision to

3See for example Krishna and Morgan (2001b), p. 448.
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become an expert, personal financial interests) likely to care in a strongly

biased way about policy decisions affecting their fields of expertise.

In our model, if a sender has a large bias, then his or her indifference

curves over a bounded policy space are close to hyperplanes orthogonal to the

direction of the bias.4 A natural interpretation of this is that as the bias of a

sender becomes larger, the sender cares more about the direction of conflict

with the receiver, and less about directions in which they share common

interest. For different ways to interpret large biases, see the discussion at the

end of this subsection. The formal statements of this subsection are limit

results on the existence of fully revealing equilibrium as the magnitudes of

biases go to infinity (as the preferences of senders approach lexicographic

preferences). However, because of the result that the possibility of fully

revealing equilibrium is monotonic in the size of biases, the results below

apply for all large enough biases.5

The next proposition shows that, if the state space is compact, then

Proposition 3 for large biases is equivalent to whether the state space can

be covered by the union of two open half spaces with boundaries that are

orthogonal to the directions of biases.

Let Sd−1 denote the (d− 1)-dimensional unit sphere {x ∈ Rd | |x| = 1}.
Sd−1 represents the set of possible directions in Rd. For any λ ∈ Sd−1 and

k ∈ R, let H◦(λ, k) = {x ∈ Rd | λ ·x > k}. H◦(λ, λ ·x) is the open half space
orthogonal to λ whose boundary goes through x.

Proposition 9 Fix a compact state space Θ and the directions of biases z1,

z2 ∈ Sd−1. There exists a fully revealing equilibrium with biases (x1, x2) =

(t1z1, t2z2) for every t1, t2 ∈ R+ if and only if H◦(z1, z1 · θ0)∪H◦(z2, z2 · θ) +
co(Θ) for all θ, θ0 ∈ Θ.

4This observation, which plays a key role in the results below, was first pointed out by
Levy and Razin (2007).

5The concrete meaning of large enough depends on the state space and the directions of
biases. See the examples in Subsection 3.2 for explicit derivations of threshold magnitudes.
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Proof. If part: The claim follows from Proposition 3 because H◦(z1, z1 ·θ0)∪
H◦(z2, z2 · θ) ⊇ B(θ0 + t1z1, t1) ∪B(θ + t2z2, t2) for every t1, t2 ∈ R+.
Only-if part: Suppose that H◦(z1, z1 · θ0) ∪ H◦(z2, z2 · θ) ⊇ co(Θ) for

some θ, θ0 ∈ Θ. Then, since co(Θ) is compact, there exists ε > 0 such that

H◦(z1, z1 ·θ0+ε)∪H◦(z2, z2 ·θ+ε) ⊇ co(Θ). Since co(Θ) is bounded, we have
B(θ0+t1z1, t1)∩co(Θ) ⊇ H◦(z1, z1 ·θ0+ε)∩co(Θ) and B(θ+t2z2, t2)∩co(Θ) ⊇
H◦(z2, z2 ·θ+ε)∩co(Θ) for sufficiently large t1and t2. Hence the claim follows
from Proposition 3.

Consider a compact state space Θ. For any λ ∈ Sd−1, define k∗(λ,Θ) =

minθ∈Θ λ · θ and let H∗(λ,Θ) = {x ∈ Rd | λ · x ≥ k∗(λ,Θ)}. Note that
the compactness of Θ implies that k∗(λ,Θ) and therefore H∗(λ,Θ) are well-

defined. H∗(λ,Θ) is the minimal half space that is orthogonal to λ and

contains Θ. Let h∗(λ,Θ) denote the boundary of H∗(λ,Θ): h∗(λ,Θ) = {x ∈
Rd | λ · x = k∗(λ,Θ)} is the supporting hyperplane to Θ in the direction of

λ.

For every θ ∈ Θ, let NΘ(θ) = {λ ∈ Rd | λ · (θ0 − θ) ≤ 0 ∀θ0 ∈ Θ}. NΘ(θ)

is the set of normal cones to Θ at point θ. Then z1 and z2 are similar with

respect to Θ if there exists θ ∈ Θ such that −z1, −z2 ∈ NΘ(θ).

Proposition 10 Fix a compact state space Θ and the directions of biases

z1, z2 ∈ Sd−1. The following conditions are equivalent:

1. There exists a fully revealing equilibrium with biases (x1, x2) = (t1z1, t2z2)

for every t1, t2 ∈ R+.

2. h∗(z1,Θ) ∩ h∗(z2,Θ) ∩Θ 6= ∅.

3. h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ co(Θ) 6= ∅.

4. z1 and z2 are similar with respect to Θ.

Proof. 1⇒ 2: If not, then we have

H∗(z1,Θ) ∩H∗(z2,Θ) \ (h∗(z1,Θ) ∩ h∗(z2,Θ)) ⊇ Θ.
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Since the left-hand side of this formula is a convex subset ofH◦(z1, k
∗(z1,Θ))∪

H◦(z2, k
∗(z2,Θ)), we have

H◦(z1, k
∗(z1,Θ)) ∪H◦(z2, k

∗(z2,Θ)) ⊇ co(Θ),

which contradicts Proposition 9.

2⇒ 3: Trivial.

3⇒ 1: Pick any θ̃ ∈ h∗(z1,Θ)∩h∗(z2,Θ)∩co(Θ). Then the claim follows
from Proposition 9 because θ̃ /∈ H◦(zi, zi ·θ) for any i ∈ {1, 2} and any θ ∈ Θ.

2⇔ 4: Straightforward from the definition of NΘ(θ).

This proposition makes it easy to check whether for an arbitrary pair of

bias directions full revelation is possible in the limit. If the intersection of the

supporting hyperplanes to the state space in the given directions contains a

point of the state space, then the answer is no; otherwise, it is yes (like in

Figure 5 below, where the intersection of the hyperplanes is a single point,

outside the state space). This intersection is a lower dimensional hyperplane,

and if it contains a point of the state space and z1 6= z2, then that point has

to be a kink of the state space. For example, in two dimensions, if z1 6= z2

and h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ Θ 6= ∅, then h∗(z1,Θ) ∩ h∗(z2,Θ) ∩ Θ is a single

point, which is such that there are supporting hyperplanes to Θ both in the

direction of z1 and in the direction of z2. For a concrete example, recall

the example of the d-dimensional cube with edges parallel to the axis from

the previous subsection and consider d = 2. We saw that full revelation in

equilibrium is possible even in the limit if biases go to infinity if and only if

the directions of biases are in the same quadrant. Note that for each of these

direction pairs, there is a vertex of the square such that there are two lines

orthogonal to the biases that are tangential to the square and go through the

vertex.

An immediate consequence of Proposition 10 is that for opposite biases

(z1 = −z2), full revelation is possible in the limit if and only ifΘ is included in
a lower dimensional hyperspace that is orthogonal to the direction of biases.
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To see this, note that in any other case, h∗(z1,Θ) ∩ h∗(z2,Θ) = ∅; therefore,
h∗(z1,Θ) ∩ h∗(z2,Θ) ∩Θ = ∅.
A compact state space Θ has the convex hull with a smooth boundary

if λ, λ0 ∈ NΘ(θ) ∩ Sd−1 implies λ = λ0 for any θ ∈ Θ. The d-dimensional

ball has a smooth boundary, whereas the d-dimensional cube does not. A

simple corollary of Proposition 10 is that if the convex hull of Θ has a smooth

boundary and z1, z2 ∈ Sd−1 then there exists a fully revealing equilibrium

with biases (x1, x2) = (t1z1, t2z2) for every t1, t2 ∈ R+ if and only if z1 = z2.

We also can show from Proposition 10 that we can assume the state

space to be convex without loss of generality when we discuss the possibility

of full revelation for large biases. This follows because the third condition in

Proposition 10 depends only on co(Θ).

Our results imply that the same general result applies for state spaces in

any dimension, including one: if the state space is compact, then for biases

in similar directions, full revelation of information is possible for any magni-

tudes of biases; for biases that are not in similar directions, the magnitudes

of biases matter: full revelation of information is possible for small biases,

but not possible for large enough biases. In one dimension, there are only

two types of direction pairs: the same direction and opposite directions. The

former directions are always similar while the latter directions are always

nonsimilar as long as the state space is not a singleton. In more than one

dimension, the similarity relation depends on the shape of the state space.

For state spaces with smooth boundaries, nonsimilar directions are generic,

while for other state spaces, neither similar nor nonsimilar direction pairs

are generic. In any case, for a two-sender cheap talk model with a compact

state space, one can get the same qualitative conclusions with respect to the

possibility of fully revealing equilibrium if using a one-dimensional model

(which is typically much easier to analyze) and if using a multidimensional

model. There are two caveats, though. The first is that if one considers

the one-dimensional model as a simplification of a more realistic multidi-
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mensional model, and similar biases are unlikely in that multidimensional

model, then the one-dimensional analysis should put more emphasis on the

case of opposite biases than on the case of like biases. The second, and more

problematic one is that the above conclusion is based on the existence of

fully revealing perfect Bayesian equilibria. Cheap talk models typically have

severe multiplicity of equilibria, some of which are supported by implausable

out-of-equilibrium beliefs by the receiver. This does not affect the validity

of our results concerning conditions for nonexistence of fully revealing equi-

librium, since if there is no fully revealing perfect Bayesian equilibrium in

the game, then there is also no fully revealing profile that is a refinement

of perfect Bayesian Nash equilibrium. The possibility of implausible out-of-

equilibrium beliefs does become a concern though for results that establish

the existence of fully revealing prefect Bayesian equilibrium. This is the main

motivation for the analysis in the next section.

We conclude this section by briefly discussing alternative ways to model

large biases, since, in a compact state space, there is no obvious way to define

preferences for extremely biased senders. When biases get large, besides the

property that indifference curves converge to hyperplanes, our model has

two further qualitative implications. One is that for large enough biases, a

sender’s optimal points are always on the boundary of the state space. The

other one is that in a strictly convex state space, a sender’s optimal points

converge to the same point at the boundary as the magnitude of bias goes

to infinity, no matter what the true state is.6 These properties correspond

well to the way we intuitively think about “large” or “extreme” biases. One

way to generalize our model would be to keep the latter two properties, but

drop the assumption that the indifference curves converge to hyperplanes as

biases grow larger. In this case, the half spaces h∗(z1,Θ) and h∗(z2,Θ) in

Proposition 10 would need to be replaced with the limit upper contour sets

in the alternative model.
6We thank an anonymous referee for pointing this out.
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4 Robust equilibria

In cheap talk games, perfect Bayesian equilibrium (PBE) does not impose

any restriction on out-of-equilibrium beliefs of the receiver. Given this great

flexibility in specifying out-of-equilibrium beliefs–which is made transparent

in Proposition 2–the question arises which equilibria can be supported by

“plausible” beliefs. This point is made by Battaglini (2002): when analyz-

ing one-dimensional (bounded) state spaces, the paper focuses on equilibria

which are supported by out-of-equilibrium beliefs satisfying a robustness cri-

terion. The issue does not arise in the multi-dimensional analysis of the

paper, since the construction that Battaglini gives implies that there are no

out-of-equilibrium message pairs when the state space is the whole Euclidean

space. However, for restricted state spaces, out-of-equilibrium beliefs become

relevant, in multidimensional environments, too.

An extensive investigation of robustness of PBE, and related to this in-

vestigating PBE in models with noisy state observation, is a difficult exercise

for general state spaces and is beyond the scope of this paper.7 Instead,

here we focus on equilibria that satisfy a particular continuity property. The

property is motivated by requiring robustness to small mistakes in senders’

observations, and it is satisfied by the construction provided by Battaglini

(2002, 2004) for unrestricted state spaces. We also show that a strong def-

inition of consistency of equilibrium beliefs implies this property. We then

establish that imposing this property strengthens our nonexistence results for

fully revealing equilibrium considerably for some state spaces. On the other

hand, we show that under mild conditions, there exist informative equilibria

that satisfy the continuity property, no matter how large the biases are.

7See the analysis of Battaglini (2004) for the case of unrestricted multidimensional state
spaces with the improper uniform prior.
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4.1 Diagonal continuity

The equilibrium construction provided in Battaglini (2002, 2004) satisfies the

property that the policy implemented by the receiver is continuous in the

observations of the senders. In what follows, we investigate a requirement

that is weaker than this, in that it only requires continuity at points where

the observations of senders are the same.

Definition 11 An equilibrium (s1, s2, y) is called continuous on the diagonal
if limn→∞ y(s1(θ

n
1), s2(θ

n
2)) = y(s1(θ), s2(θ)) for any sequence {(θn1 , θn2)}n∈N of

pairs of states such that limn→∞ θn1 = limn→∞ θn2 = θ.

Ourmotivation for investigating equilibria that satisfy this property comes

frommultiple sources. One is that we are interested in whether, in a restricted

state space, there exist fully revealing equilibria that can be obtained by some

continuous transformation of the Battaglini construction.8

Second, this property is equivalent to robustness to all small misspecifi-

cations of the model. More precisely, suppose that signals that two senders

receive are slightly different from the true state in reality, although all play-

ers (incorrectly) believe that both senders know the true state, they believe

that other players believe that both senders know the true state, and so on.

In such a situation, if the equilibrium is continuous on the diagonal, then

the ex post loss for the receiver that arises from false beliefs is small for any

realization of the true state when both senders receive signals close enough

to the true state.

Third, as the next proposition shows, diagonal continuity is necessary for

nonexistence of incompatible reports. The latter is a convenient property in

settings where it is unclear how to specify out-of-equilibrium beliefs.9

8We regard this question interesting because Battaglini’s equilibrium construction is
simple and intuitive. A continuous transformation of the equilibrium preserves its basic
attractive features, in the sense that the senders still report along different “dimensions”
in a generalized sense.

9For example, Battaglini’s (2002) equilibrium does not have incompatible reports if the
state space is a whole Euclidean space.
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Proposition 12 For compact Θ, a fully revealing equilibrium (s1, s2, y) is

continuous on the diagonal if

1. for each sender i, Mi is Hausdorff and si : Θ→Mi is continuous, and

2. for each (m1,m2) ∈ s1(Θ)× s2(Θ), there exists a state θ ∈ Θ such that

(s1(θ), s2(θ)) = (m1,m2).

Proof. Consider function g on Θ that maps θ to (s1(θ), s2(θ)). By the

assumptions, g is a continuous function onto s1(Θ) × s2(Θ). g is also one-

to-one because (s1, s2, y) is fully revealing. Since g is a continuous bijection

from compact space Θ to Hausdorff space M1 ×M2, the inverse μ(m1,m2)

is a continuous function of (m1,m2) ∈ s1(Θ)× s2(Θ).10 Since s1 and s2 are

continuous, μ(s1(θ1), s2(θ2)) is also continuous in (θ1, θ2).

The last motivation comes from consistency of beliefs, i.e., that beliefs

should be limits of beliefs obtained from noisy models as the noise in senders’

observations goes to zero. In the Appendix, we show that if we restrict

attention to equilibria in which players’ strategies satisfy some regularity

conditions, then every PBE that satisfies consistency of beliefs has to satisfy

diagonal continuity. The regularity conditions we impose are fairly strong,

but they are needed to ensure that the conditional beliefs of the receiver

in “nearby” noisy models (which are invoked in the definition of consistent

beliefs) are well-defined by Bayes’ rule.

4.2 Nonexistence of diagonally continuous fully reveal-

ing equilibria

Below we show that requiring diagonal continuity can drastically reduce the

possibility of full revelation in equilibrium. First we consider two-dimensional

smooth compact sets. Recall the result that if biases are small enough (pos-

itive), then there always exists a fully revealing equilibrium. As opposed to

10See Royden (1988), Proposition 5 of Chapter 9.
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this, the next proposition shows that unless biases are exactly in the same

direction, no matter how small they are, there does not exist a fully revealing

diagonally continuous equilibrium.11

Proposition 13 In a two-dimensional smooth compact set Θ, if (x1, x2) are
not in the same direction, then there does not exist a diagonally continuous

fully revealing equilibrium.

Proof. Since Θ is a two-dimensional smooth set and (x1, x2) is not in the

same direction, there exists θ ∈ Θ such that θ is separated from other points

in co(Θ) \ (B(θ+ x1, |x1|)∪B(θ+ x2, |x2|)). Since y(θ, θ0) is continuous with
respect to θ0 at θ0 = θ, when we change θ0 slightly, y(θ, θ0) has to move

continuously. However, we can change θ0 appropriately so that we can cover

by B(θ0 + x1, |x1|) ∪B(θ + x2, |x2|) the region close enough to θ. This leads
to a contradiction.

Figure 6 illustrates the argument used in the proof: if biases are not in the

same direction, then there are states θ and θ0 arbitrarily close to each other

(close to the boundary of the state space) such that the balls B(θ0+x1, |x1|)
and B(θ+x2, |x2|) cover an open set that includes both θ and θ0. This means
that in order for incentive compatibility to be satisfies for the senders, the

policy implemented by the receiver after receiving messages corresponding

to θ and θ0 has to be “far away” from both θ and θ0. This implies that the

equilibrium does not satisfy diagonal continuity in these points.12

A similar nonexistence result holds for models in which the state space is

the unit d-dimensional cube (note the difference to the result in Proposition

8).

11As for the case of opposite biases, it is easy to see that the equilibrium constructed in
Proposition 5 is diagonally continuous, since μ(θ, θ0) is either θ or θ0.
12This argument implicitly assumes, by evoking Lemma 1, that the fully revealing equi-

librium is truthful. This is without loss of generality, though: from the definition it follows
that if a fully revealing equilibrium satisfies diagonal continuity, the outcome-equivalent
truthful equilibrium also satisfies diagonal continuity.
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Figure 6: Nonexistence of diagonally continuous fully revealing equilibrium.

Proposition 14 Suppose Θ = [0, 1]d. There exists no diagonally continuous
fully revealing equilibrium if xj1 > 0 for all j ∈ {1, . . . , d} and xk2 < 0 for

some k ∈ {1, . . . , d}.

Proof. When θ = θ0 = (0, . . . , 0), (0, . . . , 0) is separated from other points

in Θ \ (B(x1, |x1|)∪B(x2, |x2|)). Then, similarly to the proof of Proposition
13, we can change θ from (0 . . . , 0) toward the positive direction of the k-th

coordinate so that we can cover by B(x1, |x1|)∪B(θ+x2, |x2|) a neighborhood
of (0, . . . , 0). This leads to a contradiction.
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4.3 Existence of diagonally continuous informative equi-

libria

Here we establish that if the prior distribution is continuous and the expected

value of the state space is an interior point of the state space (which holds,

for example, if Θ is convex and full dimensional), and biases are not not

in exactly opposite directions, then information transmission in the most

informative equilibrium is bounded away from zero.13

Proposition 15 Assume F is continuous. If E(θ) is an interior point of

Θ and z1, z2 ∈ Sd−1 are not opposite directions, then there is an open set

C ⊆ Θ such that for any t1, t2 ∈ R+, there is an equilibrium with biases

(x1, x2) = (t1z1, t2z2) which is diagonally continuous, and which is such that

y(s1(θ), s2(θ)) = θ for all θ ∈ C.

Proof. We assume that d ≥ 2, the prior mean E(θ) is in the interior of Θ,

and the prior distribution F has density f that is bounded away from 0 in a

neighborhood of the prior mean. We further assume that x1 and x2 are not

in the opposite directions. By rotating and shifting the state space, we can

assume E(θ) = 0, x11 > 0, and x12 > 0 without loss of generality.

Given positive small numbers a and b, we define the following region for

each t ∈ [0, 1]:

D(t) = {θ ∈ Rd|θj(t) ≤ θj ≤ θ
1
(t) for j 6= d, θd(θ−d, t) ≤ θd ≤ θ

d
(θ−d, t)},

where θ1(t) = a− 2bt/3, θ1(t) = a+ bt/3, and −θj(t) = θ
j
(t) = bt/2 for each

j 6= 1, d, and, for each θ−d, θd(θ−d, t) and θ
d
(θ−d, t) are such that

Z θ
d
(θ−d,t)

θd(θ−d,t)

f(θ)dθd = bt,

Z θ
d
(θ−d,t)

θd(θ−d,t)

θdf(θ)dθd = 0.

13Note that the claim is about the most informative equilibrium. As is well-known in the
literature, there is always a babbling equilibrium in which no information is transmitted.
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Note that, if a and b are small enough, then D(1) ⊆ Θ and, for each t ∈ [0, 1]
and each θ1 sufficiently close to 0, θd(θ−d, t) and θ

d
(θ−d, t) exist uniquely.

Since θd(θ−d, t) and θ
d
(θ−d, t) depend on θ−d continuously, D(t) is a closed

set. Let ∂D(t) denote the boundary of D(t) and D−d(t) =
Q

j 6=d[θ
j(t), θ

j
(t)].

Next, we compute E(θ|θ ∈ ∂D(t)) for t ∈ [0, 1), which is equal to the
limit

lim
t0&t

E(θ|θ ∈ D(t0) \D(t)) = lim
t0&t

E(θ : D(t0))−E(θ : D(t))

P (D(t0))− P (D(t))

for almost every t ∈ [0, 1), where E(X : A) = P (A)E(X|A).14 For every

j 6= 1, d, we have

E(θj : D(t)) =

Z
D(t)

θjf(θ)dθ

=

Z
D−d(t)

θj
Z θ

d
(θ−d,t)

θd(θ−d,t)

f(θ)dθddθ−d

=

Z
D−d(t)

θjbtdθ−d = 0

and

E(θd : D(t)) =

Z
D(t)

θdf(θ)dθ

=

Z
D−d(t)

Z θ
d
(θ−d,t)

θd(θ−d,t)
θdf(θ)dθddθ−d = 0,

14Since ∂D(t) has Lebesgue measure 0 on Rd, E(θ|θ ∈ ∂D(t)) is uniquely determined
only up to a null set of t.
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thus E(θj|θ ∈ ∂D(t)) = 0 for every j 6= 1 and almost every t ∈ [0, 1). For
the first component, we have

E(θ1 : D(t)) =

Z
D(t)

θ1f(θ)dθ

=

Z
D−d(t)

θ1
Z θ

d
(θ−d,t)

θd(θ−d,t)

f(θ)dθddθ−d

=

Z
D−d(t)

θ1btdθ−d =

µ
a− 1

6
bt

¶
× (bt)d

P (D(t)) =

Z
D(t)

f(θ)dθ

=

Z
D−d(t)

Z θ
d
(θ−d,t)

θd(θ−d,t)

f(θ)dθddθ−d

=

Z
D−d(t)

btdθ−d = (bt)d.

Thus we have

lim
t0&t

E(θ1 : D(t0))−E(θ1 : D(t))

P (D(t0))− P (D(t))
=

d
dt
E(θ1 : D(t))
d
dt
P (D(t))

= a− d+ 1

6d
bt.

Here we define

μ(t) =

µ
a− d+ 1

6d
bt, 0, . . . , 0

¶
for every t ∈ [0, 1]. Note that μ1(t) is decreasing in t.

Since E(θ) = (0, . . . , 0), we have

E(θ|θ /∈ D(1)) =
E(θ)−E(θ : D(1))

1− P (D(1))

=

µ
− bd

1− bd

µ
a− 1

6
b

¶
, 0, . . . , 0

¶
.

We choose a = [(d+ 1)b− bd+1]/(6d) so that E(θ|θ /∈ D(1)) = μ(1).
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Since each sender has a bias toward the positive direction in the first

component of the state and μ1(t) is decreasing in t, we choose b small enough

(hence a is also small) so that, at any state θ ∈ D(1), both senders prefer

μ(t) to μ(t0) whenever 0 ≤ t < t0 ≤ 1.
Now we construct the following strategy profile. If the true state θ is

outside D(1) or on ∂D(1), each sender sends the message “1.” If the true

state θ is in the interior of D(1), each sender sends the message “t” such that

θ ∈ ∂D(t). If two senders send messages t1 and t2, then the receiver chooses

policy μ(max(t1, t2)).

Along the equilibrium path, the receiver is sequentially rational. If the

true state θ is on ∂D(t), sender i prefers policy μ1(t) to any other policy

μ1(t0) with t0 > t, thus, given that sender j 6= i follows the above strategy,

it is optimal for sender i to send message smaller than or equal to t. If the

true state θ is outside D(1), then there is no deviation by a single sender

that affects the receiver’s action. Thus both senders are sequentially rational

along the equilibrium path. Thus the above strategy profile is a perfect

Bayesian equilibrium. Also note that this strategy profile is continuous on

the diagonal.

In the proof, we divide the state space into uncountably many regions such

that (i) as θ moves, the region changes continuously, (ii) both senders prefer

the conditional mean of regions with smaller parameters. Then we define

the following strategy profile: each sender reports the region parameter, and

the receiver believes the higher region parameter. Similarly to Proposition

5, this is an equilibrium due to (ii). Diagonal continuity follows from (i).

Note that the equilibrium constructed above for biases (z1, z2) remains an

equilibrium for biases (t1z1, t2z2) with any t1, t2 ≥ 1. Therefore even in the
limit, as the magnitude of biases go to infinity, information revelation can be

bounded away from zero. This is in contrast to the one-sender case. Crawford

and Sobel (1982) show that there is no informative equilibrium for large

enough biases if the state space is a compact interval. In multidimensional
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environments, Levy and Razin (2007) provide a condition for the receiver

to play at most k actions with positive probability if the magnitude of bias

is sufficiently large. If this condition holds with k = 1, then there is no

informative equilibrium for a large enough bias.15

As for the case of exactly opposite biases, the previous version of the pa-

per contains the construction of an informative perfect Bayesian equilibrium,

which is not necessarily diagonally continuous. We could not come up with

a construction of an informative equilibrium which is always diagonally con-

tinuous, and we do not know if such equilibrium can always be constructed

for opposite biases.16

5 Discussion and extensions

5.1 Long cheap talk

It is well known that multiple rounds of cheap talk can expand the set of equi-

librium payoffs (Aumann and Hart (2003) and Krishna and Morgan (2004)).

In our model, there might be a fully revealing equilibrium with multiple

rounds of cheap talk, even if there is no such equilibrium with one round of

cheap talk.17 The intuition is that in a game with multiple rounds of cheap

talk even if on the equilibrium path players do not mix in any payoff relevant

15It is not true though that informative equilibria never exist for large enough biases.
Chakraborty and Harbough (2007) construct an informative equilibrium in symmetric
multidimensional environments. They also show that this equilibrium construction is
generically robust to small asymmetries of payoff functions and the prior distribution.
16We do know though that in the limit as the magnitudes of biases go to infinity, all

actions taken by the receiver have to be on a lower dimensional hyperplane going through
the expectation of the state space, and which is orthogonal to the biases. For the proof of
this result, see the previous version of the paper.
17A related result in Krishna and Morgan (2001a) is that if two senders send messages

sequentially, then introducing a second round of cheap talk in some cases improves the
possibility of full revelation (Proposition 5). On the other hand, Krishna and Morgan
(2004) prove that with one sender all equilibria with multiple rounds of communication
are bounded away from full revelation (Proposition 4).
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manner (which is necessary for fully revealing equilibrium), they might do

so off the equilibrium path. This means that deviations by the senders can

lead to stochastic outcomes, which provides new ways of deterring deviations

by senders. Below we show that similar techniques that we used before can

be used to derive a necessary condition for the existence of fully revealing

equilibrium in a game with multiple rounds of cheap talk.

Let D = diam(Θ)/2, where diam(Θ) = sup
θ,θ0∈Θ

|θ − θ0|. For i = 1, 2, let

ri =
q
max(0, |xi|2 −D2)).

Proposition 16 In any game with multiple rounds of cheap talk, there exists
no fully revealing equilibrium if there exist θ, θ0 ∈ Θ such that B(θ0+x1, r1)∪
B(θ + x2, r2) ⊇ co(Θ).

Proof. In a fully revealing equilibrium, for any pair of states θ and θ0, it

has to be true that player 1 at θ0 cannot gain by deviating to playing what

her strategy would prescribe at state θ, and at θ cannot gain by deviating

to playing what her strategy would prescribe at state θ0. Fix any strategy

profile which satisfies that at every state the policy outcome is equal to the

state. Let y(θ, θ0) denote the probability distribution of policy outcomes

resulting from sender 1 playing the continuation strategy that the above

profile prescribes for her after observing θ and from sender 2 playing the

continuation strategy that the above profile prescribes for her after observing

θ0. Then since the above profile is an equilibrium, we have −E(y(θ, θ0)−θ0−
x1)

2 ≤ − |x1|2. Note that −E(y(θ, θ0)− θ0− x1)
2 = −(Ey(θ, θ0)− θ0− x1)

2−
E|y(θ, θ0)−Ey(θ, θ0)|2. Since y(θ, θ0) is a distribution over co(Θ), E|y(θ, θ0)−
Ey(θ, θ0)|2 ≤ (diam(Θ)/2)2 = D2. This means that a necessary condition for

the above profile to be an equilibrium is (Ey(θ, θ0) − θ0 − |x1|)2 > |x1|2 −
D2. A symmetric argument establishes that another necessary condition is

(Ey(θ, θ0) − θ − |x2|)2 ≥ |x2|2 − D2. Combining the two conditions yields

Ey(θ, θ0) /∈ B(θ0 + x1, r1) ∪ B(θ + x2, r2). Therefore, B(θ0 + x1, r1) ∪ B(θ +
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x2, r2) ⊇ co(Θ) for some θ, θ0 ∈ Θ implies that there does not exist a fully

revealing equilibrium.

The above result is similar in spirit to Proposition 3: if a sender pretends

to have observed a different state than the true state, then the resulting prob-

ability distribution over outcomes should yield a lower expected utility for

her than revealing the true state. For quadratic utilities, the above expected

utility only depends on the expectation and the variance of the resulting

distribution. The variance of the distribution is bounded by a constant that

depends on the diameter of the state space. This can be used to show that

the expected value of the distribution has to be in the two open balls in

the statement, B(θ0 + x1, r1) and B(θ + x2, r2) (if player 1 played as if she

observed θ and player 2 played as if she observed θ0).

We conclude this subsection by showing that in a bounded state space,

for any fixed direction pair of biases, in the limit as the magnitude of biases

go to infinity there exists fully revealing equilibrium in a game with arbitrary

rounds of communication if and only if there exists one in a game with only

one round of communication. This means that the results of Subsection 3.3 on

large enough biases hold for games with arbitrary rounds of communication.

The key insight is that the open balls in Proposition 16 converge to the ones

in Proposition 3.

Proposition 17 Fix a compact state space Θ and directions of biases z1, z2 ∈
Sd−1. If there exists t∗ ∈ R+ such that for every t1, t2 > t∗ and bias pair

(x1, x2) = (t1z1, t2z2) there exists no fully revealing equilibrium in a game

with one round of cheap talk, then there exists t∗∗ ∈ R+ such that for every
t1, t2 > t∗∗ and bias pair (x1, x2) = (t1z1, t2z2) there exists no fully revealing

equilibrium in a game with arbitrary rounds of cheap talk.

Proof. Let ri(ti) =
q
max(0, |xi|2 −D2)) for i = 1, 2. Note that θ0 is not on

the boundary of B(θ0 + tz1, r1(t1)), but the difference between θ
0 and B(θ0 +

tz1, r1(t1)) is |t1|− r1(t1) = |t1|−
p
t21 −D2 = D2

t1+
√

t21−D2
for large enough t1,
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which goes to 0 as t1 →∞. A symmetric argument shows that |t2|−r2(t2)→
0 as t2 → ∞. Given this, the same arguments as in Proposition 9 establish
that for any θ, θ0 ∈ Θ, we have B(θ0+ tz1, r1(t1))∪B(θ+ tz2, r2(t2)) + co(Θ)
for all t1, t2 ∈ R+ if and only if H◦(z1, z1 · θ0) ∪H◦(z2, z2 · θ) + co(Θ). The
claim then follows from Propositions 9 and 16.

5.2 Mixed strategies in fully revealing equilibrium

As mentioned before, in equilibrium the receiver never uses a nondegenerate

mixed strategy. Moreover, in a fully revealing equilibrium, it has to be true

that for every θ ∈ Θ, for almost all (m1,m2) such that m1 ∈ supps1(θ) and
m2 ∈ supps2(θ), y(m1,m2) = θ. That is, the outcome of the mixing along

the equilibrium path is payoff-irrelevant. Nevertheless, allowing for mixed

strategies by the senders can facilitate fully revealing equilibria in cases when

there is no fully revealing equilibrium in pure strategies. This is exactly for

the same reason that multiple rounds of cheap talk can create new equilibria

relative to a single round: namely, deviations might lead to randomness in

the action chosen by the reciever, which can be an extra deterrant from

deviations, given that senders have concave utility functions. To see this,

note that although along the equilibrium path it is payoff irrelevant for a

sender what the outcome of the randomization of the other sender is, the

same is not necessarily true after deviations.

It is easy to see though that the propositions of the previous subsection

hold for the case of single round of cheap talk and mixed strategies by the

senders. The condition for fully revealing equilibrium in Proposition 16 re-

mains a necessary condition for fully revealing euilibrium in this setting, and

similarly to Proposition 17, it can be shown that if the magnitude of biases

goes to infinity, the set of equilibrium payoffs supported by pure strategies,

and the set of equilibrium payoffs supported by mixed strategies converge to

the same limit.
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6 Conclusion

This paper argues that in a cheap talk model with multiple senders, the

amount of information that can be transmitted in equilibrium depends not

on the dimensionality of the state space but on finer details of the model

specification. These details include the shape of the boundary of the state

space and how similar preferences of the senders are, where similarity is

defined with respect to the state space. It is worth pointing out that the

properties of the state space and sender preferences cannot be investigated

independently, once we allow for general (state-dependent) preferences. For

example, an open bounded state space with state-independent preferences

can be transformed into an unbounded state space with state-dependent

preferences in a way that the resulting games are strategically equivalent.

In future work we would like to depart from the assumption that most of

the literature, including this paper, makes, in that senders observe the state

perfectly. Introducing noise in the senders’ information makes the cheap talk

model more realistic, and potentially affects the qualitative conclusions of

the model.18 For the latter reason, we think it is an important avenue for

future research. It is also a challanging one for general state spaces, since

techniques from the existing literature cannot be used, even to investigate

the existence of fully revealing equilibrium.

Appendix: Consistency of beliefs and diagonal

continuity

In this Appendix, we show that if we restrict attention to strategies that sat-

isfy some regularity conditions, then every equilibrium in which the receivers’

beliefs are consistent satisfies diagonal continuity (as defined in Subsection

4.1).

18For existing work along these lines, see Wolinsky (2002), and Battaglini (2004).
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Consider a PBE (s1, s2, y) and conditional beliefs μ of the sender that

support this equilibrium. In order to check for consistency of the beliefs,

we need to define models in which the observations of senders are noisy.

We will consider a sequence of noisy models indexed by k = 1, 2, . . . In

the noisy model indexed by k, senders 1 and 2 observe signals θ1 ∈ Θ and

θ2 ∈ Θ, respectively. For each true state θ ∈ Θ, the joint density function

of signals (θ1, θ2) conditional on θ is given by gk(θ1, θ2|θ). We assume that
noise disappears in the limit: gk(θ1, θ2|θ) converges in probability to (θ, θ) as
k →∞.
An example for the above construction, which is similar in spirit to the

one proposed in Battaglini (2004), is when

θi = θ + εkui,

where (u1, u2) is a truncated standard normal distribution on R2d and εk → 0

as k →∞. Truncation is needed to assure that θi belongs to Θ for sure.19

Fixing the senders’ strategies in the sequence of noisy models to be si(θi),

let μk(m1,m2) denote the posterior belief of the receiver in the model indexed

by k, given two reports (m1,m2). Let μk(m1,m2) be the expectation of θ

with respect to μk(m1,m2).

Definition 18 We say μ is consistent if μk(m1,m2) weakly converges to

μ(m1,m2) uniformly over (m1,m2) ∈ s1(Θ)× s2(Θ), i.e., for any ε > 0 and

any continuous and bounded function b on Θ, there exists K such that we

have ¯̄̄̄Z
b(θ)μk(m1,m2)(dθ)−

Z
b(θ)μ(m1,m2)(dθ)

¯̄̄̄
< ε,

for any (m1,m2) ∈ s1(Θ)× s2(Θ) and any k > K.20

19On the other hand, noise structures like the one in Section 3 of Battaglini (2002)
are not compatible with our framework because they do not admit a density function
gk(θ1, θ2|θ).
20We note that the requirement of uniform convergence is strong. We do not know

whether consistency implies diagonal continuity if we use pointwise convergence.
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If Θ is bounded, then this definition implies that μk(m1,m2) uniformly

converges to μ(m1,m2) as k →∞.
To show our main result concerning consistent beliefs in the limit model,

first we establish a result that applies to beliefs in the noisy models defined

above. We show that μk(m1,m2) is continuous in (m1,m2) for any k. In-

tuitively speaking, in a noisy model, even if the receiver gets two pairs of

messages that are a little different from each other, she does not drastically

change her belief about the true state, for the difference between the mes-

sage pairs does not necessarily mean a drastic difference in the true state, but

means a small change in the noise contained in the senders’ signals. Once we

establish the continuity of μk, we show that continuity is inherited to μ in the

limit model without noise, which implies diagonal continuity when reporting

functions si are continuous.

In order to use Bayes’ rule for continuous random variables, we impose

several restrictions on senders’ reporting functions. For each i, the message

spaceMi is a subset of a Euclidean space Rni, and each inverse image of mes-

sage mi with respect to si, s−1i (mi) = {θi ∈ Θ|si(θi) = mi}, is parametrized
by ti ∈ Ti ⊆ Rd−ni. That is to say, there exists a continuously differentiable

bijection

hi : Mi × Ti → Θ

such that mi = si(θi) if and only if θi = hi(mi, ti) for some ti ∈ Ti.21

Given (h1, h2), the density function of (m1,m2) with respect to the Lebesgue

measure on M1 ×M2 conditional on the true state θ isZ
T2

Z
T1

gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2,

21For example, in Battaglini’s (2002) equilibrium construction, hi is the identity function
on Rd; M1 and M2 are subspaces of Rd that form a coordinate system: every point in
θ ∈ Rd is uniquely expressed by a linear combination of m1 ∈ M1 and m2 ∈ M2; Mi

contains sender j’s bias direction; and Ti =Mj . Such a coordinate system exists if d ≥ 2
and two senders’ biases are not parallel.
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where Ji(mi, ti) is the Jacobian of hi at (mi, ti):

Ji(mi, ti) = det
∂hi(mi, ti)

∂(mi, ti)
.

Proposition 19 Suppose

1. Θ, T1, and T2 are compact;

2. gk(θ1, θ2|θ) is continuous in (θ1, θ2), gk(θ1, θ2|θ) > 0, and bounded;

3. for each sender i, Ji(mi, ti) is continuous in mi, Ji(mi, ti) 6= 0, and

Ji(mi, ti) is bounded.

Then the expectation μk(m1,m2) of θ conditional on (m1,m2) in the k-th

noisy model is continuous in (m1,m2).

Proof. μk(m1,m2) is given by

E
h
θ
R
T1

R
T2
gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2

i
E
hR

T2

R
T1
gk(h1(m1, t1), h2(m2, t2)|θ)|J1(m1, t1)J2(m2, t2)|dt1dt2

i .

The denominator is nonzero. Also, by the Lebesgue Convergence Theo-

rem, both the numerator and the denominator are continuous in (m1,m2).22

Therefore, μk(m1,m2) is continuous with respect to (m1,m2).

Proposition 20 Let (s1, s2, y) be an equilibrium in the limit game. In ad-

dition to the assumptions in Proposition 19, suppose that mi = si(θi) is

continuous in θi for each i = 1, 2. Then every equilibrium that is supported

by a consistent belief is continuous on the diagonal.

Proof. By Proposition 19, μk(m1,m2) is continuous in (m1,m2). Since

μk(m1,m2) converges to μ(m1,m2) uniformly over (m1,m2), μ(m1,m2) is also

continuous in (m1,m2), and hence μ(s1(θ1), s2(θ2)) is continuous in (θ1, θ2).

22See Royden (1988), Theorem 16 of Chapter 4.
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