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Abstract

This paper considers the effect of contracting limitations in risk-sharing networks, aris-
ing for example from observability, verifiability, complexity, or cultural constraints. We
derive necessary and sufficient conditions for Pareto efficiency under these constraints in
a general setting, and we provide an explicit characterization of Pareto efficient bilateral
transfer profiles under CARA utility and normally distributed endowments. Our model
predicts that network centrality is positively correlated with consumption volatility, as
more central agents become quasi-insurance providers to more peripheral agents. The pro-
posed framework has important implications for the empirical specification of risk-sharing
tests, allowing for local risk-sharing groups that overlap within the village network.
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1 Introduction

Informal insurance arrangements in social networks have been shown to play an important role
at smoothing consumption in a number of different contexts (Ellsworth 1988, Rosenzweig 1988,
Deaton 1992, Paxson 1993, Udry 1994, Townsend 1994, Grimard 1997, Fafchamps and Lund
2003, and Fafchamps and Gubert 2007). A main finding in this literature is that informal
insurance achieves imperfect consumption smoothing.1 There are different theoretical explana-
tions as to why perfect risk sharing is not possible. One leading explanation is the presence
of enforcement constraints: since risk-sharing arrangements are informal, they have to satisfy
incentive compatibility, implying an upper bound on the amount of transfer that individuals
can credibly promise to each other. This type of explanation has been explored in a social
network framework by Ambrus, Mobius, and Szeidl (2014).2

In this paper we explore an alternative explanation featuring imperfectness of the contract-
ing environment. Specifically, we assume that bilateral risk sharing arrangements between a
pair of agents cannot be made contingent on everyone’s endowment realizations in the commu-
nity (global information), but only on a pair specific subset of endowment realizations (local
information). These contractibility restrictions can come from limited observability or verifia-
bility of endowment realizations of agents located far enough on the social network, social norms
and complexity costs on writing contracts, among other sources. The empirical relevance of
local information is documented by Alatas et al. (2016), who find that households’ information
about each others’ financial situations is negatively correlated with the social distance between
them.

In most of this paper we focus on the case where individuals in a network can only observe
their neighbors’ endowment realizations, and the local information of each linked pair consists
of the endowment realizations they commonly observe – i.e., their own and their common neigh-
bors’ realizations. However, we also show that our results extend to more general contracting
environments where the "information network", which describes what information each pair
can contract on, is defined independently of the "physical transfer network".

Relative to previous models, our framework provides a number of new and testable pre-
dictions. We find that centrally located individuals become quasi insurance providers to more

1Some recent papers, like Schulhofer-Wohl (2011) and Mazzocco and Saini (2012) point out that in some
contexts perfect risk-sharing cannot be rejected when allowing for heterogeneous preferences. We discuss how
our work is related to this literature later in this section. On the other extreme, Kazianga and Udry (2006) find
a setting in which informal social insurance does not improve welfare over autarchy.

2See also Karlan et al. (2009), who investigate enforcement constraints in the case of a single borrowing
transaction. There is also an extensive literature on the effects of limited commitment on risk-sharing possibilities
for a pair of individuals instead of general networks (Coate and Ravallion 1993, Kocherlakota 1996, Ligon 1998,
Fafchamps 1999, Ligon, Thomas, and Worrall 2002, Dubois, Jullien, and Magnac 2008).
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peripheral households.3 Further, the current setup formalizes, and indeed generalizes, the no-
tion of a “local sharing group” that has been invoked recently in the risk-sharing tests performed
in the development literature.

Existing models of informal risk sharing in networks (Bloch et al. 2008, Bramoullé and
Kranton 2007, Ambrus, Mobius, and Szeidl 2014, Ambrus and Elliott 2020) assume that any
bilateral arrangement between connected individuals can be conditioned on global information,
meaning the community’s full set of endowment realizations.4 We find that this explanation
generates qualitatively different predictions relative to models of informal insurance with en-
forcement constraints. Hence, our results can help future empirical work identify which type
of constraint plays the key role in maintaining informal insurance arrangements away from
efficiency.5

There is a line of theoretical literature investigating the effect of imperfect observability
of incomes on informal risk sharing arrangements between two individuals in isolation: see
for example Townsend (1982), Thomas and Worrall (1990), and Wang (1995). The questions
investigated in this literature are fundamentally different from the ones we focus on, mainly
because we are interested in questions that are inherently network related.6

The current framework also speaks to an ongoing debate in the development literature that
emphasizes the importance of appropriately defining individuals’ risk-sharing groups in empir-
ical work (Mazzocco and Saini 2012, Angelucci, De Giorgi, and Rasul 2017, Attanasio, Meghir,
and Mommaerts 2018, Munshi and Rosenzweig 2016). A general trend in this literature consid-
ers alternative sub-groups within communities as the relevant risk-sharing units of individuals
(e.g. an individual’s sub-caste or extended family). They argue that classical empirical tests
of risk sharing (Townsend, 1994) must be adapted to accommodate heterogeneity in individu-
als’ risk sharing communities. However, they only allow for a limited form of heterogeneity in
which group membership is mutually exclusive and groups do not interact among themselves.

3Throughout the paper we maintain the terminology “individuals”, even though in many contexts the relevant
unit of analysis is households.

4Bloch, Genicot, and Ray (2008) consider different types of exogenously-specified transfer rules, but these
arrangements can depend on nonlocal information, potentially achieving first-best outcomes. See also Bourlès,
Bramoullé, and Perez-Richet (2017), where individuals are motivated to send transfers to their neighbors for
explicit altruistic reasons, but bilateral transfers depend on transfers among other individuals. More recently,
Bourlès, Bramoullé, and Perez-Richet (2018) extend their altruism model to a risk-sharing environment and
find that efficient insurance is possible under certain altruism networks.

5Empirical papers trying to distinguish among different reasons of imperfectness of informal insurance con-
tracts include Kinnan (2017) and Karaivanov and Townsend (2014). For an empirical test between full insurance
versus informational constraints, see Ligon (1998).

6Other differences include that our analysis is static while the above papers are inherently dynamic, and in
our paper individuals perfectly observe local information (but not beyond), while in the above papers incomes
are not observable even between two connected individuals.
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Instead, we provide a general framework that can accommodate these “partition models”, but
also allows for local risk-sharing groups that overlap in complicated ways along a network of
local information.

Our paper is also related to the recent line of papers pointing out that allowing for het-
erogeneous preferences, in some contexts the full insurance hypothesis cannot be rejected, or
at least the imperfection of the insurance can be bounded to be small: see Schulhofer-Wohl
(2011), Mazzocco and Saini (2012) and Chiappori et al. (2014). In some settings this hinges on
some specific type of preference heterogeneity, for example in the context of Chiappori et al.
(2014) it requires that wealth and risk preferences are uncorrelated, which is at odds with the
standard assumption of decreasing risk aversion.7 Nevertheless, it is certainly possible that in
some context informal social insurance is close to perfect. However, in other contexts empirical
research found that informal social insurance is very ineffective and does not improve welfare
relative to autarky (see the context in Kazianga and Udry (2006), and for certain types of risks
in the context of Goldstein et al. (2001)). There are also some similarities between our work and
the above literature. The latter investigates the role of heterogeneity of preferences in informal
risk sharing, while our paper focuses on the role of heterogeneity in network positions.

The first part of our analysis characterizes Pareto efficient risk-sharing arrangements under
local information constraints for general (concave) and possibly heterogeneous utility functions
and endowment distributions. We show that Pareto efficiency in our context (subject to local
information constraints) is equivalent to pairwise efficiency, that is the requirement that the
risk-sharing agreement between any pair of neighbors is efficient, taking all other agreements
between neighbors fixed. This means that any decentralized negotiation procedure that leads
to an outcome in which neighbors do not leave money on the table would yield a Pareto efficient
risk-sharing arrangement.

In the benchmark model with global information, the necessary and sufficient conditions
for Pareto optimality, referred to as the Borch rule (Wilson, 1968; Borch, 1962) can be derived
using standard techniques, and they state that the ratios of any two individuals’ marginal
utilities of consumption must be equalized across states. We can generalize the Borch rule
to this setting by showing that a necessary and sufficient condition for Pareto optimality of a
risk-sharing arrangement with local information equates the ratios of expected marginal utilities
of consumption for each linked pair, where expectations are conditional on local states (i.e. on
the realizations of the contractible endowments).

The generalized Borch rule can be used to verify the Pareto efficiency of consumption plans
7For a recent paper finding support for preferences exhibiting decreasing risk aversion, see Paravisini, Rap-

poport, and Ravina (2016).
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achieved by candidate transfer agreements in concrete specifications of our model. We provide
this characterization for the case of CARA utilities and jointly normally distributed endowments
in the context when local information of a pair includes the endowment realizations of the pair
and common neighbors. The characterization is particularly simple in the setting of independent
endowments: each individual shares her endowment realization equally among her neighbors
and herself; on top of that, the arrangement can include state independent transfers, affecting
the distribution of surplus but not the aggregate welfare.8

For the more general case of symmetrically correlated endowment realizations in the CARA-
normal setting, we show that efficient risk-sharing can still be achieved by transfers that are
linear in endowment realizations and strictly bilateral (i.e. only contingent on the endowment
realizations of the pair involved). In contrast to the local equal sharing rule that obtains in
the case of independent endowments, we find that if individuals i and j are linked, increasing
the exposure of i to transfers from non-common neighbors increases the share of i’s endowment
realization transferred to j, relative to local equal sharing, and decreases the share of j’s en-
dowment realization transferred to i. These correction terms, which are complicated functions
of the network structure, take into account that more centrally located individuals are more
exposed to the common shock component, and optimally correct for this discrepancy.

We find that more central individuals end up with larger consumption variance because
they serve as quasi insurance providers to more peripheral neighbors. We demonstrate this
analytically for random graphs, and via simulations for concrete village networks taken from real
data. For a fixed set of welfare weights, more central individuals are compensated for this service
through higher state-independent transfers (i.e. an "insurance premium"). This is contrary to
the predictions from models with enforcement constraints, like Ambrus, Mobius, and Szeidl
(2014), in which more centrally connected individuals are better insured and obtain smaller
consumption variance.9 In order to highlight the large effect that information constraints may
have on overall insurance, we briefly consider the case where endowment correlations decay over
network distance. We show that, in this case, the amount of overall insurance is much lower
than what can be achieved under the uniform global correlation structure used to derive the
main results. In the final section we show how our results extend to more general correlation
structures on endowments within the CARA-normal framework, and to specifications of the

8This type of transfer arrangement, which we refer to as the local equal sharing rule, is considered as an
ad hoc sharing rule in Belhaj and Deroïan (2012), who consider the effect of equal sharing rules on risk-taking
behavior of agents, and more recently in Gao and Moon (2016).

9In a separate paper, Milán et al. (2018) test the pairwise transfer scheme predicted by local information
constraints against the observed food exchanges between Tsimane’ households in the Bolivian Amazon. They
find that bilateral transfers can be explained by network centrality, as predicted in Proposition 4 below, which
provides further supporting evidence for the model.
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Figure 1: A Simple 3-Individual Network

model outside the analytically tractable CARA-normal setting.

2 Illustrative Examples

2.1 Basic Setting

Before investigating general network structures, we first consider the simplest non-trivial net-
work, where three individuals, denoted by 1, 2 and 3, are minimally connected in a line. Despite
its simplicity, this example provides some useful insights on how local information constraints
affect efficient risk-sharing arrangements.

Assume that individuals have homogeneous CARA preferences of the form u(x) = − exp (−rx),
and that endowments e1, e2, e3 ∼iid N (0, σ2). Only linked individuals may enter into risk-
sharing arrangements to mitigate endowment risks. Let t12 denote the net ex post transfer
from individual 1 to individual 2, and t13 the net transfer from individual 1 to individual 3. Let
x1, x2, x3 denote the final consumption to individuals after the transfers are implemented, i.e.,
x1 = e1 − t12 − t13, x2 = e2 + t12 and x3 = e3 + t13.

2.2 Global Information

First we consider the benchmark case when bilateral risk-sharing arrangements can be condi-
tioned on global information, that is on all three individuals’ endowment realizations: t12, t13

can be arbitrary functions of the endowments e1, e2, e3. Standard arguments (see Wilson, 1968)
establish that Pareto efficient transfer rules t12, t13 are the ones maximizing the social planner’s
problem:

E

[
3∑
i=1

λiu (xi)

]
= E [λ1u (e1 − t12 − t13) + λ2u (e2 + t12) + λ3u (e3 + t13)] ,
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for some λ1, λ2, λ3 ∈ (0, 1) s.t. λ1 + λ2 + λ3 = 1. By the well-known Borch rule (Borch, 1962;
Wilson, 1968), the necessary and sufficient conditions for optimality are:

λ1u
′
(e1 − t12 − t13) = λ2u

′
(e2 + t12) = λ3u

′
(e3 + t13) ∀e1, e2, e3.

With CARA utility, this yields the global equal sharing rule:

t12 (e1, e2, e3) =
1

3
e1 −

2

3
e2 +

1

3
e3 −

1

3r
ln
(
λ2

2/λ1λ3

)
and similarly for t13, leading to the final consumption plan:

x1 = 1
3

(e1 + e2 + e3) + 1
3r

ln
(
λ2

1/λ2λ3

)
,

x2 = 1
3

(e1 + e2 + e3) + 1
3r

ln
(
λ2

2/λ1λ3

)
,

x3 = 1
3

(e1 + e2 + e3) + 1
3r

ln
(
λ2

3/λ1λ2

)
.

(1)

That is, Pareto efficient risk-sharing arrangements in every state divide each realized endowment
shock equally among all individuals, and the global equal sharing is then corrected by state-
independent transfers that implement the welfare weights.

2.3 Local information

Suppose now that each individual’s endowment realization is only locally observed by immediate
neighbors, so that the transfers t12, t13 in the risk-sharing arrangements can be contingent on
the endowment realizations that each linked pair of individuals commonly observe, that is,
t12 = t12 (e1, e2) , t13 = t13 (e1, e3) .

It is no longer possible to achieve consumption plans on the Pareto frontier, given by (1),
subject to these local information constraints. However, a necessary condition for a transfer
arrangement to be socially optimal is that, for any given realization of e1 and e2, t12 should
maximize λ1u (e1 − t12 − t13) +λ2u (e2 + t12), given the distribution of e3 conditional on e1 and
e2, and the implied distribution of consumption levels (net of t12) induced by t13.10 In short,
given t13, t12 should maximize the planner’s welfare function:

max
t12

ˆ
[λ1u (e1 − t12 − t13) + λ2u (e2 + t12)] f3|1,2 (e3) de3

10We show in Section 3 that this condition is actually also sufficient.
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The necessary and sufficient FOC for this maximization problem is:

λ1E [u′ (e1 − t12 − t13 (e1, e3)) | e1, e2] = λ2u
′ (e2 + t12)

and similarly for t13 given t12:

λ1E [u′ (e1 − t12 (e1, e2)− t13) | e1, e3] = λ3u
′ (e3 + t13)

Solving this system of two integral equations, we obtain the following transfer rule

t12 (e1, e2) =
1

3
e1 −

1

2
e2 −

1

24
rσ2 − 1

3r
ln
(
λ1λ3/λ

2
2

)
(2)

and similarly for t13 (e1, e3). Notice the transfers can be decomposed into three parts. The first
part, 1

3
e1 − 1

2
e2, corresponds to the “ local equal sharing rule”, which is the local variant of the

equal sharing rule. It implies that individual i’s endowment ei is equally shared by i and i’s
neighbors, i.e., tij = ei

di+1
− ej

dj+1
. The second part of the equations in (2), − 1

24
rσ2, corresponds

to a state-independent transfer that can be regarded as the “insurance premium” paid by the
“net insurance purchaser” to the “net insurance provider”. As the final consumption are

x1 = 1
3
e1 + 1

2
e2 + 1

2
e3 + 1

12
rσ2 + 1

3r
ln
(
λ2

1/λ2λ3

)
,

x2 = 1
3
e1 + 1

2
e2 − 1

24
rσ2 + 1

3r
ln
(
λ2

2/λ1λ3

)
,

x3 = 1
3
e1 + 1

2
e3 − 1

24
rσ2 + 1

3r
ln
(
λ2

3/λ1λ2

)
,

individual 1 takes extra risk exposure 1
3
e1 + 1

2
e2 + 1

2
e3 in comparison to individuals 2 and 3,

1
3
e1 + 1

2
e2 or 1

3
e1 + 1

2
e3. Hence, individual 1 is rewarded the certainty equivalent (CE) for her

intermediary role in risk sharing. The third part of the equations in (2), − 1
3r

ln
(
λ1λ2/λ

2
3

)
,

redistributes wealth according to the welfare weights assigned to different individuals (it is zero
when λ1 = λ2 = λ3).

To evaluate the welfare loss associated with local information constraints, we can simply
compare the total variances of final consumption across both environments. For example, with
global information, the sum of consumption variances in the above example is: TV arG =

3 · V ar
[

1
3

(e1 + e2 + e3)
]

= σ2. With local information constraints, the sum of consumption
variances increases to: TV arL = V ar

[
1
3
e1 + 1

2
e2 + 1

2
e3

]
+ V ar

[
1
3
e1 + 1

2
e2

]
+ V ar

[
1
3
e1 + 1

2
e3

]
=

4
3
σ2. Hence total variance increases by 1

3
σ2 and the ratio of social welfare between global and

local information corresponds to a simple function of this difference. To see this notice that,
under CARA, expected (marginal) utilities are equated across all connected individuals – up
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to a constant that captures differences in Pareto weights. This implies that, for the simplest
case in which λi = 1 for all i ∈ N , we can write aggregate welfare as,

W = −n exp

(
− r
n

(∑
i

E[xi]−
1

2
r
∑
i

Var(xi)

))

and using the fact that, from the aggregate resource constraint
∑

i E[xi] = 0, we can obtain
an expression for the welfare ratio between global and local constraints in terms of aggregate
variances as,

WG

WL
= exp

(
r2

2n
(TV arG − TV arL)

)
which ultimately depends on the difference in total variance between the global and local
information environments.

3 General Framework

We now turn to a general framework that extends the lessons of the previous example by
characterizing the bilateral risk-sharing arrangements for any given network while allowing
endowment shocks to be correlated across households.

3.1 Setup

Before we proceed to our main analysis, we first introduce the model setup and define some
notations. Let N = {1, 2, ..., n} be a finite set of individuals and let G be the adjacency matrix
of a network structure on N . A pair of individuals i, j are linked if Gij = 1, and by convention,
Gii = 0. Throughout the paper we assume, without loss of generality, that G represents
a connected network.11 Denote the neighborhood of i by Ni := {j ∈ N : Gij = 1} and the
extended neighborhood of i by N i := Ni ∪ {i}. Let di := # (Ni) denote individual i’s degree.
The state of the world is defined as the vector of endowment realizations e ≡ (ei) i∈N ∈ Ω ⊆ Rn,
and its distribution is characterized by a probability measure P on (Ω,B (Ω)). We assume that
the distribution of e has finite expectation.

We assume that only linked pairs of individuals can engage in informal risk sharing directly,
and such linked pairs can ex ante enter into and commit to a bilateral risk-sharing arrange-
ment.12 An ex ante risk-sharing arrangement between linked individuals i and j is a net transfer

11Otherwise we may analyze each component separately.
12In this paper we abstract from ex-post enforcement problems for such contracts.
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rule tij : Ω→ R, which prescribes a net amount of tij (e) to be transferred from i to j at each
realized state e. By definition, tij (e) = −tji (e) for every e ∈ Ω and linked i, j ∈ N .

A central feature of our model is that we impose local information constraints on the bi-
lateral contracts each linked pair of individuals may write. For most of the paper, we adopt
the specification that individuals can only observe the endowment realizations of their direct
neighbors, and the bilateral contract a linked pair of individuals enter into may only be made
contingent on the endowment realizations that they can commonly observe, i.e., their own and
their common neighbors’ endowment realizations. Define Nij := Ni ∩Nj and N ij := N i ∩N j.
Let Ii (e) := (ej) j∈N i

be the information vector of i, and Iij (e) := (ek) k∈N ij
be the common

information vector of a linked pair ij. We may later refer to Iij as the local state for ij. Math-
ematically, the local information constraints we introduce above requires that tij varies with Iij
only, or that tij : Ω→ R be σ (Iij)-measurable, where σ (Iij) denotes the sub-σ-algebra induced
by Iij.

This specification implicitly assumes that the information network that encodes observabil-
ity (or other forms of information transmission) of endowment realizations coincides with the
physical transfer network that encodes the ability for two individuals to write and commit to
a bilateral risk-sharing contract ex ante. However, such a restriction is non-essential for our
analysis, and it is imposed here for the expositional simplicity. Section A.1 considers a more
general formulation of contractibility constraints, and provide generalization of our model, as
well as the results, beyond the current specification.

We refer to the profile of ex ante risk-sharing arrangements tij between all pairs of linked
individuals as a transfer arrangement t. Let T denote the set of all admissible transfer ar-
rangements t : Ω := Rn → R

∑
i∈N di that are only contingent on the local states for all linked

pairs:13

T :=

t : Ω→ R
∑

i∈N di

∣∣∣∣∣∣∣∀i, j s.t. Gij = 1,

tij is σ (Iij) -measurable
and tij (e) + tji (e) = 0, ∀e ∈ Ω,

and E [tij] is finite.


Define 〈s, t〉 := E

[∑
Gij=1 sij (e) tij (e)

]
for any s, t ∈ T . It follows that 〈·, ·〉 is an inner product

13We clarify that transfers are not allowed to be interdependent in this paper, i.e., the net transfer between any
linked pair cannot depend on the transfers between any other pairs. It should be pointed out that, if transfers are
also observable and (informally) contractible, then essentially the final consumption becomes contractible and
the full-information Pareto efficiency can be restored via state-by-state global equal sharing (potentially with
some state-independent transfers), eliminating the significance of any network structure beyond connectedness
and any joint endowment distribution on the final consumption plan. See, however, Appendix A.2 how our
framework can be adapted to incorporate other forms of ex post interactions.
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and T is a well-defined inner product space (see Lemma 1 in Appendix C.1 for a formal proof).
We slightly abuse notations by treating each element in T as an equivalent class of transfer
arrangements that are indistinguishable under the norm induced by 〈·, ·〉. Throughout the
paper, we write “s = t” to mean “〈s− t, s− t〉 = 0”, whenever applicable.

Given a transfer arrangement t ∈ T , we define the final consumption plan induced by t as
xt : Ω → Rn with xti (e) := ei −

∑
h∈Ni

tij (e). Individuals derive utilities from their own final
consumption,14 and we assume that they have a strictly concave and twice differentiable utility
function u, with u′ > 0 and u′′ < 0.

The timeline of our model is summarized as follows: ex ante, given a fixed network structure
G, each linked pair ij enters into a bilateral risk-sharing contract tij; the endowment vector
e realizes; ex post, each linked pair ij carries out the network transfer of amount tij (Iij (e))

according to their ex-ante contract tij and their local information Iij (e); after the transfers,
each individual derive utility from her final consumption xti (e).

The central question we seek to answer in the subsequent analysis to characterize the con-
strained Pareto efficient risk-sharing arrangements subject to the local information constraints.

3.2 General Conditions for Pareto Efficiency

To characterize the set of Pareto efficient transfers under the local information constraint, we
consider the following problem:

max
t∈T

J (t) := E

[∑
k∈N

λku

(
ek −

∑
h∈Nk

tkh

)]
(3)

Recall that both e and t are assumed to have finite expectation. As u is strictly concave, by
Jensen’s inequality, we conclude that E

[
u
(
ek −

∑
h∈Nk

tkh
)]
< ∞ for all k ∈ N , so the social

welfare function J : T → R ∪ {−∞} is well defined on T .
The following proposition provides a formal characterization of the solution to the maxi-

mization problem above. Since the transfer rule tij is restricted to be measurable with respect
to σ (Iij), we slightly abuse notations and write it as tij : Rdij+2 → R where dij + 2 = dim (Iij).
We denote the distribution of Iij on Rdij+2 by PI−1

ij .

Proposition 1. A profile of t ∈ T solves (3) if and only if it simultaneously solves the
∑

i∈N di

optimization problems in the form of (4) at PI−1
ij -almost all possible local states of the linked

14Here we abstract away from constraints on minimum consumption levels, which clearly would further reduce
the efficiency of the risk sharing contracts. However if income variances are small relative to expected income
levels, then we expect the distortions to be small.
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pair: ∀i, j s.t. Gij = 1, for PI−1
ij -almost all Ĩij ∈ Rdij+2,

tij

(
Ĩij

)
∈ arg max

t̃ij∈R
E

 λiui

(
ei − t̃ij −

∑
h∈Ni\{j} tih (e)

)
+λjuj

(
ej + t̃ij −

∑
h∈Nj\{i} tjh (e)

) ∣∣∣∣∣∣ Iij (e) = Ĩij

 (4)

Proposition 1 is an intuitive result. Its analogue under global information has a similar
form and essentially connects the marginal utilities of consumption of two individuals in two
different states (Wilson, 1968). With local information, the statement is now expressed, for
every linked pair, in terms of a conditional expectation over the common information set of
that pair. Therefore, equation (4) says that the set of Pareto efficient transfers call for pairwise
efficient risk sharing along each link of the network, where efficiency is measured with respect
to an expectation over all possible realizations of the nonlocal information.

Importantly, Proposition 1 provides a motivation for investigating Pareto efficient risk shar-
ing subject to local information by implying that these are exactly the possible outcomes result-
ing from decentralized negotiation procedures satisfying the weak requirement that neighboring
agents end up with agreements that are efficient at the pair level. To see this, notice that Propo-
sition 1 establishes an equivalence between Pareto-efficient risk-sharing arrangements subject
to local information constraints and stable outcomes of decentralized bilateral risk sharing ar-
rangements between neighbors subject to the same constraints. In problem (4), at each Iij, the
choice of tij affects the expected utilities of only i and j, so each optimization problem in (4)
can be reinterpreted as the surplus maximization problem jointly solved by the linked pair ij,
given the transfer rules chosen by other linked pairs. Therefore, any bargaining procedure that
leads to an agreement between any two neighboring agents that is efficient for the pair (does
not leave surplus on the table) given other agreements, results in a Pareto efficient outcome at
the social level.15

The next result establishes that while in general there can be multiple transfer profiles
satisfying the conditions for optimality (4), they all imply the same consumption plan.

Proposition 2. All profiles of transfers t ∈ T that solve (3) lead to (P-almost) the same
consumption plan x.

By Proposition 2, if we can find a profile of transfers so that the induced consumption plan
satisfy (4), then it must correspond to a Pareto efficient risk-sharing arrangement.

For simplicity, below we will denote the conditional expectation operator E [ · |Iij ] by Eij [ · ].
Following Propositions 1 and 2, we may express the necessary and sufficient condition for Pareto

15A concrete example for such a negotiation procedure is split the difference negotiations, originally proposed
in Stole and Zwiebel (1996) and adopted to the risk sharing context in Ambrus and Elliott (2020).
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efficiency as a requirement on the ratio of conditional expected marginal utilities.

Corollary 1. A profile of transfers t is Pareto efficient if and only if the ratio of the expected
marginal utilities conditional on all local states is constant: for every i, j ∈ N s.t. Gij = 1,

Eij
[
u
′
i (x

t
i)
]

Eij
[
u
′
j

(
xtj
)] =

λj
λi
. (5)

This result extends the well-known Borch rule (Borch, 1962; Wilson, 1968) for Pareto effi-
cient risk-sharing arrangements to settings with local information constraints. As opposed to
the global-information case, the ratio of expected marginal utilities need not be equal state by
state and across all individuals: they only have to be equal between linked individuals and in
expectation, conditional on local common information.

Before characterizing particular transfer schemes for more specific environments, we want to
emphasize that Propositions 1 and 2 are derived for general convex utility functions that may
be arbitrarily heterogeneous across individuals, and for general joint distribution of endowment
shocks that can be arbitrarily correlated across individuals.

3.3 Efficient Risk-sharing in the CARA-Normal Setting

In this section we investigate Pareto efficient risk-sharing arrangements, subject to local infor-
mation constraints, under the assumption of CARA utilities and jointly normally distributed
endowments with a uniform global correlation structure.16

Assumption 1. For the remainder of this section we assume that individuals have homogeneous
CARA utility functions u (x) = − exp (−rx), where r > 0 is the coefficient of absolute risk
aversion. The vector of endowments (ei)i∈N follows a multivariate normal distribution, e ∼
N (0, σ2Σ) with Σii = 1 for all i and

∑
ij = ρ for all i 6= j, for some ρ ∈

[
− 1
n−1

, 1
]
. 17

To maintain analytical tractability, we assume symmetric correlation structure, where any
two individuals’ endowments have the same correlation coefficient ρ ∈

[
− 1
n−1

, 1
]
. Equivalently,

we are assuming that each individual’s endowment can be decomposed additively into two inde-
pendent components: a common shock and an idiosyncratic shock, i.e., ei =

√
ρẽ0 +

√
1− ρẽi,

with (ẽk)
n
k=0 ∼iid N (0, σ2).

16We later consider, in Section 6.1 the implications of individual heterogeneity in endowment distribution and
risk aversion within the CARA-Normal setting, as well as extensions of our results beyond the CARA-Normal
setting.

17− 1
n−1 is the lower bound for a global pairwise correlation in a n-person economy; mathematically, it is

the smallest ρ such that the variance-covariance matrix is positive semi-definite. For any ρ ∈
[
− 1
n−1 , 1

]
, the

variance-covariance matrix is positive semi-definite.
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We now proceed under Assumption 1 and fully characterize the transfer rules that achieve
Pareto efficient consumption profiles subject to local information constraints, for any network.
We will show that these rules are linear and strictly bilateral. A linear transfer rule specifies
that the transfer between any two connected individuals is a linear function of endowment
realizations in the pair’s joint information set. We show in the next two sections that linear
transfer rules can achieve any Pareto efficient risk-sharing arrangement, where the precise linear
form depends crucially on the level of correlation in endowments. Moreover, we show that Pareto
efficient consumption allocations may be achieved by linear rules that are also strictly bilateral –
that is, a transfer between i and j need not condition on the information of a common neighbor
k. In the next two subsections we give a precise characterization for these rules as a function
of the underlying network structure.

Before characterizing the sharing rules, we want to stress that while strictly bilateral trans-
fers are not necessary to achieve efficient allocations, we do think they are the most reasonable.
Optimal transfers that are not strictly bilateral circulate goods along cycles of common neigh-
bors, with no real effect on final consumption.18 We therefore think that these transfers are
in some sense redundant and less likely than strictly bilateral transfers. Most importantly,
since we show in Proposition 2 that there is a unique optimal allocation, the possibility of
conditioning transfers on common neighbors is in fact irrelevant from the perspective of final
consumption allocations.

3.3.1 Independent Endowments

To simplify the presentation of our results, we first analyze the case where endowments are
independent, i.e., ρ = 0. We show that optimal transfers may be easily described as a localized
version of the equal sharing rule, in which individuals transfer an equal share of their endowment
to all their neighbors. We later show that adding correlation alters the formula for optimal
transfers, while keeping a linear and bilateral form.

We first verify that the local equal-sharing arrangement is indeed the optimal linear rule
subject to local information constraints (in T ) satisfying the expectational Borch rule. Given
any linear transfer scheme, final consumption, conditional on Iij, also follows normal distri-
bution, so Eij

[
u
′
i (xi)

]
= r exp

[
−r
(
Eij [xi]− 1

2
rV arij [xi]

)]
. Define the conditional certainty

18In Appendix C.7 we show that for tree networks (i.e. cycle-free networks) the linear transfer scheme
featured in Proposition 3 is the unique transfer arrangement that achieves a given Pareto efficient risk-sharing
arrangement.
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equivalent CE (xi| Iij) := Eij [xi]− 1
2
rV arij [xi] . Then (5) can then be rewritten as

CE (x∗i | Iij)−
1

r
lnλi = CE

(
x∗j
∣∣ Iij)− 1

r
lnλj. (6)

The profile of transfer schemes t achieves Pareto efficiency if and only if (6) holds for every pair
of ij such that Gij = 1. Intuitively, equation (6) states that the difference in the conditional
certainty equivalents is constant across all local states for a linked pair.

We say a profile of transfer rules is strictly bilateral if tij is σ (ei, ej)-measurable. We now
characterize efficient transfers subject to local information for the case of independent endow-
ments.

Proposition 3. Given any profile of positive welfare weights (λi)i∈N , there always exists a
strictly bilateral Pareto efficient profile of transfer rules in T in the form of the following “local
equal sharing rules”:

t∗ij (ei, ej) :=
ei

di + 1
− ej
dj + 1

+ µ∗ij,

for some constant µ∗ij ∈ R, for each linked pair ij.

Proposition 3 shows that the efficient transfer t∗ij (ei, ej) subject to the local information con-
straint is composed of two parts: the state-contingent “sharing rule” and the state-independent
“insurance premium” (captured by µ?ij), just like in the simple example above. The state-
contingent transfer scheme corresponds to the local equal sharing rule in which i transfers a
fraction 1/(di + 1) of her endowment to each of her friends and receives a fraction 1/(dj + 1)

from each friend j.
Notice that this transfer scheme is linear in endowments and that only bilateral information

is required for efficient risk sharing with local information. Also, this proposition suggests that
two linked individuals ij only require ex ante knowledge of the local network structure (more
precisely di and dj) to compute and contract on the socially optimal transfer rule t∗ij.

3.3.2 Correlated Endowments

Formally, notice that the joint information of individuals i and j affects the conditional distri-
bution of some non-common endowment k as follows

ek|ei,ej ∼ N
(

ρ

1 + ρ
(ei + ej) ,

1 + ρ− 2ρ2

1 + ρ
· σ2

)
(7)

Setting ρ = 0 implies that ek|ei,ej ∼ N (0, σ2) as in the previous section, leading to local
equal-sharing as the optimal transfer rule. In this section we show exactly how the local equal-

15



sharing rule is affected by the presence of correlated endowments. We show that linear and
strictly bilateral rules of the form

tij (ei, ej) = αijei − αjiej + µij for all ij : Gij = 1 (8)

still achieve Pareto efficient allocations – as in the previous section – and we provide precise
characterization for the coefficients αij as a function of the network and the correlation param-
eter ρ.

For clarity, we first illustrate the main ideas for the case of minimally-connected networks.
Notice that, under minimal connectedness, Iij = (ei, ej), so transfer tij must be strictly bilateral.
Then, the local FOC for optimality in equation (5) can be written as

tij =
1

2
ei −

1

2
ej −

1

2r
lnE

exp

r ∑
k∈Ni\{j}

tik (ei, ek)

∣∣∣∣∣∣ ei, ej


+
1

2r
lnE

exp

r ∑
k∈Nj\{i}

tjk (ej, ek)

∣∣∣∣∣∣ ei, ej
+

1

2r
ln
λj
λi

(9)

Postulating a linear transfer scheme of the form, tij (ei, ej) = αijei − αjiej + µij, ∀Gij = 1, we
can substitute the postulated linear forms of tik into (9) and obtain expressions for the above
conditional expectations in terms of linear combinations of endowments based on the conditional
distribution given in (7). We can therefore explicitly derive the conditional expectation terms
in the above formula and, after collecting terms and reconciling with the postulated formula
for tij, arrive at the following system of equations:19

αij =
1

2

1−
∑

k∈Ni\{j}

αik +
ρ

1 + ρ

 ∑
k∈Ni\{j}

αki −
∑

k∈Nj\{i}

αkj

 ∀ij s.t. Gij = 1. (10)

In equation (10), the net transferred share αij of ei from i to j is given by the half of
the “remaining share” after deducting the transfers to i’s other neighbors Ni\ {j}, corrected
by an adjustment for inflows of non-local endowments. The 1

2
multiplier is analogous to the

equal sharing rule in the independent endowments case, but last term in the square brackets
19Rigorously there should be another set of equations that verify the guess for the state-independent constant

transfers µ, which in general involve both α and µ. However, Lemma 6 in Appendix B.4 implies that, given
any admissible α, there exist some µ such that (α, µ) satisfies the set of verification equations for the constant
transfers. Hence, system (10) (which involves only α) constitutes the essential condition for Pareto efficiency.
We therefore omit the conditions on µ and delay our discussion about state-independent transfers to Section
A.3.
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is new (i.e. it disappears when ρ = 0). We refer to this term as an informational effect, for
the following reason:

∑
k∈Ni\{j} αki is the sum of i’s shares of i’s other neighbors’ endowments

(ek)k∈Ni\{j}, and the conditional expectation of each k’s endowment changes linearly with the
realization of ei by a factor of ρ

1+ρ
. Similarly,

∑
k∈Nj\{i} αkj is the sum of j’s shares of j’s other

neighbors’ endowments (ek)k∈Nj\{i}, and the conditional expectation of each k’s endowment also
changes linearly with the realization of ei by a factor of ρ

1+ρ
. Intuitively, due to the symmetric

correlation structure, the realization of ei provides the same amount of local information about
all non-local endowments ek for k /∈ N ij, and thus its informational effect can be calculated as
a simple net sum of endowment shares. Finally, since a larger ei predicts that both i and j

are more likely to obtain higher amounts of inflows from uncommon neighbors, this commonly
recognized information can be used by the pair ij to (imperfectly) share the non-local risk
exposures.20 After pooling the conditional expectations of non-local inflows, i and j again
share the remaining shares of ei and ej equally.

Notice that every individual i carries out this kind of “equal sharing” behavior with all
her neighbors, and the inflow/outflow shares (αij) must make all the sharing simultaneously
equal (in expectation). In other words, solving for the transfer in (8) explicitly involves solving
conditions (10) simultaneously to obtain the full profile of bilateral shares, (αij). We do this
below for general network structures, which obviously include the case of minimally connected
networks. However, for general network structures transfers need not be strictly bilateral. A
general analysis must allow for this possibility.

In Appendix B.5, we show that, for general network structures, a linear and strictly bilateral
profile of transfer rules that solves a system of linear equations that encodes the local Borch
rule is indeed Pareto efficient. However, the required system of equations proves difficult to
solve directly. Instead, we show via Lemma 8 that we may equivalently solve an alternative
optimization problem that minimizes total consumption variances among linear transfer rules
only – this problem is defined formally below in equation (11).

Although the equivalence result in Lemma 8 is involved, we can provide an intuitive expla-
nation for why the planner problem may be equivalently formulated as an aggregate variance
minimization problem – as long as there exists a linear profile of transfer rules that is Pareto
efficient.21 Specifically, we make use of the fact that, under CARA utility, equation (6) shows
how the difference in certainty equivalent consumption is constant across (local) states. We

20To be precise, by “inflow” we mean the undertaking of a share of someone else’s income endowment, which
may be positive or negative; by “outflow” we mean the distribution of a share of one’s own endowment to
someone else, which may also be positive or negative. In particular, a negative inflow is not the same as an
outflow. Instead, i’s inflow from j is the same as j’s outflow to i.

21The technical details of Lemma 8 are required to demonstrate that there indeed exists a linear profile of
transfer rules that solves conditions (10) and is therefore Pareto efficient.
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can therefore rewrite the planner problem as the maximization of a representative agent’s
utility. To fix ideas, take the case where λi = λj for all i, j ∈ N . Then, for all i ∈ N ,
CEi = CE := 1

n

∑
iCEi. With this, we can rewrite the welfare maximization problem of

equation (3) in terms of CE only,
J (t) = n · u(CE)

Now, if we restrict ourselves to linear transfer rules of the form of (8), then final consumption
is known to be normally distributed and CE = 1

n

∑
i

(
E[xi]− 1

2
r Var(xi)

)
. By the aggregate

resource constraint,
∑

i E[xi] = 0, which means we can rewrite the above problem as,

max
t∈T

J (t) = − exp

(
r2

2n

∑
i

Var(xi)

)

and this corresponds to the minimization of aggregate consumption variance.22

We now proceed to solve the variance minimization problem. Specifically, let α be a linear
profile of transfer rules in T . The equivalent problem to solve is now given by,

min
α

∑
i∈N

V ar

[
αiiei +

∑
jNi

αjiej

]
. (11)

with αii := 1−
∑

j∈Ni
αij represents individual i’s exposure to i’s own endowment shock.

Let Λ̃i be the Lagrange multiplier associated with i’s outflow constraint
∑

j∈N i
αij = 1 and

denote Λi := Λ̃i

2(1−ρ)
. Then, taking the FOC for the Lagrangian w.r.t. (αij)i∈N,j∈N i

, we haveαji = Λj − ρ
1−ρ

(
αii +

∑
k∈Ni

αki
)
∀j ∈ N i,∀i ∈ N (12.1)∑

j∈N i
αij = 1 ∀i ∈ N (12.2)

(12)

This is a system of (
∑

i di + 2n) equations in (
∑

i di + 2n) variables (α,Λ).
With all this, we are now equipped to characterize the set of Pareto efficient linear and

bilateral transfer rules by obtaining the complete profile of bilateral shares (αij) that solve
22Under a general distribution of Pareto weights, (λi)

n
i=1, expected transfers will vary in order to satisfy

equation (6), but the contingent shares of the linear transfer rule (i.e. the α’s) will still minimize aggregate
variance. To see this notice that with heterogeneous λ’s, CEj = CE + 1

nr

∑
i (lnλj − lnλi) for all j ∈ N , and

therefore

J (t) =
∑
i

λiu

(
CE +

1

nr

∑
k

(lnλi − lnλk)

)
=
∑
i

λiu
(
CE
)
u

(
1

nr

∑
k

(lnλi − lnλk)

)
= u

(
CE
)
f(λ1, . . . , λn)

where f(λ1 . . . , λn) is not affected by the choice of α.
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the above problem, and substituting them into equation (8). We present the following main
characterization result:

Proposition 4. For any ρ ∈
(
− 1
n−1

, 1
)
and any network structure G there exists a unique

solution to system (12), and in turn to system (10), given by the following: ∀i ∈ N, ∀j ∈ N i,

αji = Λj −
ρ

1 + ρdi

∑
k∈N i

Λk (13)

where Λi is defined by any of the following equivalent representations:

• (Fixed point representation):

Λi =
1

di + 1

1 +
∑
j∈N i

∑
k∈Nj

ρ

1 + ρdj
Λk

 (14)

• (Closed-form representation): writing Λ = (Λi)
n
i=1

Λ =
(
D −GΨG

)−1
1

where D is a diagonal matrix with its i-th diagonal entry being di + 1, Ψ is a diagonal
matrix with its i-th diagonal entry being ρ

1+ρdi
, and G := G+ In.

• (Explicit representation): For ρ ∈ [0, 1),

Λi =
1

di + 1
+
∑
q∈N

∑
j∈N

∑
πij∈Π2q

ij

W (πij) (15)

where W (πij), the weight of each path πij = (i0, i1, i2, . . . iq) of length q from i to j (i.e.
i0 = i and iq = j), is given by,

W (πij) :=
1

di0 + 1
· ρ

1 + ρdi1
· 1

di2 + 1
· ρ

1 + ρdi3
· . . . · 1

diq + 1
(16)

The above result provides the first closed-form prediction of risk-sharing transfers on a
general network of informal insurance that we know of in the literature.23 This result includes
the above case of independent endowments, but also allow for more sophisticated transfer rules
that account for uniform correlations. Indeed, notice that for ρ = 0 equation (13) specifies that

23See Appendix C.8 for Pareto efficient risk-sharing arrangements in the boundary cases of ρ ∈
{
− 1
n−1 , 1

}
.
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αji = Λj for all i ∈ N̄j, which necessarily implies that αji = 1/(dj + 1), as stated in Proposition
3. The way in which the presence of correlated endowments affects the shape of bilateral shares
αij depends on the network structure in complicated ways, as captured by Λi. This centrality
measure summarizes individuals’ relevant network position, by aggregating indirect effects that
are interconnected across neighbors.

To obtain intuition for the “network features” contained in Λi, notice that the fixed point
representation in equation (14) expresses each individual’s centrality recursively as a function
of the centrality of their neighbors’ neighbors. This suggests that interactions at distance two
(i.e. neighbors of neighbors) are directly relevant in this setting. To see this notice that the the
network interaction terms in (12.1) define the shares going in to j as substitutes of one another.
This implies that individuals at most two links apart (i.e. with a common neighbor, j) respond
negatively to each others’ shares directly through this optimal trade-off.

Moreover, indirect effects play a crucial role here as well. To see this, notice that two
households with a common neighbor j not only interact through their transfer to j, but might
also exchange resources with other partners, and these other relations affect what j receives
from them, given their constraints in (12.2). This is the main message behind equation (13),
where these inter-dependencies along the network have been solved for, and we can express the
share from i to j as a function of some constants Λ’s, that accumulate all these indirect effects.

The recursive representation in (14), is reminiscent of Katz-Bonacich, Page Rank, and other
global network measures, albeit with two crucial differences: 1) The centrality of i depends on
the centralities not of direct neighbors, but of neighbors of neighbors, and 2) the weights are
not a simple geometric series (as in the Bonacich measure), but instead depend explicitly on
the degree of the direct neighbors that are linking i with all of her length-two neighbors.

Solving for Λi in (14) provides an alternative representation of the centrality as the accu-
mulation of weighted even paths, shown in (15). This expression also reflects the two main
differences with standard measures (i.e. length two and path-specific weights). To see this
notice first that the explicit representation of (15) defines i’s centrality as the accumulation of
weighted paths of even length starting from i. Second, notice that the weights given in (16)
account for the degree of all individuals involved in a given path.

However, notice that (14) sums over individuals in N̄i and N̄j. In other words, self-loops
are allowed. This implies that we are not in a situation where an individual that is, say, at
distance 3 from i will not matter for i’s centrality measure. On the contrary, she will in fact
matter because self-loops will allow us to reach any individual that is weakly connected to i.
The weighting scheme, however, will depend crucially on the even-length paths that we can
compute, starting from i. In other words, while this measure ultimately relates individuals

20



at all distances in the network, the specific weights between each pair of individuals require
counting only the even-length paths that connect them.

This complicated weighting scheme unfortunately makes comparative statics on the network
structure difficult to analyze. To see this notice that when a link is removed from the network,
a number of even-length paths disappear, lowering the total elements being summed in (15).
However, this also lowers the degree of the two individuals involved in that link. This increases
the weights associated to all even-length paths that go through either of these two individuals,
as shown in equation (16). It is therefore difficult to know, in general, the way in which the
centrality measure responds to changes in the network structure.

Lastly, we briefly discuss how social welfare, as measured by the total variance of final
consumption across all individuals, varies with the correlation parameter.24 On the one hand,
as the correlation parameter ρ becomes more positive, the scope for risk reduction via risk
sharing gets smaller. At the extreme of perfect correlation, only uninsurable aggregate risk
remains. On the other hand, as |ρ| increases, local information becomes more informative about
non-local endowment realizations, reducing the loss of surplus caused by the local information
constraints. The combination of the two effects make it challenging to explicitly analyze the
highly nonlinear way in which total variance varies with the correlation parameter ρ in general.
In Appendix C.9, we show that, in star networks, the total variance is an increasing but concave
function of ρ. This illustrates that the first effect described above dominates, resulting in the
overall increasing function, while the second effect is also present, leading to the concavity.25

24In addition, one may consider the comparative static of social welfare with respect to the risk-aversion
parameter r, which is, however, trivial: fixing any profile of transfer shares (and consequently any final con-
sumption plan), when r gets larger, every individual’s expected utility decreases due to a greater level of absolute
risk aversion, and hence the social welfare decreases.

25Total variance is, in fact, nondecreasing in ρ, for any network. Consider any two correlation parameters
ρ1 > ρ2 with corresponding variance-covariance matrices Σρ1 and Σρ2 . Then, we can write Σρ1 = Σρ2 + (ρ1 −
ρ2)(Σρ2 − I) and thus for any admissible exposure shares (α→i)i that satisfy the local information constraints,
we have ∑

i

α′→iΣρ1α→i =
∑
i

α′→iΣρ2α→i +
∑
i

(ρ1 − ρ2) · α′→i(Σρ2 − I)α→i ≥
∑
i

α′→iΣρ2α→i

since ρ1 > ρ2 and Σρ2 − I is positive semi-definite. Since the above inequality holds for any admissible exposure
shares, it follows that

∑
i α
∗
→i(ρ1)′Σρ1α

∗
→i(ρ1) ≥

∑
i α
∗
→i(ρ2)′Σρ2α

∗
→i(ρ2), with α∗→i(ρk) denoting the minimizer

of the total variances under correlation parameter ρk among all admissible exposure shares.
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4 Network Centrality and Consumption Volatility

In this section, we present an important implication of our model concerning the relationship
between network centrality and consumption volatility in risk-sharing communities. Indeed, a
crucial advantage of obtaining closed-form predictions on transfers is that we can provide clean
and precise characterizations of the role of network heterogeneity on certain important features
of ex-post consumption. We focus on consumption volatility, as this is an easily observable
measure that highlights how network heterogeneity translates to differences in individual risk
exposures under the local information constraints.

We show that, as suggested in the simple three-individual example above, more central
individuals function as insurance providers to more peripheral individuals. As a result, they
absorb larger shares of endowment risk than they can unload on others, leading to more overall
consumption volatility, for which they may get compensated via state independent transfers.

We first derive analytical results for the correlation between network centrality and con-
sumption volatility according to our theoretical model. For star networks, we obtain closed-form
formula for consumption variances under any endowment correlation parameter, and show that
the center’s consumption is always more volatile than the peripherals’. Next, assuming that
endowments are independent and that networks are sampled according to an Erdős-Rényi ran-
dom graph generating process, we derive exact formula for the asymptotic covariance between
degree centrality and consumption variance, which turns out unambiguously positive.

4.1 Star Networks

We first provide analytical results for the positive relationship between network centrality and
consumption volatility in star networks.

Let c denote the center individual, who is connected to n − 1 peripheral individuals, and
none of the peripheral individuals are connected to each other. We use p to refer to a generic
peripheral individual.

It is straightforward to show that a linear risk-sharing arrangement achieving Pareto effi-
ciency subject to local information constraints specifies the following endowment shares to be
transferred:

αcp =
2 + 2 (n− 1) ρ

n (2 + nρ)
, αpc =

1 + ρ

2 + nρ
, γcp =

(n− 2) ρ

2 + nρ
.

It follows that the difference in consumption variances in efficient contracts satisfies

V ar (xc)− V ar (xp) =
(n− 2) (1 + (n− 1) ρ) (1− ρ2)

(2 + nρ) 2
≥ 0
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with equality only at ρ ∈
{
− 1
n−1

, 1
}
. In particular, V ar (xc) − V ar (xp) → 1−ρ2

ρ
as n → ∞,

and hence the consumption variance of the center can be much higher than the consumption
variance of a periphery individual when ρ is low and n is high.

4.2 Erdős-Rényi Random Graphs

We now proceed to characterize the (large-network) asymptotic relationship between network
centrality and consumption volatility under the Erdős-Rényi random graph setting, which lends
great tractability to the analysis.

To formalize our results, write PER,EER as the probability measure and expectation operator
with respect to the Erdős-Rényi random graph generating process GER (n, p): for each n ≥ 2

and p ∈ (0, 1), let
Gij ≡ Gji ∼i.i.d. Bernoulli (p) , ∀i, j ∈ {1, ..., n} .

Fixing a sequence of {pn} ⊆ (0, 1), we write PERn ,EERn for the Erdős-Rényi random graph
generating process GER (n, pn).

For each network structure Gn drawn from PERn , we write di (Gn) as individual i’s degree
in Gn. We write e to denote a generic realization of the endowment vector, and take the
distributions of e and Gn to be statistically independent from each other. Furthermore, we focus
on the simple case with independent endowment shocks, i.e., the global correlation parameter
ρ = 0. By previous results, we know that any Pareto efficient risk-sharing arrangements take
the form of the local equal sharing rule, so that the final consumption allocation is given by

xi (Gn) [e] :=
∑

j∈N i(Gn)

1

dj (Gn) + 1
ej,

and the individual consumption variance is given by

V ar (xi (Gn)) =
∑

j∈N i(Gn)

1

(dj (Gn) + 1)2

where V ar (·) denotes the variance operator with respect to the endowment shocks e conditional
on realized network structure being Gn.

Proposition 5. Let {Gn} be a sequence of Erdős-Rényi random graphs generated by GER (n, pn).

• (Dense Case) Suppose pn = p for all n. Then:

lim
n→∞

nCovERn [V ar (xi (Gn)) , di (Gn)]→ 1− p
p

> 0.
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• (Sparse Case) Suppose npn → λ > 1. Then:

lim
n→∞

CovERn [V ar (xi (Gn)) , di (Gn)] = κ (λ) := E
[
ξ3 + 4ξ2 + 2 (2− λ) ξ − 3λ

(ξ + 1)2 (ξ + 2)2

]
,

where ξ ∼ Poisson (λ). Numerical computation of κ (λ) shows that κ (λ) is positive
whenever λ exceeds a threshold λ ≈ 3.8803.

To see the intuition behind Proposition 5, fix an individual i with di neighbors in some
network G, and consider adding a link between i and some individual j, who has dj neighbors
in G but is originally not a neighbor of i in G (that is, consider the network G+ ij). Notice that
adding the new neighbor j for risk sharing has two opposite effects on individual i’s consumption
variance V ar (xi). On one hand, there is one more individual, namely j, to share individual
i’s income shock, reducing i’s exposure to her own income shock from 1

di+1
ei to 1

di+2
ei under

the local equal sharing rule. On the other hand, individual i is now exposed to a share of j’s
income shock, 1

dj+2
ej, which individual i has zero exposure to in the original network G. Hence,

the net effect of the additional link ij on individual i’s consumption variance is:

V ar (xi (G+ ij))− V ar (xi (G)) =
1

(dj + 2)2 −
[

1

(di + 1)2 −
1

(di + 2)2

]
=

1

(dj + 2)2 −
2di + 3

(di + 1)2 (di + 2)2 = O
(
d−2
j

)
−O

(
d−3
i

)
. (17)

In Erdős-Renyi random graphs, di and dj are both stochastically of the order of Op (npn), so
the addition in variance induced by the link ij, is stochastically of a larger order of magnitude
Op

(
(npn)−2) than the reduction in variance Op

(
(npn)−3).

In the dense case where pn = p, the first effect dominates in the limit: on average, having
an additional friend for risk sharing increases one’s own consumption variance in large Erdős-
Rényi random graph, so that larger degree centrality is asymptotically positively correlated
with consumption variance.

The sparse case, however, might be more theoretically informative and empirically relevant.
In this case, where npn → λ > 1, the limit degree distribution is characterized by a Poisson
distribution parameterized by the limit average degree λ. Numerical calculation indicates that,
if the limit average degree λ is large enough (at least λ ≈ 3.88), then the imbalance in the orders
of magnitudes between the two opposite effects is sufficiently pronounced, at which point the
asymptotic correlation between consumption variance and degree centrality becomes positive.
Given that average degrees in many real-world networks are conceivably larger than λ ≈ 3.88,
our theory predicts a positive asymptotic correlation between degree centrality and consumption

24



volatility for most real-world networks even under the sparse (Poisson) asymptotics. As the
sparse-case result provides a sharp quantification of the threshold on network density at which
the asymptotic correlation between degree centrality and consumption variane becomes positive,
it follows that all “moderately sparse” Erdős-Rényi random graph models under which npn →∞,
i.e., whenever pn converges to zero at a rate slower than n−1, the asymptotic correlation should
remain positive.

Proposition 5 suggests that, under local information constraints, more central individuals
tend to undertake larger consumption variances, effectively playing the roles of “quai-insurance
providers”. Even though Proposition 5 is derived in the setting of Erdős-Rényi random graphs,
which lends great analytical tractability, the key economic driver of the result, that is, the
difference in the orders of magnitudes between the two opposite effects of an additional neighbor
on an individual’s consumption variance as captured by equation (17), clearly remains present
beyond the setting of Erdős-Rényi random graphs. Heuristically, we expect that the asymptotic
correlation remains to be positive in a large class of “sufficiently dense” network formation
models, including the graphon model and most versions of the stochastic block models.

The analytical result we derived here is based on the asymptotic distribution of Erdős-
Rényi random graphs. To investigate whether such large-sample results remain relevant in
finite real-world network structures, we run simulations of our model using two real-world
village networks in India from two different data sets, each randomly selected and provided to
us by the researchers who collected the data.26

We computed the sample correlations between degree/eigenvector centrality and consump-
tion variance, found that the correlations are positive and statistically significant in both sim-
ulations. For the data set provided by Field and Pande, the sample correlation is 0.1994, while
for the data set provided by Banerjee, Chandrasekhar, Duflo and Jackson, the correlation is
0.2084. Both results are highly statistically significant with p-values at orders of magnitudes
below 10−10.27

26The first network was provided to us by Erica Field and Rohini Pande, who collected it from villages in
the districts of Thanjavur, Thiruvarur and Pudukkotai (Tamil Nadu) in India. In a subset of the villages,
complete within-village network data was collected by surveying all households. The second network is from
data collected by Abhijit Banerjee, Arun Chandrasekhar, Esther Duflo and Matthew Jackson in Karnataka,
India (they collected complete within-village network data in 75 villages), used for example in the Banerjee,
Chandrasekhar, Duflo, and Jackson (2018). From both datasets we received the network of financial connection
for one randomly selected village with complete network data. From the original network we created the undi-
rected “AND” network, that is, we defined a link between two households whenever both households indicated
each other as a borrowing relationship. We excluded households that became isolated in the “AND” network.

27In both simulations, we randomly drew the endowment e(t)i of each household according to the standard
normal distribution for T = 5000 times:

{
e
(t)
i

}
i,t
∼iid N (0, 1). We assumed that all households have CARA

utility functions with λ = 1. We then computed the final consumption of each household under the equally-
weighted Utilitarian optimal risk-sharing arrangement subject to local information constraints, using the results
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Proposition 5 provides a sharp theoretical prediction of the model that is not only empirically
feasible but also computationally easy to test. Such practicality concerns are highly relevant
in the network literature, as it is often challenging to conduct direct empirical tests of micro-
founded theoretical results, especially when the result involves the whole network structure or
complicated network statistics. However, Proposition 5 provides a direct prediction on a simple
relationship (positive correlation) between consumption volatility and one of the simplest forms
of network statistics, degree centrality. In a follow-up paper – currently work in progress– we
conduct a thorough empirical investigation of Proposition 5 and other potential drivers for the
positive correlation between degree centrality and consumption volatility, using various different
data sets from numerous village economies.

5 Implications of the Theory for Empirical Tests of Risk

Sharing

The performance of risk-sharing communities has been repeatedly tested in data since the work
of Cochrane (1991), Mace (1991) and Townsend (1994). Their original approach developed
empirical tests of full insurance that related household consumption and income. Indeed, the
well known Borch rule – equating the ratio of marginal utilities across households – imposes that,
under full insurance, household consumption should not respond to idiosyncratic movements in
income after controlling for aggregate shocks. This implication can be tested in the following
popular regression:28

cit = αi + β1yit + β2ȳt + εit (18)

where cit and yit correspond to household i′s consumption and income at time t, and where
ȳt =

∑
i yit represents aggregate village income at time t. Full insurance in this specification

implies that β1 = 0. An overwhelming proportion of studies have rejected the full-insurance
hypothesis in a wide number of settings. As a result, a great deal of work has followed, that

from subsection 4.1, and the sample variance of final consumption for each household (note that the variance
does not depend on the planner’s weights).

28The specification in equation (18) is just one of several equivalent ways to empirically test for efficient insur-
ance. Mace (1991) obtains an equivalent formulation of (18) based on aggregate consumption by summing the
Borch-rule over all households and obtains: cit = c̄t + 1

γ

(
log(λi)− λ̄

)
. We are essentially running this specifica-

tion but we replace aggregate consumption by aggregate income, which is equivalent under the assumption of
no savings. Taking first differences allows one to drop the household-specific fixed effects to obtain ∆cit = ∆c̄t
which motivates another well-known test of full insurance. However, most studies avoid using village consump-
tion as a regressor since it may mechanically equate to unity if the sample is large enough (see Shrinivas and
Fafchamps (2018)). Deaton (1992) and Ravallion and Chaudhuri (1997) use village or time fixed effects (as we
do in equation (18)), Townsend (1994) uses the deviation of household consumption from the village average,
and Suri (2005) uses a contrast estimator adapted from the peer effects literature.
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seeks to explain this stylized fact.
On the theory side, we have argued that this paper complements an ongoing effort to

model the relevant contracting frictions in informal risk sharing environments.29 In this section
we argue that our framework also responds to a recent strand of the literature that suggests
modifying the classical Townsend test in order to accommodate various forms of heterogeneity.
Some of this work argues that the standard consumption regression in (18) is misspecified if,
for instance, households hold heterogeneous risk preferences.30 More relevant to the current
discussion, several other studies have also suggested that households within a village indeed
access different risk sharing groups, and that controlling for aggregate-level shocks, as in (18),
would incorrectly estimate income coefficients: ȳt should instead be a local aggregate specific
to each household. In a couple well-known examples, Mazzocco and Saini (2012) argue that the
relevant sharing group in India is the caste (rather than the village), while Attanasio, Meghir,
and Mommaerts (2018) test for efficient insurance within extended families in the U.S.31

This paper refines and generalizes the modified tests that evaluate the performance of in-
surance mechanisms on local sharing groups. Rather than taking groups as separate, perfectly
insured communities, the current framework allows for a fully general social structure with in-
terconnected sharing groups that are specific to each household, and which may overlap in com-
plicated ways along any given network. We show how, under the local information constraints
of our model, not defining the relevant local sharing group biases the estimates of risk-sharing
tests. More importantly, we show that controlling for this bias will not eliminate the correlation
between household consumption and income: the structure of the network, coupled with the
information constraints, induces imperfect risk-sharing and generates heterogeneity in sharing
behavior. The current framework therefore allows us to decompose the standard Townsend
coefficient β1 into an underlying distribution of household-specific coefficients that capture the
varying risk-sharing possibilities induced by the network structure, and which can be interpreted
economically in terms of consumption volatility (as shown in the previous section).

To fix ideas, consider the simple network with three individuals and independent endow-
ments from section 2 and set λi = λj for all i, j ∈ N ; all arguments below can be extended to
general networks, correlated endowments, and any profile of Pareto weights. If we write down

29For example Thomas and Worrall (1990), Kocherlakota (1996), Ambrus, Mobius, and Szeidl (2014), and
Kinnan (2017).

30See for instance Mazzocco and Saini (2012) and Schulhofer-Wohl (2011).
31In similar procedures Hayashi, Altonji, and Kotlikoff (1996) consider whether extended families can be

viewed as collective units sharing risk efficiently. Munshi and Rosenzweig (2016) also find that the caste is the
relevant group to explain migration patterns in rural India. Most relevant here, Fafchamps and Lund (2003)
address the failure of efficient insurance in the data suggesting that households receive transfers not at the
village level, but from a network of family and friends
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final consumption for each household in the form of the classical risk-sharing specification of
equation (18), we have that,

c1t = α1 +
(

1
3
− 1

2

)
y1t + 1

2
ȳt + ε1t,

c2t = α2 +
(

1
2
− 1

3

)
y2t + 1

3
ȳt +

(
ε2t − 1

3
y3t

)
,

c3t = α3 +
(

1
2
− 1

3

)
y3t + 1

3
ȳt +

(
ε3t − 1

3
y2t

)
,

where α1 = 1
12
rσ2 and α2 = α3 = − 1

24
rσ2 correspond to state-independent transfers and are

represented as household-specific intercepts. These equations reflect three important themes
of this paper as they relate to empirical tests of risk-sharing: 1) coefficients on own income
are generically different from zero for all households. i.e. αii 6= αij, 2) these coefficients vary
according to households’ network position, and 3) imposing the common sharing group on all
households generates biased estimates: notice the last two equations contain weighted incomes
in the error term. The classical risk sharing test in (18) pools these equations and obtains
a unique estimate for β1; given the previous discussion we expect this estimate to be biased,
different from zero, and positive.

Consider estimating (18) with the relevant local sharing group instead. In this case, we show
that we still obtain heterogeneous estimates, βi, for the coefficients on own income. As a result,
running a pooled regression that estimates a unique coefficient of β1 imposes a restriction that
biases the estimator, which means that controlling for local averages is not enough to obtain a
consistent estimator of β1 when local sharing groups overlap on a network – it is important to
account for household-specific coefficients on income. We argue that this may have profound
implications for the type of conclusions one draws from data. To see this, rewrite again our
consumption equations in the form of (18), but now allow for household-specific aggregates,
ȳit =

∑
j∈Ni

yjt, that sum over the incomes of i′s sharing partners. In this case we have,
c1t = α1 +

(
1
3
− 1

2

)
y1t + 1

2
ȳ1t + ε1t,

c2t = α2 +
(

1
2
− 1

3

)
y2t + 1

3
ȳ2t + ε2t,

c3t = α3 +
(

1
2
− 1

3

)
y3t + 1

3
ȳ3t + ε3t.

Because aggregate income terms are now household-specific (i.e. ȳi), the additional terms
in the error disappear and we obtain unbiased estimators for individual coefficients on own
income, βi. Notice, however, that coefficients to own income are heterogeneous and different
from zero as long as αii 6= αij – some, in fact, are actually negative. The pooled coefficient,
β1, represents the average of the underlying heterogeneity in risk-sharing possibilities across
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Table 1: Simulated Risk-Sharing Test under the Model for Two Simple Economies

Dependent variable: Consumption
Star Network Circle Network

Common Group Local Group Common Group Local Group
(1) (2) (3) (4)

Income 0.173 0.026 0.109 0.002
(0.003) (0.002) (0.003) (0.002)

Agg. Income 0.276 0.419 0.223 0.332
(0.002) (0.001) (0.001) (0.001)

Observations 15,000 15,000 20,000 20,000
R2 0.755 0.923 0.716 0.916
Note: Values in parentheses are standard errors.

households. In this example, a pooled regression will deliver a positive coefficient for β1, but
in general the sign and value of this estimate is unclear. In fact, for certain network structures
the individual coefficients may average to zero, leading one to falsely reject the Townsend test
(even when controlling for appropriate local aggregates) because the underlying heterogeneity
is not properly accounted for.

Finally, notice that under sufficiently symmetric structures, we cannot reject this localized
version of the Townsend test, because in “regular” networks αii − αij = 0. We don’t consider
these cases a false rejection of the "local Townsend test" since, for these structures, once
one controls for local aggregates, individual income indeed does not explain consumption any
longer. This means we are able to generalize the discussion on appropriate local aggregates
in Townsend regressions – the theory is sufficiently rich to accommodate previous models of
local sharing groups, as well as many other local structures. In fact, a well-defined local version
of the Townsend test may fail to reject full insurance not only if castes or extended families
are perfectly connected partitions (as stressed in the previous literature), but also if the social
structure is sufficiently symmetric. For an extreme example, consider the circle network in which
all individuals are identically positioned. Although all local sharing groups overlap and none
of them are perfectly connected, this network structure would nonetheless generate sufficient
regularity to “pass” an appropriately defined version of the risk-sharing test.

The previous discussion can be observed compactly in Table 1, where the risk-sharing test
is performed on simulated income data for the three individual “star” network of section 2, and
the four individual “circle” network that exhibits perfect symmetry.32 The test is performed

32In both simulations, we randomly draw the endowment e(t)i of each household from an independent standard
normal distribution for T = 5000 times. We compute consumption according to our model with an additive
error term and regress on both global and local aggregates, controlling for household fixed effects that capture
expected transfers.
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both with a common aggregate income term (columns 1 and 3) and with appropriately defined
local sharing groups (columns 2 and 4). Notice that coefficients on own income are biased
upwards by a whole order of magnitude when imposing a common aggregate income term but
remain positive and significant under local aggregate in the star network, where the lack of
symmetry keeps the pooled coefficient estimate away from zero. However, as discussed above,
the circle network “passes” the Townsend test (coefficient to income is not significant) under
appropriately specified local aggregate income terms.33

6 Extensions

6.1 Within the CARA-Normal Setting

We first consider extensions of our main model within the CARA-Normal setting.

6.1.1 Heterogeneity in Risk Aversion and Endowment Distribution

In Section 3.3.1, we assumed that individuals have i.i.d. endowment distribution ei ∼iid N (0, σ2)

and CARA utility function ui(x) = − exp(−rx) with a homogeneous risk-aversion parameter
r > 0. We then derived the Pareto efficiency of the local equal sharing rule under this setting
in Proposition 3.

We now establish in the following proposition that rich individual heterogeneity in the
endowment distribution and the risk-aversion parameter within the CARA-normal setting can
be easily incorporated.

Proposition 6. Suppose that: (1) each individual i’s utility function is given by ui(x) =

− exp(−rix) for some individual-specific risk-aversion parameter ri > 0; (2) each individual i’s
random endowment yi ∼ N (µi, σ

2
i ) for some individual-specific mean µi and variance σ2

i ; (3)
endowments yi are independent across individuals. Then the weighted local equal sharing
rule of the following form

t∗ij :=
r−1
j∑

k∈N i
r−1
k

· yi −
r−1
i∑

k∈Nj
r−1
k

· yj + cij for some constant cij,

is Pareto efficient subject to the local information constraints.
33Note, however, that this result is driven by the perfect symmetry of the circle network. In other simulation

with "bow-tie" or kite-shaped networks, we find that the estimated β1 from a pooled regression with local
aggregate income as control can be positive, negative, or very close to zero, while the true underlying "β′is"
implied by the PE transfer shares in our model is heterogeneous across individuals and significantly different
from zero.
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We now discuss the intuitions underlying Proposition 6:
First observe that the transfer shares in Proposition 6 depend only on the risk-aversion

parameters ri but not on the means and variances of the endowment distributions. In particular,
whenever risk-aversion parameters are homogeneous, i.e., ri = r, the weighted local equal
sharing rule specializes to the local equal sharing rule as in Proposition 3.

It should be clear under the CARA-normal setting that the levels of expected endowments
µi will have no impact on the Pareto efficiency, since any heterogeneous µi can be perfectly
absorbed into constant transfers cij, which is completely irrelevant to Pareto efficiency. Hence,
the specification of zero mean in Section 3.3.1 should be considered as a normalization without
loss of generality rather than a restrictive assumption.34

Moreover, the individual-specific variance σ2
i does not affect transfer shares neither. To

see the underlying intuition, notice that under the local information constraints, individual i’s
endowment shock can only be shared by i and i’s di neighbors in N i, regardless of how large
the variance of i’s endowment is. Assuming for simplicity that the risk-aversion parameters are
homogeneous (ri = r), then intuitively the best thing to distribute i’s endowment shock is to
ask i and i’s neighbors to equally share i’s income shock, regardless of σ2

i . For those individuals
who end up being exposed to more volatile endowment shocks, they can be again compensated
via constant transfers.

In contrast, heterogeneity in the absolute risk-aversion parameters ri does affect the Pareto
efficient transfer shares, and it induces a natural adaption of the local equal sharing rule. Specif-
ically, i’s endowment yi is still shared within i’s neighborhood, but the share of yi undertaken
by each individual k ∈ N i is inversely proportional to individual k’s risk-aversion parameter rk.
Intuitively, it is less costly for a less risk-averse individual to undertake risk, so Pareto efficiency
dictates that a less risk-averse individual undertake larger shares of risky endowment shocks
relative to others.

Lastly, Proposition 6 is complementary to our theoretical result on the positive relationship
between network centrality and consumption variance in Section 4. In real-world risk-sharing
networks, heterogeneity in risk aversion is likely to be present, and individuals’ risk preferences
may actually be correlated with network centrality. In fact, it could be argued that individuals
with higher network degrees are likely to be less risk-averse in many settings. Under such
settings, Proposition 6 suggests that the positive correlation between degree centrality and
consumption variance as derived in Section 4 should be even more positive.

34Consequently, the specification that final consumption can take negative values is not as pathological as it
appears at first sight. Instead, a negative amount of final consumption for individual i in Section 3.3 should be
interpreted relative to any (positive) expected level of endowment µi.
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6.1.2 Spatial Correlation Structure

The CARA-normal setting we considered earlier features a uniform global correlation structure,
in which the correlation between the endowments of two individuals did not depend on their
positions on the network. An alternative specification, however, is to incorporate the possibility
of spatially correlated endowments, that is correlation that decays with social distance.35 As
we illustrate below (and in more details in Appendix B.9), this type of correlation structure
can be detrimental to the efficiency of informal risk sharing with local information constraints.

For concreteness, take the same environment as in Section 3.3 (identical CARA utilities and
jointly normally distributed endowments), but assume that the correlation between ei and ej
geometrically decays with the social distance between i and j : Corr (ei, ej) = %dist(i,j), where
the social distance dist (i, j) is formally defined as the length (i.e., the number of links) of the
shortest path connecting i and j in network G. Also, for analytical simplicity we focus on
circle networks with n = 2m + 1 individuals. Under this setting, the following linear transfer
arrangements can be shown to be Pareto efficient:

t∗ij (ei, ej) =
1

3− %
· ei −

1

3− %
· ej

In order to make comparable the risk-sharing efficiencies under geometrically decaying spa-
tial correlation structure with that under the uniform global correlation structure analyzed in
Section 3.3, we control the “shareable risk” to be the same across the two specifications by
setting ρ = ρm (%) := %(1−%m)

m(1−%)
, where ρ is the uniform global pairwise correlation, while % is the

rate of decay in the geometrically decaying correlation structure. Then informal risk sharing
subject to the local information constraint achieves drastically different levels of asymptotic
efficiency under the two correlation structures.

Proposition 7. Let xunifi (ρ) , xgeoi (%) denote the Pareto efficient consumption plan subject to
the local information constraint under the uniform and the geometrically decaying correlation
structures, parameterized by ρ and % respectively, and let V arunif,ρ, V argeo,ρ correspond to the
variance operators under the two probability distributions induced by the two correlation struc-
tures. Then:

lim
%→1

lim
m→∞

V arunif,ρm(%)

(
xunifi (ρm (%))

)
=

1

3
,

lim
%→1

lim
m→∞

V argeo,ρ (xgeoi (%)) = 1.

35There are many reasons why this correlation structure is more realistic for certain types of endowment
shocks: for example, as shown in Fafchamps and Gubert (2007) and in Conley and Udry (2010), social distance
tends to be highly correlated with geographic proximity.
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Hence, for % close to 1 and sufficiently large m, uniform correlation leads to significant risk
sharing (yielding payoffs close to that under independent endowments), while geometrically
decaying correlation yields payoffs very close to the autarky payoffs, even though the two
correlation structures lead to the same payoffs if global information can be used for risk sharing.

This difference in risk-sharing efficiency, driven by the difference in underlying correlation
structures, is a peculiar feature of the local information constraint considered in this paper.
With global information, a geometrically decaying correlation structure does not in itself imply
risk-sharing inefficiency relative to the uniform correlation structure. For example, in a large
ring network considered above, shocks that are spatially far away from each other are almost
independent, and each given individual is spatially far away from most of the individuals in
the network. Hence, under global information mostly shocks with low correlations are pooled
together, thus yielding significant risk reduction. However, with local information, only spa-
tially close shocks are pooled, rendering risk sharing virtually ineffective due to the high local
correlation.

This might help explain why it is the case that while in most settings empirical research
found that informal insurance works well, Kazianga and Udry (2006) found a setting in which
informal insurance does not seem to help, and Goldstein, de Janvry, and Sadoulet (2001) found
that certain types of endowment shocks are not well insured through informal risk sharing. In
particular, this may be due to high correlation between endowments of neighboring households
in the above settings, for the types of endowment shocks investigated.

6.1.3 General Correlation Structure

We now consider the CARA-normal setting with a general correlation structure N (0,Σρ), with

Σρ :=


1 ρ12 · · · ρ1N

ρ12 1 · · · ρ2N
...

... . . . ...
ρ1N ρ2N · · · 1


indexed by a generic correlation pattern ρ =

(
ρij
)
i 6=j∈N such that ρij = ρji. Then, the condi-

tional distribution of ek given Iij = eN ij
:= (ek)k∈N ij

is

ek|Iij ∼ N
(

Σk,N ij
Σ−1

N ij ,N ij
eN ij

,Σkk − Σk,N ij
Σ−1

N ij ,N ij
ΣN ij ,k

)
(19)

where Σk,N ij
denotes the sub-vector of the variance-covariance matrix Σρ that collects the

covariances between ek and eN ij
, while Σ−1

N ij ,N ij
denotes the sub-matrix of Σρ that corresponds
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to the variance and covariances of eN ij
. Clearly, (19) is a direct generalization of (7). Notice

that, as in (7), the conditional expectation of ek given Iij is linear in eN ij
, while the conditional

variance is a constant.
Again, postulating a generic linear transfer arrangement, we could derive a system of linear

equations that generalizes (10) and encodes the local Borch rules for Pareto efficiency under
the local information constraints: see equation (32) in Appendix B.10 for details.

In this subsection, for analytical simplicity here, we impose the following very mild regularity
condition on the variance-covariance matrix Σρ, and establish in the subsequent proposition that
there exists a linear and strictly bilateral transfer arrangement that is Pareto efficient.36

Assumption 2 (Regularity Condition on Variance-Covariance Matrix). The smallest eigen-
value of the variance-covariance matrix Σρ is bounded from below away from zero, i.e., λmin (Σρ) ≥
c for some constant c ∈ (0, 1).

Assumption 2 essentially restricts our attention to a class of correlation patterns on which
Σρ is uniformly positive definite.

Proposition 8 (Linearity and Strict Bilaterality). Under the CARA-normal setting with gen-
eral correlation pattern Σρ that satisfies Assumption 2, there exists a linear and strictly bilateral
transfer arrangement that is Pareto efficient under the local information constraints.

Given Proposition 8, we can again equivalently solve for the optimal transfer shares by
minimizing total consumption variances over transfer shares as in (11):

min
α

∑
i∈N

V arρ

[(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej

]
≡
∑
i∈N

α′→iΣρα→i (20)

where the “exposure shares” α→i := (αji) j∈N with αii := 1 −
∑

k∈Ni
αik for all i and αji = 0

whenever Gij = 0. The above then becomes a well-defined optimization problem with linear
constraints, and there are standard computational algorithms to solve this problem numerically.
Hence, even though it would be algebraically cumbersome to work out the analytical formula
for the Pareto efficient transfer shares under a general correlation structure, (20) provides a
numerical guideline to solve for the Pareto efficient transfer arrangements, demonstrating the
applicability of our results in more general environments than the base model.

36We note that Assumption 2 is not necessary for the existence of linear PE transfer rules: we only impose it
for a simpler proof.
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6.2 Beyond the CARA-Normal Setting

We now offer some discussions on the generality of our framework and the robustness of our
analytical results beyond the CARA-Normal setting.

6.2.1 Quadratic Utility Function

Quadratic utility functions of the form ui (xi) = xi − 1
2
rx2

i for i ∈ N have also been widely
used in the network theory literature due to the analytical tractability it affords. Similar to
CARA utility functions, quadratic utility functions also the mean-variance expected utility
representation. Noting that u′i (xi) = 1− rxi, the conditional Borch rule in Proposition 1 takes
the form of λi (1− rEij [xi]) = λj (1− rEij [xj]) . With equal Pareto weightings (λ = 1) and
elliptical distribution of endowments,37 that this leads to exactly the same system of linear
equations as in (27), so that Proposition 4 applies without change. However, it should be
pointed out that the Pareto efficient frontier traced out by all admissible Pareto weightings will
correspond to a collection of different state-dependent transfer shares α.

6.2.2 Edge-Regular Networks

With general utility function and general endowment distribution, we now show that the local
equal sharing rule, as characterized in Proposition 3 in the form of t∗ij (Iij) = 1

d+1
ei− 1

d+1
ej +µij,

remains Pareto efficient under certain symmetry conditions. We focus our attention on the
local equal sharing rule due to its particular importance in this paper: it is not only the key
components of Propositions 3 and 4 in Section 3.3, but also the underlying transfer rules we
used in Sections 4 and 5.

Specifically, a network G is said to be edge-regular network with parameters (N, d, λ), if
each of the N individuals in the network has d neighbors and each linked pair of individuals
share λ common neighbors. Notice that a circle network with N individuals is a special case of
edge-regular network with parameters d = 2 and λ = 0.

Proposition 9. Suppose that G is an edge-regular network. Let yi be i.i.d. endowments with
any distribution and u be any concave utility function. Write µ := E [yi] and write ei = yi − µ.
Then the local equal sharing rule t∗ij (Iij) = 1

d+1
ei − 1

d+1
ej is Pareto efficient.

37A random vector has an elliptical distribution if its characteristic function φ satisfies the functional equation
φX−µ(t) = ψ(t′Σt) for every column-vector θ, for some location parameter µ, some nonnegative-definite matrix
Σ and some scalar function ψ. In fact, we only need that the joint distribution of endowments satisfies the linear
conditional expectatation (LCE) property, which is satisfied by the elliptical family of distributions. Note that
the multivariate normal distribution belongs to the elliptical family.
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The proof follows immediately from the observation that, under the local equal sharing rule
t∗, individual i’s final consumption

x∗i = µ+
1

d+ 1

∑
k∈N ij

ek +
1

d+ 1

∑
k∈Ni\Nj

ek

has exactly the same conditional distribution as neighbor j’s final consumption x∗j given any
local state Iij, ensuring that the local Borch rule be satisfied.

6.2.3 Approximate Pareto Efficiency

In more general settings, the local equal sharing rule may not be exactly Pareto efficient.
However, we show in this subsection that the local equal sharing rule “satisfies the first-order
Taylor terms” of the local Borch rule, and hence can be sometimes regarded as approximately
Pareto efficiency.

Specifically, suppose that endowments yi are iid with E [yi] = µ and utility functions are
homogeneous ui = u. Again write ei := yi − µ as the endowment shock. Under the local equal
sharing rule individual i’s final consumption can be decomposed as

xi = xi (Iij) + ξNi\Nj
s.t. E[ξNi\Nj

|Iij] = 0,

with xi(Iij) := µ+ 1
d+1

∑
k∈N ij

ek and ξNi\Nj
:=
∑

k∈Ni\Nj

1
dk+1

ek.
Recall that the local Borch rule requires (WLOG under equal Pareto weights) that, for

Pareto efficiency, E
[
u
′
(xi)

∣∣ Iij] = E
[
u
′
(xj)

∣∣ Iij], or equivalently
E
[
u
′
(
xi (Iij) + ξNi\Nj

)∣∣∣ Iij] = E
[
u
′
(
xj (Iij) + ξNj\N i

)∣∣∣ Iij] ,
which is in general not satisfied as the distribution of ξNi\Nj

can be different from the distribu-
tion of ξNj\N i

.
Writing I ij as a generic realization of Iij, we take the following standard Taylor expansion

of the conditional expected marginal utility around xi(Iij):

E
[
u
′
(xi)

∣∣∣ Iij] = E
[
u
′ (
xi
(
I ij
))]

+
1

2
E
[
u
′′′
(
xi
(
I ij
)

+ ξ̃Ni\Nj

)
ξ2
Ni\Nj

]
(21)

where ξ̃Ni\Nj
is some random variable that lies between 0 and ξNi\Nj

.
The local equal sharing rule guarantees that xi

(
I ij
)
≡ xj

(
I ij
)
, so the first term on the

right-hand side of (21) is equalized. Hence, the local Borch rule can be said to hold approxi-
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Figure 2: Transfer Network Need Not Equal the Information Network

mately provided that the second higher-order terms in (21) are relatively small. Clearly, this
approximation will be relatively good when u′′′ is reasonably small around xi

(
I ij
)
or when the

non-local shock exposures ξNi\Nj
and ξNj\N i

are relatively small.
We show more explicitly in Appendix B.12 that the local equal sharing is approximately

Pareto efficient in (the very asymmetric) star networks with a CRRA utility function u (x) =

log (x) and uniform distribution of endowments, a setting where the exactly Pareto efficient
transfer rules cannot be linear. Also, we provide numerical illustration of the Pareto efficiency
of the local equal sharing rule when endowments follow log-normal or Bernoulli distributions.
Despite the peculiarity of these illustrations, they show that the local equal sharing rule can be
relevant in a variety of cases beyond the CARA-normal setting.

6.3 General Contractibility Constraints

The main framework considered throughout the paper has the feature that local information
constraints are defined based on the underlying physical network at which transfers take place.
This does not have to be the case. Our framework is more general and may be interpreted
as the “reduced-form” representation of all effective contractibility constraints. It may encode,
say, primitive features of the environment that may be relevant to contractibility considerations,
including the extent of observability, the technology of communication, and opportunities for
ex post strategic interactions that may effectively implement truthful information transmission
in equilibrium. More precisely, one might imagine that messages about endowments may be
distributed along pairs of linked households, such that information extends beyond the imme-
diate neighborhoods. Alternatively, one could also consider “directed information” whereby the
realization of some endowment ek might be contractible to a pair i and j, but not vice versa.

To fix ideas, consider an augmented four-agent line network shown in panel (a) of Figure 2
and take this to be the underlying transfer network. Imagine, say, that we now allow transfers t12

and t23 to depend on e4 as well as on direct neighbors’ endowments as before. This corresponds
to a situation in which information constraints are not, strictly speaking, "local", in the sense
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of corresponding to the endowments of connected neighbors. Nonetheless, contracts remain
incomplete since transfers are not contingent on all states.

In order to represent risk-sharing contracts in this setting we construct an alternative infor-
mation network as shown in panel (b) of Figure 2. This network is a directed super-graph of
the original network, and we can now characterize transfers by considering “local information
constraints’” (as defined above) of this alternative network. In other words, any pair that is
connected in the original transfer network can now contract on the common information of her
“in-neighbors” of the directed information network.38 Indeed, we show in Section A.1 that we
can apply our framework to information networks like these in order to extend our results to
contractibility environments that do not necessarily coincide with the original transfer networks.

7 Conclusion

This paper analyzes informal risk sharing arrangements under local information constraints,
when bilateral transfers can only depend on endowment realizations of a subset of individu-
als. We characterize the Pareto efficient consumption allocations in this setting, and provide
closed-form descriptions of the bilateral transfer arrangements that lead to them in a widely
studied context of CARA utilities and jointly normally distributed endowments. We show that
more central individuals have more volatile consumption, a testable implication. This model
generalizes the notion of a local sharing group that has been invoked recently in the risk-sharing
tests performed in the development literature.

The model provides numerous further implications for empirical work. In a first approach,
Milán et al. (2018) show that the current framework fits the observed sharing behavior of
indigenous communities in the Bolivian Amazon. However, further empirical work is needed
to distinguish local information constraints from other similar contractual frictions, such as
the hidden income model identified by Kinnan (2017) as the relevant friction in Thai data.
Indeed, in future work we plan to derive a dynamic version of the model that provides testable
predictions between current consumption and past information, which can be compared to those
of other proposed risk-sharing frictions. Another potential empirical project building on the
current work would take the model’s predictions on bilateral exchanges in order to develop a
complete model of spillover effects across individuals that can be used to structurally estimate
the underlying network structure following techniques in Manresa (2016) and most recently in
De Paula, Rasul, and Souza (2018) .

38If instead the information network in panel (b) of Figure 2 was undirected, this would correspond to a
different contractibilty environment in which not only would t12 and t23 depend on e4, but t34 would now also
depend on e2.
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Appendix

A Other Major Extensions

A.1 General Contractibility Constraints

In Section 6.3 we showed – for a simple line network – how to describe risk-sharing arrangements
subject to local information constraints that need not coincide with the physical transfer net-
work. We now return to this question and provide a general characterization of the admissible
structures where our main results continue to apply.

As before, let G denote a generic undirected and unweighted network structure defined on
N . We now interpret G as physical (transfer) network : two individuals i and j can enter into
a risk-sharing transfer contract if and only if they are linked in G, or Gij = 1. As before, Ni

and Nij denote i’s neighborhood and ij’s common neighborhood under G, respectively.
We now specify a more general form of contractibility constraints. Suppose now that, for

each linked pair of individuals ij in G, their bilateral transfer contract tij can be (effectively)
contingent on the ex post realizations of the income shocks of individuals in some predetermined
set Qij ⊆ N\ {i, j}, in addition to their own income shocks ei and ej. In other words, tij can
be contingent on the ex post realizations of ek for all k ∈ Qij := {i, j} ∪Qij. We write Q (and
equivalently Q) to denote the joint requirements of pairwise contractibility constraints Qij for
all linked individuals in G.39

Clearly, by taking Qij = Nij for all linked ij, we reduce the model back to the special case
of local information constraints as formalized in Subsection 3.1. By taking Qij = N\ {i, j} for
all ij, we reduce the model back to the simple “global-information” benchmark.

In this subsection we take Q as the primitive, and discuss how our methods and results
can be adapted to accommodate the contractibility constraints encoded by Q. The question
how the contractibility constraints Q may arise from individuals’ ex-post interactions that may
support on-equilibrium information transmission will be deferred to the next subsection.

Clearly, under general contracting constraints encoded by Q, the social planner’s problem
3 remains a convex optimization problem: the objective function remains concave, while the
choice space (space of admissible transfer arrangements under G and Q) remains a convex set.

Corollary 2. Propositions 1 and 2 carry over with proper notational adaptions.
39Alternatively, we could specify Q without reference to G. However, as we take both G and Q as primitives,

this expositional difference is inconsequential.
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Consequently Corollary 1 (the localized Borch rule) remains valid, too, with the conditional

expectations on the left hand side of
Eij

[
u
′
i(xti)

]
Eij[u′j(xtj)]

=
λj
λi

being taken with respect to the more
general local information sets.

Next, we again specialize to the CARA-normal setting as considered in Subsection 3.3. We
first provide a sufficient condition under which Propositions 3 and 4 generalize almost exactly.

Proposition 10. Suppose that G is connected as before and that there exists an undirected and
unweighted supergraph of G, denoted G′, such that:

(a) The contractibility constraints Q satisfies that Qij = N
′
i ∩ N

′
j for all linked ij in the

original network G, where N ′i denotes i’s neighborhood in the supergraph network G′.

(b) For every pair ij linked in G
′, there exists a path in G from i to j such that, for any

individual k that lies on this path, we have that ik and jk are also linked in G′.

Then the constrained Pareto efficient consumption plan under (G,Q) is given by the consump-
tion plan x∗

(
G
′) induced by the hypothetical linear transfer rules t∗

(
G
′), or equivalently the

transfer shares α∗
(
G
′), as defined in Propositions 3 and 4.

Condition (a) essentially requires that all contractibility constraints are induced by common
neighborhoods under an “informational network” G′ that is a supergraph of the physical transfer
networkG. Condition (b) essentially requires that the physical transfer networkG is rich enough
to channel, potentially via a path of individuals in G, any net bilateral transfer scheme between
two informationally linked individuals in G

′ . Simple examples of G′ that satisfies condition
(b) includes a supergraph of G which add (informational) links between some distance-2 pairs
of individuals in the physical network G, and a supergraph of G which add links between all
individuals within a distance of k from each other in the physical network G.40

Under conditions (a)(b), only the “informational network” G′ is relevant in determining
the constrained Pareto efficient consumption plan, or equivalently the risk sharing transfer
arrangements up to superfluous cyclical transfers, which can be computed by exactly the same
formulas given by Propositions 3 and 4 with the informational network G

′ as the relevant
network structure.

In the next subsection (A.2), we provide several examples of realistic ex-post communication
protocols that may give rise to contractibility constraints Q that satisfies Conditions (a) and
(b), so that it is sufficient to focus on the “informational network” G′ .

40See the next subsection for a concrete example of how communication among individuals can establish such
informational networks.
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Before proceeding to the next subsection, we point out that the method of analysis, together
with some particular results, generalizes beyond Proposition 10. For simplicity, in the following
we focus on the case of independent endowments (ρ = 0), and provide sufficient conditions
under which the local equal sharing rule generalizes.

Proposition 11. Let ρ = 0. Given a network G and contractibility constraints Q, define a
directed network

←−
G by setting

←−
G ij = 1 if and only if there exists a path of individuals i =

k0k1...km = j in G, such that j ∈ Qkhkh+1
for all h = 0, ...,m− 1. Define the “in-neighborhood”

Ni

(←−
G
)

:= {k ∈ N : Gij = 1} and the “in-degree” di
(←−
G
)

:= #
(
Ni

(←−
G
))

accordingly. Then
the following consumption plan

x∗i

(←−
G
)

:=
1

di

(←−
G
)

+ 1
ei +

∑
j∈Ni(

←−
G)

1

dj

(←−
G
)

+ 1
ej (22)

is constrained Pareto efficient subject to the contractibility constraints Q under network G.

Compared to Proposition 10, Proposition 11 relaxes both Condition (a) and Condition
(b). Specifically, Q is no longer restricted to be inducible as common neighborhoods of an
undirected graph, allowing for scenarios where k ∈ Qij but i /∈ Qjk. Correspondingly, the
constructed “informational network”

←−
G is directed, only requiring that information about in-

dividual j’s endowment realization can transmit to individual i, but not necessarily vice versa.
Most importantly, Proposition 11 asserts that, for any k ∈ Gij\

←−
N ij, which may not be empty

in general, the Pareto efficient consumption for ij, x∗i
(←−
G
)
and x∗j

(←−
G
)
, are necessarily inde-

pendent of ek, even though tij may be made contingent on ek. This feature is specific to the
case of independent endowments, which is not covered by Proposition 10.

A.2 Risk Sharing with Ex-Post Communication

In Section A.1, we abstract from the detailed specification of such ex post interactions, but
instead use the contractibility constraints Q as a reduced-form representation of ex post in-
teractions on the effective contractibility of risk sharing arrangements. In the current section,
we investigate particular detailed specifications of ex post interactions. We show that natural
specifications produce a contractibility structure Q as specified in Section A.1 that satisfies
both Conditions (a) and (b) in Proposition 10, and hence we may compute the constrained
Pareto efficient risk-sharing arrangements by directly applying Proposition 4 using the relevant
informational network G′ .
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Fix any connected network G. Consider a scenario where, after endowment realizations but
before transfer payments, a single-round of simultaneous communication is allowed. Specifically,
each individual i may send a message mij ∈ Mij to each individual j ∈ N\ {i}, where Mij

denotes an arbitrary message space. The (local) observability of messages is determined by a
communication protocol, which we take to be a primitive of the environment. For example, a
few simplest communication protocols that lead to different levels of observability of messages
are:

(a) Global communication: mij is publicly observable by all individuals Equivalently, we
might as well take mij ≡ mi and Mij ≡Mi, i.e., each individual can only send a public
message that then becomes global common knowledge. For example, a global message be
thought of as a Tweet, which everyone can observe (if he wants to).

(b) Local announcement : mij is locally observable by the sender i and i’s neighbors. Again,
we might as well take mij ≡ mi and Mij ≡Mi. For example, a local announcement can
be thought of as a message i posts on his own Facebook timeline.

(c) Local comment : mij is locally observable by the receiver j and j’s neighbors. For example,
a local comment can be thought of as a message i leaves on j’s Facebook timeline.

(d) Private communication: mij is only privately observable by the sender i and receiver j. A
variety of communication technologies such as personal meeting, phone calls, online chats
fit into this category.

Given a communication protocol, for each linked pair ij, their ex post local common knowl-
edge before transfers are carried out not only include the endowment realizations they can
commonly observe, denoted Iij = (ek)k∈N ij

, but also include the communication messages they
can commonly observe, denoted Mij, which will differ across the four communication protocols
above. Again, we require that the bilateral transfer contract tij be contingent only on ex post
local common knowledge, i.e., tij be σ (Iij,Mij)-measurable. As before, we abstract from ex
post enforcement issues of the contract tij per se, but focus on the strategic aspects of ex post
messages.

We summarize in the following Proposition how the four ex-post communication protocols
introduced above may give rise to different informational network structures, with which we
can directly apply Proposition 10.

Proposition 12. Under either of the four communication protocols listed above, there exists a
profile of bilteral risk-sharing contracts t∗ such that: (i) tij is σ (Iij,Mij)-measurable for each
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linked ij in G; (ii) there exists an undirected supergraph G
′ of G such that the constrained

Pareto efficient consumption plan x∗
(
G
′) with respect to G

′ can be implemented in ex-post
Nash equilibrium; (iii) the effective information network G′, under the four communication
protocols, is given by, respectively:

• (a) Global communication: G′ is the complete graph.

• (b) Local announcement: G′ = G(2), i.e., the graph obtained by linking pairs of individuals
within a graphic distance of 2 from each other in the original network G.

• (c) Local comment: G
′

= G(3), i.e., the graph obtained by linking pairs of individuals
within a graphic distance of 3 from each other in the original network G.

• (d) Private communication: G′ = G.

The main idea for constructing the message-augmented contract t∗ that induces truthful
information transmission in ex-post Nash equilibrium is to cross-validate reports of certain
non-local endowment realizations from two different individuals. Admittedly, there are clearly
many other plausible forms of ex-post interactions that lead to different extents of information
transmission, and it is conceivable that some forms of ex-post interactions may not be able to
support the “hard-information” contractibility structure as studied in this paper. However, we
will defer a more thorough analysis of this problem to future work.41

A.3 Endogenous Network Formation

So far our analysis focused on characterizing Pareto efficient risk-sharing arrangements subject
to local information constraints on an exogenously given network, implicitly assuming that the
network structure is mainly shaped by predetermined factors such as kinship. Here we briefly
discuss some implications of allowing for endogenous link formation in the context of informal
risk sharing with local information constraints, in the CARA-normal environment of Section
3.3. The approach we take is similar as in Ambrus and Elliott (2020), who consider network
formation in a risk-sharing framework with global information contracts, and propose a two-
stage game in which in the first stage individuals can simultaneously indicate other individuals
they want to link with. If two individuals each indicated each other, the link is formed, and the
two connecting individuals each incur a cost of c ≥ 0.42 The solution concept we use is pairwise
stability. In the second stage, whatever network is formed in the first stage, it is assumed that

41A related exercise is conducted in an ordinal setting in a recent paper by Bloch and Olckers (2018).
42This simple game of network formation was originally considered in Myerson (1991). See also Jackson and

Wolinsky (1996).
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individuals agree on a Pareto efficient risk-sharing arrangement subject to local information
constraints.

In our analysis of the CARA-normal framework so far, state independent transfers played a
very limited role. However, when we allow for endogenous network formation, it becomes crucial
how the network structure influences state independent transfers, and hence the distribution of
surplus created by risk sharing, as it directly affects incentives to form links. Therefore, it is
important to specify exactly which Pareto efficient risk-sharing arrangement prevails for each
possible network that can form. Different ways of specifying state-independent transfers can
lead to very different conclusions regarding network formation, as we demonstrate below.

A benchmark case is when all state-independent transfers are set to 0, which case is ex-
tensively investigated by Gao and Moon (2016) who assume local equal sharing with no state-
independent transfers as an ad hoc sharing rule. They show that, even with zero cost of linking,
an individual i’s benefit for establishing an extra link with j falls very fast with the existing
number of links the individual i has, as with more existing neighbors (larger di) the marginal
reduction in self-endowment exposure

(
1

di+1
− 1

di+2

)
is small relative to the additional exposure

to j’s endowment 1
dj+2

. Typically this implies severe under-investment into social links.
An alternative approach is pursued by Ambrus and Elliott (2020), in the context of risk-

sharing arrangements with global information: they assume that the profile of state-independent
transfers is determined according to the Myerson value. The Myerson value, proposed in Myer-
son (1980), is a network-specific version of the Shapley value that allocates surplus according to
average incremental contribution of individuals to total social surplus.43 In particular, Ambrus
and Elliott (2020) show that with state-independent transfers specified as above (for whatever
network is formed), if individuals are ex ante symmetric then there is never under-investment,
that is given any stable network, there is no potential link that is not established, even though
its net social value would be strictly positive. Below we show that the same conclusion holds
in our setting with local information constraints, in the case of CARA utilities and indepen-
dently an jointly normally distributed endowments. The detailed specification and the proof
are available in Appendix C.13.

Proposition 13. Suppose that, for any given network structure, the Pareto efficient consump-
tion plan subject to the local information constraint is implemented, and the state-independent
transfers are induced by the Myerson values. Consider the first-stage network formation game
in which each individual pays a private cost of c for each of her established links. Then, there

43Ambrus and Elliott (2020) also provide micro-foundations, in the form of a decentralized bargaining pro-
cedure between neighboring individuals that leads to state independent transfers achieving the Myerson value
allocation.
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is no under-investment in social links in any pairwise stable network.

We leave a more detailed investigation of network formation in the context of risk sharing
with local information constraints to future research.

B Main Proofs

The proofs for all the lemmas stated in this section are available in Appendix C.
Define J (t) := E

[∑
k∈N λkuk

(
ek −

∑
h∈Nk

tkh
)]
, the objective function in equation (3).

Lemma 1. T with 〈·, ·〉 forms an inner product space.

Lemma 2. J is concave on T .

Lemma 3. J is Gâteaux-differentiable.

Lemma 4. For any t ∈ T that solves (4), we have J ′ (t) = 0.

Lemma 5. The set of consumption plan induced by the profiles of transfer rules t in T is
convex.

B.1 Proof of Proposition 1

Proof. We first prove the “only if” part. Note that, given any t ∈ T ∗, ∀i, j,

E

[∑
k∈N

λkuk

(
ek −

∑
h∈Nk

tkh

)]
= E

[
E

[∑
k∈N

λkuk

(
ek −

∑
h∈Nk

tkh

)∣∣∣∣∣ Iij
]]

≤ E

[
max
tij∈R

E

[∑
k∈N

λkuk

(
ek −

∑
h∈Nk

tkh

)∣∣∣∣∣ Iij
]]

This is because, conditional on Iij, tij must be constant across all possible states, and thus the
maximization of the conditional expectation is to solve for the optimal real number tij. For
t to be a solution for problem (3), suppose there exists linked ij such that tij does not solve
the problem (4). Then, by the inequality above, there exists another tij, specified for each
different realization of Iij and hence each possible state of nature, that leads to higher value of
E
[∑

k∈N λkuk
(
ek −

∑
h∈Nk

tkh
)]
, contradicting the optimality of t for problem (3). Note that

the “P-almost-all” quantifier applies here.
For the “if” part, notice that by Lemma 4, t solves all (4) simultaneously implies that

J
′
(t) = 0. As J : T → R is concave by Lemma 2 and Gâteaux-differentiable by Lemma 3, we
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can apply a mathematical result on convex optimization in normed space, specifically Theorem
3.24 and Proposition 3.20 in Peypouquet (2015), to conclude that asserting that if J ′ (t) = 0,
then J (t) is the unique global maximum.

B.2 Proof of Proposition 2

Proof. Following the proof of Lemma 2, we can easily show, by the strict concavity of ui (·),
that the objective function in (3) is strictly concave in the consumption plan x. Lemma 5 shows
that the set of admissible consumption plan induced by the set of transfer rules in T is convex.
Hence, there is at most of one consumption plan that solves (3) .

B.3 Proof of Corollary 1

Proof. By the concavity (shown in Lemma 2) of the objective function in (4), the FOC is both
sufficient and necessary for maximization. The FOC w.r.t tij, is

E

λiu′i
(
ei −

∑
h∈Ni

tih (e)

)
+ λju

′

j

ej −∑
h∈Nj

tjh (e)

 · (−1)

∣∣∣∣∣∣ Iij
 = 0

Rearranging the above we have

Eij
[
u
′
i (x

t
i)
]

Eij
[
u
′
j

(
xtj
)] =

E
[
u
′
i

(
ei −

∑
h∈Ni

tih (e)
)∣∣ Iij]

E
[
u
′
j

(
ej −

∑
h∈Nj

tjh (e)
)∣∣∣ Iij] =

λj
λi
.

B.4 Proof of Proposition 3

Proof. Let x∗i be the consumption plan induced by the transfer t∗ described above. Then

CE (x∗i |Iij) = Eij

[
ei −

∑
k∈Ni

t∗ik

]
− 1

2
rV arij

[
ei −

∑
k∈Ni

t∗ik

]

= ei −
ei

di + 1
+

ej
dj + 1

− µ∗ij −
∑
k∈Nij

(
ei

di + 1
− ek
dk + 1

+ µ∗ik

)

−
∑

k∈Ni\Nj

(
ei

di + 1
− Eij [ek]

dk + 1
+ µ∗ik

)
− 1

2
rV ar

 ∑
k∈Ni\Nj

ek
dk + 1
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=
ei

di + 1
+

ej
dj + 1

+
∑
k∈Nij

ek
dk + 1

−
∑
k∈Ni

µ∗ik −
1

2
rσ2 ·

∑
k∈Ni\Nj

1

(dk + 1)2
.

The necessary and sufficient condition for t∗ to be Pareto efficient is given by (6). Plugging the
above into (6) and canceling out the terms dependent on local information (ek)k∈N ij

, we arrive
at the following condition for Pareto efficiency:

∑
k∈Ni

µ∗ik +
1

2
rσ2 ·

∑
k∈Ni\Nj

1

(dk + 1)2
+

1

r
lnλi =

∑
k∈Nj

µ∗jk +
1

2
rσ2 ·

∑
k∈Nj\N i

1

(dk + 1)2
+

1

r
lnλj (23)

Any profile of state-independent transfers µ∗ that solves the above system (23) makes t∗ efficient
under weightings λ.

Notice that, if CE (x∗i | Iij)− 1
r

lnλi = CE
(
x∗j
∣∣ Iij)− 1

r
lnλj holds for any e,

CE (x∗i )−
1

r
lnλi = E

[
CE (x∗i | Iij)−

1

r
lnλi

]
− 1

2
rV ar

[
CE (x∗i | Iij)−

1

r
lnλi

]
= CE

(
x∗j
)
− 1

r
lnλj

Hence, with G assumed WLOG to be connected, we have

CE (x∗i )−
1

r
lnλi =

1

n

∑
k∈N

(
CE (x∗k)−

1

r
lnλk

)
= −rσ

2

2n

∑
k∈N

1

dk + 1
− 1

nr

∑
k∈N

lnλk (24)

On the other hand, as x∗i = ei
di+1

+
∑

k∈Ni

(
ek

dk+1
− µ∗ik

)
,

CE (x∗i ) = −
∑
k∈Ni

µ∗ik −
1

2
rσ2

∑
k∈N i

1

(dk + 1)2 (25)

Equating the expressions for CE (x∗i ) in (24) and (25), we obtain

∑
k∈Ni

µ∗ik =
1

2
rσ2

 1

n

∑
k∈N

1

dk + 1
−
∑
k∈N i

1

(dk + 1) 2

+
1

r

(
1

n

∑
k∈N

lnλk − lnλi

)
. (26)

Lemma 6. Given any real vector c ∈ Rn such that
∑

i∈N ci = 0, there exists a real vector
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µ ∈ R
∑

i di such that µik + µki = 0 for every linked pair ik and∑
k∈Ni

µik = ci.

The solution is unique if and only if the network is minimally connected.

Lemma 6 has established that there indeed exists a solution µ∗ to (26). Given any solution
µ∗ to (26), as N i\

(
Ni\N j

)
= N ij, we have

∑
k∈Ni

µ∗ik +
1

2
rσ2

∑
k∈Ni\Nj

1

(dk + 1)2 +
1

r
lnλi

=
1

2
rσ2

 1

n

∑
k∈N

1

dk + 1
−
∑
k∈N ij

1

(dk + 1)2

+
1

nr

∑
k∈N

lnλk

=
∑
k∈Nj

µ∗jk +
1

2
rσ2

∑
k∈Nj\N i

1

(dk + 1)2 +
1

r
lnλj

implying that µ∗ also solves the system of equations (23). Hence, t∗ is Pareto efficient.

B.5 Preparatory Derivations for Proposition 4

As previewed in Section 3.3.2, we now explain in more details two preparatory steps for our
main result, Proposition 4, which characterizes the Pareto efficient transfer shares under CARA-
Normal setting with correlation parameter ρ.

First, we show that the Pareto efficient profile of linear and strictly bilateral transfer rules:
tij (ei, ej) := αijei − αjiej + µij correspond to the solution of a complicated system of linear
equations.

Lemma 7. If there exist a vector γ such that (α, γ) jointly solve the following system of linear
equations,

αij = 1
2

(
1−

∑
k∈Ni\{j} αik + γij

)
(27.1)

0 = αki − αkj + γij ∀k ∈ Nij (27.2)

γij = ρ
1+(dij+1)ρ

(∑
k∈Ni\Nj

αki −
∑

k∈Nj\N i
αkj

)
(27.3)

∀i, j s.t. Gij = 1 (27)

then, given any constant vector c with cij = cji for all ij ∈ G, the profile of linear and strictly
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bilateral transfer rules defined by

tij (ei, ej) := αijei − αjiej + cij, ∀ij ∈ G

for all ij ∈ G are Pareto efficient in T .

We next show that instead of solving the set of linear equations (27) that imply Pareto
efficiency in T , we may solve an alternative optimization problem (11) that minimizes total
consumption variances among all linear transfer rules.

Lemma 8. ∀ρ ∈
(
− 1
n−1

, 1
)
, if system (12) admits a unique solution, then the solution also

solves system (27): i.e., a profile of linear and strictly bilateral transfer rules is Pareto efficient
in T if it uniquely minimizes the sum of consumption variances among all profiles of linear and
strictly bilateral transfer rules in T ∗.

Finally, we show in Proposition 4 in the main text that, for any given network, system (12)
indeed admits a unique solution that can be expressed in closed form. The solution depends
on the pairwise correlation ρ and on the positions of individuals in the network, and can be
represented as a linear function of accumulated paths along the network.

B.6 Proof of Proposition 4

Proof. Let G := G + In so that Gii = 1 ∀i ∈ N . The optimality conditions given in equation
(12.1) and (12.2) can be rewritten as

αji = Gij

(
Λj −

ρ

1− ρ
∑
k∈N

Gikαki

)
(28)

Let αi := (α1i, α2i, . . . , αni)
′ denote the vector of i’s inflow shares, Λ = (Λ1,Λ2, . . . ,Λn)′ the

vector of rescaled constraint multipliers, and gi represent the i-th column of G. Then (28) can
be rewritten in vector form as (

I +
ρ

1− ρ
gig

′

i

)
αi = diag (gi) Λ

where diag (gi) is a diagonal matrix with gi’s entries on the diagonal. Left-multiplying both
sides by

(
I− ρ

1+ρdi
gig

′
i

)
, which is well-defined for any ρ > − 1

n−1
and any G, we have

αi =

(
I− ρ

1 + ρdi
gig

′

i

)
diag (gi) Λ
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As gig
′
i · diag (gi) = gig

′
i, the above becomes

αi =

(
diag (gi)−

ρ

1 + ρdi
gig

′

i

)
Λ (29)

Now, notice that (12.3) implies

1 =
∑
j∈N

αij = (di + 1) Λi −
∑
j∈N

Gij

(
ρ

1 + ρdj

∑
k

GjkΛk

)
(30)

and thus we have

Λi =
1

di + 1

1 +
∑
j∈N i

∑
k∈Nj

ρ

1 + ρdj
Λk

 .

This establishes the recursive representation of the solution.
To obtain the closed-form solution, rewrite equation (30) as

1 =
∑
i∈N

(
diag (gi)−

ρ

1 + ρdi
gig

′

i

)
Λ =

(
D −GΨG

)
Λ

where D is a diagonal matrix with its i-th diagonal entry being di + 1, and Ψ is a diagonal
matrix with its i-th diagonal entry being ρ

1+ρdi
. Notice that ∀ξ ∈ Rn\ {0},

ξ
′ (
D −GΨG

)
ξ =

∑
i∈N

(di + 1) ξ2
i −

∑
i∈N

ρ

1 + ρdi

∑
j∈N i

ξj

2

≥
∑
i∈N

(di + 1) ξ2
i −

∑
i∈N

1

1 + di

∑
j∈N i

ξj

2

≥
∑
i∈N

(di + 1) ξ2
i −

∑
i∈N

1

1 + di
· (1 + di)

∑
j∈N i

ξ2
j

=
∑
i∈N

(di + 1) ξ2
i −

∑
i∈N

(di + 1) ξ2
i

= 0

where the equality holds if and only if ρ = 1 and ξ = c·1 for some c > 0. Hence, ∀ρ ∈
(
− 1
n−1

, 1
)
,(

D −GΨG
)
is positive definite and thus invertible. Hence,

Λ =
(
D −GΨG

)−1
1,
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αi =

(
diag (gi)−

ρ

1 + ρdi
gig

′

i

)(
D −GΨG

)−1
1.

Finally, we solve for the inverse matrix above as a series of powers of G. Notice that

(
D −GΨG

)−1
=
(
D

1
2

(
I−D−

1
2GΨGD

− 1
2

)
D

1
2

)−1

= D
− 1

2

(
I−D−

1
2GΨGD

− 1
2

)−1

D
− 1

2

where the middle term
(
I−D−

1
2GΨGD

− 1
2

)
is also invertible and positive definite for ρ ∈(

− 1
n−1

, 1
)
due to the positive definiteness of D−GΨG and the invertibility of D. For ρ ∈ (0, 1),

notice that D−
1
2GΨGD

− 1
2 is also positive definite, so its eigenvalues must be positive. Also,

its largest eigenvalue ϕmax must be smaller than 1. Otherwise, there exists a nonzero vector ξ
such that

ξ
′
(
I −D−

1
2GΨGD

1
2

)
ξ = (1− ϕmax) ξ

′
ξ < 0

contradicting the positive definiteness of
(
I−D−

1
2GΨGD

− 1
2

)
. Then, we may write

(
I−D−

1
2GΨGD

− 1
2

)−1

=I +
∞∑
k=1

(
D
− 1

2GΨGD
− 1

2

)k
and thus

(
D −GΨG

)−1
= D

−1
+D

− 1
2

∞∑
k=1

(
D
− 1

2GΨGD
− 1

2

)k
D
− 1

2

= D
−1

+
∞∑
k=1

(
D
−1
Q
)k
D
−1

where Q := GΨG can be interpreted as the weighted square of the extended adjacency matrix.
Consider the set of all paths of length q between i and j under G as

Πq
ij (G) =

{
(i0, i1, i2, . . . iq) | i0 = i, iq = j and Ginin+1 = 1 for n = 0, 1, . . . q − 1

}
For every πij ∈ Πq

ij (G), let W (πij) denote the weight associated to this path. It is not difficult
to see that,

W (πij) =
1

di + 1

ρ

1 + ρdi1

1

di2 + 1

ρ

1 + ρdi3
. . .

1

dj + 1
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Then

Λi =
[(
D −GΨG

)−1
1
]
i

=
(
D
−1

1
)
i
+

(
∞∑
k=1

(
D
−1
Q
)k
D
−1

1

)
i

=
1

di + 1
+

[
∞∑
k=1

(
D
−1
GΨG

)k]
i

D
−1

1

=
1

di + 1
+
∑
j∈N

[
∞∑
k=1

(
D
−1
GΨG

)k]
ij

· 1

dj + 1
=

1

di + 1
+
∑
j∈N

∞∑
k=1

(
D
−1

[i] GΨGD
−1
...D

−1
GΨG(j)

) 1

dj + 1

=
1

di + 1
+
∑
j∈N

∞∑
q=1

∑
πij∈Π2q

ij

(
1

di + 1
· ρ

1 + ρdi1
· 1

di2 + 1
· ...
)

1

dj + 1

=
1

di + 1
+
∞∑
q=1

∑
j∈N

∑
πij∈Π2q

ij

W (πij)

This concludes the proof.

B.7 Proof of Proposition 5

Proof for the Dense Case (pn = p)

Proof. To start with, notice that as di ∼ B (n− 1, p), we have

1

n
di =

n− 1

n
· 1

n− 1
di

a.s.−→ p

and
di − np√
np (1− p)

=

√
n− 1

n
· di − (n− 1) p√

(n− 1) p (1− p)
− p√

np (1− p)
d−→ N (0, 1) .

For each n, set dn by

dn :=

(
EERn

[
1

(dj (Gn) + 1)2

∣∣∣∣∣ ij ∈ Gn

])− 1
2

− 1

=

EERn

 1(
2 + d̃j

)2



− 1

2

− 1 where d̃j ∼ B (n− 2, p)

so that

EERn

[
1(

1
n
dj (Gn) + 1

n

)2

∣∣∣∣∣ ij ∈ Gn

]
− 1(

1
n
dn + 1

n

)2 = 0.
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Notice that

1

n
dn =

EERn

 1(
1
n
2 + n−2

n
· 1
n−2

d̃j

)2



− 1

2

− 1

n
→
(

1

(0 + p)2

)− 1
2

= p.

Now, consider

CovERn [V ar (xi (Gn)) , di (Gn)]

=CovERn

[
V ar (xi (Gn))− p(

1
n
dn + 1

n

)2 , di (Gn)− (n− 1) p

]

=EERn

[(
V ar (xi (Gn))− p(

1
n
dn + 1

n

)2

)
· (di (Gn)− (n− 1) p)

]

− EERn

[
V ar (xi (Gn))− p(

1
n
dn + 1

n

)2

]
EERn [di (Gn)− (n− 1) p]

=EERn

[(
V ar (xi (Gn))− p(

1
n
dn + 1

n

)2

)
· (di (Gn)− (n− 1) p)

]

=EERn

[
EERn

[
V ar (xi (Gn))− p(

1
n
dn + 1

n

)2

∣∣∣∣∣ di (Gn)

]
· (di (Gn)− (n− 1) p)

]

where the second last equality follows from the fact that

EERn [di (Gn)− (n− 1) p] = 0.

Then,

EERn [nV ar (xi (Gn))| di (Gn)]

=EERn

[
1(

1
n
di + 1

n

)2 ·
1

n
+

1(
1
n
dn + 1

n

)2 ·
1

n
di +

1

n

∑
j∈Ni

[
1(

1
n
dj + 1

n

)2 −
1(

1
n
dn + 1

n

)2

]∣∣∣∣∣ di (Gn)

]

=
1(

1
n
di + 1

n

)2 ·
1

n
+

1(
1
n
dn + 1

n

)2 ·
1

n
di +

1

n

∑
j∈Ni

{
EERn

[
1(

1
n
dj + 1

n

)2

∣∣∣∣∣ di (Gn)

]
− 1(

1
n
dn + 1

n

)2

}

=
1(

1
n
di + 1

n

)2 ·
1

n
+

1(
1
n
dn + 1

n

)2 ·
1

n
di

a.s.−→ 1

(p+ 0)2 · 0 +
1

(p+ 0)2 · p =
1

p
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where the last equality follows from the definition of dn. By appropriate centering, we now have

1√
n

(di − (n− 1) p) ·
√
n

(
nEERn [V ar (xi (Gn))| di (Gn)]− np(

1
n
dn + 1

n

)2

)

=
1√
n

(di − (n− 1) p) ·

[
1(

1
n
di + 1

n

)2 ·
√
n

n
+

1(
1
n
dn + 1

n

)2 ·
1√
n

(di − np)

]

=
1√
n
p ·

[
1(

1
n
di + 1

n

)2 ·
√
n

n
+

1(
1
n
dn + 1

n

)2 ·
1√
n

(di − np)

]
√
n

n
· 1(

1
n
di + 1

n

)2 ·
1√
n

(di − np) +
p (1− p)(
1
n
dn + 1

n

)2 ·

(
di − np√
np (1− p)

)2

d−→0 + 0 +
p (1− p)

p2
· χ2

1

so that

EERn

[
1√
n

(di − np) ·
√
n

(
EERn [nV ar (xi (Gn))| di (Gn)]− p(

1
n
dn + 1

n

)2

)]

→E
[
p (1− p)

p2
· χ2

1

]
=

1− p
p

.

In summary, we have

nCovERn [V ar (xi (Gn)) , di (Gn)]

=EERn

[
√
nEERn

[
nV ar (xi (Gn))− np(

1
n
dn + 1

n

)2

∣∣∣∣∣ di (Gn)

]
· 1√

n
(di (Gn)− (n− 1) p)

]
→1− p

p
> 0.

Proof for the Sparse Case (npn → λ > 1)

Proof. Suppose npn → λ > 1. In this case it is well known that

di (Gn)
d−→ Poission (λ) ,
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i.e.,

PERn [di (Gn) = k]→ e−λ
λk

k!
, ∀k ∈ N.

Now we set dn as, for each n,

dn :=

(
EERn

[
1

(dj (Gn) + 1)2

∣∣∣∣∣ ij ∈ Gn

])− 1
2

− 1

=

EERn

 1(
2 + d̃j

)2



− 1

2

− 1 where d̃j ∼ B (n− 2, pn) .

→ d∞ :=

(
E
[

1

(2 + Poisson (λ))2

])− 1
2

− 1

Again,

EERn [V ar (xi (Gn))| di (Gn)] =
1

(di + 1)2 +
1(

dn + 1
)2 · di

and thus

CovERn [V ar (xi (Gn)) , di (Gn)]

=EERn
[
EERn [V ar (xi (Gn))| di (Gn)] · di (Gn)

]
− EERn [V ar (xi (Gn))] · EERn [di (Gn)]

=EERn

[
di

(di + 1)2 +
1(

dn + 1
)2 · d

2
i

]
− EERn

[
1

(di + 1)2 +
1(

dn + 1
)2 · di

]
· EERn [di]

=EERn

[
di

(di + 1)2 +
1(

dn + 1
)2 · d

2
i

]
− EERn

[
1

(di + 1)2 +
1(

dn + 1
)2 · di

]
· EERn [di]

=EERn
[

di

(di + 1)2

]
− EERn

[
1

(di + 1)2

]
· EERn [di] +

1(
dn + 1

)2 · V ar
ER
n [di]

→κ (λ) := E
[
ξ − λ

(ξ + 1)2

]
+

λ

(d∞ + 1)2 , where ξ ∼ Poisson (λ)

=E
[

ξ

(ξ + 1)2

]
− λE

[
1

(ξ + 1)2 −
1

(ξ + 2)2

]
, where ξ ∼ Poisson (λ)

=E
[
ξ3 + 4ξ2 + 2 (2− λ) ξ − 3λ

(ξ + 1)2 (ξ + 2)2

]
, where ξ ∼ Poisson (λ)

which may be positive or negative depending on λ.
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Numerical computation of κ (λ) in in Mathematica shows that κ (λ) is positive for large
enough λ with a cutoff λ ≈ 3.8803. See Figure 3 for numerical plots of κ (λ).

B.8 Proof of Proposition 6

Proof. Let ei := yi − E[yi]. The weighted local equal sharing rule can be rewritten as:

t∗ij =
1/rj∑

k∈N i
1/rk

· ei −
1/ri∑

k∈Nj
1/rk

· ej + µij

for some constant µij.
The local Borch rule for Pareto efficiency with heterogeneous risk-aversion parameters re-

quires that riCE (x∗i | Iij)− rjCE
(
x∗j
∣∣ Iij) be constant across realizations of Iij, or equivalently,

riE[x∗i |Iij]−
1

2
r2
i V ar (x∗i | Iij) = rjE[x∗j |Iij]−

1

2
r2
jV ar

(
x∗j
∣∣ Iij)+ Cij (31)

We show that this requirement is satisfied by the weighted local equal sharing rule t∗:

riE[x∗i |Iij] =
∑
k∈N ij

1∑
h∈Nh

1/rk
ek − ri

∑
k∈N i

µik

and
rjE[x∗j |Iij] =

∑
k∈N ij

1∑
h∈Nh

1/rk
ek − rj

∑
k∈Nj

µjk

so that
riE[x∗i |Iij]− rjE[x∗j |Iij] = constant

while, with σ2
k := V ar(ek),

V ar (x∗i | Iij) =
∑

k∈Ni\Nj

(
1/rj∑

h∈Nh
1/rk

)2

σ2
k,

is also a constant, i.e., does not depend on the realization of Iij, and similarly for V ar
(
x∗j
∣∣ Iij).

Hence, equation (31) above is satisfied.

The weighted local equal sharing rule t∗above induces the following final consumption plan
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Figure 3: Plot of κ (λ)
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x∗i =
∑
k∈N i

1/ri∑
k∈Nk

1/rk
ek,

where it is clear that individual i’s shock exposures will be smaller when individual i is more
risk-averse (i.e., when ri is larger).

B.9 Detailed Specification and Proof for Proposition 7

Specifically, we assume that the correlation between ei and ej geometrically decays with social
distance between i and j :

Corr (ei, ej) = %dist(i,j),

where the social distance dist (i, j) is formally defined as the length (i.e., the number of links)
of the shortest path connecting i and j in network G. For notational simplicity we set σ2 = 1.

For tractability, we focus on circle networks with n = 2m + 1 individuals. An n-circle
consists of n individuals and n links: Gi,i+1 = 1 for i = 1, ..., n.44 For any linked pair i, i + 1

along a n-circle (with n ≥ 4), the conditional distribution of ei−1 (and similarly for ei+2) is

ei−1|ei,ei+1
∼ N (%ei, 1− %) .

Following a similar argument as in Section 4.2, we obtain the following condition for Pareto
efficiency subject to local information constraints:αi,i+1 = 1

2
(1− αi,i−1 + %αi−1,i)

αi+1,i = 1
2

(1− αi+1,i+2 + %αi+2,i+1)

for all i ∈ N . Then, the unique and symmetric solution for the above system is given by

α∗ij ≡ αgeo (%) =
1

3− %
∀Gij = 1.

Under α∗, the final consumption for each individual is

xgeoi (%) =
1

3− %
ei−1 +

1− %
3− %

ei +
1

3− %
ei+1

with a variance of
V argeo,% (xgeoi (%)) =

1 + %

3− %
.

44We, for notational simplicity, define individual n+ 1 to be individual 1, and individual 0 to be individual n.
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In comparison, under the symmetric correlation structure in Section 4.2, the condition for
Pareto efficiency on a n-circle is

αi,i+1 =
1

2

[
1− αi,i−1 +

ρ

1 + ρ
(αi−1,i − αi+2,i+1)

]
with its unique and symmetric solution being

αij ≡ αunif (ρ) =
1

3
∀Gij = 1,

which is exactly the local equal sharing rule. This implies a final consumption of

xunifi (ρ) =
1

3
ei−1 +

1

3
ei +

1

3
ei+1

with a variance of
V arunif,ρ

(
xunifi (ρ)

)
=

1 + 2ρ

3
.

We compare the correlation structures by setting ρ and % to be such that each individual’s
consumption variance is equalized across the two correlation structures under the global equal
sharing rule (which achieves first best risk sharing):

xFBi =
1

n

∑
k∈N

ek.

The consumption variances that this sharing rule implies for the two correlation structures are:

V arunif,ρ
(
xFBi

)
=

1 + 2mρ

2m+ 1

V argeo,%
(
xFBi

)
=

1 + 2
∑m

k=1 %
k

2m+ 1
=

21−%m+1

1−% − 1

2m+ 1
,

The first-best total variances under the two correlations structures are equal if and only if

V arunif,ρ
(
xFBi

)
= V argeo,%

(
xFBi

)
⇔ 1 + 2mρ

2m+ 1
=

21−%m+1

1−% − 1

2m+ 1

⇔ ρ = ρm (%) :=
% (1− %m)

m (1− %)
.

Noticing that the total variances without risk sharing at all are both equal to (2m+ 1) under
either correlation structure, setting ρ = ρm (%) implies that the total amount of shareable risk is
equalized between the two correlation structures. Next we compare the consumption variances
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given Pareto efficient risk-sharing arrangements subject to local information constraints.
Notice that

V arunif,ρ

(
xunifi (ρ)

)
≤ V argeo,% (xgeoi (%)) ⇔ ρ ≤ ρ (%) :=

2%

3− %
.

Hence, whenever

m >
(3− %) (1− %m)

2 (1− %)

we will have ρ (%) < ρ (%) and thus V arρuni
(
xunifi (ρ)

)
< V ar%geo (xgeoi (%)). In other words, fixing

%, efficient risk sharing subject to the local information constraint performs strictly better under
the uniform correlation setting than under the geometrically decaying setting.

Moreover, the difference can be very stark. As m→∞,

ρ = ρ (%) =
% (1− %m)

m (1− %)
→ 0,

and thus
V arunif,ρ

(
xunifi (ρ)

)
=

1 + 2ρ

3
→ 1

3
, as m→∞

while
V argeo,ρ (xgeoi (%)) =

1 + %

3− %
∀m.

When also taking %→ 1 (after taking m→∞), we get

lim
%→1

lim
m→∞

V arunif,ρ(%)

(
xunifi (ρ (%))

)
=

1

3
,

lim
%→1

lim
m→∞

V argeo,ρ (xgeoi (%)) = 1.

B.10 Proof of Proposition 8

Assumption 2 essentially restrict our attention to correlation patterns ρ =
(
ρij
)
i 6=j in

Θ :=
{(
ρij
)
i 6=j∈N : ρij ≡ ρji, λmin (Σρ) > c ∈ (0, 1)

}
,

so that Σρ is positive definite uniformly across all ρ ∈ Θ. Observe that 0 ∈ Θ (i.e., Assumption
2 is satisfied by independent endowments) and Θ is path-connected.45 We now proceed to
establish Proposition 8 under Assumption 2 via the following two lemmas.

45For any given correlation pattern ρ, the path {sρ : s ∈ [0, 1]} connects ρ with 0, since λmin (Σsρ) =
λmin (sΣρ + (1− s) In) ≥ sλmin (Σρ) + (1− s) ≥ c.
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First, we argue that, within linear rules, it is without loss of generality to focus on strictly
bilateral transfer rules. To see this, start with a generic linear transfer rule t that can be
represented by transfer shares (α, β) via

tij = αijei − αjiej +
∑
k∈Nij

βijkek + µij, βijk = −βjik,

where βijk denotes the share of ek that i transfers to j (see also equation 33 in the main draft).
Recall that a linear rule is strictly bilateral if it is of the form: of the form

tij = αijei − αjiej + µij.

The following lemma establishes that, the consumption plan induced by any linear transfer
shares (α, β) can be attained by some strictly bilateral transfer shares.

Lemma 9 (Strict Bilaterality WLOG in Linear Rules). Let XLin denote the space of consump-
tion plans induced by all linear transfer arrangements:

XLin :=

x : xi =

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej +
∑
j∈Ni

∑
k∈Nij

βjikek +
∑
j∈Ni

µij : βjik ≡ −βijk

 .

Let XLinSB denote the space of consumption plans induced by all linear and strictly bilateral
transfer arrangements:

XLinSB :=

{
x : xi =

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej +
∑
j∈Ni

µij

}
.

Then: XLin = XLinSB.

Proof. Clearly, XLinSB ⊆ XLin. For any x ∈ XLin, we have

xi =

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej +
∑
j∈Ni

∑
k∈Nij

βjikek +
∑
j∈Ni

µij

≡

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αji +
∑
k∈Nij

βkij

 ej +
∑
j∈Ni

µij
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for some (α, β). Now, for any linked ij, define

α̃ij := αij +
∑
k∈Nij

βkji.

Then, under the strictly bilateral rule t̃ij = α̃ijei − α̃jiej + µij, we have

x̃i =

(
1−

∑
j∈Ni

α̃ij

)
ei +

∑
j∈Ni

α̃jiej +
∑
j∈Ni

µij

=

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej +
∑
j∈Ni

∑
k∈Nij

βjikek +
∑
j∈Ni

µij

since ∑
j∈Ni

α̃ij =
∑
j∈Ni

αij +
∑

j 6=k∈Ni

βjki =
∑
j∈Ni

αij

∑
j∈Ni

α̃ji =
∑
j∈Ni

αji +
∑
k∈Nij

βkij


which implies that x̃i = xi. Hence, XLin ⊆ XLinSB.

Next, we apply the local Borch rule to derive a system of linear equations in the strictly
bilateral transfer shares α. Observe that the conditional distribution of ek given Iij = eN ij

:=

(ek)k∈N ij
is given by

ek|Iij ∼ N
(

Σk,N ij
Σ−1

N ij ,N ij
eN ij

,Σkk − Σk,N ij
Σ−1

N ij ,N ij
ΣN ij ,k

)
where Σk,N ij

denotes the sub-vector of the variance-covariance matrix Σρ that collects the
covariances between ek and eN ij

, while Σ−1

N ij ,N ij
denotes the sub-matrix of Σρ that corresponds

to the variance and covariances of eN ij
. Then, the local Borch rule can be derived as, for every

linked pair ij,

αij =
1

2

1−
∑

k∈Ni\{j}

αik +
∑

k∈Ni\Nj

(
Σk,N ij

Σ−1

N ij ,N ij
ιi

)
αki −

∑
k∈Nj\N i

(
Σk,N ij

Σ−1

N ij ,N ij
ιi

)
αkj


(32)

where ιi = (0, ..., 0, 1, 0, ..., 0) stands for the elementary vector with 1 at the position of the
vector eN ij

that corresponds to i’s endowment ei.
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The system of linear equations in α of the form (32) for all linked ij can be rewritten in the
following canonical form:

Aρα = 1, (33)

where:

• α = (αij)Gij=1 and 1 are
∑n

i=1 di dimensional vector;

• Aρ is an
∑n

i=1 di×
∑n

i=1 di dimensional matrix;

• the ij-th row of “AΣα = 1” is given by:

2αij +
∑

k∈Ni\{j}

αik −
∑

k∈Ni\Nj

(
Σk,N ij

Σ−1

N ij ,N ij
ιi

)
αki +

∑
k∈Nj\N i

(
Σk,N ij

Σ−1

N ij ,N ij
ιi

)
αkj = 1.

To prove the existence of a linear and strictly bilateral Pareto efficient transfer rule, it suffices
to show the solvability of system (33), which is established through the following chain of
arguments in the next lemma.

Lemma 10 (Solvability of Aρα = 1). Under Assumption 2, the following are true:

(i) If Aρ is invertible, then α∗ρ = A−1
ρ 1 solves (33) and thus defines a linear PE transfer rule.

(ii) If ρij ≡ 0 for all ij, then Aρ is invertible, with α∗ = A−1
ρ 1 given by the local equal sharing

rule.

(iii) The matrix Aρ is continuous in ρ.

(iv) The determinant of Aρ can be written as the ratio of a (multivariate) polynomial of ρ and
a (multivariate) polynomial of det

(
ΣN ij ,N ij

)
for all linked ij:

det (Aρ) =
Pol [ρ]

Pol
[(

det
(

ΣN ij ,N ij

))
Gij=1

] . (34)

(v) Define the set of ρ ∈ Θ under which Aρ is singular as:

Θ0 := {ρ ∈ Θ : det (Aρ) = 0} .

Then the Lebesgue measure of Θ0 is 0, and hence Aρ is invertible for almost every ρ ∈ Θ.

(vi) For each ρ ∈ Θ0, there exists a sequence {ρn} ⊆ Θ\Θ0 s.t. ρn → ρ.
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(vii) αρ := A−1
ρ 1 is uniformly bounded on Θ\Θ0.

(viii) For any ρ ∈ Θ0, let {ρn} ⊆ Θ\Θ0 be a sequence s.t. ρn → ρ as in (vi). Since αρn is
uniformly bounded by (vi), there exists a subsequence

{
ρnk

}
s.t. the sequence

{
αρnk

}
converges to some limit denoted by α∗. Then:

1 ≡ Aρnk
αρnk

→ Aρα
∗ = 1,

i.e. α∗ is a solution to (33) at ρ ∈ Θ0.

Proof. (i)(ii) are elementary.
To see (iii), note that the canonical matrix Aρ only contains numbers 0, 1, 2 and formulas

of the form Σk,N ij
Σ−1

N ij ,N ij
ιi. Recall from elementary linear algebra that

Σ−1

N ij ,N ij
=

cofactor
(

ΣN ij ,N ij

)
det
(

ΣN ij ,N ij

) (35)

Since ΣN ij ,N ij
is a principal submatrix of Σρ, by Cauchy’s Eigenvalue Interlacing Theorem,

λmin

(
ΣN ij ,N ij

)
≥ λmin (Σρ) ≥ c > 0,

and thus

det
(

ΣN ij ,N ij

)
=

dij+2∏
m=1

λm

(
ΣN ij ,N ij

)
≥ λ

dij+2
min

(
ΣN ij ,N ij

)
≥ cdij+2 > 0

is bounded away from zero for all ρ on Θ. Hence, the canonical matrix Aρ is continuous in ρ.
For (iv), notice from (35) that the cofactor matrices are simply submatrices of Σρ, potentially

multiplied with the scalar −1. Hence, by the definition of determinants, the numerator of (34)
must be a polynomial in ρ.

(v) follows immediately from the well-known property that the zero set of a non-constant
multivariate polynomials has Lebesgue measure zero: see, e.g., Caron and Traynor (2005), for
reference. In particular, notice that the polynomial in the numerator of (34) cannot be constant
at zero, since by (ii) Aρ is invertible when ρij ≡ 0.

(vi) is true since the complement of a Lebesgue-measure-zero set must be dense.46 Hence,
for any ρ ∈ Θ0, there exists a sequence in Θ\Θ0 that converges to ρ.

46Suppose to the contrary that Θ\Θ0 is not dense. Then there exists a open ball Bε (ρ) with radius ε > 0
around some ρ ∈ Θ0 s.t. Bε (ρ) ⊆ Θ0, implying that the Lebesgue measure of Θ0 must be strictly positive.
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For (vii), for any ρ ∈ Θ\Θ0, by (i) we know that the linear transfer rule α∗ρ = A−1
ρ 1 is PE,

so it must minimize total variances among all linear and strictly bilateral rules. In particular,
it must yield a weakly smaller total variance than the “autarky” benchmark (with αij ≡ 0) that
gives a total variance of

Vautarky :=
n∑
i=1

V ar (εi) = n.

Hence, we have

n ≥
n∑
i=1

α
′

ρ,→iΣραρ,→i ≥ λmin (Σρ) ·
n∑
i=1

‖αρ,→i‖2 ≥ c

n∑
i=1

‖αρ,→i‖2 , (36)

where αρ,→i denotes the exposure shares induced by αρ = A−1
ρ 1, i.e.,

αρ,→i := (αρ,ki)
n
k=1 =


0 if k /∈ N i

αρ,ki if k ∈ Ni

1−
∑

j∈Ni
αρ,ij if k = i

Hence, by (36), uniformly across ρ ∈ Θ0, we have

‖αρ,→i‖2 ≤ n

c
,

which implies that, uniformly across ρ ∈ Θ0, for some constant C we have

‖αρ‖ ≤ C.

For (viii), let {ρn} be a sequence in Θ\Θ0 s.t. ρn → ρ ∈ Θ0 as in (vi). Since
{
αρn
}
lies in

a uniformly bounded and thus compact set, there exists a subsequence
{
αρnk

}
of
{
αρn
}
that

converges to some limit denoted by α∗. Then, since Aρ is continuous in ρ, we have

Aρnk
αρnk

→ Aρα
∗.

Since αρnk
= A−1

ρnk
1, we have

Aρnk
αρnk

≡ 1, ∀k,

which implies that
Aρα

∗ = lim
k→∞

Aρnk
αρnk

= 1

proving that α∗ must be a solution to (33) at this ρ ∈ Θ0.
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Proposition 8 then follows immediately from Lemmas 9 and 10.

Remark 1. Note that the proof does not assume, nor proves, that Θ0 = ∅ or Θ0 6= ∅, since it is
unnecessary to do so and it is unclear a priori that Θ0 = ∅. In particular, the canonical matrix
Aρ is not necessarily symmetric, not necessarily positive definite, not necessarily diagonally
dominant, and its largest eigenvalue λmax (Aρ) is not necessarily bounded above by 1. Hence
here we adopt an “indirect” proof that exploit the measure-zero property of the zero sets of
polynomials, as well as the continuity of the problem with respect to the correlation pattern ρ.

Remark 2. We conjecture that the regularity condition stated in Assumption 2 is in fact un-
necessary, and that a linear and strictly bilateral Pareto efficiency transfer arrangement exists
for all ρ such that Σρ is a well-defined variance-covariance matrix (i.e., positive semidefinite).
In fact, for the 3-line example considered in Section 2, we can prove directly that the linear
system Aρα = 1 is equivalent to the linear system of equations that characterize the first-order
conditions for the minimization of total variances among linear rules, with the latter problem
characterized by a positive definite matrix that is immediately invertible. The direct proof is
similar to what we presented in the main draft, via a series of elementary row operations on
the canonical forms of the two linear systems that demonstrate their equivalence.47

B.11 Quadratic Utility Functions

With quadratic utility functions ui (xi) = xi − 1
2
rx2

i , the localized Borch rule requires that

λj
λi

=
Eij
[
u
′
i (xi)

]
Eij
[
u
′
i (xj)

] =
Eij [1− rxi]
Eij [1− rxj]

⇔ λi − λir

(
µi + ei − tij −

∑
h∈Ni

Eij [tih]

)
= λj − λj

µj + ej + tij −
∑
h∈Nj

Eij [tjh]


⇔ r (λi + λj) tij = − (λi − λj) + λir

µi + ei −
∑

h∈Ni\j

Eij [tih (Iih)]


− λjr

ej − ∑
h∈Nj\i

Eij [tjh (Ijh)]


47The proof is available upon request.
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⇔ tij =
λi

λi + λj

µi + ei −
∑

h∈Ni\j

Eij [tih (Iih)]


− λj
λi + λj

µj + ej −
∑
h∈Nj\i

Eij [tjh (Ijh)]

− λi − λj
r (λi + λj)

Postulating a bilateral linear rule tij (Iij) = αijei − αjiej + cij, notice that this is equivalent
to specifying tij (Iij) = αijyi − αjiyj + cij as we allow µij are simultaneously determined along
with:

xi =

(
1−

∑
j∈Ni

αij

)
ei +

∑
j∈Ni

αjiej + µi −
∑
j∈Ni

cij

≡

(
1−

∑
j∈Ni

αij

)
yi +

∑
j∈Ni

αjiyj +

(∑
j∈Ni

αjiµi −
∑
j∈Ni

αijµj

)
−
∑
j∈Ni

cij

Plugging in the postulation,

tij =
λi

λi + λj

1−
∑

h∈Ni\j

αih

 ei +
∑
h∈Nij

αhieh +
∑

h∈Ni\Nj

αhiEij [eh]


− λj
λi + λj

1−
∑
h∈Nj\i

αjh

 ej +
∑
h∈Nij

αhjeh +
∑

h∈Nj\N i

αhiEij [eh]


+
λi

(
µi −

∑
h∈Ni\j cih

)
− λj

(
µj −

∑
h∈Nj\i cjh

)
λi + λj

− λi − λj
r (λi + λj)

=
λi

λi + λj

1−
∑

h∈Ni\j

αih

 ei +
∑
h∈Nij

αhieh +
ρ

1 + (dij + 1) ρ

∑
h∈Ni\Nj

αhi ·
∑
k∈N ij

ek


− λj
λi + λj

1−
∑
h∈Nj\i

αjh

 ej +
∑
h∈Nij

αhjeh +
ρ

1 + (dij + 1) ρ

∑
h∈Nj\N i

αhi ·
∑
k∈N ij

ek


+
λi

(
µi −

∑
h∈Ni\j cih

)
− λj

(
µj −

∑
h∈Nj\i cjh

)
λi + λj

− λi − λj
r (λi + λj)

given that
Eij[ek] =

ρ

1 + (dij + 1) ρ

∑
k∈N ij

ek
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whenever the joint distribution of endowments e belong to the elliptical family of distributions.
In the special case of equal weighting: λi = λj, we have

αij =
1

2

1−
∑
h∈Ni

αih +
ρ

1 + (dij + 1) ρ

 ∑
h∈Ni\Nj

αhi −
∑

h∈Nj\N i

αhi


cij =

1

2

(
µi − µj

)
− 1

2

 ∑
h∈Ni\j

cih −
∑
h∈Nj\i

cjh


Note that system of linear equations in α is exactly the same one as in Section 4.

B.12 Approximate Pareto Efficiency of the Local Equal Sharing Rule

in Star Networks with CRRA Utilities

B.12.1 Analytical

Next, we illustrate that the local equal sharing rule remains approximately Pareto efficient in
an asymmetric star network under CRRA utility function.

Formally, suppose that G is a star network with N individuals. Let ui (x) := log (x) be
the common CRRA utility function, and the endowments be i.i.d. with an illustrative uniform
distribution, yi ∼i.i.d. Uniform

(
y, y + 1

)
for some y > 0. Write µ := E [yi] = y + 0.5 and

ei := yi − µ ∼i.i.d. Uniform (−0.5, 0.5).
We again focus on linear transfer rules of the form t0j = αce0 − αpej − β where 0 denotes

the center individual, j = 1, ..., N − 1 denotes a peripheral individual and t0j denotes the net
transfer from the center to a generic peripheral individual. The final consumption implied by
the transfer rule above is then given by:

x0 = µ+ (N − 1) β + (1− (N − 1)αc) e0 + αp

N−1∑
j=1

ej

xj = µ− β + αce0 + (1− αp) ej

3-Star Network

When N = 3, we have

x0 = µ+ 2β + (1− 2αc) e0 + αpej + αpek

xj = µ− β + αce0 + (1− αp) ej
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with

E
[
u
′
(x0)

∣∣∣ e0, ej

]
=E

[
1

µ+ 2β + (1− 2αc) e0 + αpej + αpek

∣∣∣∣ e0, ej

]
=

ˆ
1

µ+ 2β + (1− 2αc) e0 + αpej + αpek
dek

=
1

αp
log (µ+ 2β + (1− 2αc) e0 + αpej + αpek)|0.5−0.5

=
1

αp
log

(
µ+ 2β + (1− 2αc) e0 + αpej + 0.5αp
µ+ 2β + (1− 2αc) e0 + αpej − 0.5αp

)
and

E
[
u
′
(xj)

∣∣∣ e0, ej

]
=

1

µ− β + αce0 + (1− αp) ej
.

For this linear transfer rule t0j to be optimal, by the local Borch rule we need

log

(
1 +

αp
µ+ 2β + (1− 2αc) e0 + αpej − 0.5αp

)
=

αp
µ− β + αce0 + (1− αp) ej

which cannot be satisifed for any choice of (αc, αp, β).

However, we now show that the local equal sharing rule with αc = 1
3
and αp = 1

2
is approxi-

mately Pareto efficient. Specifically, we utilize the well-known inequality x
1+x
≤ log (1 + x) ≤ x

as the basis of our approximation. Notice that this approximation should be very good when
µ = y + 0.5 is very large.

Based on the upper bound log (1 + x) ≤ x, the local Borch rule requires

αp
µ− β + αce0 + (1− αp) ej

≤ αp
µ+ 2β + (1− 2αc) e0 + αpej − 0.5αp

Based on the lower bound x
1+x
≤ log (1 + x), the local Borch rule requires

αp

µ+2β+(1−2αc)e0+αpej−0.5αp

1 + αp

µ+2β+(1−2αc)e0+αpej−0.5αp

=
αp

µ+ 2β + (1− 2αc) e0 + αpej + 0.5αp

≤ αp
µ− β + αce0 + (1− αp) ej

To satisfy the two inequalities above for all e0, ej, we can set αc = 1
3
, αp = 1

2
, and β to be
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any number such that 2β − 1
4
≤ −β ≤ 2β + 1

4
, i.e.

β ∈
[
− 1

12
,

1

12

]
.

This suggests that the local equal sharing rule t∗0j = 1
3
e0− 1

2
ej is approximately Pareto efficient.

N-Star Network

The argument above can be inductively generalized to N - star so that any local equal sharing
rule of the form t∗0j = 1

3
e0 − 1

2
ej + β with

β ∈
[
−N − 2

4N
,
N − 2

4N

]
→
[
−1

4
,
1

4

]
approximately satisfies the local Borch rule based on x

1+x
≤ log (1 + x) ≤ x.

B.12.2 Numerical

We now numerically illustrate the approximate optimality of the local equal sharing rule in star
networks with CRRA utility functions under the following configurations:

Networks are configured to be star with N = 3, 4, 5 individuals.
Utility functions are taken to be CRRA u (x) = 1

1−θ (5 + x)1−θ with parameter θ = 0.5, 1, 2,
where θ = 1 corresponds to the log utility function u (x) = log (x).

Log-Normal Endowments

Endowments are i.i.d. drawn from the standard log-normal distribution: yi ∼iid lognormal (0, 1).
We then numerically solve for the best linear transfer shares among symmetric linear transfer

rules of the form t0j := αce0 − αpej − β, with “0” denoting the center individual, “j” denoting
a peripheral individual, and ei := yi − E [yi] be the net endowment shock.

Note that the local equal sharing rule corresponds to α∗c = 1
N

and α∗p = 1
2
under this setting.

The following table we report the numerical solutions for the optimal (αc, αp, β), which are
reasonably close to α∗c and α∗p . Moreover, the magnitudes of β are relatively small, which is
also consistent with the analytical approximation result we obtained above.
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θ N αc αp β

0.5 3 0.340 0.48 0.02
0.5 4 0.253 0.48 0.04
0.5 5 0.208 0.49 0.04
1 3 0.340 0.49 0.03
1 4 0.253 0.49 0.05
1 5 0.208 0.49 0.05
2 3 0.340 0.49 0.04
2 4 0.253 0.49 0.06
2 5 0.205 0.48 0.06

Bernoulli Endowments

Endowments are i.i.d. drawn from as yi ∼iid 1 + Bernoulli
(

1
2

)
. With binary distribution of

endowments, we can completely characterizing the (symmetric) transfer rules with four param-
eters without imposing linearity as a restriction:

t0j (y0, yj) =



α22, if y0 = yj = 2

α12 if y0 = 1, yj = 2

α21, if y0 = 2, yj = 1

α11 if y0 = yj = 1

Writing ei = yi − E [yi] = yi − 1.5, the local equal sharing rule t∗0j = 1
N
e0 − 1

2
ej corresponds to

the following restriction on α:

α∗22 − α∗12 = α∗21 − α∗11 =
1

N
, α∗22 − α∗21 = α∗12 − α∗11 =

1

2

The following table reports the numerical solutions we obtained, which again confirm the opti-
mality of the local equal sharing rule.

θ N α11 α12 α21 α22 α22 − α12 α22 − α21

1 3 0.083 -0.417 0.417 -0.083 0.335 0.5
1 4 0.125 -0.375 0.375 -0.125 0.25 0.5
1 5 0.15 -0.35 0.35 -0.15 0.2 0.5
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Supplementary Appendix for Online Publication

C Additional Proofs and Supporting Materials

C.1 Proofs of Lemmas 1-5

Lemma. 1: T ∗ with 〈·, ·〉 forms an inner product space.

Proof. We first show that 〈·, ·〉 is a well-defined inner product. Symmetry immediately follows
from the definition. Linearity in the first argument follows from the linearity of the expectation
operator:

〈αs+ βt, r〉 = E

∑
Gij=1

(αsij + βtij) rij

 = αE

∑
Gij=1

sijrij

+ βE

∑
Gij=1

tijrij


= α 〈s, r〉+ β 〈t, r〉 .

Positive definiteness is also obvious: 〈t, t〉 = E
[∑

Gij=1 t
2
ij (e)

]
≥ 0 and 〈t, t〉 = 0 if and only if

t = 0, i.e., tij (ω) = 0 for all linked ij and P-almost all e ∈ Ω.
We then show that T is a linear space. ∀s, t ∈ T , ∀α, β ∈ R, αs (Iij) + βt (Iij) is also

σ (Iij)-measurable, and

αsij (e) + βtij (e) = − (αsji (e) + βtji (e)) .

Finiteness of expectation is obvious. Hence, αs+ βt ∈ T .

Lemma. 2: The objective function in (3)

J (t) := E

[∑
k∈N

λkuk

(
ek −

∑
h∈Nk

tkh (e)

)]

is concave on T .
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Proof. ∀s, t ∈ T , ∀α ∈ [0, 1],

J (αs+ (1− α) t)

= E

[∑
i

λiui

(
ei −

∑
j∈Ni

(αsij (e) + (1− α) tij (e))

)]

=
∑
i

λiE

[
ui

(
α

(
ei −

∑
j∈Ni

sij (e)

)
+ (1− α)

(
ei −

∑
j∈Ni

tij (e)

))]

≥
∑
i

λiE

[
αui

(
ei −

∑
j∈Ni

sij (e)

)
+ (1− α)ui

(
ei −

∑
j∈Ni

tij (e)

)]

= αE

[∑
i

λiui

(
ei −

∑
j∈Ni

sij (e)

)]
+ (1− α)E

[∑
i

λiui

(
ei −

∑
j∈Ni

tij (e)

)]
= αJ (s) + (1− α) J (t) .

Lemma. 3: J is Gâteaux-differentiable.

Proof. ∀s, t ∈ T , for α > 0,

J (t+ αs)− J (t)

α

= E

∑
i

λi

ui
(
ei −

∑
j∈Ni

tij (e)− α
∑

j∈Ni
sij (e)

)
− ui

(
ei −

∑
j∈Ni

tij (e)
)

α


= E

∑
i

λi

−u′i
(
ei −

∑
j∈Ni

tij (e)− αs̃ (e)
)
· α
∑

j∈Ni
sij (e)

α


for some s̃ij(e) between 0 and

∑
j∈Ni

sij (e)

= −E

[∑
i

λi

[
u
′

i

(
ei −

∑
j∈Ni

tij (e)− αs̃

)
·
∑
j∈Ni

sij (e)

]]

→ −E

[∑
i

λi

[
u
′

i

(
ei −

∑
j∈Ni

tij (e)

)
·
∑
j∈Ni

sij (e)

]]
as α→ 0

= −
∑
i

λiE

[
u
′

i

(
ei −

∑
j∈Ni

tij (e)

)
1i×Ni

· s (e)

]
=
∑
i

λi < fi, s >

78



where

fi (e) := −u′i

(
ei −

∑
j∈Ni

tij (e)

)
1i×Ni

and 1i×Ni
is vector of 0 and 1s that equals 1 for the (directed) link ij for any j ∈ Ni so that

1i×Ni
· s (e) =

∑
j∈Ni

sij (e) . Define J ′ (t) : T → R by

J
′
(t) s =

∑
i

λi < fi, s > .

Clearly J ′ (t) is a linear operator on T , and is thus the Gâteaux-derivative of J .

Lemma. 4: For any t ∈ T that solves (4), we have

J
′
(t) = 0.

Proof. To solve (4)

max
t̃ij∈R

J (ij,Iij)
(
t̃ij
)

:= E

[
λiui

(
ei − t̃ij −

∑
h∈Ni

tih

)
+ λjuj

(
ej + t̃ij −

∑
h∈j

tjh

)∣∣∣∣∣ Iij
]

we first notice the objective function J (ij,Iij)
(
t̃ij
)
is strictly concave in t̃ij on R. Hence, the

sufficient and necessary condition for optimality is given by the FOC:

E

[
λiu

′

i

(
ei −

∑
h∈Ni

tih (e)

)∣∣∣∣∣ Iij
]

= E

λju′j
ej −∑

h∈Nj

tjh (e)

∣∣∣∣∣∣ Iij


Then, ∀s ∈ T ,

J
′
(t) s = −E

[∑
i

λi

[
u
′

i

(
ei −

∑
j∈Ni

tij (e)

)
·
∑
j∈Ni

sij (e)

]]

= −1

2

∑
Gij=1

E

λiu′i
(
ei −

∑
h∈Ni

tih (e)

)
− λju

′

j

ej −∑
h∈Nj

tjh (e)

 · sij (e)


= −1

2

∑
i

∑
j∈Ni

E

sij (Iij) · E

λiu′i
(
ei −

∑
h∈Ni

tih (e)

)
− λju

′

j

ej −∑
h∈Nj

tjh (e)

∣∣∣∣∣∣ Iij


= −1

2

∑
i

∑
j∈Ni

E [sij (Iij) · 0]
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= 0.

Hence J ′ (t) = 0.

Lemma. 5:The set of consumption plan induced by the profiles of transfer rules t in T is
convex.

Proof. Let x, x′ be two profiles of consumption plans induced by t, t′ respectively. Then ∀λ ∈
[0, 1],

λxi (e) + (1− λ)x
′

i (e) = λ

[
ei −

∑
j∈Ni

tij (e)

]
+ (1− λ)

[
ei −

∑
j∈Ni

t
′

ij (e)

]
= ei −

∑
j∈Nu

[
λtij (e) + (1− λ) t

′

ij (e)
]

Thus
(
λx+ (1− λ)x

′) can be induced by
(
λt+ (1− λ) t

′). T , as an inner product space, is
convex, so the set of consumption plans induced by the profiles of transfer rules in T must also
be convex.

C.2 Proof of Lemma 6

Lemma. 6: Given any real vector c ∈ Rn such that
∑

i∈N ci = 0, there exists a real vector
µ ∈ R

∑
i di such that µik + µki = 0 for every linked pair ik and∑

k∈Ni

µik = ci. (37)

The solution is unique if and only if the network is minimally connected.

Proof. With the restrictions that µik = −µki for all linked pair ik, (37) constitutes a system of
n linear equations with 1

2

∑
i∈N di variables µik. Summing up all the n equations, we have

0 =
∑

i<k,Gik=1

(µik + µki) =
∑
i∈N

ci = 0.

Hence, the n linear equations impose at most (n− 1) linearly independent conditions.
Viewing (37) in vector form,

Cµ = c

where C is a n × 1
2

∑
i∈N di matrix. Note that in each column of C, denoted Cij for i < j,

there are either no nonzero entries (when Gij = 0), or just two nonzero entries: 1 on the i-th
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row and −1 on the j-th row when Gij = 1. Suppose Gij = 1. Then, given any subset of
individuals S that include i and j, if the rows of C corresponding to S are linearly dependent,
these rows must sum to 0: this can be true only if all entries ik with i ∈ S and k /∈ S are zero,
implying that S form a component under G, and thus G is not connected if # (S) < n. This
is in contradiction with the supposition that G is connected when # (S) < n. Hence, C must
have exactly (n− 1) linearly independent rows.

Let C̃ and c̃ be the first (n− 1) rows of C and c. Then, as C̃ has full row rank, there always
exists a solution to C̃µ = c̃, and any of the solutions µ must also solve the equation Cµ = c.
The solution is unique if and only if the component is minimally connected, when there are
precisely (n− 1) links and thus C̃ is an invertible square matrix.

We can obtain one particular solution using the following algorithm. First, we can arbitrarily
select a subset of links that minimally connect the nodes, i.e., the graph restricted to this subset
of links is minimally connected. Then, there must exist at least one peripheral node, and we
can first easily obtain µij for all such peripheral nodes i ∈ P1 := {k ∈ N : dk = 1}. Then, we
can look for new peripheral nodes ignoring the links involving nodes in P1, and obtain µij for all
i ∈ P2 := {k ∈ N : k /∈ P1 ∧Gkj = 1 for some j ∈ P1} with all previously calculated µ’s taken
as given. We iterate this process until we exhaust all nodes. Then we are left with a profile of
µ that solves (37).

C.3 Proof of Lemma 7

Proof. For general network structures, the analysis is very similar to the above, but there
are several complications. As Iij =

(
ei, ej, eNij

)
, the transfer rule tij can be contingent on

eNij
:= (ek)k∈Nij

in addition to ei, ej. Furthermore, as the knowledge of the ex post realization
of eNij

brings in extra information about the distribution of non-local endowment realizations,
Pareto efficiency requires that tij be contingent on eNij

. Specifically,

ek|ei,ej ,eNij
∼ N

 ρ

1 + (dij + 1) ρ

ei + ej +
∑
k∈Nij

ek

 , Vdij+2

 (38)

where dij := # (Nij) and Vdij+2 denotes the variance of ek conditional on observing (dij + 2)

endowment realizations.48

We again postulate a linear transfer rule: tij = αijei − αjiej +
∑

k∈Nij
βijkek + µij, and

plug in the postulated form to obtain a system of verification equations. Again, we ignore
the verification equations for the state-independent transfers µ, and defer the discussion of

48See, for example, Eaton (2007), p116-117.
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µ to Section 6.3. After some tedious algebraic transformations, we again arrive at a rather
complicated system of linear equations in (α, β) that defines the condition for Pareto efficiency,
namely system (39) as shown below.

Lemma 11. A linear profile of transfer rules t = (α, β, µ) is Pareto efficient if ∀ij s.t. Gij = 1,

αij = 1
2

(
1−

∑
k∈Ni\{j} αik +

∑
k∈Nij

βjki + γij

)
βijk = 1

2

[
αki − αkj +

∑
h∈Nijk

(
βihk − βjhk

)
−
∑

h∈Nik\Nj
βihk +

∑
h∈Njk\N i

βjkh + γij

]
∀k ∈ Nij

γij = ρ
1+(dij+1)ρ

[∑
k∈Ni\Nj

(
αki −

∑
h∈Nik\Nj

βikh

)
−
∑

k∈Nj\N i

(
αkj −

∑
h∈Njk\N i

βjkh

)
−
∑

k∈Nij

(∑
h∈Nik\Nj

βikh −
∑

h∈Njk\N i
βjkh

)]
(39)

Instead of solving for this complicated system directly, we first present an innocuous sim-
plification of it. Due to the possible existence of cycles and superfluous transfers along cycles,
this system may in general admit multiple solutions. For example, given a complete triad ijk,
we can make a superfluous transfer of a ε share of ei from i to j, j to k and k to i by adding
ε to αij, βjki, and subtracting ε from αik. It can then be checked that this operation is indeed
superfluous, in the sense that

(
αij + ε, βjki + ε, βkji − ε, αik − ε

)
, keeping everything else fixed,

still solves the system of equations for Pareto efficiency with the induced final consumption
plan left unchanged. Since any amount of superfluous cycles are redundant, we can set βijk = 0

for all triads ijk without loss of Pareto efficiency. Hence, in the following, we establish that
there exists some vector of strictly bilateral transfer shares (α∗, β∗ ≡ 0) that solves (39) and
thus achieves Pareto efficiency. In other words, the strictly bilateral linear transfer rules that
we characterize below are the “simplest” Pareto efficient rules in terms of minimizing the sum
of state-contingent transfers.

By setting β = 0, we achieve a significant simplification of (39) and obtain the system (27),
which is repeated here for easier reference:

αij = 1
2

(
1−

∑
k∈Ni\{j} αik + γij

)
(27.1)

0 = αki − αkj + γij ∀k ∈ Nij (27.2)

γij = ρ
1+(dij+1)ρ

(∑
k∈Ni\Nj

αki −
∑

k∈Nj\N i
αkj

)
(27.3)

∀i, j s.t. Gij = 1

The first equation (27.1) states that the share of ei transferred from i to j is half of the
remaining share after i’s transfers to i’s other neighbors plus the informational adjustment
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term between ij. With γ ≡ 0, which is implied by ρ = 0, α will be simply reduced to the local
equal sharing rule. The second equation (27.2) requires that the difference in the shares of ek
undertaken by i and j is equal to the informational effect between ij, so that it is indeed optimal
for ij to set βijk = 0. This confirms again that strict bilaterality (β = 0) is not an assumption,
as (27.2) also incorporates the efficiency requirements for β = 0. The third equation (27.3)
defines the auxiliary variable γij. We interpret γij as the net informational effect because it is
the rate at which locally observed endowment realizations affect the pair ij’s joint expectation
of non-local endowments. Notice that γij is the same across k ∈ N ij because each element
of (ek)k∈N ij

provides exactly the same amount of information to the linked pair ij for their
joint inference on non-local endowments. Given α,

∣∣γij∣∣ is decreasing in dij, indicating that
the magnitude of the informational effect (for any single endowment realization) is decreasing
in the amount of local information. Below we proceed to show the existence and provide a
closed-form characterization of a solution to (27).

We first prove that (27.2) are implied by (27.1) and (27.3). By differencing (27.1) for ki
and for kj we get: αki − αkj = γki − γkj. Hence, in the presence of (27.1) equation (27.2) is
equivalent to, for all triads ijk, γij + γjk + γki = 0. This is reminiscent of the Kirchhoff Voltage
Law for electric resistor networks, which states that the sum of voltage differences across any
closed cycle must sum to zero. It turns out that the Kirchhoff Voltage Law indeed holds in our
setting for any cycle in a general network.

Lemma 12. “Kirchhoff Voltage Law”: ∀ρ ∈
(
− 1
n−1

, 1
)
, if (27.1) and (27.3) admit a unique

solution (α, γ), this solution also satisfy (27.2); furthermore, given any cycle i1i2...imi1, γ
satisfies the “Kirchhoff Voltage Law” γi1i2 + γi2i3 + ...+ γimi1 = 0.

Proof. Intuitively, Pareto optimality requires that ij share equally the net difference in the
conditional expectations of nonlocal inflow exposures (captured by γij) by creating an opposite
net difference in their local inflow exposures, as specified in equation (27.2). This adjustment
guarantees the expectational Borch rule in equation (5), and therefore Pareto efficiency. To
see this, notice that conditional expectation and variance of consumption will differ only by a
constant across different local states (Iij). Together, this implies that conditional CE’s differ
only by a constant, as required.

Given the redundancy of (27.2) in the presence of (27.1) and (27.3), we may now conclude
that any solution to the system consisting of (27.1) and (27.3) defines a linear and Pareto
efficient profile of transfer rules in T .
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C.4 Proof of Lemma 8

Proof. Write system (27) in the following form:2αij +
∑

k∈Ni\{j} αik − γij = 1, 1
ij
∀Gij = 1

γij = ρ
1+(dij+1)ρ

(∑
k∈Ni\Nj

αki −
∑

k∈Nj\N i
αkj

)
, 3

ij
∀Gij = 1.

This is a system of 2
∑

i di equations in 2
∑

i di variables (α, γ). Notice that this system can
have at most one solution by Proposition 2, as each distinct solution to the above system will
define a distinct consumption plan.

Write system (12) in the following form: ∀ij s.t. Gij = 1, and ∀i ∈ N
αji = Λj − ρ

1−ρ

(∑
k∈Ni

αki + αii
)
, 12

ji
∀Gij = 1

αii = Λi − ρ
1−ρ

(∑
k∈Ni

αki + αii
)
, 12

ii
∀i ∈ N

αii +
∑

k∈Ni
αik = 1, 13

i
∀i ∈ N

This is a system of (
∑

i di + 2n) equations in (
∑

i di + 2n) variables (α,Λ). Suppose that this
system has a unique solution. 49

We now show that there exist
∑

i di linearly independent sequences of row operations
that produce the tautology “0 = 0”. Given that the system 12 13 has a unique solution(

(αij)Gij=1 , α
)
, this will imply that the (αij)Gij=1, along with γ defined by 3 , will also solve

system 1 3 .
Notice that, by the proof of Lemma 12 in Appendix C.6, 1 and 3 imply that

(1 + ρ) γij = ρ

∑
h∈Ni

αhi −
∑
h∈Nj

αhj + αij − αji

 5
ij
.

In other words, 5
ij
can be obtained by a sequence of row operations on 1 and 3 .

Consider a fixed linked pair ij with i < j.
By (1− ρ)×

(
12

ji
− 12

ij
+ 12

ii
− 12

jj

)
, we have

(1− ρ) (αji − αij + αii − αjj) + 2ρ

∑
k∈Ni

αki + αii −
∑
k∈Nj

αkj − αjj

 = 0,

49It indeed has a unique solution given by Proposition 4.
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which is equivalent to

(1 + ρ) (αii − αjj + αij − αji) + 2ρ

∑
k∈Ni

αki −
∑
k∈Nj

αkj + αij − αji

 = 0.

Plugging 5
ij
into the second term above, we have

(1 + ρ) (αii − αjj) + (1− ρ) (αji − αij) + 2 (1 + ρ) γij = 0,

which, divided by (1 + ρ) on both sides, is equivalent to

αii − αjj + αji − αij + 2γij = 0. 14
ij

By 13
i
− 1

ij
, we have

αii − αij + γij = 0. 15
ij

By 13
j
− 1

ji
, we have αjj − αji + γji = 0. As 3

ij
+ 3

ji
implies γij + γji = 0, we have

αjj − αji − γij = 0. 16
ij

By 14
ij
− 15

ij
+ 16

ij
, we reach the tautology “0 = 0”.

Now, consider 12
ji

+ 12
ij
− 12

ii
− 12

jj
, which leads to

αji + αij − αii − αjj = 0. 17
ij

Then 17
ij

+ 15
ij

+ 16
ij
leads to the tautology “0 = 0”.

In summary of the above, for each fixed linked pair ij with i < j, we have established thatξij : 1−ρ
1+ρ

(
12

ji
− 12

ij
+ 12

ii
− 12

jj

)
− 13

i
+ 13

j
+ ζ

′

ij 1 + η
′
ij 3 = 0

′
.

ξ̃ij : 12
ji

+ 12
ij
− 12

ii
− 12

jj
+ 13

i
+ 13

j
+ ζ̃

′

ij 1 + η̃
′

ij 3 = 0
′
.

for some conformable vector ζ ij, ζ̃ ij, ηij, η̃ij. Clearly, the two tautology-generating row opera-
tions above are linear independent: any linear combination of the two operations that cancels
out 12

ji
cannot cancel out 12

ij
.

Moreover, 12
ij
, 12

ji
do not show up in any tautology-generating row operation within

85



{
ξhk, ξ̃hk : (i, j) 6= {h, k}

}
, so

{
ξij, ξ̃ij

}
must be linearly independent from

{
ξhk, ξ̃hk : (i, j) 6= {h, k}

}
.

Hence, we have constructed a set of
∑

i di linearly independent tautology-generating row
operations

{
ξij, ξ̃ij : Gij = 1, i < j

}
.

C.5 Proof of Lemma 11

Lemma. 11: A linear profile of transfer rules t = (α, β, µ) is Pareto efficient if ∀ij s.t. Gij = 1,

αij = 1
2

(
1−

∑
k∈Ni\{j} αik +

∑
k∈Nij

βjki + γij

)
βijk = 1

2

[
αki − αkj +

∑
h∈Nijk

(
βihk − βjhk

)
−
∑

h∈Nik\Nj
βihk +

∑
h∈Njk\N i

βjkh + γij

]
∀k ∈ Nij

γij = ρ
1+(dij+1)ρ

[∑
k∈Ni\Nj

(
αki −

∑
h∈Nik\Nj

βikh

)
−
∑

k∈Nj\N i

(
αkj −

∑
h∈Njk\N i

βjkh

)
−
∑

k∈Nij

(∑
h∈Nik\Nj

βikh −
∑

h∈Njk\N i
βjkh

)]
(39)

Proof. For each k ∈ Ni\ {j}, we then have∑
k∈Ni\{j}

tik = ei
∑

k∈Ni\{j}

αik −
∑

k∈Ni\{j}

αkiek +
∑

k∈Ni\{j}

∑
h∈Nik

βikheh + cij

= ei
∑

k∈Ni\{j}

αik −
∑
k∈Nij

αkiek +
∑
k∈Nij

βikjej +
∑
h∈Nijk

βikheh

+
∑

k∈Ni\Nj

∑
h∈Nijk

βikheh

−
∑

k∈Ni\Nj

αkiek +
∑
k∈Nij

∑
h∈Nik\Nj

βikheh +
∑

k∈Ni\Nj

∑
h∈Nik\Nj

βikheh + cij

so that

tij =
1

2
ei −

1

2
ej −

1

2

∑
k∈Ni\{j}

αikei +
1

2

∑
k∈Nj\{i}

αjkej −
1

2

∑
k∈Nij

(
βikjej − βjkiei

)

+
1

2

∑
k∈Nij

(αki − αkj) ek −
∑
h∈Nijk

(
βikh − βjkh

)
eh


− 1

2

∑
k∈Ni\Nj

∑
h∈Nijk

βikheh +
1

2

∑
k∈Nj\N i

∑
h∈Nijk

βjkheh

− 1

2

ρ

1 + (dij + 1) ρ

ei + ej +
∑
k∈Nij

ek

 ∑
k∈Nij

 ∑
h∈Nik\Nj

βikh −
∑

h∈Njk\N i

βjkh
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+
1

2

ρ

1 + (dij + 1) ρ

ei + ej +
∑
k∈Nij

ek

 ∑
k∈Ni\Nj

αki − ∑
h∈Nik\Nj

βikh


− 1

2

ρ

1 + (dij + 1) ρ

ei + ej +
∑
k∈Nij

ek

 ∑
k∈Nj\N i

αkj − ∑
h∈Njk\N i

βjkh


=

1

2

1−
∑

k∈Ni\{j}

αik +
∑
k∈Nij

βjki +
ρ

1 + (dij + 1) ρ

 ∑
k∈Ni\Nj

αki − ∑
h∈Nik\Nj

βikh


−

∑
k∈Nj\N i

αkj − ∑
h∈Njk\N i

βjkh

− ∑
k∈Nij

 ∑
h∈Nik\Nj

βikh −
∑

h∈Njk\N i

βjkh

 · ei
− 1

2

1−
∑

k∈Nj\{i}

αjk +
∑
k∈Nij

βikj +
ρ

1 + (dij + 1) ρ

 ∑
k∈Nj\N i

αkj − ∑
h∈Njk\N i

βjkh


−

∑
k∈Ni\Nj

αki − ∑
h∈Nik\Nj

βikh

− ∑
k∈Nij

 ∑
h∈Njk\N i

βjkh −
∑

h∈Nik\Nj

βikh

 · ej
+

1

2

∑
k∈Nij

αki − αkj +
∑
h∈Nijk

(
βihk − βjhk

)
−

∑
h∈Nik\Nj

βihk +
∑

h∈Njk\N i

βjkh

+
ρ

1 + (dij + 1) ρ

 ∑
k∈Ni\Nj

αki − ∑
h∈Nik\Nj

βikh

− ∑
k∈Nj\N i

αkj − ∑
h∈Njk\N i

βjkh


−
∑
k∈Nij

 ∑
h∈Nik\Nj

βikh −
∑

h∈Njk\N i

βjkh

 · ek + Cij

The last equality is obtained by collecting terms and switching summand indexes.

C.6 Proof of Lemma 12

Lemma. 12: “Kirchhoff Voltage Law”: ∀ρ ∈
(
− 1
n−1

, 1
)
, if (27.1) and (27.3) admit a

unique solution (α, γ), this solution also satisfy (27.2); furthermore, given any cycle i1i2...imi1,
γ satisfies the “Kirchhoff Voltage Law” γi1i2 + γi2i3 + ...+ γimi1 = 0.

Proof. We begin by proving the first part, which only involves triads. We rewrite (27) in the
following way:
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2αij +

∑
k∈Ni\{j} αik − γij = 1, ∀Gij = 1 1

αki − αkj + γij = 0 ∀k ∈ Nij, ∀Gij = 1; 2

γij = ρ
1+(dij+1)ρ

(∑
k∈Ni\Nj

αki −
∑

k∈Nj\N i
αkj

)
, ∀Gij = 1; 3

In matrix form we write [
A

M

](
α

γ

)
=

(
b

0

)
1 ∧ 3

2

where α, γ are both
∑

i di-dimensional vectors, A is a (2
∑

i di) × (2
∑

i di) square matrix,

b :=

(
1∑

i di

0∑
i di

)
is a (2

∑
i di)-dimensional vector, M is a

(∑
Gij=1 dij

)
× (2

∑
i di) rectangular

matrix, and 0 is a
(∑

Gij=1 dij

)
-dimensional vector. The upper block A

(
α

γ

)
= b corresponds

to equations in 1 and 3 , while the lower block M

(
α

γ

)
= 0 corresponds to equations in

2 .
Note that 3

ij
in the definition above is not written in its canonical form, i.e., it is not

written in such way that the LHS of the equality sign is a linear combination of unknown
variables (α, γ) while the right-hand side (RHS) is a constant scalar. In the following, we
interpret any written linear equation to be representative of the underlying canonical form
obtained by moving all linear combinations of (α, γ) on the RHS of “=” to the LHS (left-hand
side) while moving all constants on the LHS to the RHS. For example, we interpret 3

ij
to

represent a canonical form such that the coefficient before the unknown variable γij is 1 and
the coefficient before αki for some k ∈ Ni\N j to be − ρ

1+(dij+1)ρ
.50

Given that the system consisting of 1 and 3 admit a unique solution, its coefficient
matrix A and its augmented matrix Ã = [A| b] must have full rank 2

∑
i di. To prove that the

unique solution of 1 and 3 also satisfies 2 , it suffices to show that the augmented matrix
for the system of 1 , 3 and 2 [

A

M

∣∣∣∣∣ b0
]

still have rank 2
∑

i di. We show this by demonstrating the existence of
∑

Gij=1 dij nonzero and

50This convention should resolve any ambiguity about the signs of coefficients before (α, γ) in all the equations
written out thereafter.
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linearly independent vector ξ ∈ R2
∑

i di+
∑

Gij=1 dij such that

ξ′

[
A b

M 0

]
= (0, 0, ..., 0)2

∑
i di+1 .

We first fix any linked triad ijk.
Multiplying 3

ij
(the ij-th equation in 3 ) with (1 + (dij + 1) ρ), we obtain [1 + (dij + 1) ρ] γij =

ρ
(∑

h∈Ni\Nj
αhi −

∑
h∈Nj\N i

αhj

)
, which is equivalent to

[1 + (dij + 1) ρ] γij = ρ

∑
h∈Ni

αhi −
∑
h∈Nj

αhj −
∑
h∈Nij

(αhi − αhj)− αji + αij

 4
ij
.

Adding 2
ijh

for all h ∈ Nij\ {k} to 4
ij
, we get

[1 + (dij + 1) ρ] γij = ρ

∑
h∈Ni

αhi −
∑
h∈Nj

αhj + (dij − 1) γij − αki + αkj − αji + αij


which is equivalent to

(1 + 2ρ) γij = ρ

∑
h∈Ni

αhi −
∑
h∈Nj

αhj + αkj − αki + αij − αji

 5
ij
.

Summing up 5
ij
, 5

jk
, 5

ki
, we have

(1 + 2ρ)
(
γij + γjk + γki

)
= ρ [(αkj − αki + αij − αji) + (αik − αij + αjk − αkj)

+ (αji − αjk + αki − αik)]

= 0

For n = 3 and ρ > −1
2
, or for n ≥ 4, we have 1 + 2ρ > 0 and thus

γij + γjk + γki = 0. 6
ijk

Alternatively, taking 1
ki
− 1

kj
+ 2

ijk
, we obtain γij − γkj + γki = 0. By 3

jk
+ 3

kj
,

we have γjk + γkj = 0 and thus

γij + γjk + γki = 0. 7
ijk
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Then 6
ijk
− 7

ijk
leads to the tautology “0 = 0”. Let ξijk ∈ R2

∑
i di+

∑
Gij=1 dij be a vector

that characterizes all the row operations conducted above. Clearly

(
ξijk
)′ [ A b

M 0

]
= 0

′
.

Notice that we can obtain one ξijk for each ordered triad (i, j, k). Clearly each ξijk is nonzero:
in particular, the entries of ξ that correspond to equations 1

ki
and 1

kj
must be nonzero,

ξ
1

ki

6= 0, ξ
1

kj

6= 0, because 1
ki
, 1

kj
are used to obtain 7

ijk
and nowhere else.

Fixing k, for a row operation in question ξi1i2i3 , coefficients corresponding to 1
kh

for h ∈ Nk

may be nonzero only if i3 = k. Hence,
{
ξi1i2k : i1, i2 ∈ Nk, Gi1i2 = 1

}
must be linearly indepen-

dent from
{
ξi1i2i3 : i1, i2 ∈ Nk, Gi1i2 = 1, i3 6= k

}
. We now consider

{
ξi1i2k : i1, i2 ∈ Nk, Gi1i2 = 1

}
.

Notice that 1
ki
, 1

kj
show up in the form of “ 1

ki
− 1

kj
” during the process. Hence, sum-

ming up along general cycles51 is the only possible type of row operations that can cancel out all
coefficients before 1

ki
for all i ∈ Nk. However, this operation does not lead to the tautology(

0
′
, 0
)
, because the coefficients before 2

i1i2k
, ..., 2

imi1k
are all kept nonzero. (Notice that

these only show up in ξi1i2k in the step leading to 7
ijk

and nowhere else). Hence, no nontrivial
linear combination of

{
ξi1i2k : i1, i2 ∈ Nk, Gi1i2 = 1

}
is zero, so

{
ξi1i2k : i1, i2 ∈ Nk, Gi1i2 = 1

}
is

linearly independent. In summary, we conclude that
{
ξi1i2i3 : i1, i2 ∈ Nk, Gi1i2 = 1

}
are linearly

independent, so we have established the existence of
∑

Gij=1 dij nonzero and linearly indepen-

dent vector ξ ∈ R2
∑

i di+
∑

Gij=1 dij .
We now prove the second part, the statement for cycles of any size. Note that we still

have 5
ij

: (1 + ρ) γij = ρ
(∑

h∈Ni
αhi −

∑
h∈Nj

αhj + αij − αji
)
. Given any cycle i1i2...imi1,

summing up 5
i1i2
, 5

i2i3
, ..., 5

imi1
, we have

(1 + ρ)
(
γi1i2 + γi2i3 + ...+ γimi1

)
= ρ (αi1i2 + ...+ αimi1 − αi2i1 − ...− αi1im) 10

By 1
i1i2
− 1

i2i1
and γij + γji = 0, we have αi1i2 − αi2i1 =

∑
h∈Ni2

αi2h −
∑

h∈Ni1
αi1h + 2γi1i2 .

Summing over i1i2, ..., imi1,

αi1i2 + ...+ αimi1 − αi2i1 − ...− αi1im = 2
(
γi1i2 + γi2i3 + ...+ γimi1

)
11

Then 10 + ρ × 11 gives (1− ρ)
(
γi1i2 + γi2i3 + ...+ γimi1

)
= 0. For ρ < 1, we have γi1i2 +

γi2i3 + ...+ γimi1 = 0.

51By general cycles we mean cycles that may involve “self cycles” of the form “i1i2i1”.
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C.7 Uniqueness in Minimally Connected Networks

Proposition 14. Under the independent CARA-Normal setting, if the network is minimally
connected, then there is a unique profile of transfer rules in T ∗ that is Pareto efficient, and it
takes the form of the local equal sharing rule.

Proof. Consider minimally connected network G. For Pareto efficiency, we need for all linked
pair ij

Eij
[
u
′
i (xi)

]
Eij
[
u
′
j (xj)

] = cij.

As the network is minimally connected, we have Nij = ∅. Notice that

E
[
re−r(ei−tij−

∑
k∈Ni\{j}

tik(ei,ek))
∣∣∣ ei, ej] = cijE

[
re
−r
(
ej+tij−

∑
h∈Nj\{i}

tjh(ej ,eh)
)∣∣∣∣ ei, ej] .

52By independence,

E
[
re−r(ei−tij−

∑
k∈Ni\{j}

tik(ei,ek))
∣∣∣ ei] = cijE

[
re
−r
(
ej+tij−

∑
h∈Nj\{i}

tjh(ej ,eh)
)∣∣∣∣ ej]

⇔e−r(ei−tij) ·
∏

k∈Ni\{j}

E
[
ertik(ei,ek)

∣∣ ei] = cije
−r(ej+tij) ·

∏
h∈Nj\{i}

E
[
ertjh(ej ,eh)

∣∣ ej]
⇔ei − tij −

1

r

∑
k∈Ni\{j}

lnE
[
ertik(ei,ek)

∣∣ ei] = ej + tij −
1

r

∑
h∈Nj\{i}

lnE
[
ertjh(ej ,eh)

∣∣ ej]− 1

r
ln cij

⇔tij =
1

2
ei −

1

2
ej −

1

2r

∑
k∈Ni\{j}

lnE
[
ertik(ei,ek)

∣∣ ei]+
1

2r

∑
h∈Nj\{i}

lnE
[
ertjh(ej ,eh)

∣∣ ej]+
1

2r
ln cij

(40)

=
1

2
ei −

1

2
ej −

1

2r

∑
k∈Ni\{j}

lnTik +
1

2r

∑
h∈Nj\{i}

lnTjh +
1

2r
ln cij

where
Tik := E

[
ertik(ei,ek)

∣∣ ei] .
Then, taking conditional expectations of (40), we have

Tij = er(
1
2
ei+

1
2
rσ2− 1

2r

∑
k∈Ni\{j}

lnTik+ 1
2r

lnαij) · E
[
e
r 1
2r

∑
h∈Nj\{i}

lnTjh
∣∣∣ ei]

= er(
1
2
ei+

1
2
rσ2− 1

2r

∑
k∈Ni\{j}

lnTik+ 1
2r

lnαij) ·
∏

h∈Nj\{i}

E
[
T

1
2
jh

]
52We hope the unfortunate notational coincidence of the endowment vector e and the natural exponential

power e· will not result in any confusion.
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and
1

r
lnTij =

1

2
ei +

1

2
rσ2 − 1

2

∑
k∈Ni\{j}

1

r
lnTik +

1

2r
lnαij +

∑
h∈Nj\{i}

lnE
[
T

1
2
jh

]
.

Writing T̃ij := 1
r

lnTij, we have

T̃ij =
1

2
ei −

1

2

∑
k∈Ni\{j}

T̃ik + cij

⇒ ∑
j∈Ni

T̃ij =
di
2
ei −

1

2
· (di − 1)

∑
j∈Ni

T̃ik +
∑
j∈Ni

cij

⇒ ∑
j∈Ni

T̃ij =
di

di + 1
ei +

2

di + 1

∑
j∈Ni

cij

⇒

T̃ij =
1

2
ei −

1

2

∑
k∈Ni\{j}

T̃ik + cij =
1

2
ei −

1

2

∑
k∈Ni

T̃ik +
1

2
T̃ij + cij

⇒
1

2
T̃ij =

1

2

(
ei −

di
di + 1

ei −
2

di + 1

∑
k∈Ni

cik

)
+ cij

⇒
T̃ij =

1

di + 1
ei −

1

di + 1

∑
k∈Ni

cik + cij

Hence, by (40), we have

tij =
1

2
ei −

1

2
ej −

1

2

∑
k∈Ni\{j}

(
1

di + 1
ei −

1

di + 1

∑
k′∈Ni

cik′ + cik

)

+
1

2

∑
h∈Nj\{i}

 1

dj + 1
ej −

1

dj + 1

∑
h′∈Nj

cjh′ + cjh′

+
1

2r
lnαij

=
1

2

(
1− di − 1

di + 1

)
ei −

1

2

(
1− di − 1

di + 1

)
ej + Cij

=
1

di + 1
ei −

1

di + 1
ej + Cij.
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C.8 Linear Pareto Efficient Transfer Shares for Boundary Correlation

Parameters

Proposition 15.

• for ρ = − 1
n−1

and any G such that maxi∈N di < n−1, a Pareto efficient profile of transfer
rules is given by Proposition 4

• For ρ = − 1
n−1

and any network structure G such that maxi∈N di = n − 1, let i∗ be any
individual with di∗ = n− 1. Then a Pareto efficient profile of transfer rules is given by

αji∗ = 1, αi∗j = αjk = 0, ∀j, k ∈ N\ {i∗} .

• For ρ = 1 and any network structure G, any profile of transfer rules that satisfies the
Kirchhoff Circuit Law as defined below is Pareto efficient:∑

j∈N i

αij =
∑
j∈N i

αji ∀i ∈ N.

Proof. For ρ = − 1
n−1

and G s.t. maxi∈N di = n − 1, the profile of transfer rules given above
attains zero variance in consumption for each individual, and is thus Pareto efficient. For ρ = 1,
any profile of transfer rules that satisfies the Kirchhoff Circuit Law achieves the same profile of
consumption plan as the null transfer (autarky), which is clearly Pareto efficient.

C.9 Welfare Comparative Statics w.r.t. ρ

Let TV arρ(α) denote the total variance under correlation ρ and any generic transfer shares α,
and let α∗(ρ) denote the Pareto efficient transfer shares under correlation ρ ∈ (− 1

n−1
, 1).

We first show that TV arρ(α∗(ρ)) is increasing in ρ on a neighborhood around ρ = 0.
Specifically, by the Envelope Theorem,

d

dρ
[TV arρ(α

∗(ρ))] =
d

dρ
TV arρ(α)

∣∣∣∣
α∗(ρ)

=
d

dρ

∑
i

∑
j∈Ni

αiiαjiCovρ(ei, ej)

∣∣∣∣∣
α∗(ρ)

=
∑
i

∑
j∈Ni

α∗ii(ρ)α∗ji(ρ) > 0

if α∗ii(ρ) > 0 and α∗ji(ρ) > 0 for all i. When ρ = 0, α∗(ρ) is given by the local equal sharing
rule, which implies that αii = αij = 1

di+1
> 0 for all i. Hence, d

dρ
[TV arρ(α

∗(ρ))] > 0 at ρ = 0,
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so TV arρ(α∗(ρ)) must be increasing in ρ on a neighborhood around 0.
Next, we show in the star network that the total variance is an increasing and concave

function of ρ.53 Based on the transfer shares obtained in Section 4.1, we can derive:

TV arρ(α
∗(ρ)) =

2(1− ρ)2 + n3ρ− n(1− 5ρ)(1− ρ) + n2(1− 2ρ+ 3ρ2)

n(2 + nρ)

and

d

dρ
TV arρ(α

∗(ρ)) =
(n− 1)(8(1− ρ)− 2n(1− 6ρ+ ρ2) + n2(1 + 3ρ2))

n(2 + nρ)2
> 0

and furthermore

d2

dρ2
TV arρ(α

∗(ρ)) = −2(n− 2)2(n− 1)(n+ 2)

n(2 + nρ)3
< 0.

Hence, TV arρ(α∗(ρ)) must be increasing and concave in ρ for any values of n and ρ ∈ [−1/(n−
1), 1].

In Figure 4, we plot out the total variance against the correlation parameter ρ for n = 10.
Plots for other values of n are very similar.

C.10 Proof of Proposition 10

Proof. Condition (a) implies that the contractibility constraints encoded in Q are equivalent to
the “local information constraints”, characterized by the common neighborhoods as in Section
(3), under the informational network G′ . Hence, no feasible consumption plan subject to the
contractibility constraints Q can strictly Pareto dominate x∗

(
G
′).

It remains to show that x∗
(
G
′) is feasible under contractibility constraints Q on network

G. Specifically, consider each link ij ∈ G′\G. As ij is not directly linked in G, the net transfer
t∗ij
(
G
′)

= α∗ij
(
G
′)
ei − α∗ji

(
G
′)
ej + µ∗ij cannot be directly transferred between individual i

and individual j. However, by Condition (b), there exists a path of individuals in G, in the
form of i = k0 − k1 − ... − km = j , such that {i, j} ⊆ Nkh

(
G
′) for all h = 0, ...,m. Hence,

{i, j} ⊆ Nkhkh+1

(
G
′) for all h = 0, ...,m− 1. Now, define

t̂khkh+1

(
G
′
)

:= α∗ij

(
G
′
)
ei − α∗ji

(
G
′
)
ej + µ∗ij for all h = 0, ...,m− 1,

53Notice that, for star network, the center individual’s exposure share of own endowment shock can be negative
for certain values of n and ρ.
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Figure 4: Total Variance vs Correlation Parameter

and

tkhkh+1
:= t∗khkh+1

(
G
′
)

+ t̂khkh+1

(
G
′
)

tij := 0

Clearly, the transfer profile t still satisfy the contractibility constraintsQ, as {i, j} ⊆ Nkhkh+1

(
G
′)

=

Qij (G) by Condition (a). Now, it is easy to see that the new transfer profile t induces the same
consumption plan x∗

(
G
′). However, there is no more direct transfer between individuals i and

j, who are not physically linked in G. In the meantime, as Gkhkh+1
= 1 for all h = 0, ...,m− 1,

we have not added any transfer between pairs of individuals who are not originally linked in G.
By induction on all such pairs of individuals G′\G, which must terminate in finite steps, we

conclude that there exists a transfer profile t∗∗ that: (i) satisfies the contractibility constraints
Q; (ii) induces the same consumption plan x∗

(
G
′); and (iii) respects the physical transfer

network G, i.e., t∗∗ij 6= 0 only if Gij = 1.
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C.11 Proof of Proposition 11

Proof. For each ordered pair ij such that
←−
G ij = 1, define the following adjusted local equal

sharing rule,

t∗ij

(←−
G
)

:=
1

dj

(←−
G
)

+ 1
ej,

as the transfer of j’s endowment shock to individual i. Then t∗
(←−
G
)
would lead to the con-

sumption plan x∗i
(←−
G
)
as defined in (22):

xi = ei +
∑

j:
←−
G ij=1

t∗ij

(←−
G
)
−

∑
j:
←−
G ji=1

t∗ji

(←−
G
)

= x∗i

(←−
G
)
.

For each ij ∈ G\
←−
G , there exists a path of individuals i = k0k1...km = j in G, such that

j ∈ Qkhkh+1
for all h = 0, ...,m− 1. Define

tkhkh+1
:= t∗khkh+1

(←−
G
)

+
1

dj

(←−
G
)

+ 1
ej for h = 0, ...,m− 1,

tkhkh+1
:= 0.

It is straightforward to see that t induces the same consumption plan x∗
(←−
G
)
, satisfies the

contractibility constraints Q and no longer involves direct transfer between ij. By induction on
the set G\

←−
G , we conclude that there exists a physically feasible linear transfer profile t∗∗ (G)

that satisfies the contractibility constraints Q and induces the consumption plan x∗
(←−
G
)
.

We now show that x∗i
(←−
G
)
achieves constrained Pareto efficiency subject to the contractibil-

ity constraints Q. Fix any ij ∈ G. By the definition of
←−
G , it is easy to prove that k ∈

Ni

(←−
G
)
∩Qij implies that k ∈ Nj

(←−
G
)
, and thus

Ni

(←−
G
)
∩Qij = Nij

(←−
G
)
∩Qij = Nj

(←−
G
)
∩Qij.

Hence, the difference in the local certainty equivalents for individuals i and j, conditional on
subvector of endowment realizations that tij can be contingent on, namely eQij

=
(
ei, ej, eQij

)
,

is given by

CE
(
x∗i

(←−
G
)∣∣∣ eQij

)
− CE

(
x∗j

(←−
G
)∣∣∣ eQij

)
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=
1

di

(←−
G
)

+ 1
ei +

1

dj

(←−
G
)

+ 1
ej +

∑
k∈Ni(

←−
G)∩Qij

1

dk

(←−
G
)

+ 1
ek

+
∑

k∈Ni(
←−
G)\Qij

1

dk

(←−
G
)

+ 1
E
[
ek| eQij

]
+ Ci

− 1

di

(←−
G
)

+ 1
ei −

1

dj

(←−
G
)

+ 1
ej −

∑
k∈Nj(

←−
G)∩Qij

1

dk

(←−
G
)

+ 1
ek

−
∑

k∈Nj(
←−
G)\Qij

1

dk

(←−
G
)

+ 1
E
[
ek| eQij

]
− Cj

=Ci − Cj, (41)

as E
[
ek| eQij

]
= 0 for any k /∈ Qij due to the independence of endowments, which is essential

for this result. As equation (41), an adapted version of (6), represents the FOC’s for constrained
Pareto efficiency subject to the contractibility constraints Q, we conclude that x∗i

(←−
G
)
, as well

as t∗∗ (G), are constrained Pareto optimal.

C.12 Proof of Proposition 12

Proof.

(a) Global Communication
Under the global communication protocol, the first-best consumption plan induced by global

equal sharing can be achieved.
Specifically, let each individual i submits ex post a public report mi of her own endowment

realization ei. As the whole vector of reports m is globally observable, for any linked pair ij,
they make make their transfer contract tij effectively contingent on Iij = (ek)k∈N ij

and m.
Consider the following specification of tij:

tij (Iij,m) = t̃ij

(
Iij,mN\N ij

)
+ |ei −mi| − |ej −mj| ,

where mN\N ij
denotes the reports from individuals outside N ij. Clearly, tij respects the mea-

surability constraints.
Let ms

i : R#(N i) → R denote individual i’s reporting strategy. Given the risk sharing
arrangement t specified above, it is easy to see that, after endowment realizations, it is a Nash
equilibrium for each individual to report his own ei truthfully, i.e., setting ms (e) ≡ e. This is
because, given the endowment realizations e and the induced local state Iij for each j ∈ Ni,
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strategically individual i should choose mi to maximize his final consumption under t:

xti (e,m) = ei −
∑
j∈Ni

tij (e,m)

=

[
ei −

∑
j∈Ni

t̃ij

(
Iij,mN\N ij

)
+
∑
j∈Ni

|ej −mj|

]
− di |ei −mi| ,

which depends on mi only via the last term, −di |ei −mi|. It is then a dominant strategy for
individual i to set mi = ei.

Anticipating this global truthful revelation of endowment realizations, it is obvious that t̃
should be configured to implement the global equal sharing rule54, with the understanding that
mN\N ij

= eN\N ij
in equilibrium ex post.

In summary, global communication as specified above completely solves all information
problems, and effectively (in the sense of ex post dominant strategy implementability) produces
an informational network G′ that is given by the complete network. Then, the local Borch rule,
applied to the complete network G′ (or the corresponding contractibility structure Q as defined
in A.1), immediately implies that the first best global equal sharing can be achieved.

(b) Local Announcements
With local announcement, the effective (ex post dominant strategy implementable) infor-

mational network G′ is effectively given by connecting all 2nd-order neighbors in the physical
network G.

Let x′∗ denote the constrained Pareto efficient consumption plan computed according to
Proposition 4 with the informational network G′ . As G is connected, there exists a profile of
bilateral transfer rules t̃ defined on physical transfer links in G that satisfies the following two
conditions:

t̃ induces the consumption plan x′∗; and
for every i ∈ N , individual i’s exposure to ek for any individual k of distance 2 to individual

i in G is implemented by t̃ completely through a shortest path between i and k in G.
Notice that the existence of such a transfer arrangement t̃ is guaranteed by the complete

arbitrariness in the configuration of superfluous cyclical transfers.
The key implication of condition ii) is that, for any linked pair ij in G, whenever there exists

some individual k of distance 2 to both i and j, then the net share βijk of ek transferred from
i to j must be exactly 0. This is because, either i’s or j’s exposure of ek should be completely
channeled via their shortest paths (of length 2) to individual k, which necessarily does not

54This is clearly feasible under connectedness of G.
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include link ij; moreover, any other individual’s shortest path to k does not include link ij,
either. Similarly, another implication of condition ii) is that, for any lined pair ij in G and any
k ∈ N ij, between ij there is zero share of ek being transferred, i.e., βijk = 0.

With the two implications of condition ii) in mind, we deduce that, as t̃ij can be contingent
on endowment realizations of individuals in

N
′

ij = N ij ∪
(
Ni\N j

)
∪
(
Nj\N i

)
∪ {k : k is of distance 2 to both i and j} ,

i.e., the common neighborhood of ij under the supergraph G′ that treats distance-2 individuals
in G as linked (in G′), the transfer arrangement t̃ admits the following linear representation:

t̃ij (e) = α̃ijei − α̃jiej +
∑

k∈Ni\Nj

β̃ijkek −
∑

k∈Nj\N i

β̃ijkek.

We now proceed to construct a risk sharing arrangement t using ex post messages based on
t̃.

This can be achieved by letting each individual i submit a report mi of all endowment
realizations i observes, i.e., (ek)k∈N i

. As mi is observed by i’s neighbors, the bilateral transfer
contract tij between i and i’s neighbor j can be contingent on Iij as well as (mi,mj).

Consider the following specification of tij:

tij (Iij,mi,mj) = t̃ij

(
Iij, (mik)k∈Ni\Nj

, (mjk)k∈Nj\N i

)
+ C (|ej −mij| − |ei −mji|)

= α̃ijei − α̃jiej +
∑

k∈Ni\Nj

β̃ijkmik −
∑

k∈Nj\N i

β̃jikmjk

+ C (|ej −mij| − |ei −mji|)

where mik denotes individual i’s report of ek and C is constant given by

C := max
ij∈G

∑
k∈Ni\Nj

∣∣∣β̃ikj∣∣∣ . (42)

Again, i’s final consumption under t is given by

xti (e,m) =

(
1−

∑
j∈Ni

α̃ij

)
ei +

∑
j∈Ni

(α̃jiej − C |ej −mij|+ C |ei −mji|)

−
∑
j∈Ni

 ∑
k∈Ni\Nj

β̃ijkmik −
∑

k∈Nj\N i

β̃jikmji
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=

(1−
∑
j∈Ni

α̃ij

)
ei +

∑
j∈Ni

α̃jiej + C |ei −mji|+
∑

k∈Nj\N i

β̃jikmji


−
∑
j∈Ni

C |ej −mij|+
∑

k∈Ni\Nj

β̃ikjmij

 ,

which by (42) strictly increases inmij whenevermij < ej, and strictly decreases inmij whenever
mij > ej. Hence, ex post individual i’s dominant strategy is to set mij = ej.

Lastly, notice that no information about third-order neighbors can be possibly transmitted
under the protocol of local announcements.

In summary, all individuals will truthfully report (ek)k∈N i
in an ex post dominant strategy

equilibrium, together achieving the constrained Pareto efficient consumption plan with respect
to the augmented informational network G′ , a supergraph of the physical transfer network G
that links all distance-2 neighbors in G.

(c) Local Comments
With local comments, the effective (ex post dominant strategy implementable) informational

network G′ is effectively given by connecting all neighbors within a distance of 3 in the physical
network G.

Now, each individual i may submit to each neighbor j ∈ Ni a report mij of the endowment
realizations i observe, i.e., Ii ≡ (ek)k∈N i

. Specifically, mij ∈ R|N i| and we write mijk to denote
i’s report of ek to individual j.

Now that for any linked pair ij, they can commonly observe endowment realizations Iij, all
comments received by i and all comments received by j (say, displayed on i’s and j’s Facebook
pages). This facilitates transmission of distance-3 information: for any path i− j− k− h in G,
individual i can now observe on j’s comment book a comment left by k about h’s endowment
realization eh. We now simply need to properly construct the bilateral contracts to incentivize
truthful reporting ex post.

A formal procedure can be constructed in a similar way to the procedure for (b) “local
announcements” above. For avoid repetition, we now just provide a description of the key idea.

If i lies about own endowment realization ei to j ∈ Ni, this is immediately detectable by
j. Then by properly specifying a punishment transfer from i to j based on |ei −miji|, we can
incentivize i to truthfully reports his own endowment realizations to his neighbors. This implies
that, each individual i can now observe a truthful report of his 2nd-order neighbors, based on
their truthful comments sent to i’s first-order neighbors.

100



Now consider a linked pair ij. If i lies to j about ek for some k ∈ Ni\N j, this is detectable
by j because j also observes k’s report to i, namelymki, which includes a truthful reportmkik of
ek. Contract tij may then specify a sufficient punishment transfer from i to j, which ensures the
truthfulness of mijk about ek in a Nash equilibrium. Hence, each individual i can now observe
a truthful report of his 3rd-order neighbor’s endowment ek, which is included in a report from
one of i’s 2nd-order neighbor to one of i’s (1st-order) neighbor.

Now, suppose that both i and j “effectively know” ek for some k /∈ N ij. If k ∈ Ni ∪ Nj,
then k submits a truthful report to either i or j, which is commonly observable by i and j, so
tij can be optimally contingent on mkik or mkjk. If k /∈ Ni ∪Nj, there are two possibilities.

First, if k is a 2nd-order neighbor of i (or j with similar arguments), then there must exist
some h ∈ Ni that submits a report mhi to i, which is commonly observed by ij and includes a
truthful report of ek, so tij can be optimally contingent on mhik.

Second, if k is a 3rd-order neighbor of both i and j, there are three sub-cases. In sub-case 1,
ij are both linked to h, of whom k is a 2nd-order neighbor. Then ij commonly observe a report
received by h, which includes a truthful report of ek. In sub-case 2, there exists a path k → i

and a path k → j that both pass through some h ∈ Nk, but the condition for sub-case 1 does
not hold. Then there is no report of ek that is commonly observed by ij, but h is a diagonal
node for link ij in a pentagon subgraph. This does not affect risk-sharing efficiency due to the
redundancy of link ij: efficient exposure to ek can be channeled completely through the two
paths from h to i and j respectively, and it has been shown in the above arguments that ek or
a truthful report of ek is commonly observable by the two contracting parties in each link along
the two paths. In sub-case 3, any two paths k → i and k → j must be disjoint (except at k),
in which case k is the diagonal node to link ij in a heptagon subgraph. Again this does not
affect risk-sharing efficiency due to the redundancy of link ij: efficient exposures to ek can still
be channeled completely through the two paths. In particular consider the path k − i2 − i1 − i
, and notice that a truthful report of ek from i2 to i1 is commonly observable by both i1 and i,
thus being contractible.

This completes the proof that “local comment” leads to an implementable informational
network with effective local observability of 2nd-order and 3rd-order neighbors in the physical
network G. Lastly, notice that no information about 4th-order neighbors is possible with local
comment, so no other contracts can do better.

(d) Private Communication
With private communication, the informational network remains unchanged. This is because

when messages are completely private there is no information spillover to any other party. In
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the meanwhile, the ex post messaging game is a zero-sum game (as the messages are mapped
into net transfers). Hence, given each local state Iij, both i and j are guaranteed the value of
the ex post game in any Nash equilibrium, so the equilibrium payoffs do not depend on nonlocal
endowment realizations. Thus the implementable informational network remains unchanged.

C.13 Detailed Specification and Proof for Proposition 13

In our setting, for a given network G, individual i’s Myerson value is defined by

MVi (G) :=
∑
S⊆N

(# (S)− 1) (n−# (S))

n!
· 1

2
rσ2

[
TV ar

(
G|(S\{i})

)
+ σ2 − TV ar (G|S)

]
where # (S) denotes the number of individuals in a subset S of N , and G|S denotes the
subgraph of G restricted to the subset S of individuals. Given the CARA-normal specification,
TV ar

(
G|(S\{i})

)
+ σ2 − TV ar (G|S) is the surplus from risk reduction through i’s links in S.

Notice that, given any S ⊆ N,

TV ar
(
G|S\{i}

)
− TV ar (G|S) = 1− 1

di (G|S) + 1
+

∑
k∈Ni(G|S)

1

dk (G|S) [dk (G|S) + 1]
,

which is strictly increasing in di (G|S) but strictly decreasing in dk (G|S) for each j ∈ Nk (G|S).
Moreover, for any k ∈ N , dk (G|S) is weakly increasing in S, i.e., S ⊆ S ′ ⇒ dk (G|S) ≤
dk (G|S′) .

Consider any pairwise stable network G under the Myerson-value transfers. Then, if i, j are
linked, it must be that

MVi (G)−MVi (G− ij) ≥ c.

Fixing ij, for each S ⊆ N , we have

TV ar
(
G− ij|S\{i}

)
− TV ar (G− ij|S)

=

TV ar
(
G|S\{i}

)
− TV ar (G|S) , if j /∈ S

1− 1

di(G|S)
+
∑

k∈Ni(G|S)\{j}
1

dk(G|S)[dk(G|S)+1]
, if j ∈ S

so [
TV ar

(
G|S\{i}

)
− TV ar (G|S)

]
−
[
TV ar

(
G− ij|S\{i}

)
− TV ar (G− ij|S)

]
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=1 {j ∈ S} ·
[

1

di (G|S) [di (G|S) + 1]
+

1

dj (G|S) [dj (G|S) + 1]

]
≥1 {j ∈ S} ·

[
1

di (G) [di (G) + 1]
+

1

dj (G) [dj (G) + 1]

]
Averaging over all possible S ⊆ N , we get

MVi (G)−MVi (G− ij) ≥
1

2
·
[

1

di (G) [di (G) + 1]
+

1

dj (G) [dj (G) + 1]

]
as ∑

S⊆N

(# (S)− 1) (n−# (S))

n!
1 {j ∈ S} = Pr {i arrives later than j} =

1

2
.

From the perspective of social efficiency, the link ij in G is (strictly) socially efficient if

1

di (G) [di (G) + 1]
+

1

dj (G) [dj (G) + 1]
> 2c.

Thus we can conclude that, given any pairwise stable network G under the Myerson-value
transfers, whenever a link ij is (strictly) socially efficient, it will be present in G, because the
increments in both i’s and j’s private benefits strictly exceed the cost of linking c:

MVi (G)−MVi (G− ij) >
1

2
· 2c = c

MVj (G)−MVj (G− ij) > 1

2
· 2c = c.
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