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1 Introduction

A distinguishing feature of online auctions, relative to spot auctions, is that they
typically last a relatively long time.1 However, this aspect is often suppressed
in the related economics literature. In particular, if bidders have private valua-
tions, online auction mechanisms such as eBay’s, in which bidders can leave a
proxy bid and the highest bidder wins the object at a price equal to the sec-
ond highest bid (plus a minimum bid increment), are commonly regarded as
strategically equivalent to second-price sealed-bid auctions. Since bidding one’s
true valuation in the latter context is a weakly dominant strategy, and placing
a bid takes some effort, the above arguments suggest that a rational bidder at
an eBay-like auction should only place one bid, equal to her true valuation, at
her earliest convenience.

In contrast with the above predictions, observed bidding behavior on eBay
involves substantial gradual bidding and last-minute bidding (commonly re-
ferred to as “sniping”). Ockenfels and Roth (2006) report that the average
number of bids per bidder is 1.89 and 38% of bidders submit more than one
bid. In a field experiment by Hossain and Morgan (2006), 76% of the auctions
had at least one bidder placing multiple bids.2 Regarding sniping, Roth and
Ockenfels (2002) report that 18% of auctions in their data received bids in the
last minute, while Bajari and Hortacsu (2003) find that the median winning bid
arrives after 98.3% of the auction time elapsed, while 25% of the winning bids
arrive after 99.8% of the auction time elapsed.

While Roth and Ockenfels (2002) propose a model in which last-minute
bidding can be an equilibrium,3 the existing literature (including Roth and
Ockenfels (2002)) typically considers gradual bidding to be a naive (irrational)
behavior. Relatedly, Ku et al. (2005) explain bidding behavior in online auctions
with a model of emotional decision-making and competitive arousal, Ely and
Hossain (2009) describe incremental bidders as confused, mistaking eBay’s proxy
system for an ascending auction, while Hossain (2008) posits behavioral buyers
who learn about their own valuations through the process of placing bids.4

1On eBay, sellers can specify durations from 1 to 30 days.
2See also Zeithammer and Adams (2010), who find evidence of incremental bidding in

online auction field data. For example they find that the frequency of the winning bid being
exactly the minimum increment higher than the runner up bid to be too high than what would
be implied by truthful bidding (they observe the winning bidder’s proxy bid, hence they can
perform this test). Moreover, such an event is much more likely if the winning bidder places
a bid after the runner up bidder than vice versa.

3However, Hasker et al. (2009), using ebay data, reject the hypothesis that bidders follow
a war of sniping profile as in Roth and Ockenfels (2002). See also Ariely et al. (2005) for a
related laboratory experiment.

4See also Compte and Jehiel (2004) and Rasmusen (2006) for bidders learning their true
valuations during the auction. Other explanations include the presence of multiple overlapping
auctions for identical or close substitute objects as in Peters and Severinov (2006), Hendricks
et al. (2009), and Fu (2009). However, gradual and last-minute bidding seems to be prevalent
for rare or unique objects, too, not only for objects with many close substitutes being auctioned
at any time (for example, they occur in the experiments of Ariely et al. (2005) despite there
is no concurrent competing auction). Furthermore, as Hossain (2008) points out, this type
of argument also has trouble explaining many bids by the same bidder in a short interval of
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In this paper we show that, in a private value context, if bidders are not
present during the entire auction (a clearly unrealistic scenario for online auc-
tions) and instead have periodic random opportunities to check the auction’s
status and place bids,5 then there can be many different equilibria of the result-
ing game with perfectly rational bidders, despite the possibility of proxy bids.
The best equilibrium for the seller in this game still implies truthful bidding,
upon the first bidding opportunity. If the time horizon of the auction is long,
the seller’s revenue in this equilibrium is approximately what he could get in a
second-price sealed bid auction. However, there are typically many other equi-
libria, in weakly undominated strategies, which imply incremental bidding, long
periods of intentionally not placing bids, and potential sniping. The seller’s
expected revenue from these equilibria can be a very small fraction of the ex-
pected revenue from the best equilibrium, even when the auction’s time horizon
is arbitrarily large and bidding opportunities are frequent.

To understand the intuition for the existence of such equilibria, consider
two bidders, each with valuation v > 2 where bidding opportunities (including
potential proxy bids) follow some random arrival process. Suppose that the
initial price is 0. Clearly, there is an equilibrium in which whenever the current
price is below v and a bidder who has the opportunity places a bid of v. However,
if the time horizon is hort, there is another equilibrium in which a bidder, when
she gets the chance, increases the price only by the minimum increment. The key
insight here is that gradual bidding is a self-enforcing form of implicit collusion:
if other bidders follow such a strategy then it is strictly in the interest of a bidder
to do likewise. Increasing the price by more than the minimum increment does
not increase the likelihood of eventually winning the object, only speeds up the
increase of the leading price, reducing the winning bidder’s surplus.

If the time horizon of the auction is long (relative to the arrival rates) then,
besides gradual bidding, it also becomes optimal for bidders to pass on bidding
opportunities, for prolonged periods of time. In particular, we show that for
certain prices bidders pass on bidding opportunities before a cutoff point in
time, and only start incrementing bids after the cutoff. For this reason, the
seller’s expected revenue can be a small fraction of v, no matter how long the
auction, or how frequently bidding opportunities arise. This also means that in
dynamic auction environments where bidders cannot be present for the whole
duration of the auction, the classic result of Bulow and Klemperer (1996), that
for a given set of buyers a seller can guarantee a large share of possibly attainable
payoff by simply running an ascending price auction, no longer holds.

Another noteworthy feature of a gradual-bidding equilibrium is that it can
prescribe placing the minimum bid upon the first arrival, and then a long period
of inactivity, followed by all bidders trying to incrementally outbid each other

time, which is quite common in ebay. Bajari and Hortacsu (2003) raise the possibility that
all ebay auctions have some common value component.

5It is important for our results that whenever a bidder gets the chance to check the status
of the auction, she can place multiple bids. In particular, if she places a bid incrementing the
current price but gets notified that this bid was not enough to take over the lead, she can
place a subsequent higher bid.
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towards the end of the auction. This feature is consistent with the finding that
the time-profile of bids is bimodal, with a small peak near the beginning and
a large peak near the end (Roth and Ockenfels (2002), Bajari and Hortacsu
(2003)).

For any number of bidders and arbitrary time horizon, we characterize a class
of equilibria in which overbidding at any price is maximally delayed by the threat
of play switching to a truthful equilibrium if anyone places an earlier bid. This
equilibrium is non-Markovian if the time horizon is long, and has the feature
that along the equilibrium path players wait until the end of the auction (with
bids placed earlier triggering switching to a truthful bidding equilibrium) and
then bid gradually. This bidding behavior is similar to sniping, as in Roth and
Ockenfels (2002), with the difference that the snipers only overbid incrementally
instead of truthfully. In fact, it can be shown that in our framework Roth and
Ockenfels type strategy profiles, in which bidders wait until the end of the
auction and then bid truthfully, cannot be an equilibrium. Such profiles in
a continuous-time framework (with no special “last period,” as in Roth and
Ockenfels) unravel, with each bidder wanting to start sniping at least a little
earlier than the others.

Among these maximally delayed equilibria, we focus on the one in which,
along the equilibrium path, the winning price increases completely gradually (at
each step only by the minimum bid increment), as this is the equilibrium with
the lowest expected revenue for the seller. We show that the seller’s expected
revenue in this worst case scenario, somewhat paradoxically, decreases in the
value of the object. The basic intuition is that the threat of reversion to a
truthful equilibrium can induce players to wait longer before starting to place
bids when the value of the object is high, which counteracts the effect that
conditional on bidders being active, the expected winning price is higher when
the value of the object or the number of bidders increases. We show that
the first effect in fact dominates the second one. This implies that for very
highly valued objects, in the seller’s worst equilibrium expected revenue becomes
a vanishing fraction of the object’s value. In contrast, for a fixed value of
the object, taking the number of bidders to infinity implies that even in the
seller’s worst equilibrium, expected revenue converges to the value of the object.
Numerical computations however show that the convergence can be slow and
even for 20 bidders, the seller’s expected revenue can be a small fraction of
the object’s value. For this reason, if there are search frictions that make it
impossible for all potentially interested buyers to actively participate in online
auctions, even if the increased buyer surplus attracts some new bidders to such
auctions, the expected revenue of a seller in an eBay-like auction might only be
a small fraction of the object’s true value.

For short time horizons with any number of bidders, and for arbitrary time
horizons with many bidders, we also characterize a class of Markovian equilibria
with gradual bidding, including one with completely gradual bidding.6 In the

6For arguments in favor of focusing on Markov perfect equilibria in asynchronous-move
games similar to the one we consider, see Bhaskar and Vega-Redondo (2002) and Bhaskar et
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case of many bidders, these equilibria also have the feature that bidders wait
until near the end of the auction and then start bidding gradually. We also
show that for any number of bidders and time horizon, there exist Markovian
equilibria with some gradual bidding.to any time-dependent arrival process for
which arrival rates remain bounded, including

For analytical convenience, for most of the analysis we assume that arrival
rates follow a time-independent Poisson arrival process. However, we show that
the qualitative conclusions of the paper, such as the existence of gradual bidding
equilibria, extend to any time-dependent arrival process for which arrival rates
stay bounded,7 including ones for which arrival rates steeply increase towards
the end of the auction. Relative to the case of constant arrival rates, in such
scenarios players wait longer before they start bidding, and (gradual) bidding
might only take place for a short interval before the auction ends. For this
reason, even when arrival rates are very high before the end of the auction, as
long as they are bounded from above, the expected number of bids and the
winning price can remain very low.

We also demonstrate, in a context with two possible valuations, that the
existence of gradual bidding equilibria extends beyond the complete information
symmetric bidders case, to specifications in which different bidders can have
different valuations, or are uncertain about other bidders’ valuations.

Our work is part of a recent string of papers examining continuous time
games with random discrete opportunities to take actions, in different contexts:
Ambrus and Lu (2009) investigate multilateral bargaining with a deadline in
a similar context, while Kamada and Kandori (2009) and Calcagno, Kamada,
Lovo and Sugaya (2010) examine situations in which players can publicly modify
their action plans before playing a normal-form game. An important difference
between these models and ours, leading to different predictions, is that in the
former models the actions players can take are unrestricted by previous history.
In contrast, in our auction game, previous bids restrict the set of feasible bids
thereafter, since the leading price can only increase. There is also a recent string
of papers in industrial organization, on structural estimation of continuous-time
models in which players can change their actions at discrete random times, but
payoffs are accumulated continuously (Doraszelski and Judd (2011), Arcidiacono
et al. (2013)).

2 Model and Benchmark Truthful Equilibrium

A continuous-time single-good auction is defined by a set of n potential bidders
with reservation values v1, v2, ..., vn and arrival rates λ1, λ2, ..., λn, and a start
time T < 0. We normalize the end time of the auction to 0. We assume that

al. (2012).
7Bounded arrival rates correspond to assuming that bidders cannot guarantee for sure that

they arrive just before the end of the auction. In line with this point, 90 percent of bidders
report, in Roth and Ockenfels’s (2002) survey, that sometimes when they specifically plan to
bid late, something comes up that prevents them from being available to bid at the end of the
auction.
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vi ∈ Z++ and λi ∈ R++ for every i = 1, ..., n. For simplicity, for most of the
paper we restrict attention to the case when vi = v for every i = 1, ..., n.8 This
setting corresponds to an environment in which the good has a known common
value. While this is clearly a simplifying assumption, recent research on eBay
suggests that a large number of auctions fall in this category. In particular,
Einav et al. (2011) find hundreds of thousand cases on eBay in which the
same seller simultaneously sells items with exactly the same description through
auctions and also through a traditional posted price mechanism. The latter can
be considered as the market price, or commonly known value of the particular
good from the particular seller.

Between times T and 0 bidders get random opportunities to place bids ac-
cording to independent Poisson processes with arrival rates as above. We nor-
malize the starting bid to 0 and the minimum bid increment to 1. Bidders may
make multiple bids during a single arrival and can observe the outcome of each
bid. For simplicity we assume that all bids made during an arrival are carried
out instantaneously.

We assume that bidders can leave proxy bids, hence we need to distinguish
between current price p and current highest bid B ≥ p. The set of available
bids is given by {b ∈ Z++|b ≥ B + 1} for the bidder who holds the highest bid
at time t and {b ∈ Z++|b ≥ p+ 1} otherwise. When a bid b is made, the price
adjusts as follows: if b ≥ B+ 1, then p becomes B, B becomes b, and the player
who placed the bid becomes the winning bidder.9 Otherwise, p becomes b and
both B and the winning bidder remain the same. At the end of the auction
(t = 0) the current high bidder wins the good and pays the current price. As in
eBay auctions, we assume that the history of p and the identity of the winning
bidder are publicly observed, but B is only known by the bidder holding the
highest bid (provided that someone placed a bid).

The assumption that bidders can place multiple bids at an arrival opportu-
nity enables them to bid incrementally, regardless of the current highest bid. In
particular, a bidder can always bid the current price plus one, until she becomes
the winning bidder. This is an important component of our model.

Strategies of bidders specify bidding behavior (that is either placing an avail-
able bid or not placing a bid) upon arrival as a function of calendar time, public
history (time paths of p and the identity of the winning bidder) and private his-
tory (previous arrival times of the player and previous actions chosen at those
arrival times). For expected payoffs to be well defined for all strategy profiles,
we restrict bidders’ strategies to be measurable with respect to the natural
topologies.10

In the rest of the analysis we restrict attention to strategy profiles in which

8See Section 6 on asymmetric valuations, as well as more general environments with reser-
vation values being private information.

9In a previous version of the model, we defined the rules such that p becomes B + 1, as
opposed to B. This corresponds better to the Ebay mechanism, but makes the analysis more
cumbersome. Nevertheless, the qualitative conclusions we obtained were the same in the two
model versions.

10For the formal details, see Appendix A of Ambrus and Lu (2009) in a similar continuous-
time game with random arrivals.
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players’ strategies only depend on the public history. The solution concept we
use is perfect public equilibrium (subgame perfect Nash equilibrium in which all
players use strategies that only depend on the public history) in conditionally
weakly undominated strategies. From now on, for ease of exposition, we will
simply refer to the concept as equilibrium. Note that without the requirement
that strategies are not weakly dominated, even in sealed-bid second-price auc-
tions typically there exist many equilibria, as low valuation bidders may place
bids above their valuations, influencing the winning price, as long as they do
not win the object.

In some of the analysis we further restrict attention to Markovian equilibria.
We say that a bidder’s strategy is Markovian if it only depends on payoff-relevant
information, namely the current leading price p, whether the player is currently
winning the object or not, and calendar time t. The latter is payoff relevant
as it determines the distribution of future arrival sequences by the bidders (in
particular, the probability that the given bidder will not get another chance
to place a bid). In particular, a Markovian strategy depends trivially on the
history of prices and winning bidders before t.

The weak undomination requirement, although considerably less restrictive
in our game than in a static auction, is still relatively easy to check. In par-
ticular, it rules out placing bids above one’s valuation after any history, and
it does not rule out placing any bid at or below the true valuation, after any
history. On top of this, the only additional restriction that conditional weak
undomination imposes is that losing players cannot abstain from placing a bid
close enough to the end of the auction if play at that point is consistent with
the current highest bid being strictly below v.

In order to state this formally, for every i = 1, ..., n, let t∗i be defined as the
unique t < 0 satisfying 1 − etλi = etΣj 6=iλj . Note that the left side is strictly
decreasing in t, while the right side is strictly increasing. Moreover, for small
enough t the left hand side is clearly larger than the right hand side, while for
t close to 0 the right hand side is larger. Hence, t∗i is well-defined. The inter-
pretation of t∗i is that it is the time at which bidder i is indifferent between
becoming the winning bidder at some price p < v, but assuming that this event
triggers every other bidder to place a bid of v upon first arrival, versus passing
on the bidding opportunity and waiting for the next opportunity, assuming that
if doing so, no other bidder will ever increase her bid. Intuitively, after t∗i be-
coming the winning bidder is strictly preferred by i even when she has the most
pessimistic belief regarding the continuation strategies of others conditional on
this event, and the most optimistic belief regarding the continuation strategies
conditional on not bidding at the current time.

Claim 1. A strategy of player i is conditionally weakly undominated iff it
satisfies the following: (i) it never calls for placing a bid b > v after any history;
(ii) if at any time-t history such that t ≥ t∗i , player i is not the current winner,
and given the history it is possible that she can become the winning bidder at
a price p < v, it calls for placing a bid.
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For the proof, see the Appendix. All of the equilibria we construct below
trivially satisfy the conditions for conditionally weakly undominatedness.

It is easy to see that a strategy profile in which each bidder i bids v at any
arrival when the current price is below v, and otherwise does not bid, constitutes
an equilibrium. Given other bidders’ strategies, no bidder can gain at any
history by deviating from this strategy, and Claim 1 implies that these strategies
are weakly undominated. Furthermore, there cannot be any equilibrium giving
a higher expected revenue to the seller, given that in equilibrium as defined
above, no player ever places a bid above her valuation. For this reason, and
because it is analogous to the unique equilibrium in a second-price sealed bid
auction, the above truthful equilibrium is a natural benchmark to compare all
other equilibria to in the subsequent analysis.

3 Short Auctions

In this section we consider auctions that are short enough (relative to the ar-
rival rates of bidders) that any losing bidder wants to place a bid when possible.
For this case we analytically characterize a class of Markovian equilibria that
includes the most gradual possible bidding equilibrium (that is when bidding
always implies raising the price incrementally) on one extreme, and truthful
equilibrium on the other. The former is the worst symmetric Markovian equi-
librium for the seller in short auctions.

In Subsection 3.1 we provide an example of an incremental equilibrium, and
explain the main features of the dynamic strategic interaction in this equilib-
rium. In Subsection 3.2 we formally characterize a class of Markovian equilibria
with gradual bidding.

3.1 Example of a short auction with two bidders

Consider an auction with 2 symmetric bidders with values v = 4 and arrival
rates λ = 1, and let T = −1. We would like to construct an equilibrium
in which bidders make only the minimal increment necessary to become the
wining bidder, whenever they arrive.

Formally, we consider a strategy profile in which a losing bidder bids p + 1
when p ∈ {0, 1, 2, 3} and refrains from bidding when p ≥ 4.11 At the same time,
a winning bidder refrains from increasing the current (proxy) price if she gets
the chance to do so.

Let W (p, t) and L(p, t) denote the expected payoffs of a winning bidder (the
bidder holding the current high bid) and the losing bidder respectively at time
t when the current price is p, along the path of play when players adhere to the
strategies above. Note that we suppress the current high bid as this is uniquely
determined by the price along the path of play.

11Note that a losing bidder upon arrival bids up the price until he becomes the winning
bidder upon arrival in this example. Thus a losing bidder on the equilibrium path will place
multiple bids.
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Trivially, W (4, t) = 0 and L(p, t) = 0 for p ≥ 3. At p = 2 and p = 3 the
winning bidder gets a payoff of v − p if the other bidder does not get an arrival
before the end of the auction and 0 otherwise. Therefore W (3, t) = et and
W (2, t) = 2et. The expected value of being a losing bidder at L(2, t) is derived
by using properties of a Poisson arrival process. Note that if there are at least
two arrivals and players follow the bidding strategy described above, then the
bidder obtains a payoff of zero. Thus the only event for which he obtains a
positive payoff is if there is exactly one arrival of a losing bidder, in which case
the payoff is 4− 3 = 1 since he must pay a price of 3. Given the Poisson arrival
process, this event occurs with probability −tet, which implies

L(2, t) = −tet.

Similarly, we can compute L(1, t) = −2tet. Following the same lines, the only
events under which a winning bidder at a price of 1 obtains positive payoffs is
if there are exactly zero or two arrivals, in which cases he obtains payoffs of 3
and 1, respectively, which implies

W (1, t) = 3et +
t2

2
et.

Finally being the winning bidder at p = 0 gives the continuation payoff

W (0, t) = 4et + 2
t2

2
et = 4et + t2et

whereas being the losing bidder at p = 0 gives

L(0, t) = −3tet − t3

3!
et.

Before any bids have been placed, neither bidder holds the high bid and so
the expected payoff is the expectation over becoming either the winning bidder
at p = 0 or the losing bidder at p = 0:

L(∅, t) =

∫ 0

t

e−2(τ−t)(L(0, τ) +W (0, τ))dτ.

Figure 1 depicts the expected continuation payoffs of winning and losing bidders
at different prices, for the time horizon of the game. It is straightforward to check
that for t ≥ −1, all the incentive compatibility conditions hold for the above
strategy profile to be an equilibrium. In particular, a losing bidder always prefers
to take the lead upon an arrival, and being a winning bidder at a lower price
is strictly better than at a higher price, providing an incentive for incremental
bidding. In fact, at low prices bidders strictly prefer following the equilibrium
strategy to any other action.

The intuition behind the above incremental bidding equilibrium is that if
the opponent uses an incremental bidding strategy, a losing bidder faces a clear
tradeoff in her bidding decision. On one hand, bidding makes her the current
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Figure 1: Continuation value functions for T = −1 and v = 4 in 2-bidder
auction.

high bidder which increases her chance of winning the auction. The downside
is that placing a bid activates the other bidder and raises the object’s expected
selling price. Placing a bid greater than the increment prescribed in equilibrium
increases the downside without affecting the upside and hence if she chooses to
place a bid it will also be incremental. Furthermore, the upside is increasing in
t while the downside is decreasing in t. If an auction is short enough, it will
support an incremental equilibrium in which bids are placed at every arrival by
a losing bidder. This argument also hints that in longer auctions equilibrium
also requires periods of waiting in which losing bidders pass on opportunities
to bid, as the incentive to slow the increase of the current price might become
stronger than the incentive to take the lead. We discuss incremental equilibria
with delay in long auctions in Section 4.

Note that in the above equilibrium, a bidder’s expected payoff is L(∅,−1) ≈
1.45, and the seller’s expected revenue is (1− e−2)4− 2L(∅,−1) ≈ 0.57. These
expected payoffs are considerably more favorable to the bidders than those in
the benchmark equilibrium, which are roughly 0.93 and 1.60 for the bidders and
seller, respectively.12

12In short auction like this, different equilibria only affect the distribution of the surplus
between the buyers and the seller, not total social welfare. In longer auctions, as demonstrated
in the next section, there can be equilibria in which all bidders restrain from placing a bid
until near the end of the auction, which does reduce social welfare relative to the benchmark
truthful equilibrium.
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3.2 Symmetric Markovian equilibria in short auctions

We now generalize the existence of equilibria with incremental bidding. In
particular, we characterize a class of equilibria in which bidding behavior only
depends on the current price and whether the bidder is currently winning.

Definition 1. A bidding sequence S = {b1, ..., bk} is an integer-valued set that
satisfies 0 < b1 < ... < bk and bk = v. S is a completely gradual bidding sequence
if S = {1, 2, . . . , v}.

Given a bidding sequence S and any price p ≤ v, define

lp,S = min{l : bl ≥ p}.

If p > v, then define lp,S = v. For the remainder of the paper, because the
bidding sequence of interest will be unambiguous, we write lp as shorthand for
lp,S . Then blp is equal to p if p ∈ S and otherwise it is the smallest element of S
that is greater than p. With this we can formally introduce a class of Markovian
strategies that we will study in this section.

Definition 2. A bidder bids incrementally over bidding sequence S = {b1, ..., bk}
with no delays by bidding

1. blp+2 if lp ≤ k − 2 as a losing bidder,

2. v if v > lp > k − 2 as a losing bidder,

3. b1 if no bids have been placed,

4. and otherwise refrains from bidding.

Furthermore a bidder bids completely gradually with no delays if S in the
above definition is the completely gradual bidding sequence.

Note that if players follow the above strategy then the winning price at any
moment is bl for some l, the current highest bid is bl+1, and the losing bidder
upon an arrival plans to bid bl+2. This relatively subtle way of prescribing
strategies is necessary to induce players to place bids along a general bidding
sequence, instead of deviating to bidding more gradually than what the sequence
prescribes. Thus in checking incentive compatibility of the candidate strategy,
it is sufficient to consider only deviations by bidders to bids in the bid sequence.
As we saw in the example in the previous subsection, for the most gradual
bidding sequence strategies can be defined in a simpler way: if the price is p,
given the chance a losing bidder bids p+ 1 (and if that was not enough to take
the lead then she bids p+ 2, etc.).
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Theorem 1. In an auction with n symmetric bidders, for any bidding sequence
S = {b1, . . . , bk} with bk = v, there exists a t∗ < 0 such that the auction has
an equilibrium in which bidders follow the incremental bidding strategy with no
delays over S if and only if T ≥ t∗. In particular, if there are two bidders,
t∗ = −1/λ.

Proof. The following proof is for the two bidder case where we can show that
incremental equilibria exist iff T ≥ − 1

λ . The proof for n bidders is conceptually
the same but notationally more demanding, and it is given in the Appendix.
We construct the expected continuation values recursively, with L(bk, t) = 0
and W (bk, t) = (v − bk−1)eλt and for 0 < l < k,

L(bk−l, t) =

∫ 0

t

λe−λ(τ−t)W (bk−l+1, τ)dτ

W (bk−l, t) =

∫ 0

t

λe−λ(τ−t)L(bk−l+1, τ)dτ + (v − bk−l)eλt

The following incentive compatibility conditions are sufficient to show that an
incremental bidding strategy is a best response:

L(bk−l, t) ≥ L(bk−l+1, t)

W (bk−l+1, t) ≥ L(bk−l, t).

The first inequality ensures that incremental bids are weakly better than higher
bids; higher bids weakly reduce the expected continuation value from becoming
a losing bidder without affecting the expected continuation value from remain-
ing the winning bidder until the end of the auction. Note that this also implies
that winning bidders weakly prefer to not adjust their initial bid upon subse-
quent arrivals. The second inequality implies that incremental bidding is always
weakly preferred to remaining a losing bidder. Note that the first inequality is
always satisfied since for any realization of a sequence of arrivals, either both
bidders in both scenarios become losers at the deadline obtaining a payoff of zero
at the deadline or the players both obtain the final bid after which the losing
bidder starting at a highest bid of bk−l wins the auction at a weakly higher price
than a losing bidder starting at a highest bid of bk−l+1. We will now prove that
the second inequality always holds with an inductive proof. Note the following
expressions:

W (bk, t) = 0

W (bk−1, t) = eλt(v − bk−1)

L(bk−1, t) = 0

L(bk−2, t) = −λteλt(v − bk−2).

Clearly W (bk, t) ≥ L(bk−1, t) and W (bk−1, t) ≥ L(bk−2, t) for all t ≥ −1/λ. We
now prove the inductive step; if W (bk−l, t) ≥ L(bk−l−1, t) for all t ≥ −1/λ then
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W (bk−l−2, t) ≥ L(bk−l−3, t) for all t ≥ −1/λ.

L(bk−l−3, t) =

∫ 0

t

λe−λ(τ−t)W (bk−l−2, τ)dτ

= −λteλt(v − bk−l−2) +

0∫
t

λe−λ(τ−t)
0∫
τ

λe−λ(s−τ)L(bk−l−1, s)dsdτ

≤ eλt(v − bk−l−2) +

0∫
t

λe−λ(τ−t)
0∫
τ

λe−λ(s−τ)W (bk−l, s)dsdτ

= W (bk−l−2, t),

where the inequality follows from our assumption that W (bk−l, t) ≥ L(bk−l−1, t)
for all t ≥ −1/λ. This proves that the second inequality holds for all l. At the
beginning of the auction before any bid has been placed, both bidders are active.
This expected continuation value is denoted by L(∅, t) and defined as:

L(∅, t) =

∫ 0

t

λe−2λ(τ−t)(W (0, τ) + L(0, τ))dτ

Again we must prove that W (0, t) ≥ L(∅, t) for t ≥ −1/λ, since otherwise upon
an arrival bidders would prefer to delay bidding. To prove this, we consider a
modified game with price initialized at −1 and a modified bidding sequence for
this game: S̃ = {0, b1, . . . , bK}. Let L̃(p, t) and W̃ (p, t) be the corresponding
continuation value functions in the modified game where L̃(−1, t) is defined as:

L̃(−1, t) =

0∫
t

λe−λ(τ−t)W (0, τ)dτ

and for any price p ≥ 0, L̃(p, t) = L(p, t) and W̃ (p, t) = W (p, t). Note that the
inductive argument above implies that

L̃(−1, t) < W̃ (0, t)

for all t ≥ −1/λ and thus L̃(−1, t) < W (0, t) for all t ≥ −1/λ. However
L(∅, t) ≤ L̃(−1, t) for all t since for every realization of arrivals from a highest
bid of 0 at time t, the realized payoff of the losing player is weakly larger in the
modified game than in the original game.13 This allows us to conclude

L(∅, t) < W (0, t)

for all t ≥ −1/λ as desired, which implies that it is always suboptimal for a losing
bidder to pass on a bidding opportunity. The way strategies are constructed
implies that neither underbidding nor overbidding (relative to the bid prescribed
by the strategy profile) can be strictly profitable deviations.

13Note that in the original game a highest bid of 0 at time t means that p = 0 and no
player has bid yet, whereas in the modified game a highest bid of 0 at time t implies a price
of p = −1.
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The proof of Theorem 1 reveals that if t > t∗ then a losing bidder prefers
taking the lead even when the other bidder’s subsequent bid is sufficiently high
to prevent the former bidder from obtaining any surplus from the auction. Intu-
itively, for short enough auctions there cannot be sufficient incentives to prevent
losing bidders from overtaking the lead, since the probability that another bidder
gets an opportunity to bid is low enough that even the most severe punishment
by other bidders (switching to a truthful equilibrium) is insufficient to prevent
such behavior.

Another observation is that, in a symmetric Markovian equilibrium, bidding
cannot stop until the price reaches v, even though at P = v − 1 a bidder is
indifferent between bidding of v and abstaining. This property holds because if
players abstain from overbidding P = v − 1 with some positive probability, a
bid of v becomes strictly better at any point than bidding v− 1 (the next lower
weakly undominated bid). Hence, players would never bid v − 1. But then the
same argument can be used iteratively to establish that players would never bid
v − 2, v − 3 and so on, leading to the unraveling of any gradual bidding.14

The above two observations imply that in short enough auctions the worst
symmetric Markovian equilibrium for the seller is given by the most gradual
incremental bidding equilibrium - the one over S = {1, 2, ..., v}. For the worst
equilibrium over all, which in short auctions has a very similar structure, see
Subsection 4.2.

4 Long auctions

In this section we examine gradual bidding equilibria in auctions with longer
time horizons. Maintaining such equilibria requires periods for which losing
bidders abstain from bidding. In particular, players might wait to bid until
relatively close to the end of the auction. Further periods of inactivity after a
bid has already been placed, are also possible. Because of this, no matter how
long the auction, the seller’s expected revenue in these equilibria can be very
small relative to v.

In Subsection 4.1, we provide an example of a gradual bidding equilibrium
with waiting. In long auctions it becomes considerably easier to construct grad-
ual bidding equilibria using non-Markovian strategies, so in Subsection 4.2 we
propose a class of such equilibria, for any valuation and any number of bidders,
that includes a completely gradual bidding equilibrium with bidding being de-
layed as much as possible. In Subsection 4.3 we focus on Markovian equilibria,
and propose a simple gradual bidding equilibrium for any valuation and any
number of bidders, and a completely gradual bidding equilibrium when the
number of bidders is large enough.15

14There can be non-Markovian equilibria, as well as asymmetric Markovian equilibria in
which bidding stops at P = v − 1.

15As our example in Subsection 4.1 shows, having a large number of bidders is not necessary
for the existence of a completely gradual bidding Markovian equilibrium, but for a small
number of bidders it becomes difficult to verify all incentive constraints for general valuations.

14



4.1 Example of a long auction with two bidders

The failure of the gradual bidding equilibria with no delays in long auctions
can be seen by extending the length of the 2-bidder auction example from the
previous section to T = −2. Figure 2 plots the non-trivial bidder value functions
in the fully incremental equilibrium. As we demonstrated previously, for all p
and t > −1, placing a bid is optimal as W (p + 1, t) > L(p, t). However, at
any time t < −1, a winning bidder’s expected value at p = 3 is lower than a
losing bidder’s expected value at p = 2 and hence the losing bidder facing a
price of 2 would find it profitable in expectation to wait to bid until t > −1.
Nonetheless, we can still construct equilibria with incremental bidding behavior
in long auctions.

Sustaining incremental bidding in equilibrium requires intervals during which
bidders abstain from bidding even though the price is below their value and
they do not hold the current high bid. Bidders choose to wait when the cost
of increasing the price outweighs the likelihood of winning the object with the
current bid. In our example, the trade-off is straightforward. Since it induces
the other player to bid again, bidding at p = 2 yields a positive payoff only in
the event that the other bidder does not return to the auction. This event is
less likely as we extend the time remaining in the auction. On the other hand,
the likelihood of returning to the auction at the same price but closer to the end
of the auction, and thereby face a more favorable trade-off, is increasing in the
time remaining in the auction. For these reasons, early in the auction a losing
bidder at p = 2 prefers waiting, while later he prefers taking the lead.

We refer to the point in time τp at which at which a bidder is indifferent
between overtaking the current high bid at a current price p and waiting for
the next opportunity, as the cutoff for price p. An incremental equilibrium with
waiting is characterized by a bidding sequence and its corresponding sequence
of cutoff points.

In an equilibrium in which bidders follow a symmetric Markovian incremen-
tal bidding strategy with delays, bidder value functions are constructed in the
same manner as for incremental equilibria with no waiting. For example, when
S = {1, 2, .., v}, the value functions are given by

L(p, t) =

∫ 0

stp

λe−λ(τ−stp)W (p+ 1, τ)dτ

W (p, t) =

∫ 0

stp

λe−λ(τ−stp)L(p+ 1, τ)dτ + (v − p)eλs
t
p

V (0, t) =

∫ 0

st−1

λe−2λ(τ−st−1)W (0, τ)dτ +

∫ 0

st−1

λe−2λ(τ−st−1)L(0, τ)dτ

where stp = max{t, τp} for all p ≥ 0. Non-trivial cutoffs satisfy L(p, τp) =
W (p+ 1, τp) for all p and V (0, τinitial) = W (0, τinitial).

In our example, there are two relevant cutoffs (i.e. not equal to T ); τ0 = − 17
15

and τ2 = −1. Figure 3 plots the value functions for bidders following these

15



-2.0 -1.5 -1.0 -0.5 0.0

t

C
o
n
ti

n
u
at

io
n

P
ay

o
ff

s

LH0,tL
LH1,tL
LH2,tL
LHÆ,tL
WH0,tL
WH1,tL
WH2,tL
WH3,tL

Figure 2: Continuation value functions with no delay with v = 4 in 2-bidder
auction

cutoffs. The auction is divided into three periods; in the first period players
initiate the bidding but further bidding does not take place, keeping the price
at 0. In the second period, players bid incrementally if p ∈ {0, 1}, but pass on
opportunities to bid if p = 2. Finally, in the third period a losing bidder bids
until price reaches p = 4.

Bidders’ equilibrium expected payoffs and the seller’s expected revenue in
this equilibrium are 1.44 and 0.58, respectively. The seller’s expected revenue
compares favorably to that of the short auction but it is still significantly less
than in the benchmark equilibrium.

One feature of the above equilibrium is that the cutoff is non-trivial for every
second price. The intuition behind this is as follows. Note that at any price,
the winning bidder’s expected value is greater than that of the losing bidder.
Now suppose a losing bidder arrives at time t and faces a price p− 1. If bidding
at price p does not begin until τp > t, a losing bidder cannot do better than
to be the winning bidder at price p and at time τp; hence, the bidder must at
least weakly prefer placing a bid. For this reason if there a nontrivial cutoff for
overbidding p then the cutoff for overbidding p− 1 has to be trivial.

4.2 Non-Markovian Equilibria in Long Auctions

As shown in Section 3, in short auctions it is relatively easy to construct gradual
bidding equilibria for arbitrary bidding sequences, even in Markovian strategies.
Verifying that the construction constitutes an equilibrium is facilitated by the
fact that players trivially do not have an incentive to overbid (relative to what
they are supposed to bid given the underlying bidding sequence). In equilibria
with waiting, verifying that players have no incentives to overbid becomes non-
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Figure 3: Equilibrium continuation value functions with delay with v = 4 in
2-bidder auction

trivial. To see this, consider a sequence of cutoffs {τ1, τ2, ..., τv−1} and a strategy
profile according to which a losing bidder bids incrementally whenever the price
is p and t < τp, and otherwise passes on bidding opportunities. Suppose that τp
for some p is a nontrivial cutoff. If a losing bidder i arrives at t < τp when price
is p− 2 then the above implies that the bidder faces a trade-off between placing
a highest bid of p, as prescribed by the completely gradual bidding sequence,
versus placing a bid of p+1. On one hand, the latter is better because it implies
that if the other player gets a bidding opportunity between t and τp then she
will bid p but refrain from further bidding. This ensures that at time τp bidder
i remains the winning bidder. The downside of bidding p+1 versus p is that the
former implies that if the next arrival by another player is after τp then she will
not stop bidding at p, and takes over the highest bid anyway, but at a higher
price than under gradual bidding.

In this subsection we avoid this complication by considering a class of non-
Markovian equilibria in which players refrain from overbidding because the latter
triggers a continuation equilibrium in which bidders switch to truthful strategies
(placing a bid of v whenever possible), which is the most severe punishment
possible in equilibrium. In particular, we focus on equilibria that yield the worst
payoffs among equilibria in which bidding is along a particular bidding sequence
S, by maximally delaying the period of refraining from placing a particular
bid along the bidding sequence. We will consider Markovian gradual bidding
equilibria in long auctions in the next subsection.

In order to define gradual bidding equilibria with periods of inactivity, we
need to extend our definition of bidding sequences.

Definition 3. Let S = {b1, . . . , bk} be a bidding sequence. A strategy profile is

17



an incremental bidding strategy profile with delay over bidding sequence S and
cutoff sequence CS = {t∅, t0, . . . , tk−2} if on the equilibrium path,

1. no bidding occurs when t < tlp+2,

2. losing bidders bid blp+2 if t ≥ tlp+2 and lp ≤ k − 2,

3. losing bidders bid v if v > lp > k − 2,

4. losing bidders bid b1 if p = ∅ and t ≥ t∅,

5. and otherwise bidders refrain from bidding.

Note that the above definition only characterizes bidding behavior on the
equilibrium path. We leave the strategies off the equilibrium path of play un-
restricted in the definition and show that there exist equilibria whose outcome
path follows the definition above.

Theorem 2. Let S = {b1, . . . , bk}. Then there exists a cutoff sequence CS
such that there exists an equilibrium that is an incremental bidding strategy
profile with delay over S and CS. Moreover, among cutoff sequences which
can constitute an equilibrium with the cutoff sequence, there is a maximal one
{t∅, t0, . . . , tk−2}, in the sense that ti ≥ t̂i for any i ∈ {∅, 0, 1, ..., k−2} and cutoff
sequence {t̂∅, t̂0, . . . , t̂k−2} that can constitute an equilibrium with the same cutoff
sequence.

We will refer to the equilibrium in the second part of the statement as the
maximally delayed equilibrium with the given bidding sequence. The construc-
tion of such an equilibrium is quite intuitive. We use reversion to the truthful
equilibrium as punishment to deter deviations off the equilibrium path that
involve overbidding relative to the equilibrium strategy.

Proof. We proceed in a recursive manner. Denote by Wn(p, t) and Ln(p, t)
the value functions for the winning and losing bidders in an n player auction at
price p and time t conditional on all players playing according to the incremental
bidding strategy over S with no delay. Define tln as the maximal time at which
reversion to the truthful equilibrium is no longer sufficient to deter bidding at
a price of bl:

eλ(n−1)tln(v − bl+1) = Ln(bl, t
l
n).

Then define tk−2 = tk−2
n and also

W (bk−2, t) =

{
Wn(bk−2, t) if t ≥ tk−2

Wn(bk−2, t
k−2) if t < tk−2

L(bk−2, t) =

{
Ln(bk−2, t) if t ≥ tk−2

Ln(bk−2, t
k−2) if t < tk−2.
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With this defined, we now define the other cutoffs recursively. Suppose that
tl+1 and W (bl+1, t) and L(bl+1, t) have been defined. Then define the following
value functions

W̃ (bl, t) = eλ(n−1)t(v − bl) +

0∫
t

λe−λ(n−1)(τ−t)(n− 1)L(bl+1, τ)dτ,

L̃(bl, t) =

0∫
t

λe−λ(n−1)(τ−t) (W (bl+1, τ) + (n− 2)L(bl+1, τ)) dτ.

These functions above are not intended to be the correct value functionsW (bl, t).
Rather W̃ (bl, t) is defined to be the ex-ante continuation payoff associated a
strategy in which the winner does not place any bids and a losing bidder bids bl+2

upon arrival leading to a continuation payoff of L(bl+1, t). L̃(bl, t) is similarly
defined. Thus these continuation values assume that any losing bidder places a
bid upon arrival at any time after t. Using these value functions we can define
the cutoff tl as the time at which the threat of truthful bidding is no longer
sufficient to deter bidding:

L̃(bl, t
l) = eλ(n−1)tl(v − bl+1).

Then we can define the true value functions as:

W (bl, t) =

{
W̃ (bl, t) if t ≥ tl

W̃ (bl, t
l) if t < tl,

L(bl, t) =

{
L̃(bl, t) if t ≥ tl

L̃(bl, t
l) if t < tl.

These definitions follow due to the fact that at any time tl the threat of pun-
ishment is indeed effective in deterring lowing bidders from bidding. Thus the
value functions at any time t < tl correspond to the value at time tl. Iterating
we can construct all of the relevant cutoffs t0, t1, . . . , tk−2 and all of the relevant
continuation value functions. In a similar manner we construct the cutoff t∅.
Given W (0, t), L(0, t), we define

L̃(∅, t) =

0∫
t

λe−λn(τ−t) (W (0, τ) + (n− 1)L(0, τ)) dτ.

Then define t∅ as
L̃(∅, t∅) = eλ(n−1)t∅v.

Furthermore we define the continuation value when no player has bid as:

L(∅, t) =

{
L̃(∅, t) if t ≥ t∅

L̃(∅, t∅) if t < t∅.

19



With all of these cutoffs defined, we are now ready to define the candidate
strategy profile. Define first the set H:

H = {h ∈ H : (p, t) ∈ h and p /∈ S or p > bl, t < tl for some l}.

In words this is the set of histories where either some player has been revealed
to have bid some amount not in the bid sequence or to have placed a bid
above bl before time tl. It turns out that these histories form the histories off
the equilibrium path of play in the following candidate strategy profile. The
candidate strategy profile is defined as follows.

1. If p = ∅, bid b1 if and only if t ≥ t∅.

2. If h /∈ H and ~h = (p, t) with p 6= ∅, then bid blp+2 if and only if t ≥ tlp

and the bidder is losing.

3. If h ∈ H, bid v.

4. Otherwise refrain from bidding.

First note that any element of h ∈ H is not on the outcome path of play
according to this strategy profile. With this observation, it is easy to check that
each player has incentives to play according to the strategy specified above.

The strategies constructed above have the feature that on the equilibrium
path, bidding is incremental with delays according to the cutoff sequence t∅, . . . , tk−2.
Such behavior is optimal due to the threat of reversion to the truthful equilib-
rium when players deviate by bidding when the strategy prescribes waiting.

For a general bidding sequence, the maximally delayed equilibrium con-
structed above can be complicated, with multiple subsequent waiting periods
corresponding to different prices. In the Appendix we provide a sufficient con-
dition on the bidding sequence for the maximally delayed equilibrium to have
a simple structure, for any number of bidders, in which there are at most two
effective cutoff times, and all waiting is frontloaded. There we also show that
the same result holds for any bidding sequence when the number of bidders is
large.

4.3 Markovian Equilibria in Long Auctions

Constructing Markovian equilibria for general bidding sequences in long auctions
is complicated, for the reasons spelled out at the beginning of Subsection 4.2.
However, in this subsection we show that for any number of bidders and any
valuation there exists a Markovian equilibrium with some gradual bidding. Even
for this equilibrium the seller’s revenue is low in general, as in a long auction
players are inactive for most of the auction. We also show that if the number
of bidders is large enough, a Markovian equilibrium exists in which bidding
is completely gradual. In fact, this result can be generalized to any bidding
sequence.
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4.3.1 A Simple Gradual Bidding Markovian Equilibrium

First we show that for any time horizon, any number of bidders, and any value
for the object, there exists a Markovian equilibrium with gradual bidding. In
particular, we show that the bidding sequence {1, v} with the cutoff sequence
{T,−1/λ}, constitutes a Markovian equilibrium. Note that Markovian strate-
gies pin down play off the equilibrium path as well, hence the latter do not need
to be specified separately.

Claim 2. The following symmetric strategy profile constitutes a Markovian
equilibrium. If no one has bid, a player upon an arrival bids 1. If someone is
winning the object at a price of 0, a losing bidder upon an arrival refrains from
bidding for t < −1/λ, and bids v for t ≥ −1/λ. If someone is winning the object
at a price 1 ≤ p ≤ v − 1, a losing bidder upon an arrival bids v. If someone
is winning the object at a price p ≥ v, a losing bidder upon an arrival refrains
from bidding. Lastly, a winning bidder always refrains from further bidding.

Proof. The expected continuation payoff of a bidder winning the object at price
1 at time t, assuming that other bidders play the prescribed profile is W (1, t) =
(v − 1)etλ(n−1). The expected continuation payoff of a losing bidder at some
time earlier than t, when all losing bidders including him refrain from bidding

until time t is
0∫
t

λe−(n−1)λ(s−t)W (1, s)ds = −tλetλ(n−1) (v − 1). This expression

is smaller than W (1, t) exactly for t < −1/λ. Hence, if other bidders follow
the prescribed strategies, it is indeed optimal for a losing bidder at price 0 to
refrain from overbidding until t = −1/λ, and placing a bid afterwards. All other
incentive constrains trivially hold in the candidate equilibrium profile.

We now calculate the seller’s expected profits when T ≤ −1/λ under this
equilibrium and show that they can be small:

eλnt · 0 + (−λnt)eλnt · 0

+
(−λnt)2

2
eλnt · 1 +

(
1− eλnt − (−λnt)eλnt − (−λnt)2

2
eλnt

)
v

=
(−λnt)2

2
eλnt +

(
1− eλnt − (−λnt)eλnt − (−λnt)2

2
eλnt

)
v,

where t = −1/λ. Simplifying the above expression gives:

n2

2
e−n +

(
1− e−n − ne−n − n2

2
e−n

)
v.

Not surprisingly, the seller’s expected profits converge to v as n→∞. However
for small n, the seller’s profits can be relatively small even if v is large. For
example when n = 3 and v = 10, the seller’s profit is 5.995 and when n = 4
and v = 10, the seller’s profit is 7.77. However in this equilibrium, the seller’s
profits converge to v very fast as n increases. Thus profits are close to v in
such equilibria unless the number of bidders participating in the auction is very
small.
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4.3.2 Completely Gradual Bidding in Markovian Equilibrium

Here we examine the existence of equilibria that exhibit completely gradual
bidding, that is when along the equilibrium path every time the winning bidder
changes, the winning price only increases by the minimum bid increment.

Definition 4. A strategy profile is a Markovian completely gradual bidding
strategy profile with delays over the cutoff sequence C = {t∅, t0, . . . , tv−2, tv−1}
if the bidder bids p + 1 at a price of p and time t if and only if she is a losing
bidder and t ≥ tp. Otherwise she refrains from bidding.

Note first that these strategies restrict play at histories on and off the equi-
librium path, which differentiates these strategies from those of the previous
section where behavior off the equilibrium path was left flexible. For this reason,
the equilibrium constructions of Subsection 4.2 exhibit more delay in bidding
because players can use the harshest punishment available, namely reversion
to the truthful equilibrium, to deter any deviations. In this section, such use
of punishment is prohibited as the strategies studied here are more restrictive.
The next result states that for the completely gradual bidding sequence, if the
number of bidders is large enough, there exists an equilibrium that is a Marko-
vian completely gradual bidding strategy profile with delays over some cutoff
sequence.

Theorem 3. There exists an n∗ such that for all n > n∗, there exists a cutoff
sequence C = {t∅, t0, . . . , tv−2, tv−1} such that the strategy profile in which all
players bid completely gradually with delays over C is an equilibrium.

To prove this result, we first let the cutoffs be the earliest times at which a
losing bidder at a given price p would prefer becoming the winning bidder at
price p+1 rather than waiting, conditional on all bidders in the future following
a strategy profile of complete gradual bidding with no delays. These cutoffs can
be defined uniquely for each n. Moreover, for large n, we show that this cutoff
sequence is monotonic so that

tv−1 < tv−2 < · · · < t0 < t∅.

It is now easy to define continuation values consistent with completely grad-
ual bidding over this cutoff sequence. Because the cutoff sequence is strictly
decreasing, bidders in the proposed equilibrium refrain from bidding until t∅,
after which they engage in completely gradual bidding, with no delays. Because
of this, one can check the incentive compatibility of the strategies following a
technique similar to the one used in the section on short auctions.

In the Appendix we prove a more general version of this result, showing that
for any bidding sequence, when the number of bidders is large enough then there
exists a cutoff sequence that together with the bidding sequence constitutes a
Markovian equilibrium.
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5 Comparative Statics

In this section, we investigate how the seller’s expected profits depend on the
basic parameters of the game in the seller’s worst case scenario: the maximally
delayed non-Markovian equilibria corresponding to the completely gradual bid-
ding sequence. This exercise provides bounds on how large the seller’s losses
can be in gradual bidding equilibria relative to the truthful equilibrium when
the value of the object or the number of bidders is taken to infinity.

In Appendix A.4 we show that the maximally delayed equilibrium corre-
sponding to the completely gradual bidding sequence has the property that, for
any n and v, there are at most two effective cutoffs, t0 and t∅. That is, all players
abstain from bidding until t∅, and then depending on the relative magnitudes of
the above cutoffs either immediately engage in completely gradual bidding, or
abstain from overbidding an initial bid until t0, and then engage in completely
gradual bidding afterwards. Since t0 and t∅, for fixed n and v, are independent
of T , the above implies that comparative statics are trivial with respect to T . In
particular, the seller’s revenue weakly increases in |T |, but |T | > max(|t∅|, |t0|)
implies that further increases in |T | do not affect the seller’s revenue. Hence for
long enough auctions the seller’s expected revenue is (locally) independent of
T , and strictly less than v.

Below we examine how the seller’s revenue depends on v and n, assuming
that the length of the auction is long enough such that |T | > max(|t∅|, |t0|). As
a first step, we explicitly calculate the cutoffs t0 and t∅. Note that

eλ(n−1)t0(v − 1) = L(0, t0).

In Appendix A.1, we show that the above holds if and only if

v − 1 =

v−1∑
j=0

(−λt0)j

j!

(
(n− 1)j + (−1)j+1

n
(v − j)

)
.

Because the right side is 0 when t0 = 0 and strictly increases toward ∞ as
t→ −∞, the equality must have a unique solution.

To calculate the cutoff t∅, first define t̂ by:

v =

k−1∑
j=0

(−1)j+1

 ∞∑
l=j+1

(
λt̂
)l
l!

 (n− 1)j(v − bj).

Again using the expressions derived in Appendix A.1, note that t̂ is the time
at which veλ(n−1)t̂ equals the bidder’s continuation value at price ∅ when all
players follow a completely gradual bidding strategy with no future delays.

We can now determine t∅. If t̂ ≥ t0, then t∅ = t̂. If t̂ < t0, t∅ is defined
by explicitly recalculating the value function L(∅, t) taking into account that
players delay at a price of p = 0 before time t0. Note that for all t ≥ t0,

L(∅, t) = eλ(n−1)t
k−1∑
j=0

(−1)j+1

 ∞∑
l=j+1

(λt)
l

l!

 (n− 1)j(v − bj)
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However for t < t0, we have

L(∅, t) =
(

1− e−λn(t0−t)
)( 1

n
W (0, t0) +

n− 1

n
L(0, t0)

)
+ e−λn(t0−t)L(∅, t0).

Therefore t∅ uniquely satisfies(
1− e−λn(t0−t∅)

)( 1

n
W (0, t0) +

n− 1

n
L(0, t0)

)
+e−λn(t0−t∅)L(∅, t0) = eλ(n−1)t∅v.

5.1 Changes in the Object’s Value

Changes in v have two opposing effects on the seller’s revenue. An increase in
v pushes t∅ (as well as t0) closer to the deadline. Thus there are more delays in
equilibrium, raising the possibility that few bids are placed. However a higher v
means bidders are more willing to bid up the price if, during the active bidding
period of the auction, they receive enough bidding opportunities. Below we show
that the first effect always dominates and thus the seller’s expected revenue is
always decreasing in v.

To study the effects of changing v on the seller’s revenue analytically, in
Appendix B.1, we investigate how the two potential effective cutoffs change
when v increases, and find the following: (i) t0v increases as v increases, and it
converges to a limit strictly below 0 as v → ∞; (ii) similarly t∅v increases as v
increases and converges to a limit strictly below 0 as v →∞.

However we show that the increases in t∅ must be big relative to the benefits
to the seller of an increase in v, thus causing expected revenue to decrease.
Intuitively, the benefits from an increase in the object’s value from v to v + 1
are only realized if there are at least v + 1 bidding opportunities during the
active bidding period. But since the active bidding period is relatively small, the
probability of the price reaching v+1 is small. In contrast, bidders benefit from
an increase in the object’s value even after just one bidding opportunity during
the active bidding period. With this intuition, one can argue that the seller’s
expected revenue must decrease with v. However, since t∅ and t0 converge to
limits strictly below zero as v →∞, profits cannot vanish since there is a strictly
positive probability of at least two bidders arriving even when v is very large.
Collectively, these observations yield the following:

Claim 3. For the maximally delayed equilibrium corresponding to the com-
pletely gradual bidding sequence, given a fixed n, the seller’s expected revenue
is decreasing in v and converges to some π∗ > 0 as v →∞.

5.2 Changes in the Number of Bidders

Similar to increases in the object’s value, there are two opposing effects on the
seller’s revenue when the number of bidders increases. The more direct effect is
that for fixed cutoff points, the expected number of bids and hence the winning
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price is higher. However, when n increases, there is a more subtle negative
impact on the seller’s revenue, because cutoffs become closer to the deadline.
Analyzing the trade-off between these two effects analytically is complicated in
general, but below we show that profits converge to v in the limit as n → ∞.
Hence, for large number of bidders the first effect dominates.

To show the above, consider the auxiliary strategy (not necessarily an equi-
librium) where at some time t̂n, a bidder i is chosen to be a winner at price
−1 according to a uniform random draw. No players bid at any time t < t̂n.
All players except player i follow a completely gradual bidding strategy with
no delays after t̂n. Bidder i only bids after another player has bid following t̂n,
after which he follows completely gradual bidding with no delays.

Choose t̂n to satisfy the following:

veλ(n−1)t̂n =
1

n
eλ(n−1)t̂n

v∑
`=0

(−λ(n− 1)t̂n)`

`!
(v − `+ 1).

Note that such a t̂n exists when n is sufficiently large. The right side represents
the ex-ante expected continuation value at time t̂n to following the above strat-
egy, where t̂n > t∅n since the continuation value at t̂n must be at least the value
to playing the completely gradual bidding strategy.

But note that the above implies

nv =

v∑
`=0

(−λ(n− 1)t̂n)`

`!
(v − `+ 1).

The left side converges to ∞ as n→∞. Thus we must have λ(n− 1)t̂n → −∞
as n→∞, which implies that λ(n− 1)t∅n → −∞ and λnt∅n → −∞.

Consequently, expected profits converge to v as n → ∞. Thus when n is
sufficiently large, the effect of an increase in the cutoff time t∅n is dominated by
the benefit of having more bidders, allowing the seller to extract essentially all
of the consumer’s surplus.

However, numerical estimations show that the convergence is rather slow,
especially for more valuable objects. As the table below shows, for v = 10, even
when the number of bidders is 15, the seller’s expected revenue is only a small
fraction of the object’s value.

n 2 3 5 10 15
π 0.549 0.844 1.275 1.965 2.407

Table 1: v = 5
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n 2 3 5 10 15
π 0.504 0.758 1.127 1.715 2.100

Table 2: v = 10

6 Extensions

In this section we show that the existence of equilibria with gradual bidding and
waiting generalizes to the case of bidders with asymmetric valuations, as well
as to situations in which bidders are uncertain about the valuations of other
bidders. As these environments are analytically more difficult, we restrict our
attention to the case of two possible valuations. We also discuss how the results
extend when allowing for time-dependent arrival rates.16

6.1 Asymmetric Values

Here we consider the case with two bidders, who have commonly known but
different valuations for the object. We show that for any pair of valuations with
the feature that even the lower valuation exceeds the minimum bid, there exists
an equilibrium in which the initial bid by a low valuation bidder is incremental.
In this equilibrium, the low valuation bidder wins the object with non-trivial
frequency for auctions of arbitrary length. In the Appendix we also provide an
example in which both bidders bid incrementally, and discuss the generalization
of this example.

Proposition 1. For any 2-bidder auction with bidder values vH > vL ≥ 2,
symmetric arrival rates and |T | sufficiently large, there exists an equilibrium
with gradual bidding.

The equilibrium we construct is such that the low valuation bidder, when
not winning the object, always places a bid upon arrival, as long as current price
is below vL. In particular, she bids 1 if no one placed a bid before, and places a
bid of vL if the high valuation bidder is the current winner. The high valuation
bidder’s strategy is characterized by two cutoff points, tH∅ and tH0 . She abstains

from bidding before tH∅ if no one has bid beforehand and also before tH0 > tH∅ if
the low valuation bidder is the current winner, but bids vH otherwise. Hence,
in this profile the low valuation bidder bids gradually, while the high valuation
bidder waits until near the end of the auction to bid. The high valuation bidder
waits because, bidding too early increases the probability that the ultimate
winning price is vL instead of 1.

There are a couple instructive features of the equilibrium. First, in the
Appendix we show that the indifference conditions for the two cutoffs of the

16In a previous version of the paper we also showed that the types of gradual bidding
equilibria we construct also exist when bidders have heterogenous arrival rates.
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high evaluation bidder are:

vH − 1 + λtH0 (vL − 1) = 0

vH − 1 + λtH∅ (vL − 1) = eλt
H
∅ .

Given this, for a fixed vH , increasing vL increases both tH0 and tH∅ . The high
valuation bidder is induced to wait to reduce the probability that the low val-
uation bidder bids again to raise the price to vL. As vL becomes large relative
to the certain payoff from bidding truthfully, the incentive to wait strengthens
and hence the high valuation bidder is willing to wait longer.

Second, even when the auction is arbitrarily long, the low valuation bidder
wins the auction with nontrivial probability, and achieves a substantial payoff.
To see this, consider an auction with vH = 6, vL = 4, T = −∞, and λ = 1. In
the benchmark truthful equilibrium, the high and low valuation bidders respec-
tively bid 6 and 4 at their first opportunity. This implies that with probability
1, the high valuation bidder wins and gets a payoff of 2 giving the seller a payoff
of 4. In contrast, in the equilibrium constructed in Claim 3, the low valuation

bidder’s expected payoff is vLe
λtH0 = 4e−

5
3 ≈ 0.76. Because the low valuation

bidder can only win at price p = 0, the low type has approximately a 19%
chance of winning the auction whereas the high valuation bidder has a 81%
chance. The total expected payoff among both bidders is equal to 3.32 (with
a payoff of 2.57 to the high type) versus 2 in the benchmark equilibrium, and
the seller’s expected revenue falls to roughly 2.3. Since the losing bidder places
at least one bid with probability one, there is no inefficiency in this equilibrium
due to no bidding. There is however inefficiency due to the fact that the low
valuation bidder wins the object with some probability.

6.2 Asymmetric Information

Thus far we have considered auctions in which each bidder’s value is common
knowledge. We now consider the case when valuations are privately known. For
simplicity, we restrict attention to two bidders with identically and indepen-
dently drawn valuations with binary support. In this environment it is possible
to construct equilibria in which a bidder can only make inferences on the other
bidder’s type once it is no longer relevant to her bidding decisions. This greatly
simplifies the calculation of cutoff points and incentive constraints. However,
we conjecture that the games at hand have many more complicated incremen-
tal equilibria in which bidders draw nontrivial inferences on each others’ types
along the equilibrium path.

Proposition 2. Assume that there are n bidders, whose valuations are drawn
iid, taking value vL > 1 with probability q ∈ (0, 1) and vH > vL with probability
1−q. Then there exists an equilibrium in which bidders high types bid gradually,
and both types of bidders abstain from winning at certain histories along the
equilibrium path.
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The equilibrium we construct in the proof of Proposition 2 is such that the
first bidder with an opportunity to bid bids vL (irrespective of her type), after
which players abstain from bidding until a cutoff time t∗. After t∗, bidders bid
truthfully. The cutoff point for jump bidding is decreasing in q, the likelihood
that a bidder is a low type. A high type risks less by outbidding early as
the likelihood that her opponents are low types increases. When q = 0 and
t∗ = −1/λ, the game reduces to the symmetric complete information case. For
long auctions, if there are two bidders, each bidder has a likelihood of 1

2 of being
the winning bidder at t∗ and the likelihood that the other bidder gets no bidding
opportunities after t∗ is eλt

∗
; hence, a low type bidder playing against a high

type bidder wins the auction with positive payoff with approximate likelihood
of 0.5eλt

∗
. For low values of q with λ = 1, this likelihood is quite high; at q = .1,

a low type playing against a high type wins with probability 0.165.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

t

ΛHtL

Figure 4: A time-dependent arrival rate defined by λ(t) = a
(1−bt)2 with a =

10, b = 9
2

6.3 Time-dependent arrival rates

First, we note that multiplying all arrival rates by a constant α > 0 is equivalent
to rescaling time by 1

α . In particular, if the original game has an incremental
bidding strategy equilibrium over bidding sequence {b1, ..., bk} and cutoff se-
quence {t1, ..., tk} then the game where arrival rates are multiplied by α has
an incremental bidding strategy equilibrium over bidding sequence {b1, ..., bk}
and cutoff sequence { 1

α t1, ...,
1
α tk}. Furthermore, expected payoffs with time

horizon T in the original game are the same as with time horizon T
α in the game

with the rescaled arrival rates. In particular, if T ≤ t1 then increasing arrival
rates while keeping T fixed does not change the expected equilibrium payoffs: it
only shifts all cutoffs closer to the deadline. Intuitively, if bidders get frequent
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bidding opportunities, it makes them postpone bidding at different prices, in a
way that exactly offsets the effect of increasing the arrival rates.
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Figure 5: Equilibrium continuation values with λ = 1
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Figure 6: Equilibrium continuation values with time-dependent λ

We return to the symmetric 2-bidder auction example studied in Section 4.1
where v = 4 and T = −2 but now let the arrival rate be a strictly increasing
function λ(t) = a

(1−bt)2 where a, b > 0. The arrival rate at the end of the auction,

λ(0), is then equal to a, while b determines how steeply arrival rates increase
at the end of the auction. The average arrival rate over the auction is given

by λ̄ =
∫ 0

−2
a

(1−bt)2 dt. We choose a = 10 and b = 9/2 illustrated in Figure 4,

which gives an average arrival rate of 1 as in our original example. Figure 6
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shows the effect of an increasing arrival rate on bidder value functions in the
most gradual equilibrium. The structure of the equilibrium is identical: in the
case with fixed arrival rates bidding begins after an initial cutoff and bidders
wait to bid at p = 1 until after a second cutoff. However, with increasing arrival
rates, the cutoffs are closer to the end of the auction, which reinforces the high
frequency of late-bidding in equilibrium. As long as arrival rates are bounded,
incremental equilibria are robust to increasing arrival rates.

7 Conclusion

This paper shows that in online auctions like eBay where bidders can leave
proxy bids, if bidders get random chances to bid then many different equilib-
ria arise in weakly undominated strategies. Bidders can implicitly collude by
bidding gradually or by waiting to bid, in a self-enforcing manner, slowing the
increase of the leading price. These features of our model are consistent with
the empirical observations that both gradual bidding and sniping are common
bidder behaviors on eBay.

Our investigation suggests that given a fixed set of bidders, running an as-
cending auction with a long time horizon (long enough that bidders cannot
continuously participate) has the potential to adversely affect the seller’s rev-
enue, even when proxy bidding is possible, relative to running a prompt auction.
Hence, introducing a time element can only be beneficial if it takes time for po-
tential bidders to find out about the auction.17 It is an open question what
mechanism guarantees the highest possible revenue for the seller in such envi-
ronments. In order to prevent implicit collusive equilibria, sellers might want to
set high reservation prices and/or minimum bid increments. They might also
want to allow each bidder to submit at most one bid over the course of an auc-
tion, although in practice this might be difficult to enforce, given that the same
person can have multiple online identities. We leave the formal investigation of
these issues to future research.

17In a recent paper, Fuchs and Skrzypacz (2010) consider the arrival of new buyers over
time, but in a dynamic bargaining context in which the seller cannot commit to a mechanism.
Another difference compared to our setting is that in their model once a buyer arrives, she is
continuously present until the end of negotiations.
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A Appendix

A.1 Preliminaries for Equilibrium Analysis

In this section, we will show that the value functions for an n-bidder auction
along the bid sequence S = {b1, . . . , bk} with no delays take the following form:18

W (bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j) (1)

L(bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l+j) (2)

L(∅, t) = eλ(n−1)t
k−1∑
j=0

(−1)j+1

 ∞∑
l=j+1

(λt)l

l!

 (n− 1)j(v − bj). (3)

These expressions are quite easily obtained when n = 2. This is quite easy
due to the fact that, given gradual bidding with no delays over S, the out-
come path of winning bidders is simply an alternation between the two players.
However, when n > 2, there are many more possible permutations of bidding
outcomes on the equilibrium path. Thus the derivation of the above expressions
is more complicated.

These closed form expressions of the value functions will be useful in our
analysis of long auctions, as they remain valid in those auction for times close
enough to the deadline. In particular, for a large number of players they enable
us to show monotonicity of cutoffs in prices, which greatly simplify verifying
that the strategy profiles we consider constitute equilibria.

A.1.1 A Simple Markov Chain

To derive the expressions above, we first analyze a simple Markov chain whose
state space is the set of players {1, . . . , n}. The transition matrix for this finite
state Markov chain is as follows:

M ≡


0 1

n−1
1

n−1 · · · 1
n−1

1
n−1 0 1

n−1 · · · 1
n−1

...
...

...
...

...
1

n−1
1

n−1
1

n−1 · · · 0

 .

The interpretation for this Markov chain is the following. The state variable
s ∈ {1, . . . , n} represents the identity of the winner at each stage. The process
then transitions to a new winner s′ ∈ {1, . . . , n}−s in the next period according
to the above transition matrix. According to the transition matrix, each of the
bidders who is not a winner has equal probability of becoming a winner in the

18Here we assume the convention that 00 = 1 and that 0! = 1.
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next stage. Note that this transition matrix is important for our analysis, since
the compound Poisson arrival process with jumps represented by this transition
matrix represents the equilibrium outcome path of strategies in gradual bidding
with no delays.

We first analyze the matrixM j which represents the conditional probabilities
of each individual being a winner at the end of j arrivals. Let E be a matrix
whose elements consist of only ones. Then

M j =
1

(n− 1)j
(E − I)j

=
1

(n− 1)j

j∑
l=0

(
j
l

)
(−1)lEj−l

= (−1)j
1

(n− 1)j
I +

1

(n− 1)j

j−1∑
l=0

(
j
l

)
(−1)lnj−l−1E

= (−1)j
1

(n− 1)j
I +

1

(n− 1)j
E

n

j−1∑
l=0

(
j
l

)
(if − 1)lnj−l

=
1

(n− 1)j

(
(−1)jI +

((n− 1)j + (−1)j+1)

n
E

)
.

Then if a bidder is a winner, the probability that he is a winner at the end of j
arrivals is equal to dj = M j

1,1 = M j
2,2 = · · · = M j

n,n which is

dj =
1

n
+

(−1)j

n(n− 1)j−1
.

Similarly if he is a loser, the probability that he becomes a winner at the end
of j arrivals is equal to

fj =
1

n
+

(−1)j+1

n(n− 1)j

which is equal to the elements of M j not on the diagonal.

A.1.2 Value functions

We now use the derivations above to arrive at the following formula for the value
functions of a winning and losing bidder at price bk−l conditional on all players
following an incremental bidding strategy with no delays over the bid sequence
S.
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W (bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!
(n− 1)jdj(v − bk−l+j)

= eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j + (−1)j(n− 1)

n

)
(v − bk−l+j)

L(bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!
(n− 1)jfj(v − bk−l+j)

= eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j + (−1)j+1

n

)
(v − bk−l+j)

It remains to compute the value function L(∅, t).
To do this, we calculate W (0, t) and L(0, t) using the above expressions.

Setting k = l, the above implies

W (0, t) = eλ(n−1)t
k−1∑
j=0

(−λt)j

j!

(
(n− 1)j + (−1)j(n− 1)

n

)
(v − bj)

L(0, t) = eλ(n−1)t
k−1∑
j=0

(−λt)j

j!

(
(n− 1)j + (−1)j+1

n

)
(v − bj).

Then we can calculate L(∅, t):

L(∅, t) =

0∫
t

λe−λn(τ−t)(W (0, τ) + (n− 1)L(0, τ))dτ

= eλnt
0∫
t

λe−λτe−λ(n−1)τ (W (0, τ) + (n− 1)L(0, τ))dτ

= eλnt
0∫
t

λe−λτ

k−1∑
j=0

(−λτ)j

j!
(n− 1)j(v − bj)

 dτ

= eλ(n−1)t
k−1∑
j=0

(n− 1)j(v − bj)eλt
0∫
t

λe−λτ
(−λτ)j

j!
dτ.

We can simplify the above expression further with the following lemma.
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Lemma 1.

hj(t) ≡ eλt
0∫
t

λe−λτ
(−λτ)j

j!
dτ = (−1)j

((
j∑
l=0

(λt)l

l!

)
− eλt

)

= (−1)j+1
∞∑

l=j+1

(λt)l

l!

Proof. The proof is shown by induction on j and integration by parts. The
claim is obvious for j = 0. Now suppose that the claim holds for j. Then

0∫
t

λe−λτ
(−λτ)j+1

(j + 1)!
dτ =

(−λt)j+1

(j + 1)!
e−λt −

0∫
t

(−λτ)j

j!
λe−λτdτ

=
(−λt)j+1

(j + 1)!
e−λt + (−1)j+1

(
e−λt

(
j∑
l=0

(λt)l

l!

)
− 1

)

= (−1)j+1

(
e−λt

(
j+1∑
l=0

(λt)l

l!

)
− 1

)
.

This concludes the proof.

This then gives us the expressions for the value functions given by equations
(1), (2), and (3) at the beginning of this section.

A.1.3 Properties of the Value Functions

In this section, we prove some basic properties of the value functions derived in
the previous section. These properties will be used in the subsequent proofs.

Lemma 2. Ln(bk−l, t) > Ln(bk−l+1, t) for all t and all l ≥ 2. Also, Wn(bk−l, t) >
Wn(bk−l+1, t) for all t.

The proof is obvious from the expressions in (1) and (2), hence omitted.
Next we use this lemma to prove some basic properties of the value functions.

Lemma 3. The following hold:

1. e−λ(n−1)tLn(bk−l, t) is strictly decreasing for all t < 0 for all l ≥ 2.

2. ∂
∂tW

n(bk−l, t) > 0 when Wn(bk−l, t) ≥ Ln(bk−l−1, t).

3. ∂
∂t (W

n(bk−l+1, t)− Ln(bk−l, t)) > 0 when Wn(bk−l+1, t) ≥ Ln(bk−l, t).

4. e−λ(n−1)tLn(∅, t) is strictly decreasing for all t < 0.
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5. ∂
∂t (W

n(0, t)− Ln(∅, t)) > 0 when Wn(0, t) ≥ Ln(∅, t).

Proof. Consider the first statement.

e−λ(n−1)tLn(bk−l, t) =

l−1∑
j=0

(−λ(n− 1)t)j

j!
fj(v − bk−l+j)

The derivative of the right-hand side with respect to t is:

−λ(n− 1)

l−1∑
j=1

(−λ(n− 1)t)j−1

(j − 1)!
fj(v − bk−l+j) < 0.

Now consider the second statement.

Wn(bk−l+1, t) = eλ(n−1)t(v − bk−l+1) +

0∫
t

λe−λ(n−1)(τ−t)(n− 1)Ln(bk−l+2, τ)dτ.

Using the fundamental theorem of calculus, and rearranging, the derivative of
the right-hand side is:

λ(n− 1)(Wn(bk−l+1, t)− Ln(bk−l+2, t)).

Note that the expression above is positive since

Wn(bk−l+1, t) ≥ Ln(bk−l, t) > Ln(bk−l+2, t).

We establish statement 3 with a similar argument.

Ln(bk−l, t) =

0∫
t

λe−λ(n−1)(τ−t)(Wn(bk−l+1, τ) + (n− 2)Ln(bk−l+1, τ))dτ.

Again using the fundamental theorem of calculus, the derivative of the right-
hand side is

λ((n− 1)Ln(bk−l, t)−Wn(bk−l+1, t)− (n− 2)Ln(bk−l+1, t)).

Therefore

∂

∂t
(Wn(bk−l+1, t)− Ln(bk−l, t)) = λ(n− 1)(Wn(bk−l+1, t)− Ln(bk−l, t))

+ λ(Wn(bk−l+1, t)− Ln(bk−l+2, t))

+ λ(n− 2)(Ln(bk−l+1, t)− Ln(bk−l+2, t)).

All of the terms above are positive, proving statement 3. Statement 4 is proved
in the same manner as claim 1.

e−λ(n−1)tLn(∅, t) =

k−1∑
j=0

hj(t)(n− 1)j(v − bj)
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Note that

∂

∂t
hj(t) = λ

(
hj(t)−

(−λt)j

j!

)
= λ

(
(−1)j

((
j∑
l=0

(λt)l

l!

)
− eλt

)
− (−λt)j

j!

)

= λ

(−1)j+1

 ∞∑
l=j

(λt)l

l!

 < 0

for all t < 0. This then implies that e−λ(n−1)tLn(∅, t) is strictly decreasing in t
for all t < 0.

∂

∂t
Wn(0, t) = λ(n− 1)(Wn(0, t)− Ln(b1, t)).

Now consider the derivative of the value function Ln(∅, t).

∂

∂t
Ln(∅, t) = λnLn(∅, t)− λWn(0, t)− λ(n− 1)Ln(0, t).

Thus

∂

∂t
(Wn(0, t)− Ln(∅, t)) = λn(Wn(0, t)− Ln(∅, t))

+ λ(n− 1)(Ln(0, t)− Ln(b1, t)).

Note that all of the terms in the above expression are positive. This proves
statement 5.

An immediate corollary of lemma above is the following.

Corollary 1. (Single-Crossing Property) Suppose Wn(bk−l+1, t
∗) = Ln(bk−l, t

∗).
Then Wn(bk−l+1, t) > Ln(bk−l, t) for all t > t∗ and Wn(bk−l+1, t) < Ln(bk−l, t)
for all t < t∗. Similarly suppose Wn(0, t∗) = Ln(∅, t∗). Then Wn(0, t) >
Ln(∅, t) for all t > t∗ and Wn(0, t) < Ln(∅, t) for all t < t∗.

Proof. Suppose Wn(bk−l+1, t
∗) = Ln(bk−1, t

∗). Then by the previous lemma,
∂
∂t (W

n(bk−l+1, t
∗)−Ln(bk−l, t

∗)) > 0. This immediately implies thatWn(bk−l+1, t) >
Ln(bk−l, t) for all t > t∗. This proves the first part of the claim. Now suppose
that for some t′ < t∗, Wn(bk−l+1, t

′) ≥ Ln(bk−l, t
′). Because ∂

∂t (W
n(bk−l+1, t

∗)−
Ln(bk−l, t

∗)) > 0, there exists some ε > 0 such that Wn(bk−l+1, t) < Ln(bk−l, t)
for all t ∈ (t∗ − ε, t∗). But then this implies that there exists some t′′ ∈ [t′, t∗)
such that Wn(bk−l+1, t

′′) = Ln(bk−l, t
′′). From what we already proved above,

this means that Wn(bk−l+1, t) > Ln(bk−l, t) for all t > t′′, which is a contradic-
tion. The claim for the value functions Wn(0, t) and Ln(∅, t) can be proved in
exactly the same manner.
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A.2 Proof of Claim 1

Proof of Claim 1: A strategy that at a given history h calls for placing a bid of
b > v is conditionally weakly dominated by a strategy that at h calls for placing
a bid of v if v > P and abstaining from bidding otherwise, and specifies the
same behavioral strategy as the original strategy at any other history. Take now
any history h satisfying the requirements in part (ii) of the statement (player i
is a losing bidder at h, but B < v is consistent with h). For any possible B < v
given h, any continuation strategy that specifies abstaining from bidding at time
t gives at most (v−B)(1− etλi) expected payoff, while a continuation strategy
that calls for incrementally bidding until either becoming the winning bidder or
price reaching v yields at least (v−B)etΣj 6=iλj . Since t > t∗i , the latter expected
payoff is strictly larger. For any possible B ≥ v given the history, a continuation
strategy that calls for incrementally bidding until either becoming the winning
bidder or price reaching v yields a payoff of 0, which is the best payoff the player
can get given that B ≥ v, and hence yields at least weakly larger payoff than
any continuation strategy that specifies not placing a bid at h. This concludes
that any strategy that specifies not placing a bid at h is conditionally weakly
dominated. The above conclude that (i) and (ii) are necessary for a strategy
to be conditionally weakly undominated. For the remainder of the proof, if a
strategy of any player i prescribes placing a bid at an arrival event at some
time t for which i is already the winning bidder, by the prescribed action we
mean the ultimate bid that i places at t following this history (independently
of whether i places lower bids first at t before placing the ultimate bid). This
is only to simplify exposition in the rest of the proof. Let now t ≤ t∗i , and h
be a time t history at which player i has the opportunity to take an action.
Consider any strategy si satisfying (i) and (ii), and assume that there exists
another strategy s′i weakly dominating si, conditional on h. This implies that
there exists a time t′ ≥ t history h′ that is a successor of h (in a weak sense,
that is it can be h itself) at which si and s′i specify different actions and s′i
weakly dominates si, conditional on h′. In particular, there exists a strategy
profile s−i of the other players consistent with h′ such that if other players play
s−i then conditional on h′ s′i yields a strictly higher payoff than si. Since si
satisfies condition (i), i’s expected payoff conditional on h′ is nonnegative when
playing si, therefore it has to be strictly positive when playing s′i (given that
the strategy played by the others is s−i). This in turn implies that if the others
play s−i then at h′ it has to be that P < v, and either i is the winning bidder
or B < v. Next, in order to derive a contradiction, we will show that the above
imply that there is a strategy profile s′−i consistent with h′ for which si yields
a strictly higher payoff, conditional on h′, than s′i. Since at h′ strategies si and
s′i specify different actions, we can have the following possibilities: Possibility 1:
si specifies not placing a bid and and s′i specifies placing a bid of b′. Consider
first the case when i is the winning bidder at h′. Note that it cannot be that
B ≥ v − 1 at h′, since then for any strategy of the others, si and s′i induce the
same path of play until some player other than i places a bid of v or larger.
But in this case player i’s payoff becomes 0 when playing si, and it becomes at

39



most 0 when playing si. The above imply that s′i cannot weakly dominate si,
conditional on h′. Let now B < v − 1 at h′. In this case let s′−i = s−i for all
information sets at all times preceding t′, and for all information sets at times
larger than t′ let it prescribe the following strategy for all players other than i:
bid v − 1 if P < v − 1, and immediately after that bid v if the former bid did
not take over the lead; otherwise do not place any bid. Given this strategy of

the others, player i’s expected payoff conditional on h′ is (v−P )e
t′
∑
j 6=i

λj

(where
P is the winning price at h′) when playing s′i, and strictly higher than that
when playing si. Next consider the case when j 6= i is the winning bidder at
h′. Note that it has to be consistent with h′ that B < v, otherwise the best
expected payoff conditional on h′ that i can get is 0, which is guaranteed by
si, which therefore could not be weakly dominated conditional on h′. Also note
that t′ < t∗, otherwise since si satisfies condition (ii) of the claim, it would
have to specify placing a bid at h′. Given this, for all information sets at all
times preceding t′, let s′−i = s−i, with the exception that whenever s−i specifies
placing a bid at least P , s′−i specifies placing a bid of v − 1. Note that this
implies B = v − 1 at h′. For any information set at all times after t′, let s′−i
specify the following strategies for all the other players: if along the history
leading to the information set the winning bid changed at t′, bid v whenever
P < v; otherwise do not place a bid. Given this strategy of the others, player i’s

expected payoff conditional on h′ is (v−1)e
t′
∑
j 6=i

λj

when playing s′i, while it is at
most (v−1)(1−et∗λi) when playing si, given that si satisfies condition (ii) of the
claim. By the definition of t∗, the latter is strictly higher for t′ < t∗. Possibility
2: si specifies placing a bid of b and and s′i specifies not placing a bid. First, note
that it cannot be that at h′ the winning bidder is i, and B = v−1 (which, since
si satisfies condition (i), implies b = v). This is because then for any strategy
of the others, si and s′i induce the same continuation play until one of the other
players bid v or more. But in the latter case player i’s payoff becomes 0 when
playing si, and it becomes at most 0 when playing s′i. This contradicts that
s′i weakly dominates si conditional on h′. Assume now that at h′ the winning
bidder is i, and B < v − 1. In this case let s′−i = s−i for all information sets at
all times preceding t′, and for times larger than t′ let it prescribe the following
strategy for all players other than i: place a bid of B + 1 whenever P < B + 1,
otherwise abstain from bidding. If the others play s′−i, player i’s expected payoff

conditional on h′ is (v −B)e
t′
∑
j 6=i

λj

+ (v −B − 1)(1− e
t′
∑
j 6=i

λj

) when playing si,
and strictly less than that when playing s′i. Consider now the case when at h′

the winning bidder is j 6= i. Let P be the winning price at h′. In this case, for
all information sets at all times preceding t′, let s′−i = s−i, with the exception
that whenever s−i specifies placing a bid larger than P , s′−i specifies placing a
bid of exactly P . Note that this implies B = P at h′. For all information sets
at all times after t′, s′−i specifies not placing any bid. Then the expected payoff
of i conditional on h′ is exactly v − P when playing si, and strictly less than
that when playing s′i. Possibility 3: both si and s′i specify placing bids, but si
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specifies placing a higher bid. Let b be the bid specified by si, and b′ be the
bid specified by s′i. Note that it cannot be that b′ ≥ v − 1, since then for any
strategies of the others si and s′i induce the same continuation play until one
of the other players bid v or more. But in this case player i’s payoff becomes
0 when playing si, and it becomes at most 0 when playing s′i. This contradicts
that s′i weakly dominates si conditional on h′. Given this, for all information
sets at all times preceding t′, let s′−i = s−i, with the exception that whenever
s−i specifies placing a bid larger than P (the winning price at h′), s′−i specifies
placing a bid of exactly P . For all information sets at all times after t′, s′−i
specifies placing a bid of b′ + 1 if P < b′ + 1, and not placing a bid otherwise.
For this strategy of the others, conditional on h′ the expected payoff of i is

(v − P )e
t′
∑
j 6=i

λj

+ (v − b′ − 1)(1 − e
t′
∑
j 6=i

λj

) when playing si, and strictly less
than that when playing s′i. Possibility 4: both si and s′i specify placing bids,
but si specifies placing a lower bid, labeled b. First, consider the case when the
winning bidder at h′ is i. Notice that in this case it cannot be that b ≥ v − 1
since then for any strategies of the others si and s′i induce the same continuation
play until one of the other players bid v or more. But in this case player i’s
payoff becomes 0 when playing si, and it becomes at most 0 when playing s′i.
This contradicts that s′i weakly dominates si conditional on h′. Given this, let
s′−i = s−i for all information sets at all times preceding t′, and for times larger
than t′ let it prescribe the following strategy for all players other than i: place
a bid of b + 1 when P < b + 1 and the winning bidder is i, and immediately
after this place a bid of v if the previous bid did not take over the lead; do
not place a bid at any other information set. Note that given this strategy of

others, the expected payoff of player i conditional on h′ is (v−P )e
t′
∑
j 6=i

λj

when
playing s′i, and strictly higher than that when playing si, given that si satisfies
property (ii). Next, consider the case when the winning bidder at h′ is j 6= i.
Let b′ be the bid specified by s′i at h′. If b′ > v, for all information sets at all
times preceding t′, let s′−i = s−i, with the exception that whenever s−i specifies
placing a bid of at least P , s′−i specifies placing a bid of v+1. This implies that
player i’s expected payoff conditional on h′ is strictly negative when playing s′−i,
contradicting that the latter weakly dominates s−i conditional on h′. Consider
now b′ ≤ v. Note that this implies b ≤ v − 1. In this case, for all information
sets at all times preceding t′, let s′−i = s−i, with the exception that whenever
s−i specifies placing a bid of at least P , s′−i specifies placing a bid of v − 1.
Not that this implies B = v − 1 at h′. For any information set after t′, let s′−i
specify the following actions: if along the history leading to this information set
at time t′ someone placed a bid of b but did not take over the lead (in particular
the winning price went up to b) then do not place any bids; in any other case
place a bid of v whenever P < v. Given this strategy of the others, if t′ ≥ t∗

then player i’s expected payoff conditional on h′ is exactly 1 when playing si (to
see this, note that since si satisfies condition (ii) of the claim, it has to specify

keeping on bidding at h′ until i is winning at price v−1), while it is e
t′
∑
j 6=i

λj

< 1
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when playing s′i. If t′ < t∗ then player i’s expected payoff conditional on h′ is
at least 1 − et∗λi when playing si, since si satisfies condition (ii) of the claim,

while it is e
t′
∑
j 6=i

λj

when when playing s′i. By the definition of t∗, the latter is
strictly smaller. This concludes that there is no strategy weakly dominating si
conditional on h′.

A.3 Proof of Theorem 1 (n-bidders)

Given a strategy with gradual bidding over the sequence S = {b0, . . . , bk}, we
know from the previous section that the continuation values are given by the
following expressions:

W (bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j)

L(bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l+j)

L(∅, t) = eλ(n−1)t
k−1∑
j=0

(−1)j+1

 ∞∑
l=j+1

(λt)l

l!

 (n− 1)j(v − bj).

Then we can define t∗ as the infimum over all times t at which the following
hold:

W (bk−l+1, t) ≥ L(bk−l, t) for all l = 1, . . . , k, and

W (b0, t) ≥ L(∅, t).

Note that t∗ > −∞, since for every l, W (bk−l+1, t) → 0 as t → −∞ and at all
times t at which W (bk−l+1, t) > L(bk−l, t), L(bk−l, t) is decreasing in t. Thus
the above shows that W (bk−l+1, t) must eventually cross L(bk−l, t), which allows
us to conclude that t∗ > −∞.

If T < t∗, it is clear that no equilibrium involving gradual bidding with no
delays exists as some losing bidders would prefer to not place a bid upon arrival
at some times t < t∗.

If T ≥ t∗, then incentives to underbid hold by construction of the strategies:
On the equilibrium path, the belief of any losing bidder is that the highest
bid is bk−l+1 whenever the price is bk−l. Therefore he has no incentive to bid
anything lower than bk−l+1 because he would remain the losing bidder. Thus it
is a best response for him to simply bid bk−l+2 immediately. At histories off of
the equilibrium path, the losing bidders in a perfect Bayesian equilibrium can
hold any beliefs about the highest bid. In particular, we assume that players
believe that the highest bid is bk−lp+1. This then makes a bid of bk−lp+2 a best
response for any losing bidder. Finally we need to check incentives to overbid.
This is due to the monotonicity of the payoff functions in the price:

L(bk−l, t) > L(bk−l+1, t)
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for all l = 1, . . . , k. This can be checked by simply inspecting the expressions
for the value function of a winning bidder computed above. However the mono-
tonicity of the value functions of the losing bidder simply means that placing
a bid higher than the specified bid only reduces payoffs. This is because either
there are no more bids in which case, the payoffs of the two strategies will be
the same. If there is another bid, then the player becomes a losing bidder at
a higher price. Because this happens with positive probability, it cannot be a
best response for the losing bidder to overbid. �

A.4 Non-Markovian Equilibria with Delays: Additional
Results

Let S = {b1, . . . , bk} be a bidding sequence. We call a bidding sequence regular
if the following assumption holds:

v − bk−l
v − bk−l−1

≤ v − bk−l−1

v − bk−l−2
.

A sufficient condition for the above to hold is if the increments are weakly de-
creasing and thus for example, the completely gradual bidding sequence satisfies
the above property.

Theorem 4. Let S = {b1, . . . , bk} be a regular bidding sequence. Then the
cutoff sequence belonging to a maximally delayed equilibrium satisfies that tl is
decreasing in l for l ∈ {0, 1, ..., k − 2}.

Note that the statement implies that there can only be either one or two
effective cutoffs along the equilibrium path: either t∅ and t0, or only t∅. This is
because players only overbid a winning price of 0 after t0, which is weakly later
than all cutoffs belonging to higher prices, hence bidding from this time on is
gradual with no waiting, just like in a short auction.

Proof: The key step in the proof is the following lemma.

Lemma 4. If S = {b1, . . . , bk} is regular, the continuation values for the losing
bidders conditional on all bidders following the incremental bidding sequence
with no delays over S have the following property:

Ln(bk−l, t)

Ln(bk−l−1, t)
≤ v − bk−l+1

v − bk−l
.

Proof. First note the following continuation values:

Ln(bk−1, t) = 0

Ln(bk−2, t) = −λteλ(n−1)t(v − bk−1)

Ln(bk−3, t) = −λteλ(n−1)t(v − bk−2) +
λ2t2

2
eλ(n−1)t(n− 2)(v − bk−1).
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Then note that

Ln(bk−1, t)

Ln(bk−2, t)
≤ v − bk

v − bk−1
,

Ln(bk−2, t)

Ln(bk−3, t)
≤ v − bk−1

v − bk−2
.

Now suppose that

Ln(bk−l+1, t)

Ln(bk−l, t)
≤ v − bk−l+2

v − bk−l+1
,

Ln(bk−l+2, t)

Ln(bk−l+1, t)
≤ v − bk−l+3

v − bk−l+2
.

Then we can write the value function for the losing bidder as:

Ln(bk−l, t)

v − bk−l+1
= −λteλt(n−1) +

0∫
t

λ(n− 2)e−λ(τ−t)(n−1)L
n(bk−l+1, τ)

v − bk−l+1
dτ

+

0∫
t

0∫
τ

λ2e−λ(s−t)(n−1)(n− 1)
Ln(bk−l+2, s)

v − bk−l+1
dsdτ

≤ −λteλt(n−1) +

0∫
t

λ(n− 2)e−λ(τ−t)(n−1)L
n(bk−l, τ)

v − bk−l
dτ

+

0∫
t

0∫
τ

λ2e−λ(s−t)(n−1)(n− 1)
Ln(bk−l+1, s)

v − bk−l
dsdτ

=
Ln(bk−l−1, t)

v − bk−l
.

This proves the lemma.

Let us now define the cutoff tl in the following way.

eλ(n−1)tl(v − bl+1) = Ln(bl, t
l).

Note that this does not have to be the time at which reversion to truthful bidding
by all players is no longer sufficient to deter a losing bidder from bidding, since
the continuation value used in the definition is not necessarily equal to the actual
continuation value. However, Lemma 4 together with Lemma 3 implies that tl

is decreasing in l for l ∈ {0, ..., k − 2}. This then implies that the continuation
value of a losing bidder when price is bl are correct for the relevant range, that
is for times later than max

j∈{0,...,l}
tj .
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This implies that the above cutoff sequence is indeed the one belonging to a
maximally delayed equilibrium given bidding sequence S, hence in the latter tl

is decreasing in l for l ∈ {1, ..., k − 2}.
Given these cutoffs, we can then define the actual continuation values of the

winning and losing bidders in the same manner as in the proof of theorem 2.

W (bl, t) =

{
Wn(bl, t) if t ≥ tl

Wn(bl, t
l) if t < tl.

L(bl, t) =

{
Ln(bl, t) if t ≥ tl

Ln(bl, t
l if t < tl

for all l = 0, 1, . . . , v − 2. Continuation values at prices bk and bk−1 are defined
as usual, W (bk, t), L(bk, t), L(bk−1, t) = 0 and W (bk−1, t) = Wn(bk−1, t) for all
t. Clearly these definitions above rely on the fact that t0 ≥ t1 ≥ · · · ≥ tk−2.
Furthermore we can define

L̃(∅, t) =

0∫
t

λe−λn(τ−t) (W (0, τ) + (n− 1)L(0, τ)) dτ.

and finally t∅:

L̃(∅, t∅) = eλ(n−1)t∅v.

Then define

L(∅, t) =

{
L̃(∅, t) if t ≥ t∅

L̃(∅, t∅) if t < t∅.

�

The next result establishes that for arbitrary bidding sequences, when the
number of bidders is large enough, maximally delayed equilibria again have
the property that once a bid is placed, cutoffs are monotonically decreasing
in price. This means that when the number of bidders is large, any bidding
sequence admits a structure of equilibrium that is qualitatively similar to that
of a regular bidding sequence. Therefore as we have shown for regular bidding
sequences, the equilibrium path of play in maximally delayed equilibria for any
arbitrary sequence with a large number of bidders is such that all of the delay
occurs at the beginning of the auction at the prices of ∅ and 0 (or only at ∅, if
t0 ≤ t∅).

Theorem 5. Let S = {b1, ..., bk} be a bidding sequence. Then for sufficiently
large n, the cutoff sequence belonging to a maximally delayed equilibrium satisfies

t∅ > t0 > t1 > · · · > tk−2 = −1/λ.
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The proof of this theorem exploits the properties of the functions Ln(bl, t)
and Wn(bl, t), defined as the continuation of a losing and winning bidder con-
ditional on all players playing according to a gradual bidding strategy profile
with no delays.

Let us define the following cutoffs tk−ln :

Ln(bk−l, t
k−l
n ) = (v − bk−l+1)eλ(n−1)tk−l

n .

Proof: Consider the case in which l = 2.

L(bk−2, t) = eλ(n−1)t(−λt)(v − bk−1)

This then implies that tk−2
n = −1/λ for all n. Consider now l = 3.

e−λ(n−1)tL(bk−3, t) = (−λt)(v − bk−2) +
(−λt)2

2
(n− 2)(v − bk−1)

Notice then that e−λ(n−1)tLn(bk−3, t
k−2
n ) > v − bk−2 for all n > 2. This means

that tk−3
n > tk−2

n for all n > 2. Furthermore it is easy to conclude that tk−3
n → 0

from the definition of tk−3
n :

(−λtk−3
n )(v − bk−2) +

(−λtk−3
n )2

2
(n− 2)(v − bk−1) = v − bk−2.

Given the fact that tk−3
n → 0, we must have

n(−λtk−3
n )2 → 2

v − bk−2

v − bk−1
.

Now we induct based on the following inductive hypothesis:

1. lim infn→∞ nj−2(−λtk−jn )j−1 > 0,

2. tk−jn → 0,

3. and tk−2
n < tk−3

n < · · · < tk−ln

for all 2 < j ≤ l and all n ≥ n∗. As we have shown, the above holds for l = 3.
Suppose the above holds for some l. Consider the cutoff tk−l−1

n . First note that
since lim infn→∞ nl−2(−λtk−ln )l−1 > 0 and tk−ln → 0,

lim inf
n→∞

n(−λtk−ln ) = +∞.

Therefore
lim inf

n→∞
nl−1(−λtk−ln )l = +∞.

Observe the following expression:

e−λ(n−1)tk−l
n L(bk−l−1, t

k−l
n ) =

l∑
j=0

(−λtk−ln )j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l−1+j)

>
(−λtk−ln )l

l!

(
(n− 1)l

n
+

(−1)l+1

n

)
(v − bk−1)

→+∞.
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This then implies that for n sufficiently large, tk−l−1
n > tk−ln since e−λ(n−1)tL(bk−l−1, t)

is a decreasing function due to Lemma 3. Then because of the second hypoth-
esis, this implies that tk−l−1

n → 0. Now consider the following limit:

lim inf
n→∞

nl−1(−λtk−l−1
n )l.

Suppose that the above is zero. Then it must be that

lim inf
n→∞

nj−1(−λtk−l−1
n )j = 0

for all j ≤ l which implies that

(v − bk−l) = lim inf
n→∞

e−λ(n−1)tk−l−1
n L(bk−l−1, t

k−l−1
n )

= lim inf
n→∞

l∑
j=0

(−λtk−l−1
n )j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l−1+j)

=0,

a contradiction. Therefore we must have lim infn→∞ nl−1(−λtk−l−1
n )l > 0.

Lastly, we examine the cutoff when p = ∅, when no players have bid. This
must be treated separately due to the different form that L(∅, t) takes. Define
t∅n as the cutoff when

L(∅, t∅n) = veλ(n−1)t∅n .

Note that

e−λ(n−1)t0nL(∅, t0n) =

k−1∑
j=0

(−1)j+1

 ∞∑
l=j+1

(λt0n)l

l!

 (n− 1)j(v − bj)

≥ (−1)k

( ∞∑
l=k

(λt0n)l

l!

)
(n− 1)k−1(v − bk−1).

Since lim infn→∞ nk−2(−t0n)k−1 > 0 and t0n → 0, we must have

lim inf
n→∞

nk−1(−t0n)k = +∞.

Then we know that

(−1)k

( ∞∑
l=k

(λt0n)l

l!

)
(n− 1)k−1(v − bk−1)

≥(n− 1)k−1(−λt0n)k
(

1

k!
+

λt0n
(k + 1)!

)
(v − bk−1)

The limit infimum of the last expression then goes to +∞ as n→∞. Thus

lim inf
n→∞

e−λ(n−1)t0nL(∅, t0n) = +∞.
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Thus we must have t∅n > t0n for n sufficiently large. In conclusion, we have shown
that for n sufficiently large,

−1/λ = tk−2
n < tk−3

n < · · · < t0n < t∅n.

A.5 Markovian Equilibria with Delays for Large n: Mono-
tonicity of Cutoffs

With the closed form expressions for the value functions given by equations (1),
(2), and (3), we can also study how the structure of equilibria characterized
in Subsection 4.3 changes as we vary n. As in section A.4, we are particularly
interested in the structure of equilibria when the number of bidders is large
relative to k, the number of bids in a bid sequence. Let us study cutoffs tk−ln

where
Wn(bk−l+1, t

k−l
n ) = Ln(bk−l, t

k−l
n )

where the value functions above represent the continuation values at time t in
an auction with n bidders bidding incrementally over S = {b1, . . . , bk} with no
delays. To analyze these cutoffs, we use a similar method of proof used in the
Section A.4 to study the following expressions for large values of n.

Wn(bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j)

Ln(bk−l, t) = eλ(n−1)t
l−1∑
j=0

(−λt)j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l+j).

Lemma 5. Let S = {b1, . . . , bk} be a bid sequence. Then there exists some n∗

such that
t∅n > t0n > · · · > tk−2

n = −1/λ

for all n > n∗.

Proof. First we claim that cutoffs above ∅ are decreasing in price. We proceed
by induction. Consider the case in which l = 2.

Wn(bk−1, t
k−2
n )− Ln(bk−2, t

k−2
n ) = (v − bk−1)(1 + λtk−2

n )eλ(n−1)tk−2
n

So tk−2
n = −1/λ for all n. But then consider

(Wn(bk−2, t
k−2
n )− Ln(bk−3, t

k−2
n ))e−λ(n−1)t1n

=(v − bk−2)(1 + λtk−2
n )− (−λtk−2

n )2

2
(n− 2)(v − bk−1)

<0
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when n > 2. Thus for sufficiently large n, tk−2
n < tk−3

n due to Corollary 1.
Furthermore we can conclude that tk−3

n → 0 and that limn→∞ n(−λtk−3
n )2 =

(v − bk−2)/(v − bk−1) > 0. Now we induct. Suppose that there exists some n∗

such that

1. lim infn→∞ nj−2(−λtk−jn )j−1 > 0,

2. lim supn→∞ nj−2(−λtk−jn )j−1 <∞,

3. tk−jn → 0,

4. and tk−2
n < tk−3

n < · · · < tk−ln

for all 2 < j ≤ l and all n ≥ n∗. Obviously, as we have already shown, all of
the assumptions above hold for l = 3. Suppose the above hypotheses hold for
l ≥ 3. Consider the cutoff tk−l−1

n . Then

lim inf
n→∞

nl−2(−λtk−ln )l−1

tln
= lim inf

n→∞
(−λntk−ln )l−2 = +∞.

Thus
lim
n→∞

−λntk−ln = +∞

which implies
lim
n→∞

nl−1(−λtk−ln )l = +∞.

Then consider the expression

e−λ(n−1)tk−l
n
(
Wn(bk−l, t

k−l
n )− Ln(bk−(l+1), t

k−l
n )

)
We first show that the above is negative for sufficiently large n. The above
expression is

l−1∑
j=0

(−λtk−ln )j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j)

−
l∑

j=0

(−λtk−ln )j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l+j−1)

The above is less than or equal to

v − bk−l +

l−1∑
j=2

(−λtk−(j+1)
n )j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j)

− (−λtk−ln )l

l!

(
(n− 1)l

n
+

(−1)l+1

n

)
(v − bk−1)

for sufficiently large n. But by the inductive hypothesis the above goes to −∞
as n→∞. This then implies that for sufficiently large n,

Wn(bk−l, t
k−l
n )− Ln(bk−l−1, t

k−l
n ) < 0.
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Therefore tk−l−1
n > tk−ln for sufficiently large n due to Corollary 1. Now we need

to prove the other statements used in the inductive hypothesis. Clearly since
tk−ln → 0, we must have tk−l−1

n → 0. Consider

lim inf
n→∞

nl−1(−λtk−l−1
n )l.

Suppose that this expression is 0. Then

0 = lim inf
n→∞

n
(l−1)2

l (−λtk−l−1
n )l−1 ≥ lim inf

n→∞
nl−2(−λtk−l−1

n )l−1

Iterating the argument we obtain

lim inf
n→∞

nj−1(−λtk−l−1
n )j = 0

for all 1 ≤ j ≤ l. By definition

l−1∑
j=0

(−λtk−l−1
n )j

j!

(
(n− 1)j

n
+

(−1)j(n− 1)

n

)
(v − bk−l+j)

−
l∑

j=0

(−λtk−l−1
n )j

j!

(
(n− 1)j

n
+

(−1)j+1

n

)
(v − bk−l+j−1) = 0

for all n. But taking the limit infimum of both sides of the equation above
implies that (v − bk−l) = 0, which is a contradiction. So we must have

lim inf
n→∞

nl−1(−λtk−l−1
n )l > 0.

Showing that the limit supremum is finite can be derived in a similar manner.
This concludes the induction. Note that the above argument implies some other
useful facts:

1. 0 < lim infn→∞ nj−2(−λtk−jn )j−1 ≤ lim supn→∞ nj−2(−λtk−jn )j−1 < +∞,

2. tk−jn → 0,

3. and there exists some n∗ such that −1/λ = tk−2
n < tk−3

n < · · · < t0n for all
n ≥ n∗,

for all j = 3, . . . , k. This will be used below, for analyzing the case of p = ∅.
Next we show that monotonicity extends to the cutoff belonging to ∅. Because
the functional form of L(∅, t) is a bit different from the other value functions for
losing bidders, it must be treated independently. However a similar argument
can be used to characterize the qualitative nature of the cutoff t∅n where

Wn(0, t∅n) = Ln(∅, t∅n).
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Consider the expression:

e−λ(n−1)t0nLn(∅, t0n) ≥ (−1)k

( ∞∑
l=k

(λt0n)l

l!

)
(n− 1)k−1(v − bk−1)

= (n− 1)k−1(v − bk−1)
(−λt0n)k

k!

∞∑
l=k

(λt0n)l−kk!

l!

Note that
∞∑
l=k

(λt0n)l−kk!

l!
> 1 +

λt0n
k + 1

→ 1

as n→∞. Furthermore we know that

0 < lim inf
n→∞

nk−2(−t0n)k−1

and that t0n → 0. Therefore

lim inf
n→∞

nk−1(−t0n)k = +∞.

Together all of the above observations above imply that

lim inf
n→∞

e−λ(n−1)t0nLn(∅, t0n) = +∞.

But we can also show that lim supn→∞ e−λ(n−1)t0nWn(0, t0n) < +∞. Using the
closed form expressions for the value functions again, we have

e−λ(n−1)t0nWn(0, t0n) =

k−1∑
j=0

(−λt0n)j

j!

(
(n− 1)j + (−1)j(n− 1)

n

)
(v − bj)

≤ (v − b0) +

k−1∑
j=2

(−λtk−j−1
n )j

j!

(
(n− 1)j + (−1)j(n− 1)

n

)
(v − bj)

Then taking the limit supremum of both sides and using the fact that

lim sup
n→∞

nj−1(−tk−j−1
n )j < +∞

for all j = 2, . . . , k − 1 immediately implies that

lim sup
n→∞

e−λ(n−1)t0nWn(0, t0n) < +∞.

This implies that t∅n > t0n for n sufficiently large. Thus we have shown that for
n sufficiently large, we must have

tk−2
n < tk−3

n < · · · < t0n < t∅n.
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B Comparative Statics

B.1 Changes in v

Let us first derive a useful expression for the seller’s expected revenue:

0∫
t∅v

λne−λn(τ−t∅v) (v − (n− 1)L(0, τ)−W (0, τ)) dτ

=
(

1− eλnt
∅
v

)
v − nL(∅, t∅v)

= v
(

1− eλnt
∅
v − neλ(n−1)t∅v

)
.

Before proceeding further, we first prove a lemma that provides some useful
properties of relevant value functions. Define the following functions Ŵ v(0, τ)
and L̂v(0, τ) as the continuation values of a winning and losing bidder at a
current price of 0 and current winning bid of 1 with evaluation v in which
players play a completely gradual bidding strategy with no delays at all times
τ ′ > τ .

Lemma 6. Ŵ v(0, τ) + (n− 1)L̂v(0, τ) is increasing in τ .

Proof. Note that

Ŵ v(0, τ) + (n− 1)L̂v(0, τ) = eλ(n−1)τ
v∑
k=0

(−λ(n− 1)τ)k

k!
(v − k).

But observe that the function

τ 7→ eτ
v∑
k=0

(−τ)k

k!
(v − k)

is increasing in τ when τ < 0 since the derivative with respect to τ of the above
is given by

eτ
v∑
k=0

(−τ)k

k!
(v − k)− eτ

v∑
k=1

(−τ)k−1

(k − 1)!
(v − k)

= eτ
v∑
k=0

(−τ)k

k!
(v − k)− eτ

v−1∑
k=0

(−τ)k

k!
(v − k − 1)

= eτ
v−1∑
k=0

(−τ)k

k!
> 0.

Thus Ŵ v(0, τ) + (n− 1)L̂v(0, τ) is also increasing in τ .
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Lemma 7. The following hold for the maximally delayed equilibrium corre-
sponding to the completely gradual bidding sequence: (i) t0v increases as v in-
creases, and it converges to a limit strictly below 0 as v →∞; (ii) similarly, t∅v
is increasing in v and converges to a limit strictly below 0 as v →∞.

Proof. Recall that t0v is defined by:

eλ(n−1)t0v (v − 1) = L(0, t0v).

Therefore

1 =

v−1∑
j=0

(−λt0v)j

j!

(
(n− 1)j + (−1)j+1

n

(v − j)
v − 1

)
.

Note that the right hand side is a decreasing function in t0v and increasing in v.
Hence, t0v must be increasing in v. Next, note that

L(0, t0v) =

0∫
t0v

λ(n− 1)e−λ(n−1)(τ−t0v)

(
1

n− 1
W (1, τ) +

n− 2

n− 1
L(1, τ)

)
dτ

<

0∫
t0

λ(n− 1)e−λ(n−1)(τ−t0v) v − 1

n− 1
dτ

=
(

1− eλ(n−1)t0v

) v − 1

n− 1
.

Thus
L(0, t0v)

v − 1
<
(

1− eλ(n−1)t0v

) 1

n− 1
.

If t0v → 0 as v →∞, then the above inequality would imply that

L(0, t0v)

v − 1
→ 0.

However by definition, we had

L(0, t0v)

v − 1
= eλ(n−1)t0v → 1

which is a contradiction. We now use the monotonicity of the cutoff t∅v in v to
show that t∅v < t∅v+1. Define the function L̃v+1(∅, t∅v) as the continuation payoff
to a player when all players play according to the equilibrium strategy when the
evaluation is v when in reality the value is v + 1. Now suppose that t∅v+1 ≤ t∅v.
Then note that

L̃v+1(∅, t∅v) =

0∫
t∅v

λne−λn(τ−t∅v)
(
Ŵ v+1(0,max{τ, t0v}) + (n− 1)L̂v+1(0,max{τ, t0v})

)
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whereas

Lv+1(∅, t∅v) =

0∫
t∅v

λne−λn(τ−t∅v)
(
Ŵ v+1(0,max{τ, t0v+1}) + (n− 1)L̂v+1(0,max{τ, t0v+1})

)
.

Because t0v < t0v+1 and using Lemma 6, observe that L̃v+1(∅, t∅v) < Lv+1(∅, t∅v).
We now consider the values L̃v+1(∅, t∅v)/(v + 1) and Lv(∅, t∅v)/v. Under the
strategy corresponding to the value function L̃v+1(∅, t∅v) players play exactly
the same way as in the strategy corresponding to Lv(∅, t∅v). Then conditional
on any sequence of arrivals, if the outcome is such that he does not win under
the L̃ strategy, he will also not win in the equilibrium corresponding to the
value function L. If instead conditional on a sequence of arrivals, the payoff
of the bidder is strictly positive, then the outcome payoff divided by v + 1 is
(x + 1)/(v + 1) whereas the outcome payoff in the L equilibrium is x/v. But
note that (x + 1)/(v + 1) > x/v. Thus we must have L̃v+1(∅, t∅v)/(v + 1) >
Lv(∅, t∅v)/v since the two strategies induce the same probability measure over
arrival sequences. This means that

Lv+1(∅, t∅v)
v + 1

≥ L̃v+1(∅, t∅v)
v + 1

>
Lv(∅, t∅v)

v
= eλ(n−1)t∅v .

Thus t∅v+1 > t∅v and we have established the monotonicity claim. Finally we

show that limv→∞ t∅v < 0. The proof is very similar to the proof for the case of
t0v. Suppose that t∅v → 0. Then

L(∅, t∅v) ≤
(

1− eλnt
∅
v

)
v

and so
L(∅, t∅v)

v
≤
(

1− eλnt
∅
v

)
→ 0.

However eλ(n−1)t∅v → 1 but this is a contradiction since by definition L(∅, t∅v) =

veλ(n−1)t∅v . This concludes the proof.

Proof of Claim 3: Below we compare the seller’s expected revenue at v+ 1 and
v. Let us define the continuation value function L̃v(∅, t∅v+1) as the continuation
value function of a bidder conditional on there having been no bids and all
bidders following the strategy corresponding to the equilibrium with value v+1
after time t∅v+1 when in reality all bidders have valuation v. First we consider

the case in which t∅v < t∅v+1. Using the expression for the expected revenue of
a seller, we can write the difference between the expected revenue at consumer
evaluation of v + 1 and the expected revenue at v:

∆Πv ≡ (1− eλnt
∅
v+1)(v + 1)− nLv+1(∅, t∅v+1)− (1− eλnt

∅
v )v + nLv(∅, t∅v)

= (1− eλnt
∅
v+1) + v(eλnt

∅
v − eλnt

∅
v+1)− n(Lv+1(∅, t∅v+1)− Lv(∅, t∅v))

= (1− eλnt
∅
v+1) + v(eλnt

∅
v − eλnt

∅
v+1)− n(Lv+1(∅, t∅v+1)− L̃v(∅, t∅v+1)) + n(Lv(∅, t∅v)− L̃v(∅, t∅v+1))

= −veλnt
∅
v+1(1− e−λn(t∅v+1−t

∅
v)) + n(Lv(∅, t∅v)− L̃v(∅, t∅v+1)).
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Then note that

nLv(∅, t∅v+1) =

0∫
t∅v+1

λne−λn(τ−t∅v)
(
Ŵ v(0,max{τ, t0v}) + (n− 1)L̂v(0,max{τ, t0v})

)
dτ.

On the other hand,

nL̃v(∅, t∅v+1) =

0∫
t∅v+1

λne−λn(τ−t∅v)
(
Ŵ v(0,max{τ, t0v+1}) + (n− 1)L̂v(0,max{τ, t0v+1})

)
dτ.

Then from Lemma 6 and because t0v < t0v+1, we have nLv(∅, t∅v+1) ≤ nL̃v(∅, t∅v+1).
Therefore, we can conclude that

∆Πv ≤ −veλnt
∅
v+1(1− e−λn(t∅v+1−t

∅
v)) + n(Lv(∅, t∅v)− Lv(∅, t∅v+1)).

Then to show that ∆Πv ≤ 0, it is sufficient to show that

n(Lv(∅, t∅v)− Lv(∅, t∅v+1)) ≤ veλnt
∅
v+1(1− e−λn(t∅v+1−t

∅
v)). (4)

Because t∅v < t∅v+1, we can rewrite nLv(∅, t∅v) in the following way:

nLv(∅, t∅v) = e−λn(t∅v+1−t
∅
v)nLv(∅, t∅v+1)

+

t∅v+1∫
t∅v

λne−λn(τ−t∅v)
(
Ŵ v(0,max{τ, t0v}) + (n− 1)L̂v(0,max{τ, t0v})

)
dτ

≤ e−λn(t∅v+1−t
∅
v)nLv(∅, t∅v+1) +

(
1− e−λn(t∅v+1−t

∅
v)
)(

Ŵ v(0, t∗) + (n− 1)L̂v(0, t∗)
)

where t∗ = max{t∅v+1, t
0
v} and the last inequality again uses Lemma 6. Therefore

inequality (4) holds if

Ŵ v(0, t∗) + (n− 1)L̂v(0, t∗) ≤ veλnt
∅
v+1 + nLv(∅, t∅v+1). (5)

First if t∗ = t∅v+1, then the above holds since

veλnt
∅
v+1 + nLv(∅, t∅v+1) ≥ veλnt

∅
v+1 +

(
1− eλnt

∅
v+1

)(
Ŵ v(0, t∅v+1) + (n− 1)L̂v(0, t∅v+1)

)
≥ Ŵ v(0, t∅v+1) + (n− 1)L̂v(0, t∅v+1).

On the other hand if t∗ > t∅v+1, then the above inequality also holds because

veλnt
∅
v+1 + nLv(∅, t∅v+1) = veλnt

∅
v+1 +

(
1− e−λn(t0v−t

∅
v+1)

)(
Ŵ v(0, t0v) + (n− 1)L̂v(0, t0v)

)
+ e−λn(t0v−t

∅
v+1)nLv(∅, t0v).
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Thus inequality (5) holds if

Ŵ v(0, t0v) + (n− 1)L̂v(0, t0v) ≤ veλnt
0
v + nLv(∅, t0v).

Again from Lemma 6, we can conclude that

veλnt
0
v + nLv(∅, t0v) ≥ veλnt

0
v +

(
1− eλnt

0
v

)(
Ŵ v(0, t0v) + (n− 1)L̂v(0, t0v)

)
> Ŵ v(0, t0v) + (n− 1)L̂v(0, t0v).

Thus we have shown that for a fixed n, ∆Πv ≤ 0 for all v. This concludes
the proof of the monotonicity result. Because expected revenue is decreasing
in v and is always positive, it must trivially converge to some π∗ ≥ 0. The
reason that π∗ is strictly positive is that by Lemma 7, limv→∞max{t∅v, t0v} < 0.
Therefore the probability of the price reaching 1 cannot converge to zero and
so limiting expected revenue π∗ must be strictly positive. This concludes the
proof.

C Extensions

C.1 Asymmetric Values

Proof of Proposition 1: We construct an equilibrium characterized by two cutoff
points, tH∅ and tH0 > tH∅ . The low type’s equilibrium strategy is to bid 1,
whenever p = ∅ and to bid vL whenever p ≥ 0. The high type’s equilibrium
strategy is to bid vH iff p = ∅ and t ≥ tH∅ or p = 0 and t ≥ tH0 . We begin by
solving for the high type’s cutoff times. Given the strategies described above,
the high type’s continuation values at p = 0, 1 are given by,

WH(p, t) = vH − vL + (vL − p)eλt

LH(0, t) =

∫ 0

t

λe−λ(τ−t)WH(1, τ)dτ

= (vH − vL)(1− eλt)− λt(vL − 1)eλt.

When p = ∅, at tH∅ the high type is indifferent between making a bid of vL and

delaying bidding. Therefore, tH∅ must satisfy

WH(0, tH∅ ) =

∫ 0

tH∅

λe−2λ(τ−tH∅ ) (WH(0, τ) + LH(0, τ)) dτ.

Note that such a tH∅ must exist for the following reason. The value functions
are given by the following expressions:

WH(0, tH∅ ) = (vH − vL) + vLe
λtH∅ ,

LH(∅, tH∅ ) = (vH − vL + eλt
H
∅ )(1− eλt

H
∅ )− eλt

H
∅ λtH∅ (vL − 1).
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It follows that:

e−λt (WH(0, t)− LH(∅, t)) = vH + λt(vL − 1)− (1− eλt) (6)

which is clearly increasing in t. Therefore a unique tH∅ exists since tH∅ is a root

of the expression above. Thus this shows that WH(0, t) > LH(∅, t) for all t > tH∅
and WH(0, tH∅ ) ≤ LH(∅, tH∅ ) for all t ≤ tH∅ , establishing incentive compatibility
for the high type at all times at a price of ∅. Similarly, because the low type
bidder does not raise his bid while holding the current high bid at p = 0,

WH(1, tH0 ) =

∫ 0

tH0

λe−λ(τ−tH0 )WH(1, τ)dτ

= (vH − vL)(1− eλt
H
0 )− λtH0 (vL − 1)eλt

H
0 (7)

which yields tH0 = − 1
λ
vH−1
vL−1 . Note again that this is unique since

e−λt(WH(1, t)− LH(0, t)) = vH + λt(vL − 1)− 1

is strictly increasing in t. By comparing expressions (6) and (7), we can see that
t∅H < t0H . Moreover we have shown that WH(1, t) > LH(0, t) for all t > t0H and
WH(1, t) ≤ LH(0, t) for all t ≤ t0H , again establishing incentive compatibility
for the high type a t a price of 0. Now consider the incentives of the low type.
At a price of p = 0 when the low type is the losing bidder, the highest bid is
already vL and so the low type bidder is indifferent between placing a bid of vL
or not bidding at all. Next consider a price of p = ∅. We show that the low type
strictly prefers to bid 1 immediately upon arrival at all times at a price of p = ∅.
When t ≥ tH0 , the high type’s strategy going forward is independent of the low
type’s actions and therefore the low type must strictly prefer to place a bid,
as it strictly increases the likelihood of winning without affecting the expected
payoff from winning. Therefore the continuation value to the low type of being
a winning bidder at time tH0 and a price of p = 0 must be strictly bigger than
the continuation value to being a losing bidder at a price of p = ∅:

WL(0, tH0 ) > LL(∅, tH0 ) > 0.

But now note that the continuation value to being a winning bidder at a price
of p = 0 is equal to WL(0, tH0 ) at all times t < tH0 since the high type only
becomes active after time tH0 . But note that the continuation value to being a
losing bidder at p = ∅ for the low type is a convex combination of LL(∅, tH0 ),
0, and WL(0, tH0 ) with strictly positive probability on LL(∅, tH0 ) and 0. This
however means that WL(0, t) must be strictly greater than LL(∅, t) at all times.
Therefore this establishes that the low type’s best response at ∅ is to play vL
upon arrival. This concludes the proof.

C.2 Asymmetric Information

Proof of Proposition 2: Consider the following strategies: for t < t∗ < 0, high
types bid vL whenever p = ∅, they do not make a bid at p = 0 and bid vH
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whenever p > 0. For t ≥ t∗, high types that do not hold the high bid place a
bid of vH at any price and high types holding the highest bid do not place bids.
Low types bid vL if p = ∅ and t < t∗, and bid vL if they do not hold the winning
bid, t ≥ t∗ and p < vL. It follows immediately that the above strategies are
best responses to each other for t > t∗. A high type bidder that holds the high
bid does not benefit from increasing her bid as she has outbid the low type and
cannot outbid a high type. Similarly, a low type with a high bid cannot benefit
from raising their bid. We now solve for t∗ and show that strategies are optimal
for t < t∗. Let vq(t) denote the expected value of a high type (who does not
currently hold the highest bid) who decides to make a bid at time t and p = 0
given bidders follow the above strategy in the future. Then

vnq (t) = (vH − vL)
(
q + (1− q)eλt

)n−1
.

Note that vnq (t) is an increasing function of t. Now let V nq (t) denote the expected
continuation value of a high type at time t and price 0 (who does not currently
hold the highest bid) who plans to bid upon the next arrival according to the
strategy specified above given that there are n − 1 other players each with
probability q of being a low type.

V nq (t) =

0∫
t

λ(n− 1)e−λ(n−1)(τ−t)
(

1

n− 1
vnq (τ) +

n− 2

n− 1
qV n−1

q (τ)

)
dτ

=

0∫
t

λe−λ(n−1)(τ−t) (vnq (τ) + (n− 2)qV n−1
q (τ)

)
dτ.19

We can then solve for V nq (t) by inducting on n to show that

V nq (t) = (vH − vL)
(
q + (1− q)eλt

)n−2 (
q − eλt (q + (1− q)λt)

)
.

Thus

V nq (t∗) = vnq (t∗) ⇔ t∗ = − 1

λ(1− q)
.

It is easy to check that Vq(t) > vq(t) for all t < t∗ and that Vq(t) > vq(t) for
all t > t∗. Therefore we have checked the high type’s incentives at a price of
p = 0. For a losing low type bidder at a price of 0, he is completely indifferent
between bidding and not bidding. Thus his strategy is incentive compatible.
Let us now check incentives at a price p > 0. Prices p 6= 0, vL, vH do not occur
on the equilibrium path and so we can specify beliefs to place probability one
on the winning opponent being a high type and having bid vH at such histories.
Therefore all players are completely indifferent between bidding and not bidding
at such a history. If p = vL, vH , then the low type is again completely indifferent

19Note that if a high type arrives before the bidder obtains an arrival, then the bidder
obtains a payoff of 0 and so those events do not enter into the integral.
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between bidding and not bidding. For the high type, if the price is p = vL, he
weakly prefers to bid vH today regardless of his beliefs about the highest bid.
If the price is p = vH , then he is again indifferent. Finally, if p = ∅, then both
types are completely indifferent between any positive bid that they place since at
a price of 0, players do not bid until time t∗ and simply bid their valuation after
t ≥ t∗. Furthermore all players strictly prefer to become a winning bidder at
all times t ≤ t∗ than not placing a bid since delaying bidding only increases the
chance of never becoming a winning bidder without any additional benefits.
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