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Abstract
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1 Introduction

Since the seminal work of May (1954), a growing number of papers have proposed models of multi-

self decision-making, with the primary motivation of accommodating context-dependent behavior

(thereby relaxing the axiom of Independence of Irrelevant Alternatives, or IIA, which requires that

if an alternative is chosen from a set, it is also chosen from any subset in which it is contained).1,2

Formal models of multi-self decision-making include among others Kalai, Rubinstein and Spiegler

(2002), Fudenberg and Levine (2006), Manzini and Mariotti (2007), and Green and Hojman (2009)

in economics; Tversky (1969), Shafir, Simonson and Tversky (1993) and Tversky and Simonson

(1993) in psychology; and Kivetz, Netzer and Srinivasan (2004) in marketing. A parallel literature,

including for example Apps and Rees (1988), Chiappori (1988), Browning and Chiappori (1998)

and Cherchye, De Rock and Vermeulen (2007), studies interpersonal aggregation of preferences in

a household or a larger community.

Many papers in the literature assume a particular method of aggregating preferences, but do

not put a priori restrictions on the number of selves involved in the decision. Each of these practices

is potentially justified. In interpersonal contexts, the decision-making procedure can be observable,

or suggested by theoretical considerations. In intrapersonal contexts, theoretical considerations,

experimental data, or neuroscience research can suggest a certain method of preference aggregation

for different selves, or motivations, of the individual. At the same time, the researcher might not

know the number of selves relevant for the decision; such data limitations include the possibility of

unobserved selves, or at the extreme, having no available data on the number of selves.

In this paper, we examine whether specifying a certain method of preference aggregation gener-

ates testable predictions on choice behavior without putting an a priori restriction on the number

of selves. For this, we need to know what choice behaviors can be explained by a given number

of selves. For some aggregators, this is easy to determine. For example, if the decision maker

(DM)’s method of aggregating the utilities of her selves is simple utilitarianism, then the set of

choice functions is exactly the set of rational choice functions — regardless of the number of selves.

But what if, in analogy to models of relative utilitarianism (e.g., Karni 1998), each self’s utility

is normalized by her range of utilities over the choice set? Or if the aggregator is the “normalized

contextual concavity model” proposed in Kivetz et al. (2004)?

In order to investigate this question, we lay out in Section 2 a framework that incorporates var-

ious models of multi-self decision-making which have been proposed in the literature. In particular,

1The IIA condition is also known as Sen’s α (Sen 1971) and for single-valued choice, is equivalent to being able
to describe choices as the maximization of a strict, complete and transitive preference.

2Another approach allows for context-dependence by considering extended choice situations where behavior can
depend on unspecified ancillary conditions or frames (Bernheim and Rangel 2007, Salant and Rubinstein 2008).
While information effects can explain some context dependence (Sen 1993), they cannot explain many systematic
violations of IIA (Tversky and Simonson 1993).
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we model the DM or group as a collection of selves (of possibly different types) and an aggregation

rule f (decision-making method) which combines the selves’ utility functions in a possibly context-

dependent way. That is, given a choice set A, and selves S, an aggregator f specifies an aggregate

utility for every alternative in A. Each aggregator in the framework captures a particular theory of

multi-self decision-making. We examine a broad class of aggregators characterized by five simple

properties from social choice theory, and show that many models of multi-self decision-making pro-

posed in the existing literature can be formally translated into an aggregator satisfying our axioms.

Since our results apply for a broad class of multi-self models, we provide a meta-analysis of various

models proposed in the literature, and offer a way to characterize the explanatory power of such

models.

An important feature of the set of aggregators that we focus on is that aggregation can depend on

cardinal information in the selves’ utilities. This is partly motivated by the fact that many existing

models of multi-self decision-making make use of cardinal information embedded in different selves’

utility functions. Furthermore, the use of cardinal information (intensity of preferences) is natural

to assume in intrapersonal decision-making, and in certain interpersonal decision-making situations

as well, such as household decisions. A second feature of the aggregators we consider, related to

cardinality, is the possibility of compromise among selves. As opposed to the models provided in

Kalai et al. (2002) and Cherepanov, Feddersen and Sandroni (forthcoming), but in accordance with

models proposed in Tversky (1969), Tversky and Kahneman (1991), Kivetz et al. (2004), Fudenberg

and Levine (2006), Green and Hojman (2009) and others, all of the selves in our framework are

“active” for every possible choice set. However, the weights allocated to different selves by the

aggregator can depend on the choice set. This means that the model can capture behavior as

in Fudenberg and Levine (2006), where a long-run self must exert more costly self control when

more appealing options are available to a short-run self; or Shafir et al. (1993), where the primary

rationales for purchasing may depend on the set of available products.

Our primary goal is to investigate the behaviors a model of multi-self decision-making can

rationalize (explain). Formally, the DM’s behavior is described by a choice function c that specifies

the alternative she selects from each subset of the grand set of alternatives X. For a given model

of aggregation f , the DM’s choice behavior is rationalized by a finite collection of selves S if she

selects the unique maximizer of the selves’ aggregate utility from every choice set. The DM’s choice

behavior need not satisfy IIA. In Section 3 we define a measure of a choice function’s irrationality:

the number of IIA violations it exhibits.

Our main results, in Section 4 and Section 5, establish that for a large class of multi-self models,

including various models proposed in the existing literature, if there is no restriction on the number

of selves then the model can rationalize any choice function. For example, in the important class of

scale-invariant aggregators (for which the unit of utility measurement does not change the ordinal

rankings in the aggregation), whenever two simple types of irrational behavior can be rationalized
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on a triple of alternatives, the aggregator can rationalize any behavior over any set of alternatives.

Furthermore, we show that in a formal sense, aggregators satisfying the above property are generic;

therefore, one generically cannot have testable predictions without restricting the number of selves.

The lesson to draw from this is that to offer a refutable theory of multi-self decision-making, it is not

enough to impose a concrete method of aggregating different selves’ utilities; it is also important

to fix the number of selves a priori (e.g., as in a “dual-self” model) in order to restrict the set

of rationalizable behaviors. This need not be the case outside the class of models studied here:

Manzini and Mariotti (2007) and de Clippel and Eliaz (2012), for example, have shown that their

models can explain only certain types of irrational behaviors, even when using arbitrarily many

rationales. We establish our theorems by finding a simple linear relationship between the number

of selves in the model, and the number of IIA violations the choice function can have while still

guaranteeing that it can be rationalized. Our results can be seen as drawing a connection between

the complexity of a rationalization and the extent to which the choice behavior in question deviates

from rationality, as measured by the number of IIA violations.3

Our results differ from Kalai et al. (2002), who examine the complexity of a rationalization as

a function of the number of alternatives available. They say a collection of preference orderings

rationalizes a choice function if the choice from each set is optimal for some preference, and show

it suffices to posit as many selves as there are alternatives to explain any behavior. To rationalize

a choice function, they assign each utility function the sets over which it acts as dictator, which

amounts to modifying the method of aggregation. By contrast, this paper studies the set of be-

haviors rationalizable by a fixed aggregator. Our results also differ from those in the household

choice literature, such as Chiappori (1988), Browning and Chiappori (1998), Chiappori and Eke-

land (2006), and Cherchye, De Rock and Vermeulen (2007, 2009, 2011). These works focus on

rationalizing demand in a market environment. The results they obtain are nonparametric in the

sense that they do not rely on the particular functional specification chosen for the preferences or

for the intra-household allocation process. Our finite (though abstract) choice setting is closer in

spirit to that of Cherchye, De Rock and Vermeulen, who study a global revealed preference frame-

work assuming a finite set of demand and price observations. Green and Hojman (2009) also study

a class of aggregation methods. Because they model a DM as a probability distribution over all

possible ordinal preference rankings, their framework is difficult to compare to models with a dis-

crete number of cardinal selves, but is related to models in the voting literature (e.g., Saari 1999).

Extending results from that literature, they show that if choice is determined by a voting rule

satisfying a monotonicity property, then their model can explain any choice behavior.4 The rest of

their paper focuses on welfare analysis.

3Measuring the complexity of a rationalization by the number of selves is akin to measuring the complexity of an
automata by the number of states (e.g., see Salant (2007) in the context of decision-making).

4This paper’s result on rationalization is independent of their monotonicity theorem.
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2 Framework

We observe a collective choice behavior on a finite set of alternatives X. Denote by P (X) the set

of nonempty subsets of X. The collective choice function c : P (X) → X identifies the alternative

c(A) ∈ A chosen from each A ∈ P (X). A rationalization of the collective choice function consists

of a collection of selves and a model of aggregation that combines the utilities of different selves

in a possibly menu-dependent way into an aggregate utility function. In an interpersonal context,

selves represent different individuals. In an intrapersonal context, selves represent the decision

maker’s conflicting motivations or priorities. The aggregator corresponds to a method of “sorting

out” priorities of different selves to come to a decision.

In order for our framework to encompass as many of the multi-self models proposed in the

existing literature as possible, we permit selves to have “types” and consider potentially asymmetric

aggregators that treat selves differently according to their type. Formally, a model of aggregation

(f, T ) specifies a set T of the possible types a self may take, and a function f that gives the aggregate

utility for every alternative a in every choice set A, for any (finite) grand set of alternatives X

and any collection of selves defined over X and T . A single self s is given by a pair (u, t), where

u : X → R is a utility function and t ∈ T is the self’s type. Hence, each self is an element of RX×T .

A collection of selves S is an unordered list of selves.5 Formally, for a given grand set of alternatives

X and set of possible types T , a collection of selves S is an element of S(X,T ) = ∪∞n=1Sn(X,T ),

where Sn(X,T ) is the set of all unordered lists of selves over X that contain n elements. We denote

the number of selves in a particular collection S by |S|, or simply n when no confusion would arise.6

The aggregator f specifies an aggregate utility for every alternative a in every choice set A,

given any (finite) grand set of alternatives X, set of types T , and collection of selves S. Formally,

the domain over which f is defined is {a,A, S,X, T |X ∈ X , S ∈ S(X,T ), A ∈ P (X), a ∈ A}, where

X is the set of conceivable finite grand sets of alternatives. Since the choice set A is one of the

arguments of the function, f aggregates the utilities of the selves in a possibly context-dependent

way.7 An aggregation rule may be seen as a particular theory of how selves are activated by choice

sets: the aggregator determines the weight each self receives on the choice set as a function of its

utility levels over the alternatives. Formally, the grand set of alternatives X is an argument of the

aggregator, not only because the evaluation of an alternative a ∈ A might depend on alternatives

outside the choice set A, but also because this enables a “comparative static”: we study how the

number of selves needed to rationalize a choice rule depends on the size of X. For simplicity, we

5In combinatorics this object is also referred to as a multiset.
6Though aggregation in our framework is cardinal, the model has the “ordinal” feature that there can be many

“equivalent” representations of an aggregator in this context. In particular, if f rationalizes the choice function c
using the selves S, then so does any increasing transformation of f . Similarly, given any representation S and f , one
can obtain an equivalent representation by applying a monotone transformation of utilities in S, if a corresponding
transformation is applied to the aggregation function f as well.

7We can permit aggregators with restricted domains: let R̂X be a convex subset of RX and let Sn = (×n
i=1R̂X)×T .
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will suppress notational dependence of f on X and T , writing simply f(a,A, S), whenever doing

so would not cause confusion.

Given a model, we say that a collection of selves rationalizes a choice function if from every

choice set, the alternative that maximizes the aggregated utility is precisely the one selected by the

choice function.8 Note that this definition requires a unique maximizer of aggregate utility.

Definition 1. A model (f, T ) rationalizes a choice function c(·) on X if there exists a finite

collection of selves S ∈ S(X,T ) such that for every A ∈ P (X), c(A) = arg maxa∈A f(a,A, S).

2.1 The class of models studied

We study a class F of models of multi-self aggregation satisfying the following properties, most

of which are familiar from the theory of social choice. These properties are satisfied by several

previously proposed multi-self models. In the resulting class of models, aggregation of utilities is

cardinal and the framing effect of a choice set operates only through the utility levels of the different

selves. Before introducing these properties, it will be useful to define the following notation. For

any collections of selves S = 〈s1, . . . , s|S|〉 and S′ = 〈s′1, . . . , s′|S′|〉 in S(X,T ), we denote by 〈S, S′〉
the combined collection (s1, . . . , s|S|, s

′
1, . . . , s

′
|S′|) ∈ S(X,T ).

P1 (Neutrality). For any permutation π : X → X, f(a,A, S) = f(π(a), π(A), 〈(u ◦ π−1, t)〉(u,t)∈S).

P2 (Consistency). For any s = (u, t), u(a) ≥ u(b) if and only if f(a,A, s) ≥ f(b, A, s).

P3 (Reinforcement). If both f(a,A, S) ≥ f(b, A, S) and f(a,A, S′) ≥ f(b, A, S′) then

f(a,A, 〈S, S′〉) ≥ f(b, A,X, 〈S, S′〉), with strict inequality if one of the above is strict.

P4 (Continuity to near-indifferent additions). If f(a,A, S) > f(b, A, S), then for any k ∈ Z there

exists δ > 0 such that f(a,A, 〈S, S′〉) > f(b, A, 〈S, S′〉) for any S′ ∈ Sk(X) with the property that

maxa,b∈A,A⊆X,s′∈S′ |f(a,A, s′)− f(b, A, s′)| < δ.

P5 (Profile equivalence). If u(a) = u(a′) for all (u, t) ∈ S then f(b, A ∪ {a}, S) = f(b, A ∪ {a′}, S)

for all b ∈ A.

While these properties are not without loss of generality, they are satisfied by many multi-self

models that have been proposed in the literature. Neutrality implies that the names of alternatives

do not affect their ranking (only utilities affect rankings). Consistency requires respecting the pref-

erence of a lone self. Reinforcement requires that if two separate collections of selves S and S′ each

8We note that an aggregator f encodes additional information, such as the ranking of unchosen alternatives in each
set, that might be observable using a larger data set than that provided by a choice function. However, using only
simple revealed preference on the choice from a menu, only the best choice from each set (i.e., the choice function) is
elicited in light of the potential menu-dependence of choices.
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prefer the alternative a to the alternative b, then the combined collection of selves, obtained by

merging collections of selves S′ and S, also prefers a to b. Consistency and reinforcement together

imply Pareto-optimality. Continuity to near-indifferent additions introduces a cardinal feature into

the method of aggregation. It does not require that f (or the ordering of the alternatives implied

by f) be continuous in the utilities of selves, for a fixed number of selves; it only requires that

if a collection of selves leads to a strict aggregate preference for a over b, then that preference is

not overturned when adding selves for which the aggregate utility difference between alternatives

is sufficiently small. That is, preference intensity matters. In view of consistency and reinforce-

ment, assuming P4 is weaker than assuming full continuity.9 Finally, profile equivalence says that

aggregation is only affected by the set of available utility levels of the alternatives in a given choice

set. In particular, choice is not affected by which of two alternatives is adjoined to a set, as long

as those two alternatives yield exactly the same utility to all of the selves. This means that adding

“duplicate” elements to a set, which replicate the exact utility levels of some element already in

the set, does not affect the rankings of alternatives. However, increasing the size of a set can still

affect the decision-maker when the new elements change the set of possible utility levels.

For ease of exposition, in the main text we also restrict attention to aggregators for which the

aggregate utility of an alternative in a choice set A is independent of alternatives outside of A. (See

Supplementary Appendix D for an extension of our results without imposing this assumption).

P6 (Independence of unavailable alternatives). Let X,X ′ be two grand sets of alternatives and con-

sider any A ⊆ X ∩X ′. Take any collection of types (t1, . . . , tn) and any two collections (u1, . . . , un)

and (u′1, . . . , u
′
n) of utility functions over X and X ′, respectively. If ui(x) = u′i(x) for each x ∈ A

and each i, then the aggregator satisfies f(·, A, 〈(ui, ti)〉i, X, T ) = f(·, A, 〈(u′i, ti)〉i, X ′, T ).

2.2 Examples of aggregators

The following are examples of context-dependent aggregators satisfying P1-P6, that are equivalent

or closely related to models proposed in the existing literature. In the first four examples, the

aggregator treats all types symmetrically, so we may take the type set T to be a singleton.

Example 1 - Utilitarianism. The aggregate utility of an alternative a in a choice set A is given

by
∑

(u,t)∈S u(a). Note that the utility of an alternative is independent of the choice set within

which it is evaluated.

Example 2 - Generalization of Tversky (1969). The aggregate utility of an alternative a in a

choice set A is
∑

(u,t)∈S Φ(maxb∈A u(b)−minb∈A u(b))u(a), where the contribution of a self to the

aggregate utility depends via Φ on the range of u over choice set A. For binary choice sets, this

9P2 means that a fully indifferent self leads to aggregate indifference, and iterating this and using P3 means that
adding a finite number of indifferent selves doesn’t affect an existing strict preference; if we were to assume full
continuity on top of this, P4 would be implied.
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reduces to the additive difference model of Tversky (1969), which was proposed to explain intransi-

tive pairwise choice through the aggregation of criterion-by-criterion comparisons of alternatives.10

If Φ in that model is increasing, utility functions with a greater intensity of preference over the set

A receive greater weight in the aggregate utility. The case Φ(x) = x is Kőszegi and Szeidl (2012)’s

focus-weighted model. If Φ is decreasing, the model may be seen as a context-dependent version of

the models of relative utilitarianism in Karni (1998), Dhillon and Mertens (1999), and Segal (2000),

where a DM’s weight in society is normalized by her utility range over the grand set.

Example 3 - Nash bargaining solution with an endogenous disagreement point. The

aggregate utility of an alternative a in a choice set A is
∏

(u,t)∈S(κ+ u(a)−mina′∈A u(a′)), where

κ is any positive constant to ensure each term is strictly positive.

This example, which specifies the worst outcome as the disagreement point, is similar to Kaneko

and Nakamura (1979), although they assume the utility of the worst outcome is the same in all

choice sets. A more general theory of context-dependent disagreement points in the bargaining

solution is offered by Conley, McLean and Wilkie (1997).

Example 4 - Loss aversion of Tversky and Kahneman (1991), with endogenous refer-

ence point. The aggregate utility of an alternative a in a choice setA is given by
∑

(u,t)∈Sm
(
u(a)

)
+∑

u∈U `

(
u(a) − r({u(a′)}a′∈A)

)
, where r(·) determines the reference point against which u(a) is

evaluated; m(·) captures the impact of absolute valuations on aggregate utility; and the loss aversion

function `(·) satisfies the properties proposed by Tversky and Kahneman (1991): steeper disutility

from losses than utility from gains, and weakly diminishing sensitivity.

The above model has been applied in various forms. In Orhun (2009), each u can be interpreted

as the valuation of alternatives under some attribute. Orhun (2009) finds the optimal product

line for a model corresponding to the case where m is linear, ` is the standard kinked-linear loss

aversion function (that is, `(x) = x for x > 0, `(x) = λx for x < 0 and some λ > 1), and r is

a weighted average of valuations. Kivetz et al. (2004) consider goods (e.g., laptops) which have

defined attribute levels (e.g., processor speed) and posit utility levels (“partworths”) for a given

attribute. Their contextual concavity model specifies r(·) ≡ min(·), m(·) ≡ 0, and `(·) ≡ (·)ρ for

some concavity parameter ρ. They also introduce a type-dependent version of their model, where

the concavity parameter ρ depends on the type of attribute to which the self corresponds.

Fudenberg and Levine (2006) propose a dual-self impulse control model with a long-run self

exerting costly self-control over a short-run self. The reduced-form model they derive has an

analogous representation in our framework, with two selves: the long-run self, with utility given

by ulr (the expected present value of the utility stream induced by the choice in the present), and

10Tversky (1969) accounts for intransitive pairwise choice behavior by positing utilities v1, v2, . . . , vn and an odd
φ : R → R such that x � y if and only if

∑n
i=1 φ(vi(xi) − vi(yi)) > 0. Observe that a is preferred to b in the pair

{a, b} if and only if
∑

u∈U Φ(|u(a)− u(b)|)(u(a)− u(b)), where each summand is an odd function of u(a)− u(b).
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the short-run self, with utility function usr (the present period consumption utility).11 Using our

terminology, there are two types of selves, long run (lr) and short run (sr), and their reduced form

representation assigns to alternative a the aggregate utility ulr(a)−C(a), where term C(a) depends

on the attainable utility levels for the short-run self and is labeled as the cost of self-control. For

example, using Fudenberg and Levine (2006)’s parametrization, C(a) = γ
(

max
a′∈A

usr(a′)−usr(a)
)ψ

.

More generally, there may be multiple long-run considerations and multiple short-run temptations.

Example 5 - Costly self-control aggregators. The set of possible types is T = {lr, sr}
and the aggregate utility of an alternative a in a choice set A is f(a,A, S) =

∑
(u,lr)∈S u(a) −∑

(u,sr)∈S γ
(

max
a′∈A

u(a′)−u(a)
)ψ
. Of course, given the utilitarian aggregation of the long-run selves,

they could equivalently be represented using a single utility function.

3 Counting IIA violations

The examples of decision rules presented in the previous section violate the Independence of Irrel-

evant Alternatives (IIA) because they are context-dependent. IIA requires that if a ∈ A ⊂ B and

c(B) = a then c(A) = a. This says that if an alternative is chosen from a set, then it should be

chosen from any subset in which it is contained. It is well known that a choice function can be

rationalized as the maximization of a single preference relation if and only if it has no violations of

IIA. In the next section we connect the set of choice functions that an aggregator can rationalize

with n selves to the number of IIA violations that a choice function exhibits. To do this, we formally

define an accounting procedure for the number of IIA violations.

The number of IIA violations can be determined straightforwardly for choice functions over

three-element sets; e.g., if the choice over pairs is transitive but the second-best element according

to the pairs is selected from the triple, there is one violation of IIA. For a larger set of alternatives,

there are different plausible ways to define the number of violations. For example, suppose that

c({a, b, c, d, e, f}) = d

c({a, b, c, d, e}) = b

c({a, b, c, d}) = b

c({b, c, d}) = c.

In light of c({a, b, c, d, e, f}) = d, IIA dictates that the last three choices should be d (but they are

11The long-run self’s utility is equal to the short-run self’s utility plus the expected continuation value induced by
the choice. If the latter can take any value, then ulr is not restricted by the short-run utility usr. If continuation
values cannot be arbitrary (for example they have to be nonnegative) then usr restricts the possible values of ulr,
hence U has a restricted domain. In Fudenberg and Levine (2006) the utility functions also depend on a state variable
y. Here we suppress this variable, instead make the choice set explicit.
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not). In light of c({a, b, c, d, e}) = b, IIA dictates that the choice from {b, c, d} should be b (but it

is not), and the IIA implication for {b, c, d} is again violated in light of c({a, b, c, d}) = b. Hence,

one way of counting would indicate five IIA violations with respect to the above four choice sets.

However, according to our counting procedure, there are two IIA violations in this example: only

the choices from {a, b, c, d, e} and {b, c, d} are associated with violations. The reason is that while

c({a, b, c, d}) = b does contradict c({a, b, c, d, e, f}) = d, the intermediate choice c({a, b, c, d, e}) = b

itself implies by IIA that c({a, b, c, d}) = b. The idea is that one “resets” the point from which the

IIA implication must hold: if c(B) is chosen from B but is not chosen from A ⊂ B, then for all

subsets of A in which c(A) is contained, one expects c(A) to continue being chosen. With this idea

in mind, our accounting procedure counts the number of such resets, associating an IIA violation

with a choice set when it is the largest set whose choice violates the IIA implication coming from

a superset.

Definition 2 (IIA violation). The set A causes an IIA violation under the choice function c(·)
if (1) there exists B such that A ⊂ B and c(B) ∈ A \ {c(A)}, and (2) for every A′ such that

A ⊂ A′ ⊂ B, c(A′) 6∈ A.

Then, the total number of IIA violations is defined in the natural way.

Definition 3 (Number of IIA violations). The total number of IIA violations of a choice function

c(·) is given by IIA(c) = #{A ∈ P (X) | A causes an IIA violation}.

The sketch of proof for our main result in Section 5 illustrates the connection between this

definition and our rationalization procedure. There are other plausible measures for the number of

IIA violations implied by a choice function. One alternative measure would be the minimal number

of sets at which the choice function would have to be changed to make it rational. This measure

can in general be either larger or smaller than our measure of the number of IIA violations.12

4 Scale-invariant models

We begin by introducing our results for a special class F∗ of type-independent aggregators satisfying

P1-P6 and taking the form f(a,A, S) =
∑

(u,t)∈S g(a, {u(a′)}a′∈A)), where the function g satisfies

g(a, {αu(a′)}a′∈A) = φ(α)g(a, {u(a′)}a′∈A) for all α ∈ R and some invertible and odd φ : R → R.

12Indeed, suppose that pairwise choices exhibit the transitive ranking a preferred to b preferred to c. Under our
measure, there is one violation of IIA if c({a, b, c}) = b, which is defeated once in the pair {b, c}, and two violations
of IIA if c({a, b, c}) = c, which is defeated twice. The alternative measure counts one violation either way. To see
that the alternative measure can also be larger, consider the choice function over {a, b, c, d, e} which chooses the
alphabetically-lowest alternative in all sets, except that b is chosen in three-element sets in which it is contained as
well as from the pair {a, b}. The alternative measure counts four violations (e.g., one could switch choices on the sets
{a, b, c}, {a, b, d}, {a, b, e}, and {a, b} to a), while ours counts three (not considering {a, b} a violation).
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This says the unit in which the preference intensity of different selves is measured does not affect

rankings. This class includes utilitarianism as well as various menu-dependent variations. As

previously noted, utilitarianism explains only rational choice behavior. This section shows that

being able to explain only a limited set of behaviors is a nongeneric feature of aggregators in this

class.

Consider the following model of reference-dependent aggregation in F∗.

Example 6 - Simple reference dependence. The aggregate utility of an alternative a in a choice

set A is
∑

(u,t)∈S(u(a)−mean u(A))ρ, where ρ is an odd integer and mean u(A) is a geometric or

arithmetic mean over the set {u(a′)}a′∈A. This is a reference-dependent variation of the CRRA

form, where the origin is shifted.

The reference dependence in Example 6 permits that model to rationalize a much wider array

of behaviors than can utilitarianism. To understand why, let us first examine choice behavior over

only three alternatives. There are three possible kinds of irrational choice functions defined over

a three-element set. One possibility is transitive choice, where the second-best element (from the

transitive ranking) is chosen from the triple; another is transitive choice, where the worst element

is chosen from the triple; and the third is intransitive choice. Using the model in Example 6, it is

easy to construct rationalizations for all three of these behaviors.

The first part of the following theorem shows that if a model of aggregation in F∗ can rationalize

the last two irrational behaviors over a triple of alternatives, then it can rationalize any choice

function defined over any space of alternatives. The second part of the theorem shows that a

generic aggregator in F∗ (including Example 6) can rationalize any choice behavior with a uniform

bound on the number of utility functions needed. To describe the metric for which genericity is

defined, note that by scale invariance there is a natural bijection (simply by scaling the utility

functions inputted) between (1) models in F∗ applied to pairs and triples of elements, and (2) the

set of pairs of operators Ω = {O1, O2 | O1 : ∆2 → R2, O2 : ∆3 → R3}, where ∆2,∆3 are the 2- and

3-dimensional simplices, respectively. The distance between two such pairs (O1, O2) and (O′1, O
′
2)

is defined as maxi=1,2 supx∈Ri |Oi(x)−O′i(x)|.

Theorem 1. Let X be a finite grand set of alternatives. Then:

(i) Take any model in F∗ and any x, y, z ∈ X. If the model can rationalize both (1) intransitive

choice over x, y, z and (2) transitive choice over x, y, z where the worst pairwise element is best

in the triple {x, y, z}, then the model can rationalize any choice function c defined over X.

(ii) The set of models in F∗ that can rationalize any choice function c using at most 1 + 5 · IIA(c)

utility functions is open and dense.

The proof of this theorem appears in the Appendix, and is discussed in the next section.

Theorem 1 formalizes the sense in which only being able to explain rational choice behavior is fragile.

10



Once certain types of irrational behaviors can be explained over three alternatives, an additive and

scale-invariant model can rationalize any choice behavior with sufficiently many selves. Moreover,

the ability to explain any behavior is generic in this class, with at most five “good reasons” needed

for every “mistake” made. Note that the result gives a lower bound on the set of behaviors a generic

aggregator in F∗ can rationalize, thereby providing a linear connection between the complexity of

the observed behavior (as measured by the number of IIA violations) and the degree of freedom in

the model (as measured by the number of utility functions). Given n utility functions, a generic

aggregator in F∗ can rationalize any choice function c, defined on any finite grand set of alternatives

X, that has at most n−1
5 IIA violations. Thus, in spite of having a structured form, essentially

any aggregator in F∗ can rationalize any choice function with sufficiently many utility functions.

In other words, a model of decision-making satisfying the above properties must put a priori

restrictions on the number of utility functions in order to be falsifiable.

Given a model of aggregation and any triple of alternatives, it is very easy to check whether

the model can rationalize the two irrational behaviors described in part (i) of Theorem 1. But the

proof of Theorem 1 also reveals a simple sufficient condition for checking whether a model f is of

the generic type in part (ii). It suffices to find a single self defined over a triple {x, y, z} for which

f “stretches” the utility differences over pairs,

f(x, {x, z}, s)− f(z, {x, z}, s) 6=

f(x, {x, y}, s)− f(y, {x, y}, s) + f(y, {y, z}, s)− f(y, {y, z}, s),

and for which f ’s evaluation of alternatives in the triple is not fixed by the pairwise rankings,

f(x, {x, y, z}, s)− f(y, {x, y, z}, s) + f(x, {x, y, z}, s)− f(z, {x, y, z}, s) 6=

f(x, {x, y}, s)− f(y, {x, y}, s) + f(x, {x, z}, s)− f(z, {x, z}, s).

For example, defining the above self using the utility function u(y) = 4 > u(z) = 2 > u(x) = 1

shows that the model in Example 6 using an arithmetic mean is in the generic class. By contrast,

utilitarianism and generalizations of the form f(a,A, s) = u(a) +h(A), where the choice set cannot

change intensity of preference within a set, fail the sufficient condition (and, in fact, explain only

rational choice). The proof shows that the sufficient condition is satisfied generically. Nonetheless,

it is not necessary – even aggregators that fail to satisfy the condition may be able to rationalize

all choice behaviors. As seen from our upcoming results, the model of Example 2 using linear Φ

can rationalize any behavior with five utility functions per IIA violation, but fails the sufficient

condition.

11



5 A rationalization theorem and procedure

We begin with an illustrative example before presenting our main result. Recall the model in

Example 2, where the aggregate utility of an alternative a ∈ A is

f(a,A, S) =
∑

(u,t)∈S

Φ(max
b∈A

u(b)−min
b∈A

u(b))u(a)

for some monotonic function Φ. Let us suppose Φ is increasing, and examine how this aggregator
behaves on an arbitrary three-element set of alternatives {a, b, c}. In particular, define a collection

S of five selves having the following five utility functions defined on {a, b, c} (in each column, the

alternative on the left receives the utility number to its right):

u1 u2 u3 u4 u5

b 2

c 1

a 0

b 2

a 1

c 0

c 2

b 1

a 0

a, c 2

b 0

a 2

b, c 0

It is easy to verify that a is chosen from {a, b}. Indeed, f(a, {a, b}, S) = 4Φ(2) + Φ(1) and

f(b, {a, b}, U) = 2Φ(2) + 3Φ(1). Hence f(a, {a, b}, S) > f(b, {a, b}, S) since Φ(2) > Φ(1). In

any other choice set, all alternatives have the same aggregate utility:

f(a, {a, c}, S) = f(c, {a, c}, S) = 2Φ(0) + Φ(1) + 2Φ(2),

f(b, {b, c}, S) = f(c, {b, c}, S) = 3Φ(1) + 2Φ(2),

f(a, {a, b, c}, S) = f(b, {a, b, c}, S) = f(c, {a, b, c}, S) = 5Φ(2).

That is, under the collection of selves S, alternative a receives strictly higher aggregate utility than
b in the choice set {a, b}, and there is complete indifference in all other choice problems. We will

call such a collection S defined on a three-alternative set {a, b, c} a triple-basis for this aggregator

f . Triple-bases can serve as building blocks for rationalizations of choice functions on arbitrary

spaces of alternatives. To illustrate, take X = {x1, x2, . . . , xn} and define the choice function c(·)
as selecting the alternative with the smallest index in every choice set, with the exception that

c({xi, xj}) = xj for one pair i < j. This choice function has one IIA violation, corresponding to

the set {xi, xj}. Using the triple basis above, we construct a collection of five selves S{xi,xj} having

the following utility functions over X:

u1 u2 u3 u4 u5

xi 2

X \ {xi, xj} 1

xj 0

xi 2

xj 1

X \ {xi, xj} 0

X \ {xi, xj} 2

xi 1

xj 0

X \ {xi} 2

xi 0

xj 2

X \ {xj} 0
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This is constructed by letting the choice from {xi, xj}, which is xj , play the role of a in the triple-

basis; letting the unchosen alternatives in {xi, xj}, which is only xi, play the role of b; and letting

the alternatives outside {xi, xj}, which consists of X \ {xi, xj}, play the role of c.

Using S{xi,xj}, how does f evaluate the alternatives in each choice set A ⊆ X? Since any

x ∈ X \ {xi, xj} has the same utility as c in the calculations above, it is easy to see f(·, A, S{xi,xj})
is constant for any set A 6= {xi, xj}. Since xj plays the role of a and xi plays the role of b, the

previous calculations imply that f(xj , {xi, xj}, S{xi,xj}) > f(xi, {xi, xj}, S{xi,xj}). Thus, the utility

functions in S{xi,xj} rationalize the choice from {xi, xj} and have no impact on other choice sets.

Since the collection S{xi,xj} has implications only for the IIA violation {xi, xj}, one needs an

additional self to rationalize the remaining “rational” choices. We construct a final self s∗ whose

utility function u∗ has sufficiently small range to not overturn any strict preferences induced from

S{xi,xj}, and which has the ranking u∗(x1) > u∗(x2) > · · · > u∗(xn) derived from standard revealed

preference. By construction, the selves 〈s∗, S{xi,xj}〉 rationalize c(·).

5.1 Rationalizability result

Observe that the triple basis S given above would still be a triple-basis for the generalized additive

difference model if we were to scale all the utilities by a common constant. Loosely speaking, this

means that for any δ, the collection of selves S rationalizes being indifferent among all alternatives

in subsets of {a, b, c} except for having a δ-amount of strict preference within one pair. This is a

property we term triple-solvability, and is formally defined below for any model of aggregation.

Definition 4. Given a triple {a, b, c} and model (f, T ), the collection of selves S ∈ S({a, b, c, }, T )

is a triple-basis if f(a, {a, b}, S) > f(b, {a, b}, S) and f(·, A, S) is constant for all other A ⊆ {a, b, c}.
The model (f, T ) is triple-solvable with k utility functions if for every δ > 0, there is a triple-basis

S ∈ Sk({a, b, c}, T ) with maxa,b∈A,A⊆{a,b,c},s∈S |f(a,A, s)− f(b, A, s)| < δ.

Given a model, it is easy to check for the existence of a triple-basis. Indeed, triple bases can be

found for the models featured earlier.13 For scale-invariant aggregators, which satisfy the property

that measuring utilities in a different unit does not change the ordering implied by the aggregator,

checking the property is particularly simple, since it then suffices to construct one triple-basis which

13Solvability of the simple reference dependence model will follow from the sufficient condition it satisfies. For
the case of the contextual concavity model of Kivetz et al. (2004), the following is a triple basis for any ρ 6=
1: u1(a) = 4, u1(b) = 3, u1(c) = 1, u2(a) = 3, u2(b) = 1, u2(c) = 2, u3(a) = 3, u3(b) = 4, u3(c) = 1, u4(a) =
1, u4(b) = u4(c) = 3, u5(a) = 2, u5(b) = 1, u5(c) = 3, u6(a) = 1, u6(b) = 2, u6(c) = 4. For the case of loss
aversion with kinked linear ` and parameter 2, the following is a triple basis (there is some rounding error): u1(a) =
−2.112, u1(b) = −1.275, u1(c) = 7.225, u2(a) = 0, u2(b) = 1.445, u2(c) = 1, u3(a) = 6, u3(b) = 7.225, u3(c) =
4, u4(a) = −4.766, u4(b) = −2.938, u4(c) = 0, u5(a) = 5, u5(b) = −5.981, u5(c) = 2.814. For bargaining with
endogenous disagreement point, the following is a triple basis (there is some rounding error): u1(a) = 2.847, u1(b) =
1, u1(c) = 7.634, u2(a) = 0, u2(b) = 4.288, u2(c) = 1, u3(a) = 6, u3(b) = −.129, u3(c) = 4, u4(a) = −4.651, u4(b) =
−.949, u4(c) = 0, u5(a) = 5, u5(b) = −1.619, u5(c) = −15.8.
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can be scaled as needed. More generally, it is easy to see from our construction that it suffices for

there to be triple-bases using only |X| − 2 δ’s, where each is smaller than the amount of strict

preference under the previous δ’s. It turns out that triple solvability holds broadly among the class

of models featured here, and in fact models in the class F∗ generically satisfy this property. The

fact that these examples illustrate various models of multi-self decision-making proposed in the

literature suggests that this property, which can be checked simply by looking at choice behavior

on three-element sets, holds broadly. As our next result shows, this behavioral property has strong

implications for the explanatory power of a model.

Theorem 2. Suppose the model (f, T ) ∈ F is triple-solvable with kf selves. Then, for any choice

function c, defined on any finite grand set of alternatives X, no more than 1 + kf · IIA(c) selves

are needed to rationalize c.

We sketch below the proof of Theorem 2, describing our general rationalization method and its

connection to our definition of an IIA violation. Note that an alternative statement of the result

is as follows: using n selves, the model (f, T ) can rationalize any choice function c, defined on any

finite grand set of alternatives X, which has at most n−1
kf

IIA violations. Hence, the result also

gives a lower bound on the set of rationalizable behaviors for a fixed number of selves, providing

a linear connection between the number of IIA violations and the degree of freedom in the model

(as measured by the number of selves). In Supplementary Appendix B, we apply this result to

understand a generalized Strotzian model: a DM chooses a menu knowing her choice from the

menu is a compromise among multiple motivations. Behavior that is interpreted differently by the

literature on choice over menus can arise from “anticipated” IIA violations.

Note that for each model (f, T ), the proportionality constant kf is independent of the size of the

alternative space X, and can be calculated using any triple of alternatives (it is simply the number

of selves in a triple basis). This means that the number of selves that are sufficient to rationalize

a choice function on the alternative space X does not increase if the choice function is extended to

a larger alternative space X̂ in a manner such that no additional IIA violations are created. This

formalizes the sense in which the size of the rationalization depends directly on the complexity of

the behavior and not the size of the alternative space; the size of the alternative space matters only

in the sense that it bounds the number of IIA violations that are possible.

Sketch of proof: a universal rationalization method. Suppose f is triple-solvable with kf

utility functions. Given an arbitrary X and any choice function c defined on X, the procedure works

as follows. We examine all possible choice sets in X from smallest to largest, first going through all

choice sets of size two, then all choice sets of size three, etc. We ignore any choice set that does not

cause an IIA violation. For each choice set A causing an IIA violation, the construction creates a

collection of selves SA whose utility functions, defined on X, correspond to those of a triple basis:

c(A) plays the role of the preferred element a in {a, b}, A \ {c(A)} plays the role of the unchosen
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element b in this pair, and X \ A plays the role of the third element c. The properties P1 and P5

(neutrality and profile equivalence) imply that the selves SA behave similarly to the triple basis:

1. Under the model, the selves SA imply an aggregate strict preference for c(A) in every subset

of A in which it is contained; and

2. The selves SA are completely indifferent between all options for all other choice sets; that is,

sets not containing c(A) or sets containing some element of X \A.

Remember that a set A causes an IIA violation if there is a superset B such that c(B) ∈ A\{c(A)},
and there is no set in between A and B (in terms of containment) which has an IIA implication

for A. When we rationalize the choice from A using the selves SA, there is a “trickle down”

effect: following IIA, those selves continue to prefer c(A) in subsets of A. Another IIA violation

may occur for some subset of A′ ⊂ A, where c(A) is available but not chosen. In the recursive

procedure, the selves SA
′

corresponding to the IIA violation in the smaller set A′ are constructed

first. Upon reaching the set A, the triple-basis used to generate SA must be indifferent enough over

the alternatives so that the trickle-down effect of SA does not overturn the strict preference of SA
′
.

This is possible by P4 (continuity to near-indifferent additions). Since the selves SA only induce

strict aggregate preference in subsets of A which contain c(A), P3 (reinforcement) implies they do

not affect the aggregate preference over alternatives in other sets. In particular, the selves SA do

not interfere with selves constructed for any other IIA violations. Similarly, the selves SA
′

do not

interfere with the choice from larger sets, such as A or X. Of course, since the selves constructed

for IIA violations have no implications for larger sets (such as X), there must be some self which

accounts for those remaining choices as well. The construction is completed by creating an extra

self s∗ which, using P4, is indifferent enough never to overturn any strict preferences from selves

associated with IIA violations. Using P2 (consistency), this self is constructed via standard revealed

preference, by allocating the highest utility to c(X), the next highest utility to X \ {c(X)}, etc.

To summarize, since there are IIA(c) violations in the observed choice behavior, and each triple

basis has kf selves, this procedure thus generates 1 + kf · IIA(c) selves. This collection of selves

rationalizes the observed choice behavior c(·) under the model. As shown more formally in the

appendix, the selves generated for a set which causes an IIA violation ensure that the choice from

that set is indeed picked under the model. Furthermore, their only other effect is to ensure that

particular alternative continues to be picked in subsets in which it is contained – unless there is

a subset which causes another IIA violation. In that case, selves are constructed which overturn

any aggregate preferences coming from larger sets. All “rational” choices which are not otherwise

covered by the selves corresponding to IIA violations are implied by the final, rational self s∗.14

14While our goal is to show that any behavior can be rationalized with sufficiently many selves, it is easy see that
the above construction also goes through using a refinement of our definition of IIA violations, showing even more
behaviors are rationalizable with a given number of selves. This refinement says a set A (which would have otherwise
been a violation) does not count as one if all the minimal supersets of A that cause an IIA violation also choose c(A).
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It is easy to see that the proposed rationalization procedure can be modified to generate ra-

tionalizations of choice correspondences, by extending our definition of IIA violations for choice

functions to count both violations of Sen’s α and Sen’s β (axioms that, when taken together, are

equivalent to rational choice behavior for correspondences).

Theorem 1, for scale-invariant and type-independent aggregators, is proved in five steps. The

first is knowing that if f is triple-solvable with k selves, we can rationalize any choice function c

with 1+k ·IIA(c) selves. This is simply Theorem 2. The next step is showing that if a certain matrix

– constructed by permuting possible aggregate utility differences given various rankings of three

alternatives a, b and c – has a nonzero determinant, then the aggregator f is triple-solvable. Next,

we prove part (i) by showing that if the two types of irrational behaviors can be explained, then

the above matrix has nonzero determinant. To prove part (ii), we first show that if the sufficient

condition described after Theorem 1 is satisfied, then the above matrix has nonzero determinant

and the aggregator is triple-solvable with five utility functions. Finally, we prove the sufficient

condition is generically satisfied. For intuition on why the bound is five, notice that checking

whether a collection constitutes a triple basis requires checking five aggregate utility differences:

the aggregate utility difference between any two pairs of alternatives within the set {a, b, c}, and the

aggregate utility difference between the alternatives within each of the three pairs {a, b}, {b, c}, and

{a, c}. It turns out that a generic model in F∗ “stretches” utility differences in a nonlinear, menu-

dependent fashion, and that under scale-invariance, having five selves provides enough degrees of

independence to ensure that a triple basis can be constructed.

6 Discussion

This paper studies a framework that encompasses many multi-self models proposed in the litera-

ture. Our results have implications in both interpersonal and intrapersonal decision-making, calling

attention to the importance of collecting reliable information on the number of selves (motivations,

in the interpersonal context) participating in the decision. We identify a class of models for which it

is important to impose a priori restrictions on the number of selves in order to ensure falsifiability;

outside this class of models, one can find examples where such restrictions are not needed. To our

knowledge, the models treated here have not been characterized from a choice-theoretic perspective.

Indeed, the fact that all selves contribute to aggregate utility on every choice set can make it diffi-

cult to construct a rationalization of a choice function, or ascertain where a rationalization exists.

The proof of our result provides a universal procedure for constructing such a rationalization.
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Appendix

Proof of Theorem 2

For an arbitrary choice function c we will construct a collection of 1 + k · IIA(c) selves which will

be shown to rationalize c. This implies the claim in the theorem. In particular, we will construct

k selves for each set with which an IIA violation is associated, and an extra self for X. Let

I1 = {A1
1, ..., A

1
i1
} be the subsets of X such that there is an IIA violation associated with the set,

but there is no proper subset of the set with which an IIA violation is associated. For j ≥ 2, let

Ij = {A1
1, ..., A

1
ij+1
} be the subsets of X such that there is an IIA violation associated with the set,

but there is no proper subset of the set outside
j−1⋃
l=1

Il with which an IIA violation is associated.

Let j∗ be the largest j such that Ij 6= ∅. We will now iteratively construct a collection of k selves

for each set associated with an IIA violation, starting with sets in I1. Consider any collection of k

selves S̄1 = 〈s̄11 . . . , s̄1k〉 that is a triple basis over {a, b, c} (existence follows from triple-solvability).

For every A ⊂ I1, construct now the following collection SA = 〈sA1 , . . . sAk 〉 where each self sAi has

type t̄i and utility function uAi defined over X by

uAi (x) =


ū1i (a) if x = c(A)

ū1i (b) if x ∈ A, x 6= c(A)

ū1i (c) if x 6∈ A.

Suppose now that SA is defined for every A ∈
j⋃

k=1

Ik for some j ≥ 1. Let Sk be the collection of

selves Sk = 〈SAk
1 , ..., S

Ak
ik 〉, for k = 1, ..., j. Let Ŝj = 〈S1, ..., Sj〉. By P4, there exists δ > 0 such that

for any δ-indifferent collection of k selves S′, f(a,A, Ŝj) > f(b, A, Ŝj) implies f(a,A, 〈Ŝj , S′〉) >
f(b, A, 〈Ûj , U ′〉). Then by P3 and P6, we know

f(a,A, 〈Ŝj , S̃1, ..., S̃m〉) > f(b, A, 〈Ŝj , S̃1, ..., S̃m〉) implies

f(a,A, 〈Ŝj , S̃1, ..., S̃m, S′〉) > f(b, A, 〉Ŝj , S̃1, ..., S̃m, S′〉)

for any (exactly) indifferent collections of selves S̃1, ..., S̃m. Let now Ij+1 = {A1
1, ..., A

1
ij+1
} be the

subsets of X such that there is an IIA violation associated with the set, but there is no proper

subset of the set outside Ij with which an IIA violation is associated. By triple-solvability with k

selves, there is a δ-indifferent collection of k selves S̄j+1 = 〈s̄j+1
1 , . . . s̄j+1

k 〉 that is a triple basis over

{a, b, c}. For every A ∈ Ij+1, construct the collection of selves SA = 〈sA1 , . . . sAk 〉 where each self sAi
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has type t̄j+1
i and the utility function uAi over X defined by:

uAi (x) =


ūj+1
i (a) if x = c(A)

ūj+1
i (b) if x ∈ A, x 6= c(A)

ūj+1
i (c) if x 6∈ A

for every i = 1, ..., k. Let Sj+1 be the collection 〈Sj , SA
1
1 , ..., S

A1
ij+1 〉. The above procedure generates

a collection of k · IIA(c) selves in j∗ steps. Then by P3 and P4 there is δj∗ > 0 such that for any δj∗-

indifferent self s∗, f(a,A, Sj∗) > f(b, A, Sj∗) implies f(a,A, 〈Sj∗ , s∗〉) > f(b, A, 〈Uj∗ , s∗〉). Finally,

construct one more self s∗ in the following way. Let a1 = c(X) and ak = c(X \ {a1, a2, . . . ak−1})
for 2 ≤ k ≤ n. Fix some t∗ ∈ T and let s∗ = (t∗, u∗), where we construct u∗ : X → R such that

u∗(a1) > u∗(a2) > · · · > u∗(an) and u∗ is δj∗-indifferent. We show that the collection Sc ≡ 〈Sj∗ , s∗〉
rationalizes c under aggregator f .

Observation 1. For any set A which is an IIA violation, by P1, P5, and construction of SA,

f(a,B, SA) = f(b, B, SA) ∀ B and a, b ∈ B such that B \A 6= ∅ or c(A) /∈ B, and f(c(A), B, SA) >

f(b, B, SA) = f(b′, B, SA) ∀ b, b′ ∈ B \ {c(A)} and B such that B \A = ∅ and c(A) ∈ B.

We will now show that the choice induced by f from any choice set is equal to the choice implied

by c. First, note that this holds for X, since by Observation 1, f(a,X, SA) = f(b,X, SA) for every

a, b ∈ X and every A with which there is an IIA violation associated. Moreover, f(c(X), X, s∗) >

f(a,X, s∗) ∀ a ∈ X \ {c(X)} by P2. Then repeated application of P3 implies f(c(X), X, Sc) >

f(a,X, Sc) ∀ a ∈ X \ {c(X)}. Next, consider any A ( X which causes an IIA violation. Suppose

A ∈ Ij . Observation 1 implies that for any B ∈ (
j⋃
l=1

Il) \ A, f(a,A, SB) = f(a′, A, SB) ∀ a, a′ ∈ A,

and f(c(A), A, SA) > f(a,A, SA) ∀ a ∈ A. Then repeated implication of P3 implies f(c(A), A, Sj) >

f(a,A, Sj) ∀ a ∈ A. By construction then f(c(A), A, Sc) > f(a,A, Sc) ∀ a ∈ A. Finally, consider a

set A that does not cause an IIA violation. There are several cases.

Case 1: For all a ∈ A, there is no B ⊃ A such that a = c(B). Then by construction u∗(c(A)) >

u∗(a) ∀ a ∈ A \ {c(A)}. Moreover, by Observation 1, f(a,A, SB) = f(a′, A, SB) ∀ a, a′ ∈ A

and B with which an IIA violation is associated. Repeated use of P3, together with P2, implies

f(c(A), A, Sc) > f(a,A, Sc) ∀ a ∈ A.

Case 2: There is a unique a ∈ A such that for some B ⊃ A, c(B) = a. First, note that a = c(A) is

necessary, otherwise A would have caused a violation. There are two subcases:

Case 2a: For every B such that B ⊃ A and c(B) = a, B did not cause an IIA violation. This

means that for all B ⊃ A, c(B) 6∈ A \ {c(A)}. So just like in Case 1, u∗(c(A)) > u∗(a) for all

a ∈ A \ {c(A)}, and f(a,A, SB) = f(a′, A, SB) ∀ a, a′ ∈ A and B with which an IIA violation is

associated. Hence, f(c(A), A, Sc) > f(a,A, Sc) for all a ∈ A.

Case 2b: There is B ⊃ A with c(B) = a such that B caused an IIA violation. Consider any
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smallest such B, and suppose B ∈ Ij . By Observation 1, for any A ∈
j⋃
l=1

Il either f(c(A), A, SB) >

f(a,A, SB) for all a ∈ A, or f(a,A, SB) = f(a′, A, SB) for all a, a′ ∈ A. But then repeated

application of P3 implies that f(c(A), A, Sj) > f(a,A, Sj) for all a ∈ A. By construction,

f(c(A), A, Sc) > f(a,A, Sc) for all a ∈ A.

Case 3: There exist at least two elements in A that have each been chosen in some superset. First,

note that one of those elements must be c(A), otherwise A would have caused an IIA violation. Let

{bi}i be the set of elements other than c(A) such that bi ∈ A and bi = c(Bi) for some Bi ⊃ A. Drop

any bi’s such that Bi ⊃ Bm for some m and call the remaining set {bj}. Because A did not cause

an IIA violation by assumption, it must be that for each bj there is A′j such that A ⊂ A′j ⊂ Bj

and c(A′j) ∈ A. Because Bj does not contain any Bk, we know c(A′j) = c(A). For each j there

may be multiple such A′j ’s; consider only the maximal A′j with respect to the minimal Bj . Now by

maximality, for any A′′ such that A′j ⊂ A′′ ⊂ Bj , c(A
′′) 6∈ A. If there is A′′ such that c(A′′) ∈ A′j ,

then c(A′′) 6= c(A), by maximality of A′j . If for every A′′ it is the case that c(A′′) 6∈ A′j , then

once again A′j caused an IIA violation with respect to B. Either way, we added selves to ensure

choice c(A) for every A′j . Thus a should be the choice from A unless selves were added for some B′

between some A′j and A for which c(B′) ∈ A \ {a}. This is impossible by minimality of the Bj ’s.

Proof of Theorem 1

Theorem 1 follows from Theorem 2 and the following three lemmas. Let X = {a, b, c} and take

any f ∈ F∗. For compactness, we use the notation x1 = f(a, {a, b, c}, S) − f(b, {a, b, c}, S),

x2 = f(b, {a, b, c}, S) − f(c, {a, b, c}, S), x3 = f(a, {a, c}, S) − f(c, {a, c}, S), x4 = f(b, {b, c}, S) −
f(c, {b, c}, S), and x5 = f(a, {a, b}, S)− f(b, {a, b}, S).

Lemma 1. If x3 6= x4 + x5, and if any one 2x1 + x2 − x3 − x5 = 0, x1 + 2x2 − x3 − x4 = 0, or

x1 − x2 + x4 − x5 = 0 fails, then the aggregator is triple-solvable (with kf at most 2 + 3|S|).

Proof. Consider the following table.

1 : S 2 : (bc)(a) 3 : (ab)(c) 4 : (abc) 5 : (acb) 6 : a ∼ b � c 7 : a � b ∼ c
x1 x1 + x2 −x1 x2 −x1 − x2 0 x1

x2 −x2 x1 + x2 −x1 − x2 x1 x1 0

x3 x5 x4 −x5 −x4 x1 x1

x4 −x4 x3 −x3 x5 x1 0

x5 x3 −x5 x4 −x3 0 x1

Column 1 lists aggregate utility values under S. By neutrality, if we can generate column 1, we

can also generate the 2nd column using the permutation (bc)(a) over alternatives, the 3rd column
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using the permutation (ab)(c) over alternatives, etc. We generate columns 6 and 7 using profile

equivalence to evaluate f ◦ u and f ◦ u′ for the utility functions u and u′ given by those headers.

Determinants of three possible 5× 5 matrices, each composed of five of the columns above, are:

Det(1|3|5|6|7) = x21(x1 + 2x2 − x3 − x4)(2x1 + x2 − x3 − x5)(x3 − x4 − x5),

Det(1|2|5|6|7) = x21(2x1 + x2 − x3 − x5)(x3 − x4 − x5)(x1 − x2 + x4 − x5),

Det(2|3|4|6|7) = −x21(x1 + 2x2 − x3 − x4)(x3 − x4 − x5)(x1 − x2 + x4 − x5).

To prove the result, it suffices to show that there exists S such that defining x1, x2, . . . , x5 as above,

one of the determinants above must be nonzero. If one of those determinants is nonzero, then we

have find a vector (c1, c2, c3, c4, c5) such that the nonsingular matrix times (c1, c2, c3, c4, c5) is equal

to (0, 0, 0, 0, β) for some β 6= 0. Using scaling, each ci can be pulled in so that the utilities of selves

corresponding to the i-th column are multiplied by ci. The resulting collection is a triple-basis (and

therefore we can get triple solvability through scaling that triple-basis). The proof is completed in

light of the linear dependence of the equations 2x1 + x2− x3− x5 = 0, x1 + 2x2− x3− x4 = 0, and

x1 − x2 + x4 − x5 = 0: if any one of these fails, there must be a second which fails too.

Lemma 2. Suppose there exists selves S defined over {a, b, c} such that x3 6= x4 + x5 and which

rationalize under f the choice behavior where the worst element in the transitive pairwise ranking

is best in the triple. Then either 2x1 + x2 6= x3 + x5 or x1 + 2x2 6= x3 + x4.15

Proof. By neutrality and symmetry of the condition x3−x4−x5 6= 0, there are two types of choice

behaviors we must examine to prove the result:

Case 1: a �P b �P c on the pairs, and c �T b �T a on the triple. That is, x3, x4, x5 > 0, with

x1 ≤ 0 and x2 < 0. But then 2x1 + x2 6= x3 + x5, since LHS< 0 and RHS> 0.

Case 2: a �P b �P c on the pairs, and c �T a �T b on the triple. That is, x3, x4, x5 > 0, with

x1 ≥ 0, x2 < 0. If we can find S such that f rationalizes this behavior using the selves S, then

observe that x1 + 2x2 is negative. Hence x1 + 2x2 6= x3 + x4 because RHS> 0.

Say that f ∈ F∗ is non-degenerate if for some utility function u on X = {a, b, c}, we have

x3 6= x4 + x5 and 2x1 + x2 6= x3 + x5 using the collection S consisting of one self with utility

u. We formally establish that for any fixed scaling function φ(α) the property that an additive,

neutral and scale-invariant aggregator f ∈ F∗ is nondegenerate holds generically. In order to define

a topology on F∗, we transform the latter set of aggregators to a convenient representation. Note

that for a fixed scaling function, specifying the aggregated utilities of n alternatives for selves in the

n-dimensional simplex determines the aggregated utilities of n alternatives for all possible selves

15The above is also true for one type of second-best choice from the triple: a �P b �P c on the pairs, and
b �T c �T a on the triple. If there is S such that f ◦ S rationalizes this behavior, then x3, x4, x5 > 0 and x1 ≤ 0,
x2 > 0. Observe that 2x1 + x2 < 0. Therefore, 2x1 + x2 6= x3 + x5 > 0.
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over n alternatives, since any self is a scalar multiple of exactly one self from the simplex. Hence,

with respect to a grand set of alternatives with three elements, there is a natural bijection β between

additive and scale-invariant aggregators, and the set of pairs of operators Ω = (O1, O2|O1 : ∆2 →
R2;O2 : ∆3 → R3), where O1 determines how a self’s utilities get aggregated in pairs, and O2

determines how a self’s utilities get aggregated in the triple. Define metric d on Ω such that the

distance between (O1, O2) and (O′1, O
′
2) is defined as maxi=1,2 supx∈Ri |Oi(x)−O′i(x)|.

Lemma 3. Given the topology induced by d, the pairs of operators in Ω that are associated with

non-degenerate aggregators in F∗ is open and dense relative to Ω.

Proof. For any utility function v and f ∈ F∗, let s be a self with utility v and define

Γl1(f, v) = f(a, {a, c}, s)− f(c, {a, c}, s),

Γr1(f, v) = f(a, {a, b}, s)− f(b, {a, b}, v) + f(b, {b, c}, s)− f(c, {b, c}, s),

Γl2(f, v) = f(a, {a, b, c}, s)− f(b, {a, b, c}, s) + f(a, {a, b, c}, s)− f(c, {a, b, c}, s),

Γr2(f, v) = f(a, {a, b}, s)− f(b, {a, b}, s) + f(a, {a, c}, s)− f(c, {a, c}, s),

1. Openness. Suppose f is nondegenerate and let u : {a, b, c} → R satisfy the nondegeneracy
requirement. Note that u cannot be fully indifferent. Let εi = Γli(f, u) − Γri (f, u) for i ∈ {1, 2},
and let ε = max(|ε1|, |ε2|). Next, for every i, j ∈ {a, b, c} such that i 6= j, let αij be such that

αij(u(i), u(j)) ∈ ∆2. Note that the terms αij are uniquely defined. Similarly, let αabc be such

that αabc(u(a), u(b), u(c)) ∈ ∆3. Let α = max(|αab|, |αac|, |αbc|, |αabc|). Since s is not an indifferent

self, α > 0. Then for δ < ε
8α it holds that Γli(f

′, u) 6= Γri (f
′, u) for i ∈ {1, 2} for every f ′ such

that |β(f) − β(f ′)| < δ, since each term given f ′ in the above inequalities can differ from the

corresponding term given f by at most ε
8 .

2. Denseness. Let δ > 0. Consider a self s with utility u ∈ ∆3 over {a, b, c} such that u(a) >

u(b) > u(c). For every i, j ∈ {a, b, c} such that i 6= j, let αij satisfy αij(u(i), u(j)) ∈ ∆2. Let

α = max(|αab|, |αac|, |αbc|). If nondegeneracy holds, there is trivially a point in the δ-neighborhood

of β(f) corresponding to a nondegenerate aggregator. Otherwise let ε ∈ (0, δα) be such that ε 6=
|Γli(f, u) − Γri (f, u)| for i ∈ {1, 2}. Take any f ′ ∈ F∗ for which (i) for triples, f ′ is equivalent

to f ; and (ii) for a pair {x, y}, given any utility function v over {x, y} for which v(x) ≥ v(y),

f ′(x, {x, y}, v) = f(x, {x, y}, v) and f ′(y, {x, y}, v) = f(y, {x, y}, v) if v(x)−v(y) < u(a)−u(c), but

f ′(x, {x, y}, v) = f(x, {x, y}, v) + ε and f ′(y, {x, y}, v) = f(y, {x, y}, v) if v(x)− v(y) ≥ u(a)−u(c).

Thus, with respect to selves for which the utility difference between elements of the pair is at least

u(a)−u(c), aggregate utility is ε > 0 higher than what f yields for the preferred alternative (but is

the same for other alternative) - otherwise f ′ is equivalent to f . By construction, |β(f ′)−β(f)| < δ.

Also, Γl1(f
′, v) = Γl1(f, v) + ε, Γr1(f

′, v) = Γr1(f, v), Γl2(f
′, v) = Γl2(f, v), and Γr2(f

′, v) = Γr2(f, v) + ε.

Then ε 6= |Γli(f, v)− Γri (f, v)| for i ∈ {1, 2} implies that Γli(f
′, v) 6= Γri (f

′, v) for i ∈ {1, 2}. Hence,

f ′ is non-degenerate.
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Supplementary Appendices, Not for Publication

This document contains supplementary appendices to “Rationalizing Choice with Multi-

Self Models” by Ambrus and Rozen. The main paper is referenced throughout as AR.

A Examples rationalizing common choice procedures

Example 1 (The Median Procedure). The median procedure is a simple choice rule defined in

Kalai et al. (2002). There is a strict ordering � defined over elements of X, and the DM always

chooses the median element of each A ⊆ X according to � (choosing the right-hand side element

among the medians from choice sets with even number of alternatives).

To rationalize this behavior, we consider the following aggregator.

f(a,A,X, S) =
∏

(u,t)∈S

(u(a) + max
a′∈X

u(a′)−med
a′∈A

u(a′)),

where med
a′∈A

u(a′) is the median element of the set {u(a′)}a′∈A, with the convention that in sets with

an even number of distinct utility levels, the median is the smaller of the two median utility levels.

The geometric aggregation implies that in case of selves having exactly the opposite preferences, the

aggregated utility of an alternative from a given choice set is maximized when it is closest to the

median element of the utility levels from the choice set. We claim that with this aggregator, two

selves can be used to rationalize the median procedure. Let a1, a2, ..., aN stand for the increasing

ordering of alternatives in X according to �, and define u1(ai) = i + ε and u2(ai) = N + 1 − i
for all i ∈ {1, ..., N}. It is easy to see that for small enough ε > 0 it is indeed one of the median

elements of any choice set that maximizes f , since the sum of u1(a) + max
a′∈X

u1(a
′)−med

a′∈A
u1(a

′) and

u2(a) + max
a′∈X

u2(a
′)−med

a′∈A
u2(a

′) is constant across all elements of X, and the aggregated utility is

the product of the two terms.

This rationalization is relatively simple and intuitive: the above selves are defined such that

the DM is torn between two motivations, one in line with ordering �, and one going in exactly

the opposite direction. Moreover, the geometric aggregation of these preferences drives the DM to

choose the most central element of any choice set.

There are many variants of the above aggregator that given two selves with diametrically op-

posed interests do not select exactly the median from every choice set, but have a tendency to induce

the choice of a centrally located element from any choice set. In general, if f is menu-dependent

and aggregates the utilities of selves through a concave function, the choice induced by f exhibits

a compromise effect or extremeness aversion, as in the experiments of Simonson (1989): given two
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opposing motivations, an alternative is more likely to be selected the more centrally it is located.

If, on the other hand, f is menu-dependent and convex, then it can give rise to a polarization effect,

as in the experiments of Simonson and Tversky (1992): the induced choice is likely to be in one of

the extremes of the choice set. Hence, our model can be used to reinterpret experimental choice

data in different contexts, in terms of properties of the aggregator function.

Another simple procedure Kalai et al. (2002) study is Sen (1993)’s second-best procedure.

Example 2 (Choosing the second best). Consider the following procedure: there is some strict

ordering � defined over elements of X, and the DM always chooses the second best element of any

choice set, according to �. We will show that there is an aggregator that can rationalize the choice

function given by the above procedure no matter how large X is, using only two selves. For any

self u on X, and any A ⊂ X, let l(u,A) be the lowest utility level attainable from A according to

u. Moreover, let g : X × P (X)×X ×RX × T → R be such that

g(a,A,X, s) =

 u(a)−max
b∈X

u(b) if u(a) = l(u,A)

u(a) otherwise.

That is, g penalizes the worst elements of a given choice set, by an amount that corresponds to

the best attainable utility in X. Define now the following aggregator: for any collection of selves

with utility functions u1, . . . , un defined over X, let f(a,A,X, S) =
n∑
i=1

g(a,A,X, ui). That is, f is

a utilitarian aggregation, with large disutility associated with alternatives that are worst for some

selves in the choice set. We claim that the following two selves rationalize the second-best procedure

with f . Let a1, a2, ..., aN stand for the increasing ordering of alternatives in X according to �,

and define u1(aj) = j and u2(aj) = N + N+1−j
2N for all j ∈ {1, ..., N}. Note that the incremental

utilities of u1 when choosing a higher �-ranked element are larger than the incremental disutilities

of u2. Hence this self determines the preference ordering implied by the aggregated utility, with the

exception of the choice between the best alternative and the second-best alternative for u1 in the

choice set. This is because the best alternative for u1 is the worst for u2, and the extra disutility

associated with this worst choice for u2 overcomes the incremental utility for u1. This rationalization

has the simple interpretation of a conflict between a greedy self and an altruistic self.

In contrast, Kalai et al. (2002) show that in their framework, in which exactly one self is re-

sponsible for any decision, as the size of X increases, the number of selves required to rationalize

either of the above procedures goes to infinity. Kalai et al. (2002) also discuss the idea that when

multiple rationalizations are possible, one with the minimal number of selves is most appealing.

While dictator-type aggregators do not provide an intuitively appealing explanation for the median

procedure, aggregators in our framework can rationalize the above procedures in simple and intu-

itive ways. Note that the aggregators and selves in these examples together rationalize very specific
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types of behavior. A given aggregator might act differently on different selves. For example, if the

two selves did not have exactly opposing preferences in the example rationalizing the median pro-

cedure, the aggregator might not choose a centrally located alternative in every choice set. Hence

AR studies the set of behaviors that an aggregator can rationalize (with different selves).

B The meaning of mistakes in a Strotzian model

In a seminal paper, Strotz (1955) models a DM who acts in anticipation of the choice of a future

self. Gul and Pesendorfer (2001) contains a time-consistent interpretation and axiomatization of

the Strotzian model, where a DM commits to a menu in anticipation of having to choose from

that menu subject to temptation. In the language of this paper, such a DM selects a menu A that

maximizes W (c(A)), where W is a utility function over the alternatives and c is the rational choice

function that corresponds to choosing the most tempting alternative; c is rational because a DM

in their framework has only a single temptation ranking.

In this section we propose a generalized Strotzian model accommodating the possibility that c

is not a rational choice function, and study its properties.16 Denoting the grand set of alternatives

by X, the DM has a preference relation � over menus (nonempty elements of P (X)). When

evaluating a menu, the DM takes into account that her choice from that set will be governed by

multiple, possibly conflicting interests. Consider the following utility representation capturing this.

Definition 5. The DM’s preference over menus � has a generalized Strotzian representation if

there exists a collection of selves S ∈ S(X,T ), an aggregator f , and a utility function W : X → R
on alternatives such that � is represented by the utility function V : P (X)→ R on sets, defined by

V (A) = W
(

arg max
a∈A

f(a,A, S)
)
.

The generalized Strotzian representation has a straightforward interpretation: the DM picks

the set for which the element foreseen to be chosen yields the greatest current utility.17 Moreover,

the DM expects to choose from the menu while subject to multiple motivations. The following

three axioms characterize a DM with a generalized Strotzian representation.

Axiom 1 (Preference Relation) � is complete and transitive.

Axiom 2 (Strict Ordering) � is a strict ordering on the singletons {a}a∈X .

In the classical theory of choice, a set is assumed to be indifferent to its best element. The IUUA

axiom — short for Independence of Utility to Unchosen Alternatives — retains the idea that the

16We thank Eddie Dekel for suggesting the Strotzian interpretation of the representation.
17This relates to the separation of decision utility and experienced utility proposed by Kahneman, Wakker and

Sarin (1997).
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set is indifferent to the “best” element inside it, even if that element may not arise from a menu-

independent ranking. That is, IUUA permits context-dependent behavior without introducing

psychological costs (e.g., through temptation, as in Gul and Pesendorfer (2001)).

Axiom 3 (IUUA) For all A ∈ P (X), there exists a ∈ A such that A ∼ {a}.

Corollary 3. � satisfies Axioms 1-3 if and only if � has a generalized Strotzian representation

using a collection of selves S and an aggregator f satisfying P1-P6 and triple-solvability with k

selves. Moreover, defining the DM’s “anticipated” choice function c� (induced by �) by

c�(A) = a if a ∈ A and A ∼ {a},

the number of selves in the representation is no larger than 1 + k · IIA(c�).18

Proof. To prove this result, note that Axioms 1-3 together ensure that we may uniquely define

c� as above. Because each menu is indifferent to the alternative chosen by the induced choice

function, the DM’s preferences over menus may be represented by a utility function W (·) over the

alternatives in X. We then use the result of Theorem 2 to rationalize the induced choice function.

The bound on the number of selves using the number of anticipated IIA violations raises con-

nections to the literature on choice over menus. The generalized Strotzian model implies that

for any pair {a, b}, either {a, b} ∼ {a} or {a, b} ∼ {b}. However, for larger sets, it may be that

A ∪ B � A,B (behavior which is interpreted as a preference for flexibility in Kreps (1979)), that

A,B � A ∪ B, or that A � A ∪ B � B (as in Gul and Pesendorfer (2001)’s Betweenness, which

they interpret in terms of costly self-control). The interpretation here is different from the above:

Observation 2. If A ∪ B is not indifferent to either A or B then an IIA violation necessarily

occurs in the anticipated choice function c�.

A generalized Strotzian DM is conflicted when she makes her choice from the menu, and depend-

ing on how she resolves the compromise among selves, might prefer a larger or smaller set that leads

to a better choice according to the utility W . How A ∪ B stands in relation to A and B provides

information as to when the DM expects to be conflicted; and when an IIA violation occurs, the

upper bound on the minimal number of selves required to rationalize the behavior using a triple-

solvable aggregator increases. Although the generalized Strotzian representation is not contained

within the class of utilities considered by Dekel, Lipman and Rustichini (2001), this observation is

related to their result that the subjective state space in a model of unforseen contingencies grows

when there is additional desire for flexibility or self-control. IIA violations in anticipated choice are

18Whether the “anticipated” choice is the actual choice made is an issue of consistency by the DM and her ability to
foresee her future motivations; this can only be tested by observing actual choice from the menu. The interpretation
of anticipation is not necessary for the model but the representation is suggestive of it.
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precisely ruled out in Gul and Pesendorfer (2001) by their No Compromise axiom, which is more

restrictive than Axiom 3 because it requires that A ∪ B ∼ A or A ∪ B ∼ B for all menus A,B

– thereby leading to a single temptation ranking. By contrast, in our setting “anticipated” IIA

violations reveal additional conflicting motivations.

C Approximate triple-solvability

While triple solvability is a property that is broadly satisfied, it can be seen from our construction

that our rationalizability theorem would still hold under a weaker condition. It suffices that there

exists a collection which is arbitrarily close to being indifferent on all but one subset {a, b} of a

triple {a, b, c}. For simplicity, we state this property for additively separable aggregators.

Definition 6. We say S ∈ S({a, b, c, T}) is a (δ, ε)-approximate triple-basis for f with respect to

{a, b, c} if f(a, {a, b}, {a, b, c}, S) = f(b, {a, b}, {a, b, c}, S) + δ while for all other A ⊆ {a, b, c} and

x, y ∈ A, |f(x,A, {a, b, c}, S)− f(y,A, {a, b, c}, S)| < ε.

That is, S is a (δ, ε)-approximate triple basis for f if given choice set {a, b} the aggregated utility

of U for a is exactly δ higher than the aggregated utility of b, while S is ε-indifferent among all

alternatives given every other choice set. We say that an aggregator f is approximately triple-

solvable with k selves if there is δ > 0 such that exists a (δ, ε)-approximate triple-basis with k selves

for every δ < δ and ε > 0. That is, for approximate triple-solvability we do not require that the

triple basis is exactly indifferent between all elements in choice sets other than {a, b}, only that

they can be arbitrarily close to being indifferent.

For some aggregators, approximate triple-solvability yields a triple-basis with fewer utility func-

tions. Indeed, consider an aggregator of the form f(a,A, S) =
∑

(u,t)∈S h(maxa′∈A u(a′))u(a), where

limx→∞ h(x)x = 0. Under such an aggregator, the presence of an alternative with a very high util-

ity level under one self means that self is given less say in the decision process (a “populist”-type

model). This can be used to create a single-self approximate triple-basis s: let the self s have u(a)

and u(b) such that f(a, {a, b}, {a, b, c}, s) − f(b, {a, b}, {a, b, c}, s) = δ (for small enough δ this is

always possible), and let u(c) be high enough so s is ε-indifferent between any two elements given

sets containing c. The following is a corollary of the proof of Theorem 2.

Corollary 4. Suppose f ∈ F is approximately triple-solvable with kf selves. Then, for any finite set

of alternatives X, and any choice function c : P (X)→ X that exhibits at most n−1
kf

IIA-violations,

f can rationalize c with n utility functions.

Proof. The only difference compared to the proof of Theorem 2 is the construction of the utility

functions. Recall the definition of (Ij)j=1,...,j∗ from the proof of Theorem 2. Let δ1 ∈ (0, δ).
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Define iteratively δj for j ∈ {2, ..., j∗ + 1} such that δj ∈ (0,
δj−1

IIA(c)+1). Define a self sX such

that sX is δj∗+1-indifferent and the preference ordering of the self is c(X) � c(X \ {c(X)}) � ...

Let δ∗∗ = min
x 6=y∈X, A3x,y

|f(x,A,X, uX)| − |f(y,A,X, uX)|. Finally, let ε ∈ (0, δ
∗∗

|X|). Then for every

j ∈ {1, ..., j∗) and A ∈ Ij construct a collection SA ∈ U(X) the following way: take a (δj , ε)-

approximate triple-basis S, and define SA by defining, for each si a utility function uAi as follows.

We let ui(A)(x) equal: ui(a) if x = c(A); ui(b) if x ∈ A \ {c(A)}; ui(c) if x ∈ X \ A. Proving the

collection of sX and SA for each A ∈
j∗⋃
j=1

Ij rationalizes c is analogous to the proof in Theorem 2.

D Relaxing P6

Our main results can be extended to aggregators violating P6, that is, to aggregators that depend

in a nontrivial way on alternatives unavailable in a given choice set. However, the appropriate

definition of triple-solvability is more complicated. The main complication arising in the absence

of P6 is that triple-solvability needs to be defined on a general X, as opposed to just a triple

{a, b, c}. It is convenient to introduce the following notation: for any triple {a, b, c}, any basic set

of alternatives X ⊃ {a, b, c}, and any self s = (u, t) defined on {a, b, c}, define the set E(s,X) =

{(û : X → {u(a), u(b), u(c)}, t)|û(x) = u(x) ∀ x ∈ {a, b, c}}. In words, E(s,X) is the set of

extensions of the self from {a, b, c} to X for which each element in X/{a, b, c} has the same utility

as a, b or c. For any S = 〈s1, ..., sm〉 ∈ S({a, b, c}, T ), let E(S,X) = {〈ŝ1, ..., ŝm〉|ŝi ∈ E(si, X) ∀i}.

Definition 7. We say S ∈ S({a, b, c}, T ) is a universal triple-basis for f if for any X ⊃ {a, b, c}
the following holds: for all Ŝ ∈ E(S,X), f(a, {a, b}, X, Ŝ) > f(b, {a, b}, X, Ŝ), and f(·, A,X, Ŝ) is

constant for all other A ⊆ {a, b, c}.

A universal triple-basis solves the triple {a, b, c} whenever the utilities of unattainable elements

don’t differ from utilities of elements in {a, b, c}, for all selves in the triple-basis. An aggregator f

is universally triple-solvable if the following condition is satisfied.

Universal triple-solvability. There is a triple {a, b, c} and k ∈ Z+ such that for all δ > 0 there

is a δ-indifferent S ∈ Sk({a, b, c}, T ) which is a universal triple-basis for f with respect to {a, b, c}.

It is easy to see that for aggregators satisfying P6, universal triple-solvability is equivalent to

triple-solvability. If f satisfying P1-P5 is universally triple-solvable with k selves, then the same

construction can be applied as in the proof of Theorem 2 to obtain an analogous lower bound on

the set of choice functions that f can rationalize with a given group size. The proof of this result

is analogous to the proof of Theorem 2 and hence omitted.

Corollary 5. Suppose f satisfies P1-P5 and is universally triple-solvable wrt to X with kf selves.

Then, using n selves, f can rationalize any choice function, on any grand set of alternatives X,

that exhibits at most n−1
kf

IIA-violations.
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