
Supplementary Appendix (NOT FOR PUBLICATION)

A1 Additional proofs

Proof of Claim 1: If θ2 = θ1, the statement is trivial, so assume θ2 > θ1. Denote yi = y (θi),

mi = m (θi) for i = 1, 2. By (6), we have

la (θ1, y1) +m1 ≤ la (θ1, y2) +m2;
la (θ2, y2) +m2 ≤ la (θ2, y1) +m1.

These may be rewritten as

m2 −m1 ≥ la (θ1, y1)− la (θ1, y2) ;
m2 −m1 ≤ la (θ2, y1)− la (θ2, y2) .

(A1)

Consequently,

la (θ2, y1)− la (θ2, y2) ≥ la (θ1, y1)− la (θ1, y2) , (A2)

Suppose that θ2 > θ1, but y2 < y1. Then

la (θ2, y1)− la (θ2, y2) =

∫ y1

y2

∂la (θ2, y)

∂y
dy

<

∫ y1

y2

∂la (θ1, y)

∂y
dy = la (θ1, y1)− la (θ1, y2) ,

where the inequality follows from the assumption that y2 < y1 and the single-crossing condition:
∂la(θ2,y)

∂y − ∂la(θ1,y)
∂y =

∫ θ2

θ1

∂la(θ,y)
∂θ∂y dθ < 0. But this contradicts (2∗). �

Proof of Claim 2: Suppose {y∗,m∗}θ∈Θ minimizes Lp (8) subject to (9)—(11), and

infθ∈Θm
∗ (θ) = ε > 0. Consider m′ such that ∀θ ∈ Θ : m′(θ) = m∗(θ) − ε. Then {y∗,m′}θ∈Θ

satisfies (9)—(11), has Lp (y∗ (·) ,m′ (·)) = Lp (y∗ (·) ,m∗ (·)), and has infθ∈Θm
′ (θ) = 0. �

Proof of Claim 3: By (10), we have

La (θ1) ≤ la (θ1, y2) +m2

= La (θ2) + (la (θ1, y2)− la (θ2, y2))

≤ La (θ2) + |θ2 − θ1|∆θ,

so

La (θ1)− La (θ2) ≤ |θ2 − θ1|∆θ.

Similarly,

La (θ2)− La (θ1) ≤ |θ2 − θ1|∆θ,

which imply claim (i).
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To establish claims (ii) and (iii), note that from (10) we have, for any ε,

La (θ0) ≤ la (θ0, y (θ0 + ε)) +m (θ0 + ε)

= La (θ0 + ε) + la (θ0, y (θ0 + ε))− la (θ0 + ε, y (θ0 + ε)) ,

and similarly

La (θ0 + ε) ≤ la (θ0 + ε, y (θ0)) +m
(
θ0 + ε2

)
≤ La

(
θ0 + ε2

)
+ la

(
θ0 + ε, y

(
θ0 + ε2

))
− la

(
θ0 + ε2, y

(
θ0 + ε2

))
≤ La (θ0) + ε2∆θ + la

(
θ0 + ε, y

(
θ0 + ε2

))
− la

(
θ0 + ε2, y

(
θ0 + ε2

))
.

Hence,

la (θ0 + ε, y (θ0 + ε))− la (θ0, y (θ0 + ε))

ε
≤ La (θ0 + ε)− La (θ0)

ε

≤
ε2∆θ + la

(
θ0 + ε, y

(
θ0 + ε2

))
− la

(
θ0 + ε2, y

(
θ0 + ε2

))
ε

Both the left-hand side and the right-hand side have the same limit
∂la(θ0,limθ→θ0+ y(θ))

∂θ as ε→ 0+,

hence
drLa (θ0)

dθ
= lim

ε→0+

La (θ0 + ε)− La (θ0)

ε
=
∂la (θ0, limθ→θ0+ y (θ))

∂θ
.

We can prove the formula for the left derivative similarly. Since ∂la(θ0,y)
∂θ is strictly monotonic in

y, we have
∂la(θ0,limθ→θ0− y(θ))

∂θ =
∂la(θ0,limθ→θ0+ y(θ))

∂θ if and only if limθ→θ0− y (θ) = limθ→θ0+ y (θ).

Since y (θ) is monotonic, this is equivalent to continuity of y (θ) at θ0, so the result on continuity

follows. �
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A2 Example with overshooting in the optimal contract

Under the regularity conditions in Parts 2 and 3 of Theorem 6, the optimal contract has the

intuitive feature that the implemented action is always between the ideal points of the princi-

pal and the agent. Moreover, both the action scheme and the amount of money burning are

continuous and weakly increasing functions of the state. Below we show that if the regularity

conditions do not hold, the optimal contract might not have any of the above features (besides

the implemented action being weakly increasing in the state, which is a general property by

Claim 1). Moreover, we show that the violations of these properties are interrelated.

The next theorem establishes that if the optimal contract involves no overshooting (that is, if

the implemented policy is always between the players’ideal points) then both the implemented

action and money burning are continuous and increasing in the state.

Theorem A1 Assume that (y∗ (·) ,m∗ (·)) is an optimal contract, and θ ≤ y∗(θ) ≤ θ+ b(θ) for

every θ ∈ (0, 1). Then both y∗ (·) and m∗ (·) are continuous and weakly increasing on (0, 1).

We prove the above result by showing that the type of deviation considered in the proof of

Part 2 of Theorem 6, that is making the jump more gradual by offering an in-between option to

types around the jump point, increases the expected utility of the principal for arbitrary convex

loss functions, as long as the jump is in between the ideal points of the players.

Proof of Theorem A1: Note that the requirement that
∂la(θ,y1)

∂θ
− ∂l

a(θ,y0)
∂θ

lp(θ,y0)−lp(θ,y1) >
∂la(θ,y1)

∂θ
− ∂l

a(θ,y2)
∂θ

lp(θ,y2)−lp(θ,y1)

for every θ ∈ (0, 1) and infθ∈(θ0,1] y
∗ (θ) ≥ y2 > y0 > y1 ≥ θ holds whenever:

∂la(θ0,ŷ1)
∂θ − ∂la(θ0,y)

∂θ

lp (θ0, y)− lp (θ0, ŷ1)
(A3)

is decreasing in y for infθ∈(θ0,1] y
∗ (θ) ≥ y > ŷ1, for every θ0 ∈ (0, 1) and ŷ1 ≥ θ0. If y∗ (θ) ≤

θ+ b(θ) for every θ ∈ (0, 1), then infθ∈(θ0,1] y
∗ (θ) ≤ θ+ b(θ) for every θ ∈ (0, 1). Then for every

infθ∈(θ0,1] y
∗ (θ) ≥ y > ŷ1, the numerator of (A3) is decreasing in y, while the denominator of

(A3) is increasing in y, implying that (A3) is decreasing in y. The same arguments used in the

proof of Part 2 of Theorem 6 then imply the above result. �

Next, we construct an example in which the optimal contract indeed involves overshooting

and discontinuities, as well as non-monotonicity of money burning. We also provide an intuitive

explanation why overshooting is optimal for the principal.
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To start with, consider a specification of the model in which the loss functions are of the

form: lp(θ, y(θ)) = 2(y(θ) − θ)2, and la(θ, y(θ)) = (y(θ) − θ − 0.05)2. This is a special case

of the class of loss functions considered in Section 5, with A = 2 and b = 0.05. Moreover,

temporarily assume that f(θ) = 3
2 for θ ∈ [0, 1

3 ] ∪ [2
3 , 1] and f(θ) = 0 for θ ∈ (1

3 ,
2
3) (below we

change the example so that the density is strictly positive everywhere). It is easy to see that in

this example the principal can solve its optimization separately for the regions [0, 1
3 ] and [2

3 , 1].

Using the results obtained in Section 4, the optimal contract specifies:

y∗ (θ) =

{
θ + 0.05 if θ ≤ 7

30 ;
1
6 + θ

2 if 7
30 < θ < 1

3

and

y∗ (θ) =

{
θ + 0.05 if 2

3 ≤ θ ≤
9
10 ;

θ + 1−θ
A if 9

10 < θ.

Using (15), the amount of money burning implied by y∗() at state θ = 1
3 is

1
200 (twice the

area between y∗ (θ) and the agent’s ideal line θ+ 0.05). Note that at this state the agent prefers

action y∗
(

1
3

)
= 1

3 and money burning
1

200 to action y
∗ (2

3

)
= 43

60 and money burning 0, and

therefore the above y∗ (θ) is incentive-compatible on [0, 1
3 ] ∪ [2

3 , 1] as long as m∗
(

2
3

)
= 0. On

interval (1
3 ,

2
3) the prior density is 0, therefore it does not matter how y∗() andm∗() are specified.

For example the following specification achieves the optimum:

y∗ (θ) =

{
1
20

√
2 + 23

60 if 1
3 < θ ≤ 0.404 04;

θ + 0.05 if 0.404 04 < θ < 2
3 .

This contract specifies overshooting at θ = 0.404 04, in order to bring the level of money

burning back to 0. It is easy to verify that the utility that the above contract yields to the

principal is bounded away from any contract that does not specify overshooting at any point of

Θ (which would imply that the amount of money burning is monotonically increasing). Modify

now the above example such that f(θ) = 3
2 − 2ε for θ ∈ [0, 1

3 ] ∪ [2
3 , 1] and f(θ) = ε for θ ∈

(1
3 ,

2
3). For small enough ε > 0 the above contract (which is still incentive-compatible, since

the latter does not depend on the prior distribution) continues to yield a strictly higher payoff

to the principal than any contract that does not specify overshooting. This establishes that

the optimal contract requires overshooting (and hence a non-monotonic money burning scheme)

in the modified example, too. It can also be shown that in this example the optimal contract

requires a discontinuity at some state in (1
3 ,

2
3).

The intuition behind the optimal contract involving overshooting is the following: if the

implemented action is kept between the optimal points of the principal and the agent, the

A-4



amount of prescribed money burning is increasing, and if the implemented action is kept strictly

below the agent’s ideal point the money burning is strictly increasing. The only way the principal

can decrease money burning at some state in an incentive compatible way is if he prescribes an

overshooting action. In the above example, this becomes optimal in the region (1
3 ,

2
3), where the

density of the prior is low. The optimal policy involves increasing money burning in low states,

then overshooting in the region of unlikely states, and finally increasing money burning again in

high states. Intuitively, the principal sacrifices utility in the unlikely states, in order to better

align incentives in the more likely states and at the same time do not accumulate too high levels

of money burning.
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A3 Results for the Case with Contingent Transfers

We start by establishing properties of the optimal contract that are analogous to properties

obtained in the case without transfers.

Claim A2 There exists a solution to problem (18) subject to constraints (19)—(21). Moreover,

under the conditions stated in Theorem 6, for any optimal contract (y∗ (·) ,m∗ (·) , t∗ (·)) the
following hold:

(i) y∗ (·) is weakly increasing on [0, 1] and continuous on (0, 1);

(ii) θ ≤ y∗ (θ) ≤ θ + b (θ) for all θ ∈ [0, 1];

(iii) for any θ ∈ (0, 1),
dLa (θ)

dθ
=
∂la (θ, y (θ))

∂θ
,

and

La (θ2)− La (θ1) =

∫ θ2

θ1

∂la (θ, y (θ))

∂θ
dθ;

(iv) for any θ1,θ2 ∈ [0, 1],

(m∗ (θ2)− t∗ (θ2))− (m∗ (θ1)− t∗ (θ1)) =

la (θ1, y
∗ (θ1))− la (θ2, y

∗ (θ2)) +

∫ θ2

θ1

(
∂la (θ, y∗ (θ))

∂θ

)
dθ.

Proof of Claim A2. The proofs of these results follow closely similar proofs for the case

without conditional transfers, and are omitted.

The next result states that there is essentially no state at which there is both money burning

and nonzero conditional transfer. An optimal contract specifies conditional transfers in low

states (if there is a region with nonzero transfers). These transfers are decreasing in the state

and at some point reach 0. At the right of this point an optimal contract might specify money

burning, such that money burning is increasing in the state in this region.

Claim A3 Suppose that the conditions stated in Theorem 6 hold. Then any two solutions to

problem (18) subject to constraints (19)—(21) specify the same (y (θ) ,m (θ) , t (θ)) at almost every

θ ∈ Θ. Moreover, there exists a solution which satisfies the following:
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(i) Either m∗ (θ) = 0 or t∗ (θ) = 0, for every θ ∈ Θ. Moreover, m∗ (θ) is non-decreasing in θ

and t∗ (θ) is non-increasing in θ; in particular, m∗ (0) = 0.

(ii) Either there exists θ0 ∈ Θ such that m∗ (θ0) = 0 and t∗ (θ0) = 0, or t∗ (θ) > 0 for all θ.

Proof of Claim A3. (i) Suppose that m∗ (θ) > 0 and t∗ (θ) > 0 for a positive measure of θ.

Then there exists ε > 0 such that the measure of the set {θ : m∗ (θ) > ε, t∗ (θ) > ε} is positive.
For all such θ’s, let m′ (θ) = m∗ (θ)− ε and t′ (θ) = t∗ (θ)− ε; in other cases, let m′ (θ) = m∗ (θ)

and t′ (θ) = t∗ (θ). Then the contract (y∗ (·) ,m′ (·) , t′ (·)) would satisfy all constraints and yield a
higher payoff to the principal than (y∗ (·) ,m∗ (·) , t∗ (·)), which is impossible. This contradiction
proves that either m∗ (θ) = 0 or t∗ (θ) = 0 for almost all θ. Now, from Claim A2 we get that

function m∗ (θ) − t∗ (θ) is nondecreasing, and may without loss of generality assumed to be

continuous. Therefore, we must have t∗ (θ) = 0 whenever m∗ (θ) − t∗ (θ) > 0 and m∗ (θ) = 0

whenever m∗ (θ) − t∗ (θ) < 0. Consequently, m∗ (θ) = max {m∗ (θ)− t∗ (θ) , 0} and is therefore
nondecreasing, while t∗ (θ) = max {t∗ (θ)−m∗ (θ) , 0} is nonincreasing.

(ii) Without loss of generality, we may restrict attention to contracts with m∗ (0) = 0. If this

were not the case, we could takem′ (θ) = m∗ (θ)−m (0) ≥ 0 sincem∗ (θ) is nondecreasing, and we

would get a contract (y∗ (·) ,m′ (·) , t∗ (·)) which would satisfy all constraints and havem′ (0) = 0.

Given that, consider function t∗ (θ). If t∗ (θ) = 0 for some, then consider the supremum θ0 of

such points. By continuity of t∗ (·) and m∗ (·), we must have that t∗ (θ0) = m∗ (θ0) = 0. This

completes the proof. �

Proof of Theorem 11. Existence follows from Balder (1996), similarly to Theorem 6.

Uniqueness follows from that the objective function is strictly convex in y (·), and the constraints
are also convex (this may not immediately obvious for (25), but notice that local IC constraints in

the are linear in y (·) and are suffi cient for global IC constraints to hold; consequently, if (25) holds

for some y1 (·) and y2 (·), then it also holds for any linear combination). Once the optimal y∗ (·)
is determined uniquely, m (θ)− t (θ) is also determined uniquely up to an additive constant, and

then Lemma A3 implies that m (θ) = max (m (θ)− t (θ) , 0) and t (θ) = max (t (θ)−m (θ) , 0),

and thus the additive constant is also uniquely determined from the condition that either (24)

or (26) must bind at the optimum. These considerations imply uniqueness.

Notice that the problem (23) s.t. (24)—(26) is equivalent to (27) s.t. (28)—(29) in the following

sense. If some (y∗ (·) ,m∗ (·) , t∗ (·)) solves (23) subject to the constraint, then there exist θ0 and

t0 = t (θ0) such that (28) and (29) are satisfied, and the value of the minimands in (23) and

(27) are identical; this follows from Claim A3 and Claim A2 (it should be noted, however, that

θ0 need not be determined uniquely). Vice versa, if some (y∗ (·) , θ∗0, t∗0) solve (27) s.t. (28)—(29),
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then we can define m (θ) = 0 for θ ≤ θ∗0, t (θ) = t0 for θ ≥ θ∗0, and the values of m (θ) for

θ > θ∗0 and t (θ) for θ < θ∗0 are defined so as to satisfy part (iv) of Claim A2; in that case,

(y∗ (·) ,m (·) , t (·)) will satisfy (24)—(26) and the values of the two minimands will again be the

same. Consequently, it suffi ces to solve the problem (27) s.t. (28)—(29), which we do in what

follows in each of the cases separately.

Part 1. Suppose that w̃ − ũ < −Ab1+A−Ab
(A+1)2 . Here, similarly to the first case of Theorem 7,

we solve the problem (27) s.t. (28) while ignoring (29), and then show that (29) is also satisfied.

We use Luenberger’s Theorem in the following way. We take the Lagrange multiplier λ = 1.

We then take y∗ (θ) = b
A+1 + θ, θ∗0 = 1, and t∗0 = ũ−Ab1+A−Ab

(A+1)2 . We need to establish that this

combination of y (·), θ0, and t0 minimizes the following Lagrangian:

min
(y(·),θ0,t0)∈F×[0,1]×R


∫ 1

0 A (y (θ)− θ)2 dθ +
∫ θ0

0

(
(y (θ)− θ − b)2 − 2 (y (θ)− θ − b) θ

)
dθ

− (y (θ0)− θ0 − b)2 θ0 + t0 + λ
(

(y (θ0)− θ0 − b)2

−
∫ 1

0 2 (y (θ)− θ − b) (1− θ) dθ +
∫ θ0

0 2 (y (θ)− θ − b) dθ − t0 + ũ
)
 .

Substituting λ = 1, simplifying and eliminating the constant, we need to prove that it minimizes

min
(y(·),θ0,t0)∈F×[0,1]×R

( ∫ 1
0 A (y (θ)− θ)2 dθ +

∫ θ0

0 (y (θ)− θ − b)2 + 2 (y (θ)− θ − b) (1− θ) dθ
−
∫ 1

0 2 (y (θ)− θ − b) (1− θ) dθ + (y (θ0)− θ0 − b)2 (1− θ0) + ũ.

)
For a given y (·) ∈ F , this expression is nondecreasing in θ0; indeed, if y (·) is differentiable at
θ0, then the derivative of this expression equals 2 (y (θ0)− θ0 − b) (1− θ0) y′ (θ0) ≥ 0 (because

y (θ0) ≤ θ0 + b and y (·) is nondecreasing), and if it is not differentiable, then a similar bound is
true for the lower right-hand derivative, which is also nonnegative. Thus, if for some y (·), θ0,

and t0 the Lagrangian is smaller than under y∗ (·) , θ∗0, t∗0, then it is also the case for θ∗0 = 1. But

if θ0 = 1, the expression becomes∫ 1

0

(
A (y (θ)− θ)2 + (y (θ)− θ − b)2

)
dθ + ũ,

which is minimized if y (θ) = b
A+1 + θ, because this y (θ) minimizes the function under the

integral for every θ. This means that the Lagrangian is indeed minimized at y∗ (·) , θ∗0, t∗0 (as it
does not explicitly depend on t0).

It is straightforward to check that (28) is satisfied as equality. Luenberger’s theorem now

implies that y∗ (·) , θ∗0, t∗0 solve (27) s.t. (28). It remains to check that (29) is satisfied, but this

is equivalent to w̃ − ũ + Ab1+A−Ab
(A+1)2 ≤ 0, which is true in this case. Thus, y∗ (·) , θ∗0, t∗0 are the

unique solution in this case.

Part 2. Suppose that −Ab1+A−Ab
(A+1)2 ≤ w̃ − ũ ≤ b + b2. Here, we again use Luenberger’s

theorem, this time applying it to the problem (27) s.t. (28) and (29) directly. We take Lagrange
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multipliers λ as defined in Subsection below and µ = 1−λ, and set up the following minimization
problem:

min
(y(·),θ0,t0)∈F×[0,1]×R


∫ 1

0 A (y (θ)− θ)2 dθ +
∫ θ0

0

(
(y (θ)− θ − b)2 − 2 (y (θ)− θ − b) θ

)
dθ

− (y (θ0)− θ0 − b)2 θ0 + t0 + λ
(

(y (θ0)− θ0 − b)2

−
∫ 1

0 2 (y (θ)− θ − b) (1− θ) dθ +
∫ θ0

0 2 (y (θ)− θ − b) dθ − t0 + ũ
)

+µ (1− t0)

 .

(A4)

Then we take y∗ (·) and θ∗0 as defined in the corresponding case of the respective characterization
below, and let t∗0 = w̃. It is then straightforward to verify that both (28) and (29) hold as

equality. It is less straightforward to verify, but nevertheless is true that this combination of

y∗ (·) and θ∗0 minimizes the Lagrangian (A4) (and t∗0 cancels out). To see this, the following

auxiliary results (which are analogous to Lemma 1 and may be proved similarly) are of help:

If (y∗ (·) , θ∗0, t∗0) solves (A4), then for θ satisfying y∗ (0) < y∗ (θ) < y∗ (θ0), it must be that

y∗ (θ) = min {z (θ) , θ + b}, where z (θ) = 1 −
(
1− λ

A

)
(1− θ), and for θ satisfying y∗ (θ0) <

y∗ (θ) < y∗ (1), it must be that y∗ (θ) = min {x (θ) , θ + b}, where x (θ) = b
1+A +

(
1 + 1−λ

1+A

)
θ.

The problem then reduces to optimizing over θ0 and possible values of y (θ0); the corresponding

calculations are extremely tedious and are available upon request.

Given the above, Luenberger’s theorem implies that y∗ (·), θ∗0, and t∗0 = w̃ are indeed solutions

to (27) s.t. (28) and (29).

Part 3. Suppose that w̃ − ũ > b + b2. This case is similar to the corresponding case of

Theorem 7. Notice that the value of (27) cannot be smaller than w̃, as t0 ≥ w̃, and∫ θ0

0

(
(y (θ)− θ − b)2 − 2 (y (θ)− θ − b) θ

)
dθ ≥ (y (θ0)− θ0 − b)2 θ0

as follows from integrating the second term of the integral by parts. This value is achieved for

θ0 = 0, t0 = w̃, and y (θ) = θ for all θ. This automatically satisfies (29), and, moreover, the

left-hand side of (28) is

(−b)2 −
∫ 1

0
2 (−b) (1− θ) dθ − w̃ + ũ = b2 + b− w̃ + ũ ≤ 0,

so (28) is also satisfied. Thus, this contract is indeed optimal. �

Proof of Theorem 11. Analogously to Theorem 8, the proof follows from the explicit

characterization given in Theorem 11 and is omitted. �

Proof of Theorem 13. Analogously to Theorem 10, the proof follows from the explicit

characterization given in Theorem 11 and is omitted. �

A-9



A4 Explicit Characterization of Optimal Contract with Contingent Transfers

Here, we provide the explicit characterization of the optimal solution of problem (27) s.t. (28)—

(29), and thus of problem (23) s.t. (24)—(26) (the expressions for m∗ (·) and t∗ (·) are straight-
forward to find, as argued in the proof of Theorem 11).

Define the following functions of A and b, wherever the functional form is a valid expression

(informally, these correspond to similarly indexed lines on the Figures below):

f1 (A, b) = −Ab1+A−Ab
(A+1)2 ;

f2 (A, b) = 1
6

((
Ab
A+1

)2
− 4 Ab

A+1 + 1−
(

Ab
A+1 + 1

)√
1− 6 Ab

A+1 +
(

Ab
A+1

)2
)

;

f3 (A, b) = 1
3 − b+ b2 − 1

3
(A+1−2b−Ab+b

√
A2+2b−1)

2

(A+1−b)(A+1) ;

f4 (A, b) = 1
3b

3 1−A−A2

(1−A)(1−A2)
;

f5 (A, b) = b
3(1+A)

(
1
2 −Ab−

(
A+ 1

2

)√
1− 4Ab

)
;

f6 (A, b) = b
3(1+A)

(
1
2 −Ab+

(
A+ 1

2

)√
1− 4Ab

)
;

f7 (A, b) = 1
3 +Ab1+A+Ab

(A+1)2 − 1
3

(
A−b+1
A+1

)3
(

1

1− b(A+1)
A+2Ab+1

(
1−
√

1−A+2Ab+1

(A+1)3

)
)2

f8 (A, b) = b+ b2;

f9 (A, b) = 1
6

((
Ab
A+1

)2
− 4 Ab

A+1 + 1 +
(

Ab
A+1 + 1

)√
1− 6 Ab

A+1 +
(

Ab
A+1

)2
)

;

f10 (A, b) = b2 − b+ 1
3 ;

f11 (A, b) = Ab1+A+Ab
(A+1)2 + 1

3 .

In addition, define the following functions of A and b (informally, these correspond to values

of the Lagrange multiplier λ, wherever applicable).

λ1 (A, b) = 1;

λ2 (A, b) =
1+Ab−A+

√
(A+1)2−Ab(6+6A−Ab)

2 ;

λ3 (A, b) = 1− b
A+
√
A2+2b−1

;

λ4 (A, b) = A;

λ5 (A, b) = 1+
√

1−4Ab
2 ;

λ6 (A, b) = 1−
√

1−4Ab
2 ;

λ7 (A, b) = A

(
1− A−b+1√

(A+1)(A+2Ab+1)

)
λ8 (A, b) = 0;

λ9 (A, b) =
1+Ab−A−

√
(A+1)2−Ab(6+6A−Ab)

2 ;

λ10 (A, b) = A
2b−1 ;

λ11 (A, b) = A 2b−A−1
A+2Ab+1 .
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Finally, define the following expressions:

x (θ,A, b, λ) = b
1+A +

(
1 + 1−λ

1+A

)
θ;

z (θ,A, b, λ) = 1−
(
1− λ

A

)
(1− θ) ;

Case 1: “Social optimum”

If w̃ − ũ < f1 (A, b), then:

y∗ (θ) = θ +
b

A+ 1
. (A5)

The values θ∗0 = 1, t∗0 = ũ−AbA−Ab+1
(A+1)2 .

In this case, there is no money burning m (θ) = 0 for all θ; transfer t (θ) > w̃ in all states,

with smallest amount t (1) = t∗0 = ũ−AbA−Ab+1
(A+1)2 > w̃.

Case 2: “Transfer for low actions, then a cap”

If b < 2−
√

2, A < 1− b and f1 (A, b) ≤ w̃ − ũ < f2 (A, b), then:

y∗ (θ) =

{
x (θ) if θ < q
x (q) if θ ≥ q , (A6)

where q =
(A+ λ)−

√
(1−λ)(2Ab(A+1)−(1−λ)(A+λ))

A−λ+2

A+ 1
,

where λ is the unique solution to

(x (q (λ))− b)2 −
∫ q(λ)

0
2 (x (q (λ))− θ − b) (1− θ) dθ −

∫ 1

q(λ)
2 (x (θ)− θ − b) (1− θ) dθ + ũ = w̃

such that λ2 (A, b) < λ ≤ λ1 (A, b).

If b < 2−
√

2, A ≥ 1− b and f1 (A, b) ≤ w̃− ũ < f3 (A, b), then y∗ (θ) is given by (A6), where

λ is such that λ3 (A, b) < λ ≤ λ1 (A, b).

If b ≥ 2 −
√

2, A < 3−2
√

2
b−3+2

√
2
and f1 (A, b) ≤ w̃ − ũ < f2 (A, b), then y∗ (θ) is given by (A6),

where λ is such that λ2 (A, b) < λ ≤ λ1 (A, b).

If 2−
√

2 ≤ b < 1, 1− b ≤ A < 3−2
√

2
b−3+2

√
2
and f9 (A, b) ≤ w̃− ũ < f3 (A, b), then y∗ (θ) is given

by (A6), where λ is such that λ3 (A, b) < λ ≤ λ9 (A, b).

If 1 ≤ b < 4− 2
√

2, A < b− 1 and f9 (A, b) ≤ w̃− ũ < f11 (A, b), then y∗ (θ) is given by (A6),

where λ is such that λ11 (A, b) < λ ≤ λ9 (A, b).

If 1 ≤ b < 4 − 2
√

2, b − 1 ≤ A < 3−2
√

2
b−3+2

√
2
and f9 (A, b) ≤ w̃ − ũ < f3 (A, b), then y∗ (θ) is

given by (A6), where λ is such that λ3 (A, b) < λ ≤ λ9 (A, b).

If 2−
√

2 ≤ b < 4− 2
√

2, A ≥ 3−2
√

2
b−3+2

√
2
and f1 (A, b) ≤ w̃− ũ < f3 (A, b), then y∗ (θ) is given

by (A6), where λ is such that λ3 (A, b) < λ ≤ λ1 (A, b).

If b ≥ 4− 2
√

2, A < 3−2
√

2
b−3+2

√
2
and f9 (A, b) ≤ w̃− ũ < f11 (A, b), then y∗ (θ) is given by (A6),

where λ is such that λ11 (A, b) < λ ≤ λ9 (A, b).
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If b ≥ 4− 2
√

2, 3−2
√

2
b−3+2

√
2
≤ A < b− 1 and f1 (A, b) ≤ w̃ − ũ < f11 (A, b), then y∗ (θ) is given

by (A6), where λ is such that λ11 (A, b) < λ ≤ λ1 (A, b).

If b ≥ 4 − 2
√

2, A ≥ b − 1 and f1 (A, b) ≤ w̃ − ũ < f3 (A, b), then y∗ (θ) is given by (A6),

where λ is such that λ3 (A, b) < λ ≤ λ1 (A, b).

The values θ∗0 = q (or any number on [q, 1]), t∗0 = 0.

Furthermore, in all these cases there is no money burning: m (θ) = 0; there is minimal

transfer t (θ) = w̃ for θ ≥ q, and there is higher than minimal transfer t (θ) > w̃ for θ < q.

Case 3: “Transfer for low actions, then some actions with no transfer, then a cap”

If b < 1, A < 1− b and f2 (A, b) ≤ w̃ − ũ < f4 (A, b), then:

y∗ (θ) =


x (θ) if θ < Ab

1−λ
θ + b if Ab

1−λ ≤ θ ≤ 1− 2Ab
A+λ

1 + λ−A
A+λb if θ > 1− 2Ab

A+λ

, (A7)

where λ is the unique solution to∫ Ab
1−λ

0
2 (x (θ)− θ − b) θdθ −

∫ 1

1+λ−A
A+λ

b
2

(
1 +

λ−A
A+ λ

b− θ − b
)

(1− θ) dθ + ũ = w̃

such that λ4 (A, b) < λ ≤ λ2 (A, b).

If b < 1, 1− b ≤ A < 3−2
√

2
b−3+2

√
2
and f2 (A, b) ≤ w̃− ũ < f9 (A, b), then y∗ (θ) is given by (A7),

where λ is such that λ9 (A, b) < λ ≤ λ2 (A, b).

If b ≥ 1, A < 3−2
√

2
b−3+2

√
2
and f2 (A, b) ≤ w̃ − ũ < f9 (A, b), then y∗ (θ) is given by (A7), where

λ is such that λ9 (A, b) < λ ≤ λ2 (A, b).

The values θ∗0 = Ab
1−λ (or any number on

[
Ab

1−λ , 1−
2Ab
A+λ

]
), t∗0 = 0.

Furthermore, in all these cases there is no money burning: m (θ) = 0; there is minimal

transfer t (θ) = w̃ for θ ≥ Ab
1−λ , and there is higher than minimal transfer t (θ) > w̃ for θ < Ab

1−λ .

Case 4: “Constant action”

If b ≥ 1, A < b− 1 and f11 (A, b) ≤ w̃ − ũ < f10 (A, b), then:

y∗ (θ) =
1

2
+

λb

A+ λ
, (A8)

where λ is the unique solution to(
1

2
+

λb

A+ λ
− b
)2

−
∫ 1

0
2

(
1

2
+

λb

A+ λ
− θ − b

)
(1− θ) dθ + ũ = w̃

such that λ10 (A, b) < λ ≤ λ11 (A, b). In this case, the contract may be simplified to

y∗ (θ) =
1

2
+ b−

√
w̃ − ũ− 1

12
.
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The values θ∗0 = 0 (or any number on [0, 1]), t∗0 = 0.

Furthermore, in this case there is no money burning: m (θ) = 0; there is minimal transfer

t (θ) = w̃ for all θ.

Case 5: “Transfer for low actions, then some actions with no transfer, then money burning”

If b < 1, A < 1− b and f4 (A, b) ≤ w̃ − ũ < f6 (A, b), then:

y∗ (θ) =


x (θ) if θ < Ab

1−λ
θ + b if Ab

1−λ ≤ θ ≤ 1− Ab
λ

z (θ) if θ > 1− Ab
λ

, (A9)

where λ is the unique solution to∫ Ab
1−λ

0
2 (x (θ)− θ − b) θdθ −

∫ 1

1−Ab
λ

2 (z (θ)− θ − b) (1− θ) dθ + ũ = w̃

such that λ6 (A, b) < λ ≤ λ4 (A, b).

The values θ∗0 = Ab
1−λ (or any number on

[
Ab

1−λ ,
Ab
λ

]
), t∗0 = 0.

Furthermore, in this case there is no money burning m (θ) = 0 for θ ≤ 1 − Ab
λ and positive

money-burning m (θ) > 0 for θ ≥ 1 − Ab
λ ; there is minimal transfer t (θ) = w̃ for θ ≥ Ab

1−λ , and

there is higher than minimal transfer t (θ) > w̃ for θ < Ab
1−λ .

Case 6: “Transfer for low actions, then some actions with no incentive, then money burning”

If b < 1
2 , 1− b ≤ A < 1

4b and f3 (A, b) ≤ w̃ − ũ < f5 (A, b), then:

y∗ (θ) =


x (θ) if θ < q1

x (q1) if q1 ≤ θ ≤ q2

z (θ) if θ > q2

, (A10)

where q1 =
A+ 1

(A− λ+ 2)
(

1 + 1−λ
λ

√
A−λ
A−λ+2

) − b

(A− λ+ 2)
(

1 + A+1
A

√
A−λ
A−λ+2

)
and q2 =

(
A2 − 2Aλ+ 2A− 1

)
λ

(A− λ) (Aλ+ 1) +A (1− λ) (A− λ+ 2)
√

A−λ
A−λ+2

+
b

(A+1)(A−λ)
A + (A− λ+ 2)

√
A−λ
A−λ+2

,

where λ is the unique solution to

(x (q1)− q1 − b)2 +

∫ q1

0
2 (x (θ)− θ − b) θdθ −

∫ q2

q1

2 (x (q1)− θ − b) (1− θ) dθ

−
∫ 1

q2

2 (z (θ)− θ − b) (1− θ) dθ + ũ = w̃

such that λ5 (A, b) < λ ≤ λ3 (A, b).

If b < 1
2 , A < 1

4b and f6 (A, b) ≤ w̃ − ũ < f7 (A, b), then y∗ (θ) is given by (A10), where λ is

such that λ7 (A, b) < λ ≤ λ6 (A, b).
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If b < 1
2 , A ≥

1
4b and f3 (A, b) ≤ w̃ − ũ < f7 (A, b), then y∗ (θ) is given by (A10), where λ is

such that λ7 (A, b) < λ ≤ λ3 (A, b).

If 1
2 ≤ b < 1, A < 1− b and f6 (A, b) ≤ w̃− ũ < f7 (A, b), then y∗ (θ) is given by (A10), where

λ is such that λ7 (A, b) < λ ≤ λ6 (A, b).

If 1
2 ≤ b < 1, A ≥ 1− b and f3 (A, b) ≤ w̃− ũ < f7 (A, b), then y∗ (θ) is given by (A10), where

λ is such that λ7 (A, b) < λ ≤ λ3 (A, b).

If b ≥ 1, A ≥ b− 1 and f3 (A, b) ≤ w̃ − ũ < f7 (A, b), then y∗ (θ) is given by (A10), where λ

is such that λ7 (A, b) < λ ≤ λ3 (A, b).

The values θ∗0 = q1 (or any number on [q1, q2]), t∗0 = 0.

Furthermore, in this case there is no money burning m (θ) = 0 for θ ≤ q2 and positive

money-burning m (θ) > 0 for θ > q2; there is minimal transfer t (θ) = w̃ for θ ≥ q1, and there is

higher than minimal transfer t (θ) > w̃ for θ < q1.

Case 7: “Free action, then money-burning”

If b < 1 and f7 (A, b) ≤ w̃ − ũ < f8 (A, b), then:

y∗ (θ) =

{
z (q) if θ ≤ q
z (θ) if θ > q

, (A11)

where q =

√
λ

A−λ (2A2b− λ (A+ λ))− λ
A

,

where λ is the unique solution to

(z (q)− b)2 −
∫ q

0
2 (z (q)− θ − b) (1− θ) dθ −

∫ 1

q
2 (z (θ)− θ − b) (1− θ) dθ + ũ = w̃

such that λ8 (A, b) < λ ≤ λ7 (A, b).

If b ≥ 1, A < b− 1 and f10 (A, b) ≤ w̃− ũ < f8 (A, b), then y∗ (θ) is given by (A11), where λ

is such that λ8 (A, b) < λ ≤ λ10 (A, b).

If b ≥ 1, A ≥ b− 1 and f7 (A, b) ≤ w̃ − ũ < f8 (A, b), then y∗ (θ) is given by (A11), where λ

is such that λ8 (A, b) < λ ≤ λ7 (A, b).

The values θ∗0 = q (or any number on [0, q]), t∗0 = 0.

Furthermore, in this case there is no money burning m (θ) = 0 for θ ≤ q and positive

money-burning m (θ) > 0 for θ > q; there is minimal transfer t (θ) = w̃ for all θ.

Case 8: “Principal’s ideal action”

If w̃ − ũ ≥ f8 (A, b), then

y∗ (θ) = θ. (A12)

The values θ∗0 = 0, t∗0 = 0.
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In this case, there is no money burning m (θ) = 0 for θ = 0 and positive money-burning

m (θ) > 0 for θ > 0; there is minimal transfer t (θ) = w̃ for all θ.
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A5 Illustraions for the Case with Conditional Transfers
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