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Abstract

This paper considers the effect of contracting limitations in risk-sharing
networks, arising for example from observability, verifiability, complexity or
cultural constraints. We derive necessary and sufficient conditions for Pareto
efficiency under these constraints in a general setting, and we provide an ex-
plicit characterization of Pareto efficient bilateral transfer profiles under CARA
utility and normally distributed endowments. Our model predicts that net-
work centrality is positively correlated with consumption volatility in large ran-
dom graphs, as more central agents become quasi-insurance providers to more
peripheral agents. The proposed framework has important implications for
the empirical specification of risk-sharing tests, allowing for local risk-sharing

groups that overlap within the village network.
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1 Introduction

Informal insurance arrangements in social networks have been shown to play an im-
portant role at smoothing consumption in a number of different contexts (Ellsworth
1988, Rosenzweig 1988, Deaton 1992, Paxson 1993, Udry 1994, Townsend 1994, Gri-
mard 1997, Fafchamps and Lund 2003, and Fafchamps and Gubert 2007). A main
finding in this literature is that informal insurance achieves imperfect consumption
smoothing.! There are different theoretical explanations as to why perfect risk shar-
ing is not possible. One leading explanation is the presence of enforcement con-
straints: since risk-sharing arrangements are informal, they have to satisfy incentive
compatibility, implying an upper bound on the amount of transfer that individuals
can credibly promise to each other. This type of explanation has been explored in a
social network framework by Ambrus, Mobius, and Szeidl (2014).2

In this paper we explore an alternative explanation featuring imperfectness of the
contracting environment. Specifically, we assume that bilateral risk sharing arrange-
ments between a pair of agents cannot be made contingent on everyone’s endowment
realizations in the community (global information), but only on a pair specific subset
of endowment realizations (local information). These contractibility restrictions can
come from limited observability or verifiability of endowment realizations of agents
located far enough on the social network, social norms and complexity costs on writ-
ing contracts, among other sources. The empirical relevance of local information is
documented by Alatas et al. (2016), who find that households’ information about each
others’ financial situations is negatively correlated with the social distance between
them.

In most of this paper, for expositional purposes, we focus on the specification
where each individual in a network can only observe her own and her neighbors’ en-

dowment realizations, and the local information each linked pair can contract upon

!Some recent papers, like Schulhofer-Wohl (2011) and Mazzocco and Saini (2012) point out that
in some contexts perfect risk-sharing cannot be rejected when allowing for heterogeneous preferences.
We discuss how our work is related to this literature later in this section. On the other extreme,
Kazianga and Udry (2006) find a setting in which informal social insurance does not improve welfare
over autarchy.

2See also Karlan et al. (2009), who investigate enforcement constraints in the case of a single
borrowing transaction. There is also an extensive literature on the effects of limited commitment on
risk-sharing possibilities for a pair of individuals instead of general networks (Coate and Ravallion
1993, Kocherlakota 1996, Ligon 1998, Fafchamps 1999, Ligon, Thomas, and Worrall 2002, Dubois,
Jullien, and Magnac 2008).



consists only of the endowment realizations that they can commonly observe - i.e.,
their own and their common neighbors’ endowment realizations. However, we show
how the results extend to more general contracting environments, where the infor-
mational network, that describes what information each contract can condition on, is
defined independently of the physical transfer network, through which real transfers
(monetary, in-kind, or otherwise) occur.

Relative to previous models, our framework provides a number of new and testable
predictions. We find that centrally located individuals become quasi insurance providers
to more peripheral households.®> Further, the current setup formalizes, and indeed
generalizes, the notion of a “local sharing group” that has been invoked recently in
the risk-sharing tests performed in the development literature.

Existing models of informal risk sharing in networks (Bloch et al. 2008, Bramoullé
and Kranton 2007, Ambrus, Mobius, and Szeidl 2014, Ambrus et al. 2017) assume
that any bilateral arrangement between connected individuals can be conditioned
on global information, meaning the community’s full set of endowment realizations.*
We find that this explanation generates qualitatively different predictions relative to
models of informal insurance with enforcement constraints. Hence, our results can
help future empirical work identify which type of constraint plays the key role in
maintaining informal insurance arrangements away from efficiency.’

There is a line of theoretical literature investigating the effect of imperfect observ-
ability of incomes on informal risk sharing arrangements between two individuals in
isolation: see for example Townsend (1982), Thomas and Worrall (1990), and Wang
(1995). The questions investigated in this literature are fundamentally different from
the ones we focus on, mainly because we are interested in questions that are inherently

network related.®

3Throughout the paper we maintain the terminology “individuals”, even though in many contexts
the relevant unit of analysis is households.

4Bloch, Genicot, and Ray (2008) consider different types of exogenously-specified transfer rules,
but these arrangements can depend on nonlocal information, potentially achieving first-best out-
comes. See also Bourles, Bramoullé, and Perez-Richet (2017), where individuals are motivated to
send transfers to their neighbors for explicit altruistic reasons, but bilateral transfers depend on
transfers among other individuals.

SEmpirical papers trying to distinguish among different reasons of imperfectness of informal
insurance contracts include Kinnan (2017) and Karaivanov and Townsend (2014). For an empirical
test between full insurance versus informational constraints, see Ligon (1998).

60ther differences include that our analysis is static while the above papers are inherently dy-
namic, and in our paper individuals perfectly observe local information (but not beyond), while in
the above papers incomes are not observable even between two connected individuals.



The current framework also speaks to an ongoing debate in the development lit-
erature that emphasizes the importance of appropriately defining individuals’ risk-
sharing groups in empirical work (Mazzocco and Saini 2012, Angelucci, De Giorgi,
and Rasul 2017, Attanasio, Meghir, and Mommaerts 2018, Munshi and Rosenzweig
2016). A general trend in this literature considers alternative sub-groups within
communities as the relevant risk-sharing units of individuals (e.g. an individual’s
sub-caste or extended family). They argue that classical empirical tests of risk shar-
ing (Townsend, 1994) must be adapted to accommodate heterogeneity in individuals’
risk sharing communities. However, they only allow for a limited form of hetero-
geneity in which group membership is mutually exclusive and groups do not interact
among themselves. Instead, we provide a general framework that can accommodate
these “partition models”, but also allows for local risk-sharing groups that overlap in
complicated ways along a network of local information.

Our paper is also related to the recent line of papers pointing out that allowing
for heterogeneous preferences, in some contexts the full insurance hypothesis cannot
be rejected, or at least the imperfection of the insurance can be bounded to be small:
see Schulhofer-Wohl (2011), Mazzocco and Saini (2012) and Chiappori et al. (2014).
In some settings this hinges on some specific type of preference heterogeneity, for
example in the context of Chiappori et al. (2014) it requires that wealth and risk
preferences are uncorrelated, which is at odds with the standard assumption of de-
creasing risk aversion.” Nevertheless, it is certainly possible that in some context
informal social insurance is close to perfect. However, in other contexts empirical
research found that informal social insurance is very ineffective and does not improve
welfare relative to autarky (see the context in Kazianga and Udry (2006), and for
certain types of risks in the context of Goldstein et al. (2001)). There are also some
similarities between our work and the above literature. The latter investigates the
role of heterogeneity of preferences in informal risk sharing, while our paper focuses
on the role of heterogeneity in network positions.

The first part of our analysis characterizes Pareto efficient risk-sharing arrange-
ments under local information constraints for general (concave) and possibly heteroge-
neous utility functions and endowment distributions. We show that Pareto efficiency

in our context (subject to local information constraints) is equivalent to pairwise ef-

“For a recent paper finding support for preferences exhibiting decreasing risk aversion, see Par-
avisini, Rappoport, and Ravina (2016).



ficiency, that is the requirement that the risk-sharing agreement between any pair
of neighbors is efficient, taking all other agreements between neighbors fixed. This
means that any decentralized negotiation procedure that leads to an outcome in which
neighbors do not leave money on the table would yield a Pareto efficient risk-sharing
arrangement.

In the benchmark model with global information, the necessary and sufficient
conditions for Pareto optimality, referred to as the Borch rule (Wilson, 1968; Borch,
1962) can be derived using standard techniques, and they state that the ratios of any
two individuals’ marginal utilities of consumption must be equalized across states.
We can generalize the Borch rule to this setting by showing that a necessary and
sufficient condition for Pareto optimality of a risk-sharing arrangement with local
information equates the ratios of expected marginal utilities of consumption for each
linked pair, where expectations are conditional on local states (i.e. on the realizations
of the contractible endowments).

The generalized Borch rule can be used to verify the Pareto efficiency of con-
sumption plans achieved by candidate transfer agreements in concrete specifications
of our model. We provide this characterization for the case of CARA utilities and
jointly normally distributed endowments in the context when local information of
a pair includes the endowment realizations of the pair and common neighbors. The
characterization is particularly simple in the setting of independent endowments: each
individual shares her endowment realization equally among her neighbors and herself;
on top of that, the arrangement can include state independent transfers, affecting the
distribution of surplus but not the aggregate welfare.®

For the more general case of correlated endowment realizations in the CARA-
normal setting, we show that efficient risk-sharing can still be achieved by transfers
that are linear in endowment realizations and strictly bilateral (i.e. only contingent
on the endowment realizations of the pair involved). In contrast to the local equal
sharing rule that obtains in the case of independent endowments, we find that if
individuals ¢ and j are linked, increasing the exposure of ¢ to transfers from non-
common neighbors increases the share of ¢’s endowment realization transferred to 7,
relative to local equal sharing, and decreases the share of j’s endowment realization

transferred to 7. These correction terms, which are complicated functions of the

8This type of transfer arrangement, which we refer to as the local equal sharing rule, was consid-
ered as an ad hoc sharing rule in Gao and Moon (2016).
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Figure 1: A Simple 3-Individual Network

network structure, take into account that more centrally located individuals are more
exposed to the common shock component, and optimally correct for this discrepancy.

We show that more central individuals tend to end up with a higher consumption
variance because they serve as quasi insurance providers to more peripheral neigh-
bors. For large random graphs we show this analytically, and for specific village
networks from real world data we show it via simulations. For a fixed set of welfare
weights, more central individuals are compensated for this service through higher
state-independent transfers (“insurance premium”). This is contrary to the predic-
tions from models with enforcement constraints, like (Ambrus, Mobius, and Szeidl,
2014), in which more centrally connected individuals are better insured (i.e. end up

with smaller consumption variance).”

2 Illustrative Examples

2.1 Basic Setting

Before investigating general network structures, we first consider the simplest non-
trivial network, where three individuals, denoted by 1, 2 and 3, are minimally con-
nected in a line. Despite its simplicity, this example provides some useful insights on
how local information constraints affect efficient risk-sharing arrangements.

Assume that individuals have homogeneous CARA preferences of the form u(x) =
—exp (—rz), and that endowments ey, ez, €3 ~iiq N (0,02). Only linked individuals
may enter into risk-sharing arrangements to mitigate endowment risks. Let ¢15 denote

the net ex post transfer from individual 1 to individual 2, and ¢;3 the net transfer

9In a separate paper, Mildn et al. (2018) test the pairwise transfer scheme predicted by local
information constraints against the observed food exchanges between Tsimane’ households in the
Bolivian Amazon. They find that bilateral transfers can be explained by network centrality, as
predicted in Proposition 4 below, which provides further supporting evidence for the model.



from individual 1 to individual 3. Let xy, 29,3 denote the final consumption to
individuals after the transfers are implemented, i.e., 1 = e — t19 — t13, To = €3 + t1o

and x3 = e3 + t13.

2.2 Global Information

First we consider the benchmark case when bilateral risk-sharing arrangements can
be conditioned on global information, that is on all three individuals’ endowment
realizations: tqo, %13 can be arbitrary functions of the endowments ey, es, e3. Standard
arguments (see Wilson, 1968) establish that Pareto efficient transfer rules t15,t13 are

the ones maximizing the social planner’s problem:

for some A, Ao, A3 € (0,1) s.t. Ay + Ay + A3 = 1. By the well-known Borch rule

(?Wilson, 1968), the necessary and sufficient conditions for optimality are:

E = ]E [>\1U (61 — t12 — t13) + )\QU (62 -+ t12) -+ /\3u (63 —+ t13>] s

)\1ul (61 — tlg — tlg) = )\gul (62 + tu) = )\3ul (63 + t13) Vel, €9, €3.
With CARA utility, this yields the global equal sharing rule:

1 2 1 1
t12 (61, €9, 63) = 561 — 562 + 563 — § In ()\3/)\1)\3)

and similarly for ¢3, leading to the final consumption plan:

= % (e1 +ex+e3)+ i In ()‘2/\3/)‘%) ’

2y =3 (e1+ey+e3) — 5 In (MAs/A3) W
1
3

x5 =3 (e1+ e+ e3) — 3 In (A A2/A3) .

That is, Pareto efficient risk-sharing arrangements in every state divide each realized
endowment shock equally among all individuals, and the global equal sharing is then

corrected by state-independent transfers that implement the welfare weights.



2.3 Local information

Suppose now that each individual’s endowment realization is only locally observed by
immediate neighbors, so that the transfers ¢, ¢3 in the risk-sharing arrangements
can be contingent on the endowment realizations that each linked pair of individuals
commonly observe, that is, t15 = t12 (€1, €2) , t13 = t13 (€1, €3) .

It is no longer possible to achieve consumption plans on the Pareto frontier, given
by (1), subject to these local information constraints. However, a necessary condition
for a transfer arrangement to be socially optimal is that, for any given realization of e;
and ey, 115 should maximize Aju (e; — t12 — t13) + Aou (€2 + t12), given the distribution
of ez conditional on e; and eq, and the implied distribution of consumption levels (net
of t15) induced by t13.1° In short, given t13, t;5 should maximize the planner’s welfare
function:

t12

max/ [Alu (61 — tlg — t13) + )\Qu (62 + tlg)] f3|1,2 (63) d€3

The necessary and sufficient FOC for this maximization problem is:
ME [u' (e1 — t1o — t13 (e, 63))‘ €1, 62} = Aot (€2 +t12),

and similarly for t3 given ts.

Solving this system of two integral equations, we obtain the following transfer rule

1 1 1 1
ti2 (€1, €2) = 561 — 562 — ﬂ'f’UQ T3 In ()\1)\3/)\3) (2)

and similarly for ¢;5 (e1, e3). Notice the transfers can be decomposed into three parts.

The first part, %el — %62, corresponds to the “local equal sharing rule”, which is the

local variant of the equal sharing rule. It implies that individual i’'s endowment e;

is equally shared by ¢ and ¢’s neighbors, Le., t;; = ;%5 — d-eir The second part of
i J
the equations in (2), —iraQ, corresponds to a state-independent transfer that can be

regarded as the “insurance premium” paid by the “net insurance purchaser” to the

10We show in Section 3 that this condition is actually also sufficient.



“net insurance provider”. In this case, as the final consumption are

11 = L1+ des + tes + Sro? + L In (AT/A0)s)

Ty = €1+ 56 — 5;70% + 3= In (/\g/)\l)\g) ,

T3 = se1 + 363 — 5ro? + o In (A5 /A1)
individual 1 takes extra risk exposure %el + %62 + %63 in comparison to individuals 2
and 3, %el + %62 or %el + %63. Hence, individual 1 is rewarded the certainty equivalent
(CE) for her intermediary role in risk sharing. The third part of the equations in (2),
—é In ()\1)\2 / )é), redistributes wealth according to the welfare weights assigned to
different individuals (it is zero when A} = Ay = A3).

To evaluate the welfare loss associated with risk-sharing arrangements that con-
dition only on local information, since social welfare is a linear, strictly decreas-
ing function of total variances under CARA utilities and normal endowments, we
can simply compare the total variances of final consumption. With global informa-
tion, the sum of consumption variances is: TVarg = 3 - Var [% (e1+ €2 +e3)] = o2
With bilateral risk-sharing arrangements subject to the local information constraints,
the sum of consumption variances increases to: TVar, = Var [%61 + %82 + %83} +
Var [%61 + %62} + Var [%61 + %63} = %02. Hence the welfare loss arising from local

1

information constraints is 302 in the above example.

2.4 General Contractibility Constraints

The previous example has the feature that local information constraints are defined
based on the underlying physical network at which transfers take place. This does
not have to be the case. Our framework, is more general and may be interpreted
as the “reduced-form” representation of all effective contractibility constraints. It
may encode, say, primitive features of the environment that may be relevant to con-
tractibility considerations, including the extent of observability, the technology of
communication, and opportunities for ex post strategic interactions that may effec-
tively implement truthful information transmission in equilibrium. More precisely,
one might imagine that messages about endowments may be distributed along pairs
of linked households, such that information extends beyond the immediate neigh-

borhoods. Alternatively, one could also consider “directed information” whereby the
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Figure 2: Four-Individual Transfer Network
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Figure 3: Four-Individual Information Network

realization of some endowment e, might be contractible to a pair ¢ and 7, but not
vice versa.

To fix ideas, consider an augmented four-agent line network shown in Figure 2
and take this to be the underlying transfer network. Imagine, say, that we now allow
transfers t15 and ¢33 to depend on e4 as well as on direct neighbors’ endowments as
before. This corresponds to a situation in which information constraints are not,
strictly speaking, ”local”, in the sense of corresponding to the endowments of con-
nected neighbors. Nonetheless, contracts remain incomplete since transfers are not
contingent on all states.

In order to represent risk-sharing contracts in this setting we construct an alterna-
tive information network as shown in figure 3. This network is a directed super-graph
of the original network, and we can now characterize transfers by considering “local
information constraints™ (as defined above) of this alternative network. In other
words, any pair that is connected in the original transfer network can now contract on
the common information of her “in-neighbors” of the directed information network.!!
Indeed, we show in Section 6.1 that we can apply our framework to information net-
works like these in order to extend our results to contractibility environments that

do not necessarily coincide with the original transfer networks.

HTf instead the information network in Figure 3 was undirected, this would correspond to a
different contractibilty environment in which not only would ¢12 and t23 depend on e4, but t34 would
now also depend on es.

10



3 General Framework

We now turn to a general framework that extends the lessons of the previous example
by characterizing the bilateral risk-sharing arrangements for any given network while

allowing endowment shocks to be correlated across households.

3.1 Setup

Before we proceed to our main analysis, we first introduce the model setup and define
some notations. Let N = {1,2,...,n} be a finite set of individuals and let G be the
adjacency matrix of a network structure on N. A pair of individuals 4, j are linked if
Gi; = 1, and by convention, G;; = 0. Throughout the paper we assume, without loss
of generality, that G represents a connected network.!? Denote the neighborhood of
iby N; :={j € N : Gy;; = 1} and the extended neighborhood of i by N; := N; U {i}.
Let d; := # (IV;) denote individual i’s degree. The state of the world is defined as
the vector of endowment realizations e = (¢;),en € © = R™, and its distribution
is characterized by a probability measure P on (2, % (2)). We assume that the
distribution of e has finite expectation.

We assume that only linked pairs of individuals can engage in informal risk sharing
directly, and such linked pairs can ex ante enter into and commit to a bilateral

t.!3 An ex ante risk-sharing arrangement between linked

risk-sharing arrangemen
individuals ¢ and j is a net transfer rule ¢;; : 2 — R, which prescribes a net amount
of ¢;; (e) to be transferred from i to j at each realized state e. By definition, ¢;; (e) =
—t;; (e) for every e € Q and linked 4,5 € N.

A central feature of our model is that we impose local information constraints
on the bilateral contracts each linked pair of individuals may write. For most of the
paper, we adopt the specification that individuals can only observe the endowment
realizations of their direct neighbors, and the bilateral contract a linked pair of indi-
viduals enter into may only be made contingent on the endowment realizations that
they can commonly observe, i.e., their own and their common neighbors’ endowment
realizations. Define Nj; := N; N N; and Nyj; := N; N\ N;. Let I; (e) := (¢;) o, be the
information vector of i, and I;; (€) := (ex) yew,, be the common information vector of

a linked pair 7j. We may later refer to [;; as the local state for 7j. Mathematically, the

12Qtherwise we may analyze each component separately.
13In this paper we abstract from ex-post enforcement problems for such contracts.

11



local information constraints we introduce above requires that ¢;; varies with I;; only,
or that t;; : Q@ — R be o (/;;)-measurable, where o (I;;) denotes the sub-o-algebra
induced by ;.

This specification implicitly assumes that the information network that encodes
observability (or other forms of information transmission) of endowment realizations
coincides with the physical transfer network that encodes the ability for two individ-
uals to write and commit to a bilateral risk-sharing contract ex ante. However, such
a restriction is non-essential for our analysis, and it is imposed here for the exposi-
tional simplicity. Section 6.1 considers a more general formulation of contractibility
constraints, and provide generalization of our model, as well as the results, beyond
the current specification.

We refer to the profile of ex ante risk-sharing arrangements ¢;; between all pairs of
linked individuals as a transfer arrangement ¢. Let 7 denote the set of all admissible
transfer arrangements t : § := R” — R2ien % that are only contingent on the local

states for all linked pairs:

tij is o (I;;) -measurable
T :=Kt:Q— R2ien % Vi, j s.t. Gij =1, and Lij (6) + 15 (6) =0, Ve € Q,
and E[t;;] is finite.

Define (s,t) := E [ZGUZI sij (€) ti; (e)] for any s,t € T. It follows that (-,-) is an
inner product and 7 is a well-defined inner product space (see Lemma 1 in Appendix
B.1 for a formal proof). We slightly abuse notations by treating each element in T as
an equivalent class of transfer arrangements that are indistinguishable under the norm
induced by (-, -). Throughout the paper, we write “s = ¢t” to mean “(s —t,s —t) =07,
whenever applicable.

Given a transfer arrangement ¢t € T, we define the final consumption plan induced
by t as 2’ : Q — R" with z} (e) := e; — ), cn, tij (€). Individuals derive utilities from
their own final consumption,'* and we assume that they have a strictly concave and
twice differentiable utility function u, with «’ > 0 and u” < 0.

The timeline of our model is summarized as follows: ez ante, given a fixed network

structure G, each linked pair ij enter into a bilateral risk-sharing contract ¢;;; the

ere we abstract away from constraints on minimum consumption levels, which clearly wou
14 bstract y f traint tion levels, which clearly 1d
further reduce the efficiency of the risk sharing contracts. However if income variances are small
relative to expected income levels, then we expect the distortions to be small.

12



endowment vector e realizes; ex post, each linked pair ¢ carries out the network
transfer of amount ¢;; (1;; (¢)) according to their ex-ante contract ¢;; and their local
information I;; (e); after the transfers, each individual derive utility from her final
consumption zf (e).

The central question we seek to answer in the subsequent analysis to character-
ize the constrained Pareto efficient risk-sharing arrangements subject to the local

information constraints.

3.2 General Conditions for Pareto Efficiency

To characterize the set of Pareto efficient transfers under the local information con-

straint, we consider the following problem:

> (ek -> tkh>] (3)

keN ’LGNk

max J (t) == E
teT

Recall that both e and t are assumed to have finite expectation. As w is strictly
concave, by Jensen’s inequality, we conclude that E [u (ek — D he N tkh)} < oo for all
k € N, so the social welfare function J : T — R U {—o0o} is well defined on T.

The following proposition provides a formal characterization of the solution to the
maximization problem above. Since the transfer rule ¢;; is restricted to be measurable
with respect to o (I;;), we slightly abuse notations and write it as ¢;; : R% 2 — R
where d;; + 2 = dim (/;;). We denote the distribution of I;; on R%*2 by PI ',

Proposition 1. A profile of t € T solves (3) if and only if it simultaneously solves
the Y, n di optimization problems in, the form of (4) at PI;'-almost all possible local
states of the linked pair: Vi,j s.t. G;; =1, for Pligl-almost all jz‘j € R%it2,

7 Nt (€ = Ty = Sy lin (0))
tij <[z’j) € argmaxE J heN\{j}
ti; ER +)\juj <€j + tij - ZheNj\{i} tjh (6))

Proposition 1 is an intuitive result. Its analogue under global information has
a similar form and essentially connects the marginal utilities of consumption of two
individuals in two different states (Wilson, 1968). With local information, the state-
ment is now expressed, for every linked pair, in terms of a conditional expectation

over the common information set of that pair. Therefore, equation (4) says that the

13



set of Pareto efficient transfers call for pairwise efficient risk sharing along each link
of the network, where efficiency is measured with respect to an expectation over all
possible realizations of the nonlocal information.

Importantly, Proposition 1 provides a motivation for investigating Pareto efficient
risk sharing subject to local information by implying that these are exactly the possi-
ble outcomes resulting from decentralized negotiation procedures satisfying the weak
requirement that neighboring agents end up with agreements that are efficient at the
pair level. To see this, notice that Proposition 1 establishes an equivalence between
Pareto-efficient risk-sharing arrangements subject to local information constraints and
stable outcomes of decentralized bilateral risk sharing arrangements between neigh-
bors subject to the same constraints. In problem (4), at each I;;, the choice of ¢;;
affects the expected utilities of only ¢ and j, so each optimization problem in (4) can
be reinterpreted as the surplus maximization problem jointly solved by the linked pair
17, given the transfer rules chosen by other linked pairs. Therefore, any bargaining
procedure that leads to an agreement between any two neighboring agents that is
efficient for the pair (does not leave surplus on the table) given other agreements,
results in a Pareto efficient outcome at the social level.'®

The next result establishes that while in general there can be multiple transfer pro-
files satisfying the conditions for optimality (4), they all imply the same consumption

plan in all states.

Proposition 2. All profiles of transfers t € T that solve (3) lead to (P-almost) the

same consumption plan x.

By Proposition 2, if we can find a profile of transfers so that the induced con-
sumption plan satisfy (4), then it must correspond to a Pareto efficient risk-sharing
arrangement.

For simplicity, below we will denote the conditional expectation operator E[- |;;]
by E;; [-]. Following Propositions 1 and 2, we may express the necessary and sufficient
condition for Pareto efficiency as a requirement on the ratio of conditional expected

marginal utilities.

Corollary 1. A profile of transfers t is Pareto efficient if and only if the ratio of

the expected marginal utilities conditional on all local states is constant: for every

15 A concrete example for such a negotiation procedure is split the difference negotiations, originally
proposed in Stole and Zwiebel (1996) and adopted to the risk sharing context in Ambrus et al. (2017).

14



i, €N s.t. Gy =1,
Ey v (25)] N
This result extends the well-known Borch rule (Borch, 1962; Wilson, 1968) for
Pareto efficient risk-sharing arrangements to settings with local information con-
straints. As opposed to the global-information case, the ratio of expected marginal
utilities need not be equal state by state and across all individuals: they only have to
be equal between linked individuals and in expectation, conditional on local common

information.

3.3 Efficient Risk-sharing in the CARA-Normal Setting

In this section we investigate Pareto efficient risk-sharing arrangements, subject to
local information constraints, under the assumption of CARA utilities and jointly

normally distributed endowments with a uniform global correlation structure.

Assumption 1. For the remainder of this section we assume that individuals have ho-
mogeneous CARA utility functions u (x) = —exp (—rz), wherer > 0 is the coefficient
of absolute risk aversion. The vector of endowments (e;);cn follows a multivariate
normal distribution, e ~ N (0,02X) with ¥y = 1 for all i and Zij = p for all i # 7,
for some p € [— 1 1} 16

n—1"

To maintain analytical tractability, we assume symmetric correlation structure,
where any two individuals’ endowments have the same correlation coefficient p €
[—ﬁ, 1}. Equivalently, we are assuming that each individual’s endowment can be
decomposed additively into two independent components: a common shock and an
idiosyncratic shock, i.e., e; = /péo + /1 — pé&;, with (éx),_o ~iia N (0,0%). We later
consider the implications of more general patterns of correlation.

We now proceed under Assumption 1 and fully characterize the transfer rules that
achieve Pareto efficient consumption profiles subject to local information constraints,
for any network. We will show that these rules are linear and strictly bilateral. A
linear transfer rule specifies that the transfer between any two connected individuals

is a linear function of endowment realizations in the pair’s joint information set. We

16_ nil is the lower bound for a global pairwise correlation in a n-person economy; mathematically,

it is the smallest p such that the variance-covariance matrix is positive semi-definite. For any

pE [—ﬁ, 1] , the variance-covariance matrix is positive semi-definite.
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show in the next two sections that linear transfer rules can achieve any Pareto efficient
risk-sharing arrangement, where the precise linear form depends crucially on the level
of correlation in endowments. Moreover, we show that Pareto efficient consumption
allocations may be achieved by linear rules that are also strictly bilateral — that is, a
transfer between ¢ and j need not condition on the information of a common neighbor
k. In the next two subsections we give a precise characterization for these rules as a

function of the underlying network structure.

3.3.1 Independent Endowments

To simplify the presentation of our results, we first analyze the case where endowments
are independent, i.e., p = 0. We show that optimal transfers may be easily described
as a localized version of the equal sharing rule, in which individuals transfer an equal
share of their endowment to all their neighbors. We later show that adding correlation
alters the formula for optimal transfers, while keeping a linear and bilateral form.
We first verify that the local equal-sharing arrangement is indeed the optimal
linear rule subject to local information constraints (in 7") satisfying the expectational
Borch rule. Given any linear transfer scheme, final consumption, conditional on I;;,
also follows normal distribution, so E;; [u; (z;)] = rexp [—r (Ey [2;] — rVar; [x])] .
Define the conditional certainty equivalent CE (x;| I;;) := Ey; [2;] — 57V ar;; [x;] . Then

(5) can then be rewritten as
. 1 . 1

The profile of transfer schemes ¢ achieves Pareto efficiency if and only if (6) holds for
every pair of 4 such that G;; = 1. Intuitively, equation (6) states that the difference
in the conditional certainty equivalents is constant across all local states for a linked
pair.

We say a profile of transfer rules is strictly bilateral if t;; is o (e;, e;)-measurable.
We now characterize efficient transfers subject to local information for the case of

independent endowments.

Proposition 3. Given any profile of positive welfare weights (X;),cy, there always

exists a strictly bilateral Pareto efficient profile of transfer rules in T in the form of
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the following “local equal sharing rules”:

_ & &
S di+ 1 di+1

ti; (ei ej) + pijs

Jor some constant p;; € R, for each linked pair ij.

Proposition 3 shows that the efficient transfer ¢, (e;, ¢;) subject to the local infor-
mation constraint is composed of two parts: the state-contingent “sharing rule” and
the state-independent “insurance premium” (captured by ufj), just like in the simple
example above. The state-contingent transfer scheme corresponds to the local equal
sharing rule in which i transfers a fraction 1/(d; 4+ 1) of her endowment to each of
her friends and receives a fraction 1/(d; + 1) from each friend j.

Notice that this transfer scheme is linear in endowments and that only bilateral
information is required for efficient risk sharing with local information. Also, this
proposition suggests that two linked individuals 75 only require ex ante knowledge of
the local network structure (more precisely d; and d;) to compute and contract on
the socially optimal transfer rule ;.

Even though Proposition 2 guarantees the uniqueness of the Pareto efficient con-
sumption plan, for general networks there might be multiple risk-sharing arrange-
ments that are Pareto efficient. However, the transfer scheme achieving a Pareto
efficient risk-sharing arrangement is unique up to superfluous transfers on cycles that
can be state dependent. The transfers we provide are therefore the most parsimo-
nious description of Pareto efficient arrangements, in which we set superfluous cycles

to zero.!”

3.3.2 Correlated Endowments: General Characterization

Formally, notice that the joint information of individuals ¢z and j affects the conditional
distribution of some non-common endowment k as follows

1+p—2p°
~N (L ey te), LTI 2

n Appendix B.7 we show that for tree networks (i.e. cycle-free networks) the linear transfer
scheme featured in Proposition 3 is the unique transfer arrangement that achieves a given Pareto
efficient risk-sharing arrangement.

(7)

€k
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Setting p = 0 implies that e, . ~ N (0,0?) as in the previous section, leading to
local equal-sharing as the optimal transfer rule. In this section we show exactly how
the local equal-sharing rule is affected by the presence of correlated endowments. We

show that linear and strictly bilateral rules of the form
tij (€i7 €j) = € — Q5 + [y for all ij : Gij =1 (8)

still achieve Pareto efficient allocations — as in the previous section — and we provide
precise characterization for the coefficients c;; as a function of the network and the
correlation parameter p.

For clarity, we first illustrate the main ideas for the case of minimally-connected
networks. Notice that, under minimal connectedness, I;; = (e;,€;), so transfer t;;

must be strictly bilateral. Then, the local FOC for optimality in equation (5) can be

written as
1 1 1
ti; = 56 T 56~ o InE | exp rkeg{ i tiw (€ivex) || e e;
i\l
9)
1 1 A
+2—TlnIE exp | r Z tix (ej,ex) | | €€ +§1n)\—z

keN;\{i}

Postulating a linear and strictly bilateral transfer scheme of the form, t;; (e;,e;) =
aije; — ajiej + p; forallGy; = 1, we can substitute the postulated linear forms of
tir into (9) and obtain expressions for the above conditional expectations in terms
of linear combinations of endowments based on the conditional distribution given in
(7). We can therefore explicitly derive the conditional expectation terms in the above

formula and, after collecting terms and reconciling with the postulated formula for

18



t;j, arrive at the following system of equations:*®

1 ..
Qi = 3 1— Z oy + pr Z Qi — Z Qg Vij s.t. Gy = 1.
kENi\{5} keN:\{j} keN;\{i}
(10)
In equation (10), the net transferred share ay; of e; from i to j is given by the half

of the “remaining share” after deducting the transfers to i’s other neighbors N;\ {j},
1
2
is analogous to the equal sharing rule in the independent endowments case, but last

corrected by an adjustment for inflows of non-local endowments. The 5 multiplier
term in the square brackets is new (i.e. it disappears when p = 0). We refer to
this term as an informational effect, for the following reason: >, N\{j} Qi 1 the
sum of ¢’s shares of i’s other neighbors’ endowments (ey), Ni\(jy» and the conditional
expectation of each k’s endowment changes linearly with the realization of e; by a
factor of ?’)p. Similarly, >, . N\{i} Yki is the sum of j’s shares of j’s other neighbors’
endowments (ey),c N\f} and the conditional expectation of each k’s endowment also
changes linearly with the realization of e; by a factor of ﬁ. Intuitively, due to
the symmetric correlation structure, the realization of e; provides the same amount
of local information about all non-local endowments e, for k ¢ Wij, and thus its
informational effect can be calculated as a simple net sum of endowment shares.
Finally, since a larger e; predicts that both ¢+ and j are more likely to obtain higher
amounts of inflows from uncommon neighbors, this commonly recognized information
can be used by the pair ij to (imperfectly) share the non-local risk exposures.'? After
pooling the conditional expectations of non-local inflows, 7 and j again share the
remaining shares of e; and e; equally.

Notice that every individual ¢ carries out this kind of “equal sharing” behavior
with all her neighbors, and the inflow/outflow shares («;;) must make all the sharing

simultaneously equal (in expectation). In other words, solving for the transfer in

18Rigorously there should be another set of equations that verify the guess for the state-
independent constant transfers g, which in general involve both o« and pu. However, Lemma 6
in Appendix A.4 implies that, given any admissible «, there exist some u such that (o, ) satisfies
the set of verification equations for the constant transfers. Hence, system (10) (which involves only
«) constitutes the essential condition for Pareto efficiency. We therefore omit the conditions on p
and delay our discussion about state-independent transfers to Section 6.4.

19To be precise, by “inflow” we mean the undertaking of a share of someone else’s income endow-
ment, which may be positive or negative; by “outflow” we mean the distribution of a share of one’s
own endowment to someone else, which may also be positive or negative. In particular, a negative
inflow is not the same as an outflow. Instead, i’s inflow from j is the same as j’s outflow to i.
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(8) explicitly involves solving conditions (10) simultaneously to obtain the full profile
of bilateral shares, (c;;). We do this below for general network structures, which
obviously include the case of minimally connected networks. However, for general
network structures transfers need not be strictly bilateral. A general analysis must
allow for this possibility.

In Appendix A.5, we show that, for general network structures, a linear and strictly
bilateral profile of transfer rules which solves a particular system of linear equations,
is indeed Pareto efficient. However, the required system of equations proves difficult
to solve directly. Instead, we show in Lemma 8 that we may equivalently solve an
alternative optimization problem that minimizes total consumption variances among
all linear transfer rules, as we define below.

Specifically, let « be a linear profile of transfer rules in 7, and consider the follow-
ing optimization problem that minimizes the sum of each individual’s consumption

variance under the risk-sharing arrangements defined by a:

HEHZVCLT (1 — Z Oéz'j) €; + Z ozﬁej] . (11)

iEN JEN; JEN;
Let A; be the Lagrange multiplier associated with i’s outflow constraint > e, Qij =1
and denote A; := 2({\jp). Then, taking the FOC for the Lagrangian, we have
aji = Nj — g2 (@i + Dgen, awi) Vi €N, Vie N (12.1) 12)

ZjGNVL- Q5 = 1 VieN (122)

This is a system of (), d; + 2n) equations in (), d; + 2n) variables (o, A).

With all this, we are now equipped to characterize the set of Pareto efficient linear
and bilateral transfer rules by obtaining the complete profile of bilateral shares (c;)
that solve the above problem, and substituting them into equation (8). We present

the following main characterization result:

_1
n—17

unique solution to system (12) given by the following: Vi € N, Vj € N,

Proposition 4. For any p € (— 1) and any network structure G there exists a

p
N A 1
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where A; 1s defined by any of the following equivalent representations:

o (Fized point representation):

1
i dz+

(14)

Z\M

PPN

e (Closed-form representation): writing A = (A;);_,

1

A=(D-GuG) "1

where D is a diagonal matriz with its i-th diagonal entry being d; + 1, U is a

diagonal matrixz with its i-th diagonal entry being %ﬂdi ,and G =G+ 1,.
o (Explicit representation): For p € [0,1),

A= d+1+ZZZW7r” (15)

qeNj GNﬂ.w EH”q

where W (m;;), the weight of each path m;; = (ig, 11,12, ...1,) of length q from i

to j (i.e. ig =1 and i, = j), is given by,

1 p 1 p 1
d10—|—1 1—|—pd11 du—}—l 1—}—de3 d1—|—1

q

W(ﬂ'z‘j) = (16)

The above result provides the first closed-form prediction of risk-sharing transfers
on a general network of informal insurance that we know of in the literature.?? This
result includes the above case of independent endowments, but also allow for more
sophisticated transfer rules that account for uniform correlations. Indeed, notice that
for p = 0 equation (13) specifies that a;; = A; for all i € N;, which necessarily
implies that aj; = 1/(d; + 1), as stated in Proposition 3. The way in which the
presence of correlated endowments affects the shape of bilateral shares a;; depends
on the network structure in complicated ways, as captured by A;. This centrality
measure summarizes individuals’ relevant network position, by aggregating indirect

effects that are interconnected across neighbors.

208ee Appendix B.8 for Pareto efficient risk-sharing arrangements in the boundary cases of p €
1
{_ 1}.
n—17
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To obtain intuition for the “network features” contained in A;, notice that the
fixed point representation in equation (14) expresses each individual’s centrality re-
cursively as a function of the centrality of their neighbors’ neighbors. This suggests
that interactions at distance two (i.e. neighbors of neighbors) are directly relevant in
this setting. To see this notice that the the network interaction terms in (12.1) define
the shares going in to j as substitutes of one another. This implies that individuals
at most two links apart (i.e. with a common neighbor, j) respond negatively to each
others’ shares directly through this optimal trade-off.

Moreover, indirect effects play a crucial role here as well. To see this, notice that
two households with a common neighbor j not only interact through their transfer to
7, but might also exchange resources with other partners, and these other relations
affect what j receives from them, given their constraints in (12.2). This is the main
message behind equation (13), where these inter-dependencies along the network have
been solved for, and we can express the share from ¢ to j as a function of some
constants A’s, that accumulate all these indirect effects.

The recursive representation in (14), is reminiscent of Katz-Bonacich, Page Rank,
and other global network measures, albeit with two crucial differences: 1) The cen-
trality of ¢ depends on the centralities not of direct neighbors, but of neighbors of
neighbors, and 2) the weights are not a simple geometric series (as in the Bonacich
measure), but instead depend explicitly on the degree of the direct neighbors that are
linking ¢ with all of her length-two neighbors.

Solving for A; in (14) provides an alternative representation of the centrality as
the accumulation of weighted even paths, shown in (15). This expression also reflects
the two main differences with standard measures (i.e. length two and path-specific
weights). To see this notice first that the explicit representation of (15) defines
1’s centrality as the accumulation of weighted paths of even length starting from 1.
Second, notice that the weights given in (16) account for the degree of all individuals
involved in a given path.

However, notice that (14) sums over individuals in N; and N;. In other words,
self-loops are allowed. This implies that we are not in a situation where an individual
that is, say, at distance 3 from ¢ will not matter for i’s centrality measure. On the
contrary, she will in fact matter because self-loops will allow us to reach any individual
that is weakly connected to ¢. The weighting scheme, however, will depend crucially

on the even-length paths that we can compute, starting from ¢. In other words, while
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this measure ultimately relates individuals at all distances in the network, the specific
weights between each pair of individuals require counting only the even-length paths
that connect them.?!

This complicated weighting scheme unfortunately makes comparative statics on
the network structure difficult to analyze. To see this notice that when a link is
removed from the network, a number of even-length paths disappear, lowering the
total elements being summed in (15). However, this also lowers the degree of the two
individuals involved in that link. This increases the weights associated to all even-
length paths that go through either of these two individuals, as shown in equation
(16). It is therefore difficult to know, in general, the way in which the centrality
measure responds to changes in the network structure.

Lastly, we briefly discuss how social welfare, as measured by the total variance of
final consumption across all individuals, varies with the correlation parameter. On
the one hand, as the correlation parameter p becomes more positive, the scope for risk
reduction via risk sharing gets smaller. At the extreme of perfect correlation, only
uninsurable aggregate risk remains. On the other hand, as |p| increases, local infor-
mation becomes more informative about nonlocal endowment realizations, reducing
the loss of surplus caused by local information constraints. In Section A.8. of the
Appendix we provide simulations of bilateral transfers and show that bilateral share

differences o;; — avj; decrease with |p|.

4 Network Centrality and Consumption Volatility

In this section, we present an important implication of our model concerning the
relationship between network centrality and consumption volatility in risk-sharing
communities. Indeed, a crucial advantage of obtaining closed-form predictions on
transfers is that we can provide clean and precise characterizations of the role of
network heterogeneity on certain important features of ex-post consumption. We
focus on consumption volatility, as this is an easily observable measure that highlights
how network heterogeneity translates to differences in individual risk exposures under

the local information constraints.

2In Section A.8 of the Appendix we go over a simple example with a small network of five
individuals, and we show how to weight paths in order to construct the relevant network centrality
measure, and how to obtain the predicted transfers a;i of Proposition 4.
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We show that, as suggested in the simple three-individual example above, more
central individuals function as insurance providers to more peripheral individuals. As
a result, they absorb larger shares of endowment risk than they can unload on others,
leading to more overall consumption volatility, for which they may get compensated
via state independent transfers.

We first derive analytical results for the correlation between network centrality
and consumption volatility according to our theoretical model. For star networks, we
derive closed-form formula for individual consumption variances under any endow-
ment correlation parameter, and show that the center’s final consumption is always
more volatile than the peripherals’. Alternatively, assuming that endowments are in-
dependent and that networks are sampled according to an Erdds-Rényi random graph
generating process, we derive exact formula for the asymptotic covariance between

degree centrality and consumption variance, which turns out unambiguously positive.

4.1 Star Networks

We first provide analytical results for the positive relationship between network cen-
trality and consumption volatility in star networks.

Let ¢ denote the center individual, who is connected to n—1 peripheral individuals,
and none of the peripheral individuals are connected to each other. We use p to refer
to a generic peripheral individual.

It is straightforward to show that a linear risk-sharing arrangement achieving
Pareto efficiency subject to local information constraints specifies the following en-

dowment shares to be transferred:

N :2—|—2(n—1)p 1+p (n=2)p
T n(2+np)

Oépc:42+np7 ’ch— 2-|—/)’Lp7

It can be shown that the difference in consumption variances in efficient contracts

satisfies
(n=2)(1L+(n-1)p) (1-p"

>0
(2 +np)? -

Var (xz.) —Var(z,) =
with equality only at p € {—ﬁ, 1}. In particular, Var (z.) — Var (z,) — % as

n — oo, and hence the consumption variance of the center can be much higher than

the consumption variance of a periphery individual when p is low and n is high.
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4.2 Erdos-Rényi Random Graphs

We now proceed to characterize the (large-network) asymptotic relationship between
network centrality and consumption volatility under the Erdés-Rényi random graph
setting, which lends great tractability to the analysis.

To formalize our results, write PP® EF® as the probability measure and expec-
tation operator with respect to the Erddés-Rényi random graph generating process

GE (n, p): for each n > 2 and p € (0,1), let
Gij = Gj; ~iiq Bernoulli(p), Yi,j e {l,...,n}.

Fixing a sequence of {p,} C (0,1), we write PEE ELZ® for the Erdds-Rényi random
graph generating process GE¥ (n, p,,).

For each network structure G,, drawn from PZ% | we write d; (G,,) as individual i’s
degree in GG,,. We write e to denote a generic realization of the endowment vector, and
take the distributions of e and G, to be statistically independent from each other.
Furthermore, we focus on the simple case with independent endowment shocks, i.e.,
the global correlation parameter p = 0. By previous results, we know that any Pareto
efficient risk-sharing arrangements take the form of the local equal sharing rule, so

that the final consumption allocation is given by
SO T e —
1 n L P4 dj (Gn) _'_ 1 7
JEN(Gn)
and the individual consumption variance is given by

1
Var (z; (Gn)) = jg;mn) @G E1”

where Var (-) denotes the variance operator with respect to the endowment shocks e

conditional on realized network structure being G.,,.

Proposition 5. Let {G,} be a sequence of Erdés-Rényi random graphs generated by
GPF (1, pn).

e (Dense Case) Suppose p, = p for all n. Then:

1—
lim nCov2® [Var (z; (G)), di (Gn)] = e = 0.

n—oo p
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e (Sparse Case) Suppose np, — X\ > 1. Then:

. E 442 4+2(2-N)€E -3
im CovEE War (z;(Gy)), d; (G,)] =k = 5 5]
lim Covf™ [Var (s, (G,) . ds(Gu)] = 5 () ey

Y

where § ~ Poisson (\). Numerical computation of k(\) shows that k() is

positive whenever \ exceeds a threshold \ ~ 3.8803.

To see the intuition behind Proposition 5, fix an individual ¢ with d; neighbors in
some network G, and consider adding a link between ¢ and some individual j, who
has d; neighbors in G but is originally not a neighbor of ¢ in G (that is, consider
the network G +ij). Notice that adding the new neighbor j for risk sharing has two
opposite effects on individual i’s consumption variance Var (z;). On one hand, there
is one more individual, namely j, to share individual 1’s income shock, reducing i’s
——e; under the local equal sharing

exposure to her own income shock from e; to

dit1 +1 d; +2
rule. On the other hand, individual 7 is now exposed to a share of j’s income shock,

7 +26], which individual ¢ has zero exposure to in the original network G. Hence, the

net effect of the additional link 75 on individual 7’s consumption variance is:

VerteG ) = Var el = Grmoe = @i~ oy
1 Qdi + 3

~0(4%) - 0(d?).

T (42 (dir 1) (d+2)°
(17)

In Erdds-Renyi random graphs, d; and d; are both stochastically of the order of
O, (npy), so the addition in variance induced by the link ij, is stochastically of a
larger order of magnitude O, ((npn)_z) than the reduction in variance O, ((npn)_?’).

In the dense case where p,, = p, the first effect dominates in the limit: on average,
having an additional friend for risk sharing increases one’s own consumption variance
in large Erd6s-Rényi random graph, so that larger degree centrality is asymptotically
positively correlated with consumption variance.

The sparse case, however, might be more theoretically informative and empiri-
cally relevant. In this case, where np, — A > 1, the limit degree distribution is
characterized by a Poisson distribution parameterized by the limit average degree .
Numerical calculation indicates that, if the limit average degree X is large enough (at

least \ ~ 3.88), then the imbalance in the orders of magnitudes between the two op-
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posite effects is sufficiently pronounced, so that the asymptotic correlation between
consumption variance and degree centrality becomes positive. Given that average
degrees in many real-world networks are conceivably larger than A = 3.88, our theory
predicts a positive asymptotic correlation between degree centrality and consumption
volatility for most real-world networks even under the sparse (Poisson) asymptotics.
As the sparse-case result provides a sharp quantification of the threshold on network
density at which the asymptotic correlation between degree centrality and consump-
tion variane becomes positive, it follows that all “moderately sparse” Erdos-Rényi
random graph models under which np,, — oo, i.e., whenever p,, converges to zero at
a rate slower than n~!, the asymptotic correlation should remain positive.
Proposition 5 suggests that, under local information constraints, more central in-
dividuals tend to undertake larger consumption variances, effectively playing the roles
of “quai-insurance providers”. Even though Proposition 5 is derived in the setting
of Erdds-Rényi random graphs, which lends great analytical tractability, the key eco-
nomic driver of the result, that is, the difference in the orders of magnitudes between
the two opposite effects of an additional neighbor on an individual’s consumption
variance as captured by equation (17), clearly remains present beyond the setting of
Erdés-Rényi random graphs. Heuristically, we expect that the asymptotic correlation
remains to be positive in a large class of “sufficiently dense” network formation mod-

els, including the graphon model and most versions of the stochastic block models.

The analytical result we derived here is based on the asymptotic distribution of
Erdds-Rényi random graphs. To investigate whether such large-sample results remain
relevant in finite real-world network structures, we run simulations of our model using
two real-world village networks in India from two different data sets, each randomly
selected and provided to us by the researchers who collected the data.??

We computed the sample correlations between degree/eigenvector centrality and

22The first network was provided to us by Erica Field and Rohini Pande, who collected it from
villages in the districts of Thanjavur, Thiruvarur and Pudukkotai (Tamil Nadu) in India. In a subset
of the villages, complete within-village network data was collected by surveying all households. The
second network is from data collected by Abhijit Banerjee, Arun Chandrasekhar, Esther Duflo and
Matthew Jackson in Karnataka, India (they collected complete within-village network data in 75
villages), used for example in the Banerjee, Chandrasekhar, Duflo, and Jackson (2018). From both
datasets we received the network of financial connection for one randomly selected village with
complete network data. From the original network we created the undirected “AND” network, that
is, we defined a link between two households whenever both households indicated each other as a
borrowing relationship. We excluded households that became isolated in the “AND” network.
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consumption variance, found that the correlations are positive and statistically signif-
icant in both simulations. For the data set provided by Field and Pande, the sample
correlation is 0.1994, while for the data set provided by Banerjee, Chandrasekhar,
Duflo and Jackson, the correlation is 0.2084. Both results are highly statistically
significant with p-values at orders of magnitudes below 10710.23

Proposition 5 provides a sharp theoretical prediction of the model that is not
only empirically feasible but also computationally easy to test Moreover, it is not
only empirically feasible but also computationally easy to test. Such practicality
concerns are highly relevant in the network literature, as it is often challenging to
conduct direct empirical tests of micro-founded theoretical results, especially when
the result involves the whole network structure or complicated network statistics.
However, Proposition 5 provides a direct prediction on a simple relationship (positive
correlation) between consumption volatility and one of the simplest forms of network
statistics, degree centrality.

In Appendix C, we report some supporting empirical evidences for Proposition
5. Specifically, we construct consumption variance and degree centrality using con-
sumption and social interaction data from the Townsend Monthly Thai Survey, which
tracks villages in rural Thailand from 1998 to 2014. We find that, over a range of
different specifications and variable definitions, consumption variance is positively
correlated with household’s degree centrality, even after controlling for a list of other
variables that may proxy for other aspects of risk-related heterogeneity for a given
household. We leave to future work a more thorough empirical investigation of other
potential structural drivers for the positive correlation between degree centrality and

consumption variance.

()

i

standard normal distribution for 7' = 5000 times: {egt)} ~iia N (0,1). We assumed that all
it

23In both simulations, we randomly drew the endowment e;’ of each household according to the

households have CARA utility functions with A = 1. We then computed the final consumption of
each household under the equally-weighted Utilitarian optimal risk-sharing arrangement subject to
local information constraints, using the results from subsection 4.1, and the sample variance of final
consumption for each household (note that the variance does not depend on the planner’s weights).
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5 Implications of the Theory for Empirical Tests
of Risk Sharing

The performance of risk-sharing communities has been repeatedly tested in data since
the work of Cochrane (1991), Mace (1991) and Townsend (1994). Their original ap-
proach developed empirical tests of full insurance that related household consumption
and income. Indeed, the well known Borch rule — equating the ratio of marginal util-
ities across households — imposes that, under full insurance, household consumption
should not respond to idiosyncratic movements in income after controlling for aggre-

gate shocks. This implication can be tested in the following popular regression:

log(cit) = i + B1log(yir) + Balog (i) + €t (18)

where ¢;; and y;; correspond to household i's consumption and income at time ¢, and
where §; = >,y represents aggregate village income at time ¢.** Full insurance
implies that 8, = 0 and 5, = 1. An overwhelming proportion of studies have rejected
the full-insurance hypothesis in a wide number of settings. As a result, a great deal
of work has followed, that seeks to explain this stylized fact.

On the theory side, we have argued that this paper complements an ongoing effort
to model the relevant contracting frictions in informal risk sharing environments.?® In
this section we argue that our framework also responds to a recent strand of the lit-
erature that suggests modifying the classical Townsend test in order to accommodate
various forms of heterogeneity. Some of this work argues that the standard consump-
tion regression in (18) is misspecified if, for instance, households hold heterogeneous
risk preferences.?® More relevant to the current discussion, several other studies have
also suggested that households within a village indeed access different risk sharing
groups, and that controlling for aggregate-level shocks, as in (18), would incorrectly
estimate income coefficients: y should be group-specific. In a couple well-known ex-
amples, Mazzocco and Saini (2012) argue that the relevant sharing group in India is
the caste (rather than the village), while Attanasio, Meghir, and Mommaerts (2018)

24Village-time fixed effects are traditionally used to capture aggregate shocks at the village level.

%For example Thomas and Worrall (1990), Kocherlakota (1996), Ambrus, Mobius, and Szeidl
(2014), and Kinnan (2017).

26See for instance Mazzocco and Saini (2012) and Schulhofer-Wohl (2011).
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test for efficient insurance within extended families in the U.S.%”

This paper refines and generalizes the modified tests that evaluate the perfor-
mance of insurance mechanisms on local sharing groups. Rather than taking groups
as separate, perfectly insured communities, the current framework allows for a fully
general social structure with interconnected sharing groups that are specific to each
household, and which may overlap in complicated ways along any given network. We
show how, under the local information constraints of our model, not defining the
relevant local sharing group biases the estimates of risk-sharing tests. More impor-
tantly, we show that controlling for this bias will not eliminate the correlation between
household consumption and income: the structure of the network, coupled with the
information constraints, induces imperfect risk-sharing and generates heterogeneity in
sharing behavior. The current framework therefore allows us to decompose the stan-
dard Townsend coefficient 3, into an underlying distribution of household-specific
coefficients that capture the varying risk-sharing possibilities induced by the net-
work structure, and which can be interpreted economically in terms of consumption
volatility (as shown in the previous section).

To fix ideas, consider the simple network with three individuals and independent
endowments in section 2 and set A\; = 1; all arguments below can be extended to
general networks, correlated endowments, and any profile of Pareto weights. If we
write down final consumption for each household in the form of the classical risk-

sharing specification of equation (18), we have that,

i = oq + (% — %) Yie + %th + €1,
e =02+ (53— 3) yoe + 35 + (€2t — 5U31)
Cyt = Q3 + (% - %) Y3t + %ﬂt + (€3t — %th) ;

L1
24

and are represented as household-specific intercepts. These equations reflect three

where o = 1—127“02 and oy = a3 = =510’ correspond to state-independent transfers

important themes of this paper as they relate to empirical tests of risk-sharing: 1)

coefficients on own income are generically different from zero for all households. i.e.

2TIn similar procedures Hayashi, Altonji, and Kotlikoff (1996) consider whether extended families
can be viewed as collective units sharing risk efficiently. Munshi and Rosenzweig (2016) also find
that the caste is the relevant group to explain migration patterns in rural India. Most relevant here,
Fafchamps and Lund (2003) address the failure of efficient insurance in the data suggesting that
households receive transfers not at the village level, but from a network of family and friends
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Qi # uj, 2) these coefficients vary according to households’ network position, and
3) imposing the common sharing group on all households generates biased estimates:
notice the last two equations contain weighted incomes in the error term. The classical
risk sharing test in (18) pools these equations and obtains a unique estimate for (;
given the previous discussion we expect this estimate to be biased, different from zero,
and positive.

In order to obtain unbiased estimates for /,, consider estimating (18) with the
relevant local sharing group instead. In this case, we show coefficients are properly
estimated, but we still obtain heterogeneous estimates, /3, for the coefficients on
own income. As a result, the risk sharing test still delivers positive estimates — not
surprisingly, since risk sharing is not efficient under information constraints. To see
this, rewrite again our consumption equations in the form of (18), but now allow
for household-specific aggregates, g;; = > jen, Yjt, that sum over the incomes of i's

sharing partners. In this case we have,

cie =1+ (3 —3) v+ 501 + €1,
Cot = Qg + (% - %) Yot + %th + €at,
ey =as+ (3 — %) Yst + 3Yst + €3t

Because aggregate income terms are now household-specific (i.e. ¢;), the ad-
ditional terms in the error disappear and we obtain unbiased estimators. Notice,
however, that coefficients to own income are different from zero so long as a;; # aj.
This implies that the pooled regression will again deliver positive coefficient for 3,
even with the appropriate local aggregates. In this context, the pooled estimate in
fact represents the average of the underlying heterogeneity in risk-sharing possibili-
ties across households, which respond to network effects and relate to consumption

volatility as specified by the theoretical results above.
[Table 1 about here.]

Finally, notice that under sufficiently symmetric structures, we cannot reject this
localized version of the Townsend test, because in “regular” networks o;; — o = 0.
This means we are able to generalize the discussion on appropriate local aggregates
in Townsend regressions — the theory is sufficiently rich to accommodate previous
models of local sharing groups, as well as many other local structures. In fact, a well-

defined local version of the Townsend test may fail to reject full insurance not only
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if castes or extended families are perfectly connected partitions (as stressed in the
previous literature), but also if the social structure is sufficiently symmetric. As an
extreme example, consider the circle network in which all individuals are identically
positioned. Although all local sharing groups overlap and none of them are perfectly
connected, this network structure would nonetheless generate sufficient regularity to
“pass” an appropriately defined version of the risk-sharing test.

The previous discussion can be observed compactly in Table 1, where the risk-
sharing test is performed on simulated income data for the three individual “star”
network discussed above, and the four individual “circle” network that exhibits per-
fect symmetry. The test is performed both with a common aggregate income term
(columns 1 and 3) and with appropriately defined local sharing groups (columns 2
and 4). Notice that coefficients on own income are biased upwards by a whole order
of magnitude when imposing a common aggregate income term but remain positive
and significant in the star network, where the lack of symmetry keeps the pooled
coefficient estimate away from zero. However, as discussed above, the circle network
“passes” the Townsend test (coefficient to income is not significant) under appropri-

ately specified local aggregate income terms.

6 Extensions

6.1 General Contractibility Constraints

In section 2.4 we showed — for a simple line network — how to describe risk-sharing
arrangements subject to local information constraints that need not coincide with
the physical transfer network. We now return to this question and provide a general
characterization of the admissible structures where our main results continue to apply.

As before, let G denote a generic undirected and unweighted network structure
defined on N. We now interpret G as physical (transfer) network: two individuals
t and j can enter into a risk-sharing transfer contract if and only if they are linked
in G, or G;; = 1. As before, N; and N;; denote i’s neighborhood and ij’s common
neighborhood under G, respectively.

We now specify a more general form of contractibility constraints. Suppose now
that, for each linked pair of individuals ij in G, their bilateral transfer contract

ti; can be (effectively) contingent on the ex post realizations of the income shocks of
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individuals in some predetermined set );; C N\ {¢, 7}, in addition to their own income
shocks e; and e;. In other words, ¢;; can be contingent on the ex post realizations
of ey for all k € @ij = {i,7} U Q;;. We write @ (and equivalently Q) to denote the
joint requirements of pairwise contractibility constraints ();; for all linked individuals
in G.28

Clearly, by taking Q;; = N;; for all linked ij, we reduce the model back to the
special case of local information constraints as formalized in Subsection 3.1. By taking
Qij = N\ {1, 7} for all 75, we reduce the model back to the simple “global-information”

benchmark.

In this subsection we take () as the primitive, and discuss how our methods and
results can be adapted to accommodate the contractibility constraints encoded by
. The question how the contractibility constraints ¢) may arise from individuals’
ex-post interactions that may support on-equilibrium information transmission will
be deferred to the next subsection.

Clearly, under general contracting constraints encoded by @), the social planner’s
problem 3 remains a convex optimization problem: the objective function remains
concave, while the choice space (space of admissible transfer arrangements under G

and () remains a convex set.
Corollary 2. Propositions 1 and 2 carry over with proper notational adaptions.

Consequently Corollary 1 (the localized Borch rule) remains valid, too, with the

conditional expectations on the left hand side of M = % being taken with
ij uj )

T
respect to the more general local information sets.

Next, we again specialize to the CARA-normal setting as considered in Subsection
3.3. We first provide a sufficient condition under which Propositions 3 and 4 generalize

almost exactly.

Proposition 6. Suppose that G is connected as before and that there exists an undi-

rected and unweighted supergraph of G, denoted G, such that:

(a) The contractibility constraints Q satisfies that Q;; = N; N N; for all linked ij
in the original network G, where NZ-/ denotes i’s neighborhood in the supergraph

network G' .

28 Alternatively, we could specify Q without reference to G. However, as we take both G and Q
as primitives, this expositional difference is inconsequential.
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(b) For every pairij linked in G, there exists a path in G from i to j such that, for
any individual k that lies on this path, we have that ik and jk are also linked
in G

Then the constrained Pareto efficient consumption plan under (G, Q) is given by the
consumption plan z* (G') induced by the hypothetical linear transfer rules t* (G/), or

equivalently the transfer shares o (G/), as defined in Propositions 3 and 4.

Condition (a) essentially requires that all contractibility constraints are induced
by common neighborhoods under an “informational network” G’ that is a supergraph
of the physical transfer network G. Condition (b) essentially requires that the physical
transfer network G is rich enough to channel, potentially via a path of individuals in
(G, any net bilateral transfer scheme between two informationally linked individuals
in G'. Simple examples of G’ that satisfies condition (b) includes a supergraph of G
which add (informational) links between some distance-2 pairs of individuals in the
physical network GG, and a supergraph of G which add links between all individuals
within a distance of & from each other in the physical network G.%

Under conditions (a)(b), only the “informational network” G’ is relevant in de-
termining the constrained Pareto efficient consumption plan, or equivalently the risk
sharing transfer arrangements up to superfluous cyclical transfers, which can be com-
puted by exactly the same formulas given by Propositions 3 and 4 with the informa-
tional network G’ as the relevant network structure.

In the next subsection (6.2), we provide several examples of realistic ex-post com-
munication protocols that may give rise to contractibility constraints () that satisfies

Conditions (a) and (b), so that it is sufficient to focus on the “informational network”

G

Before proceeding to the next subsection, we point out that the method of anal-
ysis, together with some particular results, generalizes beyond Proposition 6. For
simplicity, in the following we focus on the case of independent endowments (p = 0),

and provide sufficient conditions under which the local equal sharing rule generalizes.

Proposition 7. Let p = 0. Given a network G and contractibility constraints @,
o —
define a directed network G by setting Gi; = 1 if and only if there exists a path

29Gee the next subsection for a concrete example of how communication among individuals can
establish such informational networks.
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of individuals i = koky...k,, = j in G, such that j € Qp,k,,, for all h = 0,...,m —
1. Define the “in-neighborhood” N; <<5) ={k e N:G;; =1} and the “in-degree”

d; (8) = # <NZ~ (8)) accordingly. Then the following consumption plan

%
x; <G> =6+ Z e; (19)
d (G>+1 o) i (G)+1
is constrained Pareto efficient subject to the contractibility constraints (Q under net-
work G.

Compared to Proposition 6, Proposition 7 relaxes both Condition (a) and Con-
dition (b). Specifically, @) is no longer restricted to be inducible as common neigh-
borhoods of an undirected graph, allowing for scenarios where k € Q;; but i ¢ Q.
Correspondingly, the constructed “informational network” E is directed, only re-
quiring that information about individual j’s endowment realization can transmit to
individual ¢, but not necessarily vice versa. Most importantly, Proposition 7 asserts
that, for any k € Gij\ﬁij, which may not be empty in general, the Pareto efficient

consumption for ij, =7 ( G > and ( G >, are necessarily independent of eg, even

though ?;; may be made contingent on e;. This feature is specific to the case of

independent endowments, which is not covered by Proposition 6.

6.2 Risk Sharing with Ex-Post Communication

In Section 6.1, we abstract from the detailed specification of such ex post interactions,
but instead use the contractibility constraints () as a reduced-form representation
of ex post interactions on the effective contractibility of risk sharing arrangements.
In the current section, we investigate particular detailed specifications of ex post
interactions. We show that natural specifications produce a contractibility structure
(@ as specified in Section 6.1 that satisfies both Conditions (a) and (b) in Proposition 6,
and hence we may compute the constrained Pareto efficient risk-sharing arrangements

by directly applying Proposition (4) using the relevant informational network G'.

Fix any connected network GG. Consider a scenario where, after endowment real-
izations but before transfer payments, a single-round of simultaneous communication

is allowed. Specifically, each individual ¢ may send a message m;; € .#;; to each
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individual j € N\ {i}, where .#;; denotes an arbitrary message space. The (local)
observability of messages is determined by a communication protocol, which we take
to be a primitive of the environment. For example, a few simplest communication

protocols that lead to different levels of observability of messages are:

(a) Global communication: m;; is publicly observable by all individuals Equiva-
lently, we might as well take m;; = m; and #;; = 4, i.c., each individual
can only send a public message that then becomes global common knowledge.
For example, a global message be thought of as a Tweet, which everyone can

observe (if he wants to).

(b) Local announcement: m;; is locally observable by the sender ¢ and i’s neighbors.
Again, we might as well take m;; = m; and .#;; = .#;. For example, a local
announcement can be thought of as a message ¢ posts on his own Facebook

timeline.

(c) Local comment: m;; is locally observable by the receiver j and j’s neighbors.
For example, a local comment can be thought of as a message 7 leaves on j’s

Facebook timeline.

(d) Private communication: my; is only privately observable by the sender ¢ and
receiver j. A variety of communication technologies such as personal meeting,

phone calls, online chats fit into this category.

Given a communication protocol, for each linked pair ij, their ex post local common
knowledge before transfers are carried out not only include the endowment realizations
they can commonly observe, denoted I;; = (ek)kemj, but also include the commu-
nication messages they can commonly observe, denoted M;;, which will differ across
the four communication protocols above. Again, we require that the bilateral trans-
fer contract ¢;; be contingent only on ex post local common knowledge, i.e., t;; be
o (1;;, M;j)-measurable. As before, we abstract from ex post enforcement issues of
the contract ¢;; per se, but focus on the strategic aspects of ex post messages.

We summarize in the following Proposition how the four ex-post communication
protocols introduced above may give rise to different informational network struc-

tures, with which we can directly apply Proposition 6.
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Proposition 8. Under either of the four communication protocols listed above, there
exists a profile of bilteral risk-sharing contracts t* such that: (i) t;; is o (L;;, M;;)-
measurable for each linked ij in G; (i) there exists an undirected supergraph G of
G such that the constrained Pareto efficient consumption plan z* (G,) with respect
to G' can be implemented in ex-post Nash equilibrium; (111) the effective information

network G, under the four communication protocols, is given by, respectively:
e (a) Global communication: G is the complete graph.

e (b) Local announcement: G' = G, i.e., the graph obtained by linking pairs
of individuals within a graphic distance of 2 from each other in the original

network G.

e (c) Local comment: G = GB), j.e., the graph obtained by linking pairs of
individuals within a graphic distance of 3 from each other in the original network

G.
e (d) Private communication: G' = G.

The main idea for constructing the message-augmented contract t* that induces
truthful information transmission in ex-post Nash equilibrium is to cross-validate
reports of certain non-local endowment realizations from two different individuals.
Admittedly, there are clearly many other plausible forms of ex-post interactions that
lead to different extents of information transmission, and it is conceivable that some
forms of ex-post interactions may not be able to support the “hard-information”
contractibility structure as studied in this paper. However, we will defer a more

thorough analysis of this problem to future work.3’

6.3 Spatial Correlation Structure

In the previous section we considered a symmetric correlation structure, in which
the correlation between the endowments of two individuals did not depend on their
positions on the network. An alternative specification, however, is to incorporate the

possibility of spatially correlated endowments, that is correlation that decays with

30A related exercise is conducted in an ordinal setting in a recent paper by Bloch and Olckers
(2018).
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social distance.*® As we illustrate below (and in more details in Appendix B.9),
this type of correlation structure can be detrimental to the efficiency of informal risk
sharing with local information constraints.

For concreteness, take the same environment as in Section 3.3 (identical CARA
utilities and jointly normally distributed endowments), but assume that the correla-
tion between e; and e; geometrically decays with the social distance between ¢ and j :

dist(13) | where the social distance dist (i,7) is formally defined as the

Corr (e;,ej) = o
length (i.e., the number of links) of the shortest path connecting ¢ and j in network
G. Also, for analytical simplicity we focus on circle networks with n = 2m + 1 indi-
viduals. In order to make comparable the risk-sharing efficiencies under geometrically
decaying spatial correlation structure with that under the uniform global correlation
structure analyzed in Section 3.3, we control the “shareable risk” to be the same
across the two specifications by setting p = p,, (0) := 977(11(;_@’;))’

global pairwise correlation, while p is the rate of decay in the geometrically decaying

where p is the uniform

correlation structure. Then informal risk sharing subject to the local information
constraint achieves drastically different levels of asymptotic efficiency under the two

correlation structures.

Proposition 9. Let 2" (p),29°° (¢) denote the Pareto efficient consumption plan

subject to the local information constraint under the uniform and the geometrically de-
caying correlation structures, parameterized by p and o respectively, and let Varynis,p,
Varge, correspond to the variance operators under the two probability distributions

induced by the two correlation structures. Then:

Y

lim lim Varung, (o) (SU?mf (Prn (Q))) =

0—1 m—oo

=W =

. . geo _
})11}1% 7711—1320 Vargeo,p (SL’7 (Q)) -

Hence, for o close to 1 and sufficiently large m, uniform correlation leads to sig-
nificant risk sharing (yielding payoffs close to that under independent endowments),
while geometrically decaying correlation yields payoffs very close to the autarky pay-
offs, even though the two correlation structures lead to the same payoffs if global

information can be used for risk sharing.

31There are many reasons why this correlation structure is more realistic for certain types of
endowment shocks: for example, as shown in Fafchamps and Gubert (2007) and in Conley and Udry
(2010), social distance tends to be highly correlated with geographic proximity.
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This difference in risk-sharing efficiency, driven by the difference in underlying
correlation structures, is a peculiar feature of the local information constraint con-
sidered in this paper. With global information, a geometrically decaying correlation
structure does not in itself imply risk-sharing inefficiency relative to the uniform cor-
relation structure. For example, in a large ring network considered above, shocks
that are spatially far away from each other are almost independent, and each given
individual is spatially far away from most of the individuals in the network. Hence,
under global information mostly shocks with low correlations are pooled together,
thus yielding significant risk reduction. However, with local information, only spa-
tially close shocks are pooled, rendering risk sharing virtually ineffective due to the
high local correlation.

This might help explain why it is the case that while in most settings empirical
research found that informal insurance works well, Kazianga and Udry (2006) found a
setting in which informal insurance does not seem to help, and Goldstein, de Janvry,
and Sadoulet (2001) found that certain types of endowment shocks are not well insured
through informal risk sharing. In particular, this may be due to high correlation
between endowments of neighboring households in the above settings, for the types

of endowment shocks investigated.

6.4 Endogenous Network Formation

So far our analysis focused on characterizing Pareto efficient risk-sharing arrange-
ments subject to local information constraints on an exogenously given network,
implicitly assuming that the network structure is mainly shaped by predetermined
factors such as kinship. Here we briefly discuss some implications of allowing for en-
dogenous link formation in the context of informal risk sharing with local information
constraints, in the CARA-normal environment of Section 3.3. The approach we take
is similar as in Ambrus et al. (2017), who consider network formation in a risk-sharing
framework with global information contracts, and propose a two-stage game in which
in the first stage individuals can simultaneously indicate other individuals they want
to link with. If two individuals each indicated each other, the link is formed, and the
two connecting individuals each incur a cost of ¢ > 0.3 The solution concept we use is

pairwise stability. In the second stage, whatever network is formed in the first stage,

32This simple game of network formation was originally considered in Myerson (1991). See also
Jackson and Wolinsky (1996).
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it is assumed that individuals agree on a Pareto efficient risk-sharing arrangement
subject to local information constraints.

In our analysis of the CARA-normal framework so far, state independent transfers
played a very limited role. However, when we allow for endogenous network formation,
it becomes crucial how the network structure influences state independent transfers,
and hence the distribution of surplus created by risk sharing, as it directly affects
incentives to form links. Therefore, it is important to specify exactly which Pareto
efficient risk-sharing arrangement prevails for each possible network that can form.
Different ways of specifying state-independent transfers can lead to very different
conclusions regarding network formation, as we demonstrate below.

A benchmark case is when all state-independent transfers are set to 0, which
case is extensively investigated by Gao and Moon (2016) who assume local equal
sharing with no state-independent transfers as an ad hoc sharing rule. They show
that, even with zero cost of linking, an individual i’s benefit for establishing an extra
link with j falls very fast with the existing number of links the individual i has, as
with more existing neighbors (larger d;) the marginal reduction in self-endowment
exposure (%H — ﬁfﬂ is small relative to the additional exposure to j’s endowment
dj—ﬁrQ. Typically this implies severe under-investment into social links.

An alternative approach is pursued by Ambrus et al. (2017), in the context of
risk-sharing arrangements with global information: they assume that the profile of
state-independent transfers is determined according to the Myerson value. The My-
erson value, proposed in Myerson (1980), is a network-specific version of the Shapley
value that allocates surplus according to average incremental contribution of indi-
viduals to total social surplus.®® In particular, Ambrus et al. (2017) show that with
state-independent transfers specified as above (for whatever network is formed), if
individuals are ex ante symmetric then there is never under-investment, that is given
any stable network, there is no potential link that is not established, even though its
net social value would be strictly positive. Below we show that the same conclusion
holds in our setting with local information constraints, in the case of CARA util-
ities and independently an jointly normally distributed endowments. The detailed

specification and the proof are available in Appendix B.11.

33 Ambrus et al. (2017) also provide micro-foundations, in the form of a decentralized bargaining
procedure between neighboring individuals that leads to state independent transfers achieving the
Myerson value allocation.
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Proposition 10. Suppose that, for any given network structure, the Pareto efficient
consumption plan subject to the local information constraint is implemented, and the
state-independent transfers are induced by the Myerson values. Consider the first-
stage network formation game in which each individual pays a private cost of ¢ for
each of her established links. Then, there is no under-investment in social links in

any pairwise stable network.

We leave a more detailed investigation of network formation in the context of risk

sharing with local information constraints to future research.

7  Conclusion

This paper analyzes informal risk sharing arrangements under local information con-
straints, when bilateral transfers can only depend on endowment realizations of a
subset of individuals. We characterize the Pareto efficient consumption allocations
in this setting, and provide closed-form descriptions of the bilateral transfer arrange-
ments that lead to them in a widely studied context of CARA utilities and jointly
normally distributed endowments. We show that more central individuals have more
volatile consumption and we test this implication using data from rural villages in
Thailand. This model generalizes the notion of a local sharing group that has been
invoked recently in the risk-sharing tests performed in the development literature.

The model provides numerous further implications for empirical work. In a first
approach, Milan et al. (2018) show that the current framework fits the observed
sharing behavior of indigenous communities in the Bolivian Amazon. However, fur-
ther empirical work is needed to distinguish local information constraints from other
similar contractual frictions, such as the hidden income model identified by Kinnan
(2017) as the relevant friction in Thai data. Indeed, in future work we plan to derive
a dynamic version of the model that provides testable predictions between current
consumption and past information, which can be compared to those of other proposed
risk-sharing frictions. Another empirical project to follow from this work takes the
model’s predictions on bilateral exchanges in order to develop a complete model of
spillover effects across individuals that can be used to structurally estimate the un-
derlying network structure following techniques in Manresa (2016) and most recently
in De Paula, Rasul, and Souza (2018) .
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Table 1: Simulated Risk-Sharing Test under the Model for Two Simple Economies
Dependent variable: Consumption

Star Network Circle Network
Common Group Local Group Common Group Local Group
(1) (2) (3) (4)

Income 0.201 0.027 0.121 0.001

(0.002) (0.002) (0.001) (0.001)
Agg. Income 0.780 0.977 0.845 0.998

(0.001) (0.002) (0.002) (0.001)
Observations 300,000 300,000 400,000 400,000
R? 0.529 0.692 0.477 0.654

Note: Income data simulated from log-normal distribution with ¢? = 4 and t =
100, 000. Model estimated on logged data. Values in parentheses are standard errors.
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Supplement to “Informal Risk Sharing with Local
Information”
Not for Publication

Attila Ambrus*, Wayne Y. Gao*, Pau Milan?

A Main Proofs and Supporting Materials

The proofs for all the lemmas stated in this section are available in Appendix B.
Define J (t) := E [ZkeN s Uk (ek — ZheNk tkh)], the objective function in equa-
tion (3).

Lemma 1. 7 with (-,-) forms an inner product space.
Lemma 2. J is concave on T .

Lemma 3. J is Gateauz-differentiable.

Lemma 4. For anyt € T that solves (4), we have J (t) = 0.

Lemma 5. The set of consumption plan induced by the profiles of transfer rules t in

T is convex.

A.1 Proof of Proposition 1

Proof. We first prove the “only if” part. Note that, given any ¢t € T, Vi, 7,

S v (ek s tkh> 3 N <ek - tkh> Jij”

keN hENk L keN }LENk
<E maXE At | er — t
<z [z |- ( zkh> ”

keN hEN,
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This is because, conditional on I;;, t;; must be constant across all possible states, and
thus the maximization of the conditional expectation is to solve for the optimal real
number ¢;;. For ¢ to be a solution for problem (3), suppose there exists linked ij such
that t;; does not solve the problem (4). Then, by the inequality above, there exists
another t;;, specified for each different realization of I;; and hence each possible state
of nature, that leads to higher value of E [ZkeN AL Uk (ek — ZheNk tkh)] , contradicting
the optimality of ¢ for problem (3). Note that the “P-almost-all” quantifier applies
here.

For the “if” part, notice that by Lemma 4, ¢ solves all (4) simultaneously implies
that J (t) = 0. As J : T — R is concave by Lemma 2 and Gateaux-differentiable
by Lemma 3, we can apply a mathematical result on convex optimization in normed
space, specifically Theorem 3.24 and Proposition 3.20 in Peypouquet (2015), to con-
clude that asserting that if J' (t) = 0, then J (¢) is the unique global maximum. §

A.2 Proof of Proposition 2

Proof. Following the proof of Lemma 2, we can easily show, by the strict concavity
of u; (+), that the objective function in (3) is strictly concave in the consumption plan
x. Lemma 5 shows that the set of admissible consumption plan induced by the set of
transfer rules in 7 is convex. Hence, there is at most of one consumption plan that

solves (3) . m

A.3 Proof of Corollary 1

Proof. By the concavity (shown in Lemma 2) of the objective function in (4), the

FOC is both sufficient and necessary for maximization. The FOC w.r.t ¢;;, is

E /\zu; (62' - Z tih (6)) + )\]U; €; — Z tjh (6) : (—1) Iij =0

heN; hENj

Rearranging the above we have

By [u; (2)]  Efu;(ei = Ypew tin ()| Iy] N,
By [ )] B ) (6 = Spew, tin (@) | 1s] A
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A.4 Proof of Proposition 3

Proof. Let x7 be the consumption plan induced by the transfer ¢* described above.
Then

&=l

kEN;

e — €; i €j ok €; Ck 4
N di+1 o di 1 Hig kzer di+1 dy+1 Hi
ij

€i E;j [ex]
_ _ A
2 (d,-+1 dk+1+“““) rVar| D dk+1

k’ENi\Nj kEN; \N

e; e; ek 1, 1
ittt ey Y oy
di+1 dj+1 e di + 1 = 2 (d, + 1)

k:ENi\Nj

( ‘IZJ zg T‘VCLTZJ

e; — Z t:‘k]

keN;

The necessary and sufficient condition for ¢* to be Pareto efficient is given by (6).
Plugging the above into (6) and canceling out the terms dependent on local informa-

tion (ey) keN,,» We arrive at the following condition for Pareto efficiency:

1 1 1 1
Z/Lik+§rg2- Z (dT 7’ Z’ujk—i_ T'O' Z m‘i‘;ln)\]

keN; kEN\N; keN; kEN;\N;
(20)
Any profile of state-independent transfers * that solves the above system (20) makes
t* efficient under weightings A.
Notice that, if CE (z}] I;;) — *In\; = CE (z}

I,L-j) — %ln A, holds for any e,
1 1 1 . 1
CE(z})——-In\; =E [C’E(:Uﬂ L;;) — ln)\z} - §rVar {CE(xiHij) ——In)\
r r r
1
=CF (2%) — —In )\,
() oA
Hence, with G assumed WLOG to be connected, we have

CE (z}) — lln)\i = EZ <CE(x*) — iln)\k>

ro? 1 1
= —— - — In A 21
Qn%dk%—l nr;n k (21)
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On the other hand, as z =9 +1 + ZkeN (dk+1 MTk) ,

Z :uzk - 77.0-2 Z dk + 1 (22>

kEN;

Equating the expressions for CE (z}) in (21) and (22), we obtain

Zp;k:;raz izdklﬂ_z(dki < mek—lm). (23)

keN; keN keN,; keN

Lemma 6. Given any real vector ¢ € R"™ such that ).\ c; = 0, there exists a real

vector 1 € RXi% such that puy, + pu,; = 0 for every linked pair ik and

Z i = Ci-

kEN;

The solution is unique if and only if the network is minimally connected.

Lemma 6 has established that there indeed exists a solution p* to (23). Given any
solution p* to (23), as N;\ (N;\N;) = N;;, we have

1, 1 1
E o+ -ro E —— +-In\
Hi 2 (dk+1)2 r

keN; kEN;\N;
1 1
257’02 - Z In A\
" jen dy, + 1 W en
1 1 1
kEN; kEN;\N; (d +1)

implying that u* also solves the system of equations (20). Hence, t* is Pareto effi-

cient. 1

A.5 Preparatory Derivations for Proposition 4

As previewed in Section 3.3.2, we now explain in more details two preparatory steps
for our main result, Proposition 4, which characterizes the Pareto efficient transfer

shares under CARA-Normal setting with correlation parameter p.
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First, we show that the Pareto efficient profile of linear and strictly bilateral trans-
fer rules: t;; (e;, €)= ayje; — ajie; + i correspond to the solution of a complicated

system of linear equations.

Lemma 7. If there exist a vector vy such that (a, ) jointly solve the following system

of linear equations,

Qij = 3 (1 = Dkeni(jy ik T ”yij> (24.1)

Vij = 1+(d£+1)p (ZkeNi\Nj Qi — ZkeNj\Ni akj) (24'3)

then, given any constant vector ¢ with c¢;; = cj; for all ij € G, the profile of linear

and strictly bilateral transfer rules defined by
tij <€i7 ej) = Qe — Oey + Cij, VZj e
for allij € G are Pareto efficient in T .

We next show that instead of solving the set of linear equations (24) that imply
Pareto efficiency in 7, we may solve an alternative optimization problem (11) that

minimizes total consumption variances among all linear transfer rules.

Lemma 8. Vp € (—ﬁ, 1), if system (12) admits a unique solution, then the solution
also solves system (24): i.e., a profile of linear and strictly bilateral transfer rules is
Pareto efficient in T if it uniquely minimizes the sum of consumption variances among

all profiles of linear and strictly bilateral transfer rules in T*.

Finally, we show in Proposition 4 in the main text that, for any given network,
system (12) indeed admits a unique solution that can be expressed in closed form.
The solution depends on the pairwise correlation p and on the positions of individuals
in the network, and can be represented as a linear function of accumulated paths along

the network.
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A.6 Proof of Proposition 4

Proof. Let G := G +1,, so that G = 1 Vi € N. The optimality conditions given in

equation (12.1) and (12.2) can be rewritten as

Qg = G (A - 1— P ZGkakz) (25)

kEN

Let @; := (ay;, gy, . . ., ;) denote the vector of i’s inflow shares, A = (A1, Ay, ..., A,,)
the vector of rescaled constraint multipliers, and g; represent the i-th column of G.

Then (25) can be rewritten in vector form as
P ! T
(I + 1_/)gigi> a; = diag (g;) A

where diag (g;) is a diagonal matrix with g;’s entries on the diagonal. Left-multiplying

both sides by (I — %pd,gig;), which is well-defined for any p > —ﬁ and any G, we

p .
= (11— YA
Q; ( Tt od, gzgl> diag (g;)

As g;g; - diag (¢;) = gig;, the above becomes

= (dmg (9:) — 1 fp 7 gzgz> A (26)

Now, notice that (12.3) implies

1= oy =(di+1)A - ZGU <1+pd ZG]kAk> (27)

JEN

have

and thus we have

Ai: ' 1+Zzl+pd

di jEN; keN,

This establishes the recursive representation of the solution.
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To obtain the closed-form solution, rewrite equation (27) as

- ' NP . — (D - Guva
1—Z<dzag(gl) 1—|—pdiglgl>A (D - GUYG) A

iEN

where D is a diagonal matrix with its i-th diagonal entry being d; + 1, and ¥ is a
7~ Notice that V¢ € R™\ {0},

diagonal matrix with its i-th diagonal entry being

2

§(D-Guo)e=3 (h+0& -3 o | 2

iEN iEN jEN,

> hng-Y o ([ Xg

iEN iEN jEN,
1
2 2

ZZ(diH)gi —Zl+di-(1+di) Zgj

iEN iEN jEN;
=D (di+1) =) (di+1)&

i€EN ieEN
=0

where the equality holds if and only if p = 1 and £ = ¢- 1 for some ¢ > 0. Hence,
Vp € (—ﬁ, 1)7 (E — élllé) is positive definite and thus invertible. Hence,

A= (D-Gua) 1,

. ’ — — =\ —1
a; = (dmg (9:) = 1 fpd,gigz-) (D-G¥G) 1.

Finally, we solve for the inverse matrix above as a series of powers of G. Notice
that

(D-GVG) ™ = (bé (1-D ‘GUGD ) D2>_1:D‘5 (1-D 5G@GD‘§)_1D :

S D |
where the middle term (I — D *GYGD 2) is also invertible and positive definite for
pE (—ﬁ, 1) due to the positive definiteness of D — G¥G and the invertibility of D.

1

—_1__
For p € (0,1), notice that D *GVGD * is also positive definite, so its eigenvalues

must be positive. Also, its largest eigenvalue ¢,,,,, must be smaller than 1. Otherwise,
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there exists a nonzero vector ¢ such that

1 1

¢ (1 _ ﬁ‘EG\pGDE) E=(1—p, )EE<O

_ 1
contradicting the positive definiteness of <I —D *GYGD 2) . Then, we may write
1 1\—1 1 1\Fk
(1-D:GweD ?) -1+ (D *GwGD *)

and thus

where ) := GUG can be interpreted as the weighted square of the extended adjacency
matrix. Consider the set of all paths of length ¢ between i and j under G as

112 (G) = {(io, i1, ia, - - . ig) | G0 = i, ig = jand Gy i,,, = 1 forn =0,1,...q— 1}
For every m;; € IIj; (G), let W (m;) denote the weight associated to this path. It is
not difficult to see that,

W () = 1 p 1 p 1
Tij _d2+11+pdlld12+11+pd23dj—|—1
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Then

_ (E‘ll + i(D_1Q>kD_11>
k=1 ;
_ di1+1 + ; (D‘la\pa)'“ iD_ll
1 i\ F 1
:di+1+j€N ];(D 'Guc) s

-+ Y3 (pcuen DG, P

1 - 1 P 1 1

2
ij

This concludes the proof. &

A.7 Proof of Proposition 5
Proof for the Dense Case (p, = p)
Proof. To start with, notice that as d; ~ B (n — 1,p), we have

1 _1 1 a.s.

n n n —

and
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For each n, set d,, by

1 ~
— | gER — —1 whered; ~ B(n—2,p)
(2+d)
so that
1 1
E." 1 12UEG" (17 12:0
(gdj (Gn) + 5 (Edn + 5)

Now, consider
CovER [Var (z; (Gy)), di (Gy)]

_ v, ER
=Cov,,

Var (z; (Gy)) — ————, di (Gn) — (n — 1)17]

_mwER
_En

(Var (x; (G))

|
—~
S
al
3
+ S
S =
~
V)
N——
—
£
~
@
3
SN~—
|
~
S
|
—_
N—
3
SN~—
S |

—EEE \Var (z; (G,)) —

—RER (Var (2; (Gp)) —

_TwER ER
—EPR |RE

Var (x; (Gy)) —

where the second last equality follows from the fact that

EP"[d; (G) — (n— 1) p] = 0.
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1 1 1 1 1 1
_EER — 4+ — *dz + — - — dz (Gn)]
G+ 1) n (2d,+ 1) n o j;v: (Adi+1) (bda+2)°
1 1 1 1. 1 1 1

= et = —d; + — EZ® di (Gn)| — —=

Qo G R Gy (s o)
:(1diil)2’7lz+ 17 il)”id"

a.s 1 . }
(p+0)° w+oP " b

where the last equality follows from the definition of d,,. By appropriate centering,

we now have

== (n=1)p)- Vi (nEE Vor (Gl (Gl = = i>2>
G [y ey W)

f<d1+>}<d‘p”<pc(zllp)>( Z%@nfp)
i>0+0+p(1p2_p) Xi

so that

EPR [\}ﬁ (d; — np) - v/n (EER [nVar (z; (Gn))| di (G)] — (idnii)Z)]
1 _
P2
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In summary, we have
nCovER [Var (z;(G,)), d; (G,)]

=EER | /nEZE |\ nVar (v, (G,)) —

1_
%—p>0.
p

Proof for the Sparse Case (np, — A > 1)

Proof. Suppose np, — A > 1. In this case it is well known that
d; (G,) 2 Poission (N,

i.e.,

PEE [d; (G,) = k] = e =, VEeN.

Now we set d,, as, for each n,

. (E

1 ~
= | EER | —— —1 whered; ~ B(n—2,p,).

—>do<>1=<

&=

) -3
-1
[(2 + Poisson ()\))2} )
Again,

1 1

EER [Va'r' (M (Gn))| d; (Gn)] = (d- + 1)2 + (8 N 1)2

-d;
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and thus

CovE® [Var (z; (Gr)), di (Gp)]

=B, [E," [Var (2 (Ga)) di (Gn)] - di (Gn)] = B [Var (2;(Gn))] - By [di (G)]
:EER i dz 1 . d2- i ]EER - 1 1 . d'- ]EER [d]
"+ @+’ " @+ ) @+ ]
n _(d1+1)2 (En+1)2 z- n _(dz+1)2 (an+1)2 2 n 7
d; 1 1
:EER " | _mwmER|_ - ']EER dz - .V ER dz
" _<di+1>2] " [(di+1)2] g Ty e
—k(N)=E [(5;1/\)2] + e+ 17 where & ~ Poisson ()

- [(551)2} A [(§+11)2 - (g+12)2

} ,  where & ~ Poisson ()\)

which may be positive or negative depending on . 1

Numerical computation of « (A) in in Mathematica shows that x () is positive for

large enough A with a cutoff A ~ 3.8803. See Figure 4 for numerical plots of ().

A.8 An Example on Constructing Transfers with a Simple
Network

In this section we provide additional intuition on how to construct bilateral transfers
from a given fixed network. We show how to construct the Lagrangean centrality
measure by accumulating weighted paths, and how this leads to a precise prediction
on gross transfers as a function of the underlying correlation parameter p.

We consider a simple network where A, B and C' form a triangle, and C'is linked to
D who is linked to E. This network is shown in Figure 5 above, where the Lagrangean
Centrality measures appear next to each node. These measures are calculated by the

accumulation of weighted paths, as indicated in Proposition 4. These weights are
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Figure 4: Plot of k()
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Ag =0.889 Ap =0.741
E D

Figure 5: Centrality Measures in a Five-Player Network with p = 0.4

path-specific and depend on the degree of each node involved in each even-length
path. To fix ideas, consider as an example all paths of length 4 starting from F.
Since we are considering self-links (or loops) there are many such paths — for instance
one such path is { E— E— F— E— E}, while another such path is {EE—D—-C—B— A}
and even another oneis {E— D —-C—B—B},or {E—D—C—C — (Y}, and so on.
As you can see, there are many such paths. For each one of these paths, the weight
assigned to it depends on the degrees of those involved in the path, as described in
the last equation of Proposition 4. For instance, for the path { ¥ — F — FE — E — E} the
entire path only involves individual £, which has dg = 2, so we therefore compute

the following weight:

W({E—-FE—FE—F—E}) = — P ! P !
241 142 241 1420 241

Another example involves the path {E — D — C' — B — A}, which involves all nodes

in the network. In this case, we have that

1 p 1 p 1
WHE—-D—-C—-B—-A}) = . . . .
( ¢ 12 2+1 1+43p 441 1+3p 3+1

We could continue this way and compute the weights of all such paths of length
4 and 6 and 8 and so on. The centrality measures, A;, shown in Proposition 4 can
be interpreted as the sum of the weights of all even-length paths starting from ¢ in
this way. In Figure 5 above we compute these measures for the case in which the

uniform correlation parameter p is equal to 0.4. Once we have the measures A; for
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Figure 6: Gross Transfers in a Five-Player Network p = 0.4

all individuals 7 we can compute the flows o;; from 7 to j as a linear function of these
centrality measures, as shown in the first equation of Proposition 4. Figure 6 shows
the resulting gross flows across every pair of connected individuals for the case with
p=04

Notice from Figure 6 that individual C' transfers a larger share of its endowment
to individuals A and B than to individual D, since B and A can share this efficiently,
but D cannot share these proceeds with E, given the informational constraints that
make it impossible for ¢tpr to depend on ec. Moreover, we can see that individual
C takes on a larger share from others’ endowments than the share it sends out. As
explained earlier this generates a larger volatility of consumption for individual C|
which acts as a net provider of insurance to the rest of the community. Finally, notice
that the transfer from E to D is larger than the transfer from D to E: because E is
more peripheral, it is optimal that it unloads a greater share of risk unto D than vice
versa, since D is insured in turn by C.

Of course, for different values of p the Lagrangean centralities vary widely, and
therefore the resulting transfers are also very different. In fact, notice that when

1

p = 0 it is clear from the second equation in Proposition 4 that A; = I which is

the reciprocal of the number of connections of individual ¢ (including itself). In that
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case, it is clear from the first equation in Proposition 4 that

—_

which corresponds to the local equal-sharing rule, as described in section 3.3.1 on
independent endowments. Figure 7 shows simulation results for different values of
p. Notice that as we increase the value of p € (—ﬁ, 1) gross transfers between any

pair of individuals converge, and therefore all net transfers tend to zero.
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Figure 7: Predicted Bilateral Transfers for Different Uniform Correlation Values p

A.9 Alternative Model Specifications

The main results in Section 3.3 are developed under the CARA-normal setting (As-
sumption 1) with a global correlation structure. We now consider the extendability

of those results under some alternative model specifications.
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Quadratic Utility Function

As to the specification of utility functions, we could alternatively work with quadratic

1
2

expected utility representation. Noting that u; (z;) = 1 — rx;, the conditional Borch
rule in Proposition 1 takes the form of X; (1 —7E;; [z;]) = A;j (1 —rE;j [z;]) . With

equal Pareto weightings (A = 1) and normal endowments, it can be shown that this

utility functions, w; (z;) = x; — 2ra? for i € N, which also admits a mean-variance

leads to exactly the same system of linear equations as in (24).3” Hence, the linear
transfer shares given in Proposition 4 also characterize a Pareto efficient risk-sharing
arrangement under the quadratic-normal setting. However, the Pareto efficient fron-
tier traced out by all admissible Pareto weightings will correspond to a collection of

different state-dependent transfer shares a.

Relaxing the Normality of the Endowments Distribution

The family of normal distributions have two properties that are technically essen-
tial to the proof of Pareto efficiency via the conditional Borch rule. First, a linear
combination of a jointly normal vector remains normal, which allows us to explicitly

characterize the distribution of final consumption z; = e¢; — > ajie; when transfer

jEN;
rules are linear. Second, normal distributions admit linear cénditional expectations
in the form of (31), which allows us to transform the conditions for Pareto efficiency
into a system of linear equations on transfer shares. The assumption of normality
can be relaxed slightly: if the endowment vector has a joint elliptical distribution,®
then both properties carry over, and thus the transfer shares given by Proposition
4 continue to characterize the Pareto efficient risk-sharing arrangements. Without
the joint normality (or ellipticity) assumption, linear risk-sharing arrangements are
in generally not Pareto efficient. For example consider again the 3-individual line
network with the random endowment vector e = (Y, Z, —Z3) where Y, Z are indepen-
dent standard normal random variables. As there are effectively no uncertainty, the

unique Pareto efficient profile of transfer rules is given by t15 (e1, €2) = te; — 2ey — Le3,

3 3 3
_1 2 1.1/

1/3 4. .
t13 (€1, e3) = ze1 — se3 — ze3’” which are clearly nonlinear.

37The proof is available in Appendix B.10.
38Normal distribution is a special case of elliptical distribution.
39Gee, for example, Fang, Kotz, and Ng (1990), Theorem 2.16 & 2.18.
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Heterogeneity in Expected Endowments

Throughout Section 4 we maintained the specification that endowment distributions
have zero mean. However, we argue that, as risk sharing is the sole concern of this
paper, the specification of zero mean is a warranted normalization. For concreteness,
let 3, be the expected level of endowment for individual ¢, and y; = ¥, +e; be the ran-
dom realization of endowment, where e; is assumed to have zero mean. Clearly y and
e induce the same local information structures o (yk ke NU) =0 (e;c ke Nij), SO
it makes no differences whether the risk-sharing arrangements are specified to be con-
tingent on y or e. Hence our results remain valid regardless of whether “endowments”
or “endowment shocks” are shared. Moreover, neither does it make any difference
whether the linear “guess” is taken to be t;; = aje; — ajie; + ZkeN,-j Bijker + gy Or
tij = Qujyi — iy + ZkGNZ.]. BijkYk + f;;: both will lead to the same system of linear
equations in (24), so the Pareto efficient state-dependent transfer shares are given by
exactly the same formulas in Proposition 4, irrespective of the value of mean-income
vector 7. Any difference induced by 7 is completely absorbed by the state-independent

transfers p, which are irrelevant to Pareto efficiency in our framework.

A.10 Proof of Proposition 6

Proof. Condition (a) implies that the contractibility constraints encoded in @ are
equivalent to the “local information constraints”, characterized by the common neigh-
borhoods as in Section (3), under the informational network G'. Hence, no feasible
consumption plan subject to the contractibility constraints () can strictly Pareto
dominate z* (G').

It remains to show that x* (G') is feasible under contractibility constraints ) on
network G. Specifically, consider each link ij € G'\G. As ij is not directly linked
in G, the net transfer ¢7; (G) = o (G) e — aj; (G)e; + pi; cannot be directly
transferred between individual ¢ and individual j. However, by Condition (b), there
exists a path of individuals in G, in the form of i = kg — ky — ... — k,, = j , such
that {i,j} C Ny, (G') for all h = 0,...,m. Hence, {i,5} C Ny, (G') for all
h=0,...,m— 1. Now, define

fk,hkhﬂ <G/) =y (G/> e — (G/> ej+p;; forallh=0,..,m—1,
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and

gkhkhﬂ = tzhkhﬂ <G ) + tkhkh+1 (G )
Eij =0

Clearly, the transfer profile ¢ still satisfy the contractibility constraints @, as {i,j} C
Nigknin (G) = Qij (G) by Condition (a). Now, it is easy to see that the new transfer
profile ¢ induces the same consumption plan z* (G'). However, there is no more
direct transfer between individuals ¢ and j, who are not physically linked in G. In

the meantime, as Gy, =1forall h=0,...,m—1, we have not added any transfer

kni
between pairs of individuals who are not originally linked in G.

By induction on all such pairs of individuals G/\G, which must terminate in
finite steps, we conclude that there exists a transfer profile ¢** that: (i) satisfies the
contractibility constraints @); (ii) induces the same consumption plan z* (G'); and
(iii) respects the physical transfer network G, i.e., t7* # 0 only if G;; = 1. 1

i

A.11 Proof of Proposition 7

<_
Proof. For each ordered pair ij such that G;; = 1, define the following adjusted local

as the transfer of j’s endowment shock to individual . Then ¢* (g) would lead to

equal sharing rule,

the consumption plan x} (5) as defined in (19):

T = e + Z t;‘j<<a>— Z t;(@):ﬁ(ﬁ)

i~ T
jG”::[ ‘]IGji::l

%
For each ij € G\ G, there exists a path of individuals i = kok;...k,, = 7 in G, such
that j € Qu,x,, for all h =0,...,m — 1. Define

1

< S
Ckpkpsey = tzhkthl (G) + ¢ for h=0,...,m—1,
d; (G) +1

tkhkh+1 = 0.



It is straightforward to see that ¢ induces the same consumption plan z* <E> , satisfies
the contractibility constraints ) and no longer involves direct transfer between ij. By
induction on the set G\<(_¥, we conclude that there exists a physically feasible linear
transfer profile t** (G) that satisfies the contractibility constraints ) and induces the
consumption plan x* (5)

%
We now show that x} <G) achieves constrained Pareto efficiency subject to the

%
contractibility constraints (). Fix any ij € G. By the definition of G, it is easy to
< -
prove that k € N; (G) N Q;; implies that k € N; <G>, and thus

N; (E) N Qi = Nij <<C_;> NQi; = N; (5) N Q-

Hence, the difference in the local certainty equivalents for individuals ¢ and j, condi-

tional on subvector of endowment realizations that ¢;; can be contingent on, namely

€Q,; = (euej,@@,-j), is given by

1 1 1
d, (¢)+ T (¢)+ 7 e (G, & (G) + 1
1
+ keNi%)\Q” . (5) - 1E |:€k| ¢ } +C
<—1 €i <—1 € Z <—1 €k
a(G)+1 4(C)+1 oy Fyna, 4 (G) +1
1
_ keNj(ZE)\Q” dk <<§> N 1E [€k| 6@@} — C]
=C; — C}, (28)

as E [ek| e@j] =0 for any k ¢ @ij due to the independence of endowments, which is
essential for this result. As equation (28), an adapted version of (6), represents the
FOC’s for constrained Pareto efficiency subject to the contractibility constraints @,

<_
we conclude that z} (G), as well as t** (@), are constrained Pareto optimal. §
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A.12 Proof of Proposition 8

Proof.

(a) Global Communication
Under the global communication protocol, the first-best consumption plan induced
by global equal sharing can be achieved.

Specifically, let each individual ¢ submits ex post a public report m; of her own
endowment realization e;. As the whole vector of reports m is globally observable, for
any linked pair 47, they make make their transfer contract ¢;; effectively contingent
on Ij; = (ex)yew,, and m.

Consider the following specification of ¢;;:
tij (1, m) =ty (fijamzv\m,) +les — my| = lej —myl

where m 5, denotes the reports from individuals outside Nj. Clearly, t;; respects
the measurability constraints.

Let m; : R*(¥) 5 R denote individual 4’s reporting strategy. Given the risk
sharing arrangement ¢ specified above, it is easy to see that, after endowment real-
izations, it is a Nash equilibrium for each individual to report his own e; truthfully,
i.e., setting m® (e) = e. This is because, given the endowment realizations e and the
induced local state I;; for each j € INV;, strategically individual ¢ should choose m; to

maximize his final consumption under ¢:

zl (e,m) = e; — Z tij (e,m)

JEN;
= [61'— E tij (Iz-j,mN\mj) + E |ej—mj|] —di|ei—mi|,
JEN; JEN;

which depends on m; only via the last term, —d; |e; — m;|. Tt is then a dominant
strategy for individual 7 to set m; = e;.

Anticipating this global truthful revelation of endowment realizations, it is obvious
that ¢ should be configured to implement the global equal sharing rule?’, with the

understanding that my\x, = ey, in equilibrium ex post.

40This is clearly feasible under connectedness of G.
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In summary, global communication as specified above completely solves all in-
formation problems, and effectively (in the sense of ex post dominant strategy im-
plementability) produces an informational network G’ that is given by the complete
network. Then, the local Borch rule, applied to the complete network G’ (or the
corresponding contractibility structure ) as defined in 6.1), immediately implies that

the first best global equal sharing can be achieved.

(b) Local Announcements

With local announcement, the effective (ex post dominant strategy implementable)
informational network G is effectively given by connecting all 2nd-order neighbors in
the physical network G.

Let 2'* denote the constrained Pareto efficient consumption plan computed ac-
cording to Proposition 4 with the informational network G'. As G is connected, there
exists a profile of bilateral transfer rules ¢ defined on physical transfer links in G that
satisfies the following two conditions:

¢ induces the consumption plan z*; and

for every i« € N, individual ¢’s exposure to e, for any individual & of distance 2 to
individual 7 in G is implemented by ¢ completely through a shortest path between i
and k in G.

Notice that the existence of such a transfer arrangement ¢ is guaranteed by the
complete arbitrariness in the configuration of superfluous cyclical transfers.

The key implication of condition ¢i) is that, for any linked pair 75 in G, whenever
there exists some individual k of distance 2 to both i and j, then the net share f3,;,
of e, transferred from ¢ to j must be exactly 0. This is because, either ¢’s or j’s
exposure of e should be completely channeled via their shortest paths (of length
2) to individual k, which necessarily does not include link ij; moreover, any other
individual’s shortest path to k does not include link 77, either. Similarly, another
implication of condition 4i) is that, for any lined pair ij in G and any k € Ny,
between ij there is zero share of ej, being transferred, i.e., 3;;, = 0.

With the two implications of condition i) in mind, we deduce that, as fij can be

contingent on endowment realizations of individuals in

’

Nij =N, U (Ni\Nj) U (Nj\Ni) U {k : k is of distance 2 to both i and j},
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i.e., the common neighborhood of ij under the supergraph G’ that treats distance-2
individuals in G as linked (in G'), the transfer arrangement ¢ admits the following

linear representation:

fij(e) = Qe — djie; + Y Byen— > Biper-

k‘eNz'\Nj kJENj\NZ'

We now proceed to construct a risk sharing arrangement ¢ using ex post messages
based on t.

This can be achieved by letting each individual ¢ submit a report m; of all endow-
ment realizations ¢ observes, i.e., (ex) e, As m; is observed by ¢’s neighbors, the
bilateral transfer contract ¢;; between 7 and ¢’s neighbor j can be contingent on I;; as
well as (m;, m;).

Consider the following specification of t;;:

tij (Iij,ms,mj) =ty (L‘j, (mik)kem\ﬁj ) (mjk)kezvj\m> + C (lej — my| — |ei — myil)
= qyje; — Qyiej + Z Bk — Z Bjixmii

keN;\N; kEN;\N;
+ O (lej —mig| — lei —myil)

where m;;, denotes individual i’s report of e, and C' is constant given by

. (29)
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Again, i’s final consumption under ¢ is given by

i (e,m) = (1 -y 542‘]') eit Y (@ue; = Cley — myl + Cle; — my)

JEN; JEN;
- E E Bijemir — E B ik
JEN: \kEN;\N, kEN;\N;
= (1 — E Oém‘) e; + E ijiej + C |€Z' — mj,-| -+ E Bjikmﬂ
JEN; JEN; kEN;\N;

=Y | Clej=myl+ D Buymis |,

JEN; kENz\N]

which by (29) strictly increases in m;; whenever m;; < e;, and strictly decreases in
m;; whenever m;; > e;. Hence, ex post individual ¢’s dominant strategy is to set
mij = ;.

Lastly, notice that no information about third-order neighbors can be possibly
transmitted under the protocol of local announcements.

In summary, all individuals will truthfully report (ey) ¥, In an ex post dominant

ke
strategy equilibrium, together achieving the constrained Pareto efficient consumption
plan with respect to the augmented informational network G, a supergraph of the

physical transfer network G that links all distance-2 neighbors in G.

(c) Local Comments

With local comments, the effective (ex post dominant strategy implementable)
informational network G’ is effectively given by connecting all neighbors within a
distance of 3 in the physical network G.

Now, each individual ¢ may submit to each neighbor j € N; a report m;; of the
N;

endowment realizations i observe, i.e., I; = (ey) ke, Specifically, m;; € R and we
write m;j;i, to denote ¢’s report of e to individual j.

Now that for any linked pair ij, they can commonly observe endowment realiza-
tions I;;,
i’s and j’s Facebook pages). This facilitates transmission of distance-3 information:

all comments received by ¢ and all comments received by j (say, displayed on

for any path ¢ — 7 — k — h in G, individual ¢ can now observe on j’s comment book

a comment left by k£ about h’s endowment realization e,. We now simply need to
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properly construct the bilateral contracts to incentivize truthful reporting ex post.

A formal procedure can be constructed in a similar way to the procedure for (b)
“local announcements” above. For avoid repetition, we now just provide a description
of the key idea.

If 7 lies about own endowment realization e; to j € N;, this is immediately de-
tectable by j. Then by properly specifying a punishment transfer from ¢ to j based on
le; —m;j;|, we can incentivize i to truthfully reports his own endowment realizations
to his neighbors. This implies that, each individual 7 can now observe a truthful report
of his 2nd-order neighbors, based on their truthful comments sent to ¢’s first-order
neighbors.

Now consider a linked pair ij. If i lies to j about e for some k € N;\Nj,
this is detectable by j because j also observes k’s report to ¢, namely my;, which
includes a truthful report my;, of e;. Contract ¢;; may then specify a sufficient
punishment transfer from ¢ to j, which ensures the truthfulness of m;;, about e; in
a Nash equilibrium. Hence, each individual ¢ can now observe a truthful report of
his 3rd-order neighbor’s endowment e, which is included in a report from one of i’s
2nd-order neighbor to one of i’s (1st-order) neighbor.

Now, suppose that both i and j “effectively know” ey for some k ¢ N;;. If k €
N;UNj, then k submits a truthful report to either 7 or j, which is commonly observable
by i and j, so t;; can be optimally contingent on my;; or my,. If k ¢ N; U N;, there
are two possibilities.

First, if £ is a 2nd-order neighbor of 7 (or j with similar arguments), then there
must exist some h € N; that submits a report my,; to ¢, which is commonly observed
by ij and includes a truthful report of ey, so ¢;; can be optimally contingent on mp;.

Second, if k is a 3rd-order neighbor of both ¢ and j, there are three sub-cases.
In sub-case 1, ij are both linked to h, of whom k is a 2nd-order neighbor. Then )
commonly observe a report received by h, which includes a truthful report of ex. In
sub-case 2, there exists a path k£ — ¢ and a path k& — 7 that both pass through some
h € Ng, but the condition for sub-case 1 does not hold. Then there is no report of ey
that is commonly observed by ij, but h is a diagonal node for link 77 in a pentagon
subgraph. This does not affect risk-sharing efficiency due to the redundancy of link
17: efficient exposure to e, can be channeled completely through the two paths from
h to ¢ and j respectively, and it has been shown in the above arguments that e, or a

truthful report of ey is commonly observable by the two contracting parties in each
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link along the two paths. In sub-case 3, any two paths £ — ¢ and £ — j must be
disjoint (except at k), in which case k is the diagonal node to link ij in a heptagon
subgraph. Again this does not affect risk-sharing efficiency due to the redundancy of
link ij: efficient exposures to e, can still be channeled completely through the two
paths. In particular consider the path k —i, —i; —i , and notice that a truthful report
of e; from iy to i; is commonly observable by both i; and ¢, thus being contractible.

This completes the proof that “local comment” leads to an implementable infor-
mational network with effective local observability of 2nd-order and 3rd-order neigh-
bors in the physical network G. Lastly, notice that no information about 4th-order

neighbors is possible with local comment, so no other contracts can do better.

(d) Private Communication

With private communication, the informational network remains unchanged. This
is because when messages are completely private there is no information spillover to
any other party. In the meanwhile, the ex post messaging game is a zero-sum game
(as the messages are mapped into net transfers). Hence, given each local state I,
both ¢ and j are guaranteed the value of the ex post game in any Nash equilibrium,
so the equilibrium payoffs do not depend on nonlocal endowment realizations. Thus

the implementable informational network remains unchanged. &
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B Additional Materials

Not for Publication

B.1 Proofs of Lemmas 1-5

Lemma. 1: 7% with (-,-) forms an inner product space.

Proof. We first show that (-, -) is a well-defined inner product. Symmetry immediately
follows from the definition. Linearity in the first argument follows from the linearity

of the expectation operator:

<OZS + 5t, 7”) =K Z (OzSij + 5?51]) ’I“ij = ok Z sijr,-j + BE Z tisz‘j

=a(s, ry+ 8t ).

Positive definiteness is also obvious: (t,t) = E [ZGH:I t2; (e)} > 0 and (t,t) = 0 if
and only if ¢t = 0, i.e., t;; (w) = 0 for all linked ¢j and P-almost all e € Q.
We then show that 7 is a linear space. Vs,t € T, Vo, 8 € R, as (1) + Bt (1;;) is

also o (1;;)-measurable, and
asi; (€) + Pty (e) = — (asji (€) + Bji (e)) -

Finiteness of expectation is obvious. Hence, as + gt € T. 1

Lemma. 2: The objective function in (3)

> Neug (ek > tw (@)]

keN heNy

J(t):=E

is concave on T .

)



Proof. Vs, t € T, Va € [0,1],
J(as+(1—a)t)

=E

JEN;

Z it (ei — Z (s (e) + (1 —a)ty(e))

)

— Z)\i]E U; (a (ei — Zsij (e)) +(1—a) (ei _

JEN;

> Z/\iE au; <€i - Z Sij (€)> + (1 —a)u (61‘ -

JEN;

Z )\zuz <€i — Z Sz’j (6))

JEN;

= ol

=aJ(s)+(1—a)J(t).
1

Lemma. 3: J is Gateauz-differentiable.

+(1-a)E
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Proof. Vs,t € T, for a > 0,

J(t+ as) — J(t)

= Z N -Ui (ei - ZjeNi Lij (6) — O‘ZjeNi Sij (e)) — (ei — ZjeNi ti <€)>

) Z)\' -_u; (ei - ng]\[i tij (e) —as (e)> 'O‘ZjeNi sij (€)

for some 3;;(e) between 0 and Z sij (e)

|

ZAZ-[U;(%—Z > Zs” ” as =0
= -3 E u< Ztu )sz (6)]

:Z/\i<fz‘,8>

where

— —E

i T

and 1,4y, is vector of 0 and 1s that equals 1 for the (directed) link ij for any j € N;
so that 1.y, - s (e) = 3 ey, 8ij (€) . Define J' (t) : T — R by

t)S:Z/\i<fi,8>.

Clearly J' (t) is a linear operator on 7, and is thus the Gateaux-derivative of .J. §

Lemma. 4: For anyt € T that solves (4), we have

T (t) = 0.

7



Proof. To solve (4)

(5 1s5) (7.} —
gjgn}é J VIt (t”). E

we first notice the objective function J%4) (2;;) is strictly concave in #;; on R. Hence,

At <€i — 1y — Z tih) + Aju; <€j + i — Ztih>

heN; hej

the sufficient and necessary condition for optimality is given by the FOC:

E /\ZU; (€i — Z tih (6)) Iij =K )\]U; €j — Z tjh (6) ]ij
heN; hENj
Then, Vs € T,
Jl (t) s=—FE Z)\Z [’U/; <€Z' - Z tij (6)) . Z Sij (6)]]
% JEN; JEN;
1 / /
— —5 Z E )\iui (61‘ — Z tih (6)) — )\juj ej - Z tjh (6) . Sij (6)
Gijzl heN; hGNj
1 I ’
=3 Z Z E |si; (Li;) - E | N, (ei — Z tin (e)) — N, | ej— Z tin(e) || Li;
it JEN; heN; heN;
1
ol > ) Elsy (L) - 0]
9 jGNZ‘
=0.

Hence J' (t) = 0. §

Lemma. 5:The set of consumption plan induced by the profiles of transfer rules t in

T is convez.

Proof. Let x,z" be two profiles of consumption plans induced by ¢,t respectively.
Then VA € [0, 1],

+(1—X) [ei -3t (e)]

JEN;

Az () + (1= Nz, (e) = A [ei — Z ti; ()

= o= Y0 [y () + (-0 (@)

JENy
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Thus (Az + (1 — A)z") can be induced by (At + (1 —A)¢'). T, as an inner product
space, is convex, so the set of consumption plans induced by the profiles of transfer

rules in 7 must also be convex. &

B.2 Proof of Lemma 6

Lemma. 6: Given any real vector ¢ € R" such that ), .y ¢; = 0, there exists a real

vector i € R4 such that ), + pu,; = 0 for every linked pair ik and

keN;
The solution is unique if and only if the network is minimally connected.

Proof. With the restrictions that p,, = —p,, for all linked pair ik, (30) constitutes

a system of n lincar equations with § 3, d; variables 4;,. Summing up all the n

0= Z (Hir + Hori) :Zci:().

i<k,G;p=1 i€EN

equations, we have

Hence, the n linear equations impose at most (n — 1) linearly independent conditions.
Viewing (30) in vector form,

Cu=c

where C' is a n x %ZZE ~ d; matrix. Note that in each column of C, denoted Cj; for
i < j, there are either no nonzero entries (when G;; = 0), or just two nonzero entries:
1 on the i-th row and —1 on the j-th row when G;; = 1. Suppose G;; = 1. Then, given
any subset of individuals S that include ¢ and 7, if the rows of C' corresponding to S
are linearly dependent, these rows must sum to 0: this can be true only if all entries
ik with i € S and k ¢ S are zero, implying that S form a component under G, and
thus G is not connected if # (S) < n. This is in contradiction with the supposition
that G is connected when # (S) < n. Hence, C' must have exactly (n — 1) linearly
independent rows.

Let C' and ¢ be the first (n — 1) rows of C' and ¢. Then, as C' has full row rank,
there always exists a solution to Cp = ¢, and any of the solutions (1 must also solve
the equation C'u = ¢. The solution is unique if and only if the component is minimally
connected, when there are precisely (n — 1) links and thus C is an invertible square

matrix.
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We can obtain one particular solution using the following algorithm. First, we
can arbitrarily select a subset of links that minimally connect the nodes, i.e., the
graph restricted to this subset of links is minimally connected. Then, there must
exist at least one peripheral node, and we can first easily obtain y,; for all such
peripheral nodes i € P, :== {k € N : dj, = 1}. Then, we can look for new peripheral
nodes ignoring the links involving nodes in P, and obtain y,;; for all i € P, =
{ke N: k¢ P NGy =1 for some j € P} with all previously calculated p’s taken
as given. We iterate this process until we exhaust all nodes. Then we are left with a

profile of p that solves (30). n

B.3 Proof of Lemma 7

Proof. For general network structures, the analysis is very similar to the above, but
there are several complications. As I;; = (ei,ej,eNij), the transfer rule ¢;; can be
contingent on ey,; = (ex) keNy in addition to e;,e;. Furthermore, as the knowledge
of the ex post realization of ey,; brings in extra information about the distribution
of non-local endowment realizations, Pareto efficiency requires that t;; be contingent

on ey,,. Specifically,

€k

AN — P et Vi 31
7 ij

where d;; := # (IV;;) and Vi,;+2 denotes the variance of e, conditional on observing
(dij + 2) endowment realizations.*!

We again postulate a linear transfer rule: t;; = asje; — ajie; + ZkeNij ﬁijkek + i)
and plug in the postulated form to obtain a system of verification equations. Again,
we ignore the verification equations for the state-independent transfers ., and defer
the discussion of p to Section 6.3. After some tedious algebraic transformations, we
again arrive at a rather complicated system of linear equations in («, 3) that defines

the condition for Pareto efficiency, namely system (32) as shown below.

Lemma 9. A linear profile of transfer rules t = («, 5, ) is Pareto efficient if Vij s.t.

41Gee, for example, Eaton (2007), p116-117.
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; (1 = 2okena\() ik + 2okeny, Bini + ’Yz-j)
Bijw = % [O‘kl Qpj + ZheN (ﬁihk - thk)
- ZheNik\N- Bini, + ZheNk\Wi Bikn + %‘j] Vk € N (32)
Vi T LT [Zkew \N; (Oék:z D RN\, 5%)

= D keN,\W (%‘ = 2hen, 0w, Bjkn

- Zk‘ENij (Zhé]\flk\]\f7 ikh ZhEN k\Nz ]k‘h):|

\

Instead of solving for this complicated system directly, we first present an in-
nocuous simplification of it. Due to the possible existence of cycles and superfluous
transfers along cycles, this system may in general admit multiple solutions. For ex-
ample, given a complete triad ijk, we can make a superfluous transfer of a e share

of e; from i to 7, j to k and k to ¢ by adding € to oy, 5;4,;, and subtracting e from

jkis
a;r. It can then be checked that this operation is indeed superfluous, in the sense
that (O(Z'j + € Bpi + € Brji — € Qi — e), keeping everything else fixed, still solves the
system of equations for Pareto efficiency with the induced final consumption plan
left unchanged. Since any amount of superfluous cycles are redundant, we can set
Bk = 0 for all triads ¢jk without loss of Pareto efficiency. Hence, in the following, we
establish that there exists some vector of strictly bilateral transfer shares (o*, 5* = 0)
that solves (32) and thus achieves Pareto efficiency. In other words, the strictly bilat-
eral linear transfer rules that we characterize below are the “simplest” Pareto efficient
rules in terms of minimizing the sum of state-contingent transfers.

By setting 8 = 0, we achieve a significant simplification of (32) and obtain the

system (24), which is repeated here for easier reference:
0 = — A + Yij Vk € NZJ (??2)VZ7] s.t. Gij =1

Tig = 1+(d£'+1)p (ZkeNi\Nj ki = D peN,\N, akj) (72.3)

The first equation (24.1) states that the share of e; transferred from i to j is half
of the remaining share after i’s transfers to ¢’s other neighbors plus the informational

adjustment term between 7j. With v = 0, which is implied by p = 0, a will be simply
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reduced to the local equal sharing rule. The second equation (24.2) requires that
the difference in the shares of e, undertaken by i and j is equal to the informational
effect between ¢j, so that it is indeed optimal for ij to set 5;;, = 0. This confirms
again that strict bilaterality (5 = 0) is not an assumption, as (24.2) also incorporates
the efficiency requirements for § = 0. The third equation (24.3) defines the auxiliary
variable 7,;;. We interpret ,; as the net informational effect because it is the rate at
which locally observed endowment realizations affect the pair ¢5’s joint expectation
of non-local endowments. Notice that ,; is the same across k € N;; because each
element of (ey) ke, provides exactly the same amount of information to the linked
pair 75 for their joint inference on non-local endowments. Given «, |7ij‘ is decreas-
ing in d;;, indicating that the magnitude of the informational effect (for any single
endowment realization) is decreasing in the amount of local information. Below we
proceed to show the existence and provide a closed-form characterization of a solution
to (24).

We first prove that (24.2) are implied by (24.1) and (24.3). By differencing (24.1)
for ki and for kj we get: agi—ag; = v, —7;- Hence, in the presence of (24.1) equation
(24.2) is equivalent to, for all triads ijk, v;; + v, + 7 = 0. This is reminiscent of
the Kirchhoff Voltage Law for electric resistor networks, which states that the sum
of voltage differences across any closed cycle must sum to zero. It turns out that the

Kirchhoff Voltage Law indeed holds in our setting for any cycle in a general network. §

Lemma 10. “Kirchhoff Voltage Law”: Vp € (—-15,1), if (24.1) and (24.5)
admit a unique solution (a,7y), this solution also satisfy (24.2); furthermore, given

any cycle iyiy...iymiy, v satisfies the “Kirchhoff Voltage Law” v, ;, +Y;yis+---+Yi,i; = 0.

Proof. Intuitively, Pareto optimality requires that ij share equally the net difference
in the conditional expectations of nonlocal inflow exposures (captured by +,;) by cre-
ating an opposite net difference in their local inflow exposures, as specified in equation
(24.2). This adjustment guarantees the expectational Borch rule in equation (5), and
therefore Pareto efficiency. To see this, notice that conditional expectation and vari-
ance of consumption will differ only by a constant across different local states (I;;).
Together, this implies that conditional CE’s differ only by a constant, as required.
Given the redundancy of (24.2) in the presence of (24.1) and (24.3), we may now
conclude that any solution to the system consisting of (24.1) and (24.3) defines a

linear and Pareto efficient profile of transfer rules in 7. §

82



B.4 Proof of Lemma 8

Proof. Write system (24) in the following form:

2005 + Zke]\h\{j} Qg — Yy = 1, @ij VG =1
Vi = TR (Zkezviwj Qi = D keN,\N, O%j) (3, VG =1

This is a system of 2. d; equations in 2, d; variables (c,7). Notice that this
system can have at most one solution by Proposition 2, as each distinct solution to
the above system will define a distinct consumption plan.

Write system (12) in the following form: Vij s.t. G;; =1, and Vi € N

aji =Ny — 125 (Xhen, i + i) @ji VG =1
oy = N — 55 (X ren, ki + i) | @“ Vie N
O + Zk’,ENi Qi =1, @z Vie N

This is a system of (D, d; + 2n) equations in (>, d; + 2n) variables (c, A). Suppose
that this system has a unique solution. 42
We now show that there exist ). d; linearly independent sequences of row op-

erations that produce the tautology “0 = 0”. Given that the system @@ has

a unique solution <<O‘ij)GU:1 ,a), this will imply that the (o), along with ~y

defined by @, will also solve system (D@
Notice that, by the proof of Lemma 10 in Appendix B.6, @ and @ imply that

=17

(L+p)v;=p Zahi_ Zahj+aij_aji @U

heN; hENj

In other words, @ij can be obtained by a sequence of row operations on @ and @
Consider a fixed linked pair 45 with i < j.

By (1 —p) x (@ﬂ - @Zj + @“ — @jj), we have

(1—p) (g =y +aw—ay) +2p | D ami+as— Y agy—ay| =0,
kEN; keN,

42Tt indeed has a unique solution given by Proposition 4.
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which is equivalent to

(1 + p) (aii — Oéjj + Oéij — Oéji) + 2,0 Z Qi — Z akj + Ckij — Oéjl' =0.
keNi kJENj

Plugging @ij into the second term above, we have
(1+p) (i — aj;) + (1= p) (@i — aij) +2 (1 + p) 73 = 0,

which, divided by (1 + p) on both sides, is equivalent to

Qi — j + gy — Qi+ Q%j = O.ij

By @l — @ij, we have

Ol — Oél'j + ’yij = O@w
By @j — ®ji’ we have aj; — aj; +7;; = 0. As @ij —l—@y.i implies 7;; +7;;, = 0, we
have

Qji — Y5 = O.ij
By ij — @ij + ij, we reach the tautology “0 = 0".
Now, consider @ji + @ij - @m - @jj, which leads to
Qi + oy — Q — Q= O'@ij

Then @ij + @ij + ij leads to the tautology “0 = 0".

In summary of the above, for each fixed linked pair ij with ¢ < 7, we have
established that

g0 152 (12),-12),+12),-12), ) -3, + (), + O+ n,® =0’
& (0),+12),-(12),-(12), +13) +13) + O +7,@ -0

for some conformable vector (;;, ¢ i) Mij» M- Clearly, the two tautology-generating row

operations above are linear independent: any linear combination of the two operations
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that cancels out ~cannot cancel out @ .
ji ij

Moreover, @ B do not show up in any tautology-generating row operation
%] Vi
within {ﬁhk,éhk 2 (i,]) # {h,k}}, SO {@j,éij} must be linearly independent from
{Shkaghk : (Zvj) 7é {hv k}}

Hence, we have constructed a set of ) " d; linearly independent tautology-generating

row operations {éij,éij Gy=1,1< j}. 1

B.5 Proof of Lemma 9

Lemma. 9: A linear profile of transfer rules t = («, B, 1) is Pareto efficient if Vij
S.1. Gij = 1,

\

Oél'j

Bz’jk

Yij

3 (1 = D keni ) ik + ZkENij Bk + ’Yij)
= % [aki — Qi t EheNijk (ﬁmk - ﬁjhk)
- ZheNik\Nj Bine + ZheNjk\Ni ﬁjkh + ”Yij] Vk € Nyj (32)
= W’;H)p [ZkeNi\Nj (aki - ZhENik\Wj ﬁikh)

Proof. For each k € N;\ {j}, we then have

Z tik = €; Z Qe — Z Qi€ + Z Zﬁikheh‘*’cz’j

keN;\{j}

=€

keN:\{j} keN:\{j} kEN;\{j} h€ N

i Z Qi — Zaki€k+ Z Birses + Z Banen | + Z Z Biknen

kENl\{]} kJEquj kENij hENijk k‘ENi\Nj heNijk
E Qgi€r + E E Biknen + E E Biknen + i
kGNt\N] kGNl] hGle\N] kENq\NJ hENZk\NJ
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so that

1 1 1 1 1
tij = 2636 "3 Z Qe + 5 Z R A Z (ﬁzk]ej ﬁﬂczez)

keN\{j} kEN;\{i} kEN;;

+ - Z akl - Oék] Cr — Z (ﬁzkh - Bjkh) €h

kGNU heN’L]k

Z Z /szh@h+ Z Z Bknen

keN \N; h€Nijk keN \N; h€Nijk

1
_21_|_(d5_|_1)p €¢+€j+ Z €L Z Z Bikh_ Z Bjk:h

kEN;; keNij \heN;z\N; heN;k\N;

1
+21+w5+1>p ety el X |aw— D B

keN; kEN;\N; hEN;\N

1

kEN;; keN;\N; heN;\N;

= Z alk—kZﬁjk, d——|— Z Qi — Z Bikn

keNi\{j} kEN;; it 1)p keN;\N; heNx\N;

- Z Okj — Z Bjkn _Z Z Bikn — Z Bkn "€

kEN;\N; heN;;\N; keNij \heNy\N; heN;x\N;

Z Oé]k‘i‘Zﬁzkj m Z Qg — Z Bjkn

keN;\{i} kEN;; keN;\N; heN;x\N;

— Z Qi — Z Bikn _Z Z Bikn — Z Bikn "€

kEN\N; heNi\N; keNij \heN;p\N; REN\N

+ ; Z i — Qg + Z (ﬁzhk ]hk Z ﬂzhk + Z 5]kh

keNi; h&Njp, REN\N, REN;1\N;

+1+M5+1)P Z Qi — Z Birn | — Z ki — Z Bjkh

kEN;\N; REN;;\N;; keN;\N; heN;;\N;

N Z Z Bz’kh - Z ﬁjkh e+ Cij

kENrij hENik\Nj hGNjk\Ni
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The last equality is obtained by collecting terms and switching summand indexes.

B.6 Proof of Lemma 10

Lemma. 10: “Kirchhoff Voltage Law”: Vp € (——5,1), if (24.1) and (24.3)

n—1"

admit a unique solution (a,7y), this solution also satisfy (24.2); furthermore, given

any cycle t11y...i,11, 7y satisfies the “Kirchhoff Voltage Law” v, 5, +YViyis+---+%i,.4, = 0.

Proof. We begin by proving the first part, which only involves triads. We rewrite
(24) in the following way:

20 + ZkeNi\{j} ok =7y =1, VG =1 @

Yij = Tra, e (Zkem\ﬁj ki = D heN,\N, akj) , VG =1

(2)-(s) “5°

where «,~ are both ). d,-dimensional vectors, A is a (2),d;) x (2)_.d;) square

In matrix form we write

A
M

1s- 4
matrix, b = ( OZi “isa (2>, d;)-dimensional vector, M is a (ZGu:l dz-j) X
Zi d;

(2", d;) rectangular matrix, and 0 is a (ZGU:l dij>—dimensional vector. The upper

(07

block A
~

) = b corresponds to equations in @ and @, while the lower block

o
M ( ) = 0 corresponds to equations in @
v

Note that @ij in the definition above is not written in its canonical form, i.e., it
is not written in such way that the LHS of the equality sign is a linear combination
of unknown variables («, ) while the right-hand side (RHS) is a constant scalar. In
the following, we interpret any written linear equation to be representative of the
underlying canonical form obtained by moving all linear combinations of (a, ) on
the RHS of “=” to the LHS (left-hand side) while moving all constants on the LHS

to the RHS. For example, we interpret @ij to represent a canonical form such that
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the coefficient before the unknown variable ,; is 1 and the coefficient before ay; for
N 43

some k € N;\N, to be _Wi-i—l)p'

Given that the system consisting of @ and @ admit a unique solution, its

coefficient matrix A and its augmented matrix A = [A|b] must have full rank 2", d;.

To prove that the unique solution of @ and @ also satisfies @, it suffices to show

that the augmented matrix for the system of @, @ and @

3

still have rank 2. d;. We show this by demonstrating the existence of ZGU:I di;

A
M

nonzero and linearly independent vector ¢ € R’ Liditdie =14 guch that

A b

é./ I = (0707-'-70)221-512""1'

We first fix any linked triad ijk.
Multiplying @ij (the ij-th equation in @) with (14 (d;; +1)p), we obtain

L+ (dij +1)ply; =p (ZheNi\Nj Qi — ZhGNJ_\m ozhj>, which is equivalent to
1+ (dij + 1) pl Yij = P Z Qi — Z Qpj — Z (i — ang) — i + g @”
heN; heN; heN;;

Adding @ijh for all h € N;;\ {k} to @ij, we get

[1+(dij +1) plvij = p Z Qpi — Z ang + (dij — 1) vi5 — i + g — i +
heNi heNj
which is equivalent to

(L+20) 7 =p | D oni— > oo+ hj — i + iy — s @U

heN; heN;

43This convention should resolve any ambiguity about the signs of coefficients before (o, ) in all
the equations written out thereafter.
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Summing up @ij, @jk, @ki, we have

(1+2p) (i + v+ 70s) = p Ly — i + iy — i) + (i — g + e — agy)
+ (iji — Oéjk + Qg — alk)]

=0
For n =3 and p > —%, or for n > 4, we have 1 + 2p > 0 and thus
Yij T Vik + Yk = 0. @Lgk

Alternatively, taking ®1ﬂ - @kj + @ijk’ we obtain v;; — v, + v = 0. By
@jk + ®kj’ we have Yk + Vij = 0 and thus

Yij + Vjk T Vi = 0. @ijk

Then @zyk - ®wk leads to the tautology “0 = 0”. Let ¢9* ¢ R? 2iditLa, =1 b

be a vector that characterizes all the row operations conducted above. Clearly

A b
M 0

!

(67

Notice that we can obtain one £“* for each ordered triad (i,7,k). Clearly each £V Fis

nonzero: in particular, the entries of £ that correspond to equations @kz and @kj
must be nonzero, £® #0, £® # 0, because @ki, @kj are used to obtain @ijk
ki ki

and nowhere else.

Fixing k, for a row operation in question £ coefficients corresponding to @kh
for h € N, may be nonzero only if i3 = k. Hence, {gi”'?’“ 11,19 € Niy Giyiy = 1}
must be linearly independent from {5””’3 201,09 € Ng, Giyiy = 1,03 # k} We now
consider {fili?k 211,09 € N, Giyiy = 1}. Notice that @ki,®kj show up in the form
of “@ki — @kj” during the process. Hence, summing up along general cycles**
is the only possible type of row operations that can cancel out all coefficients be-
fore ®k1 for all © € N,. However, this operation does not lead to the tautology
(O', 0), because the coefficients before @i1i2k7 ,@

i1i2k

. .., are all kept nonzero. (No-

tice that these only show up in & in the step leading to @ijk and nowhere else).

44By general cycles we mean cycles that may involve “self cycles” of the form “iyigi;”.
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wizk ) iy € N, Giyiy = 1} is zero, so

Hence, no nontrivial linear combination of {§
{fimk 1,02 € Ni, Giiy = 1} is linearly independent. In summary, we conclude that
{ﬁilim :i1,42 € Ny, Giyi, = 1} are linearly independent, so we have established the
existence of ZG 1 d;i; nonzero and linearly independent vector { € R 22 it g

We now prove the second part, the statement for cycles of any size. Note that
we still have @” (L +p)v;=0p (ZheNi Qpi — ZheNj Qpj + o — ajl-) . Given any
cycle i1is...7,,%1, SUMmMing up ®z‘1z’z’®i2i3’ - @z’mil’ we have

(L4 0) (Viriy + Vinia + o T Vimir) = P (Qigiz + oo+ Qi — Qg — oo — iy,

By @im —@imand Vi +75i = 0, we have a5, — Qiyiy = ZheNiQ ai2h_ZheN7;1 i, p+
29,4, SUMMING OVer 4yiy, ..., iy l1,

Oéil'i2 + + ai'rrLil - ai2i1 e T ailim = 2 (’Yiliz + 7i2i3 + A + /Y’Lmll) @

Then + p X @ gives (1 — (%’12‘2 + Vigiz T oo+ Vimh) = 0. For p < 1, we have
7Z112 + 77,213 + + f)/zmzl = O

B.7 Uniqueness in Minimally Connected Networks

Proposition 11. Under the independent CARA-Normal setting, if the network is
minimally connected, then there is a unique profile of transfer rules in T* that is

Pareto efficient, and it takes the form of the local equal sharing rule.

Proof. Consider minimally connected network GG. For Pareto efficiency, we need for
all linked pair ij
Eij [u; (s)]
Eij [u; (z7)]

As the network is minimally connected, we have N;; = (). Notice that

= Cij-

E [refT(ei*tijfzkeNi\{j} tik (ei,ek))

—r(ejt+ti;— A tin(ej.e
ei,ey} = c;R [re (et Snew, o tinesen)

ei,ej] .
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4By independence,

B [Tefr(ei*tij*ZkeNi\{j} tik(eier)) ei] = ¢,;E |:r6—7'(€j+tij_ZhENj\{i} tjh(ej,eh)> €J}
<:>6—r(e,-—t7;j) . H E [ertik(ei,ek)‘ 612} _ Cije—r(ej+t,;j) H E [ertjh(ej,eh)l ej]
keN;\{j} heN;\{i}
e — by — 1 Z InE [e”tik(e"’ek)‘ €] =e;+ti; — 1 Z InE [e”jh(eﬂ"eh)‘ ej] — 1ln Cij
rENNG) hENi) '
St = le' — le» _ 1 Z InE [e’“tik(e“e’“)’ e-} + 1 Z InE [e”jh(ef”eh)’ e'] + L Inc;;
Vot 2 o , o or , e Y
EENA{G} heN;\{i}

(33)

1 1 1 1 1
:561—56]—5 Z IHT;]g—F? Z lnTm—i—?lncw
keN:\{5} heN;\{i}

where
Ty =& [ertik(ehek’)l ei]

Then, taking conditional expectations of (33), we have

1
Ej _ er(%ei+%r02—2—1r ZkeNi\{j}lnTik+Tl7~lnaij) K [67"? ZheNj\{i} In Tjp,

6{|
r(Leitire?—L 5 3 In Tt o Inay) H 3
= e'\2 2 2r £«k€N;\{5} w2 1. E Tjh

heN;\{i}

and

1 1 1 1 1 1 1
;lnﬂj:§€i+§r02—§ Z ;lnTik—i—Q—rlnaij+ Z lnE[TﬁL}
keN;\{5} heN;\{i}

Introducing notation

we have

~ 1 1 ~
Tz’j=§€z‘—§ Z Tk + cij
keN\{j}

45We hope the unfortunate notational coincidence of the endowment vector e and the natural
exponential power e will not result in any confusion.
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JEN; JEN; JEN;
- d 2
j:‘w_ ‘ Z+ Z )
i, d +1 di +1 =
=
~ 1 1 ~
Tij:*t?i—§ T + cij
keN\{j}
1
561_*27119—1_ z]"’Czj
keN;
=
1. 1 d; 2
2 ”’:2<6i_di+1ei_di+1 ZC“‘?>+C"7
kEeN;
- 1
j:‘i': 4 7
T a1 a4 +1I§C’“+Cﬂ

Hence, by (33), we have

1 1 1 1 1
=50 50 5 D <d,-+1ei—di+1 2 +>

KENA} KEN;

1 1 1
"’5 Z d +1 j d +1 Z c]h/—l—c]h/ +27rln04ij
heN;\{i} h'eN;

di— 1 1/ di-1
( d+1> 2( di+1>63+0”
1
_|_

€; + Cl]

T4 10 d+1

B.8 Linear Pareto Efficient Transfer Shares for Boundary

Correlation Parameters

Proposition 12.
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o forp= —ﬁ and any G such that max;ey d; < n—1, a Pareto efficient profile

of transfer rules is given by Proposition 4

e forp= —ﬁ and any network structure G such that max;en d; =n — 1, let i*
be any individual with d;~ = n — 1. Then a Pareto efficient profile of transfer

rules is given by

Qjjx = 1, Uixj = O = 0, VJ,IC < N\ {’l*}

o Forp =1 and any network structure G, any profile of transfer rules that satisfies
the Kirchhoff Circuit Law as defined below is Pareto efficient:

Zaij:Zaﬁ Vi € N.

JEN; jJEN;

Proof. For p = —ﬁ and G s.t. max;cny d; = n — 1, the profile of transfer rules given
above attains zero variance in consumption for each individual, and is thus Pareto
efficient. For p = 1, any profile of transfer rules that satisfies the Kirchhoff Circuit
Law achieves the same profile of consumption plan as the null transfer (autarky),

which is clearly Pareto efficient. 1

B.9 Detailed Specification and Proof for Proposition 9

Specifically, we assume that the correlation between e; and e; geometrically decays
with social distance between 7 and j :
Corr (e;,e;) = o™!h9),
where the social distance dist (i, j) is formally defined as the length (i.e., the number of
links) of the shortest path connecting ¢ and j in network GG. For notational simplicity
we set 02 = 1.
For tractability, we restrict attention to circle networks with n = 2m + 1 individ-

uals. A n-circle consists of n individuals and n links: G;;11 =1 fori=1,...,n.*6 For

any linked pair 7,7 + 1 along a n-circle (with n > 4), the conditional distribution of

46We, for notational simplicity, define individual n + 1 to be individual 1, and individual 0 to be
individual n.
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e;—1 (and similarly for e;,2) is

€i-1 €i,€4+1

Following a similar argument as in Section 4.2, we obtain the following condition for

Pareto efficiency subject to local information constraints:

Qiir1 =35 (=1 + 0a1,)

NI= N

Qir1i =5 (1 — Qig1i42 + 00i2,i41)

for all © € N. Then, the unique and symmetric solution for the above system is given

by
* eo 1
aj; =a’ (o) = 3 . VG, = 1.

Under o*, the final consumption for each individual is

1
geo — 5. . .
% (Q) 3_@61—1+ 3—Q€Z+ 3_Q€z+1

with a variance of .
€eo —"_ Q
Vargeo, (27 (0)) = 3o
In comparison, under the symmetric correlation structure in Section 4.2, the con-
dition for Pareto efficiency on a n-circle is
1

p
Qi1 = 5 I -1+ T+, (o1 — Cyoiq1)

with its unique and symmetric solution being

which is exactly the local equal sharing rule. This implies a final consumption of

wni 1 1 1
Iin f (p) = gei_l + gez‘ + §6i+1
with a variance of

» 1+2
Varuugo (27 (1) = 142
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We compare the correlation structures by setting p and g to be such that each
individual’s consumption variance is equalized across the two correlation structures

under the global equal sharing rule (which achieves first best risk sharing):
LA
7 n °
keN

The consumption variances that this sharing rule implies for the two correlation

structures are:

1+2mp
Varuis, (077) = 5 =7
) 1—Qm+1 _
Vargeo, (v;7) = L+25, ¢ — e, !
geoe A 2m + 1 2m+1

The first-best total variances under the two correlations structures are equal if and

only if
17‘Qm+1
1+2mp 2455 —1
|4 uni EB) = V €o o A - :
ATunif,p (1‘1 ) Tgeo,o (xl ) 2m + 1 2m + 1
o(1—o™)
= — = —
p=rml0):="

Noticing that the total variances without risk sharing at all are both equal to
(2m 4+ 1) under either correlation structure, setting p = p,, (0) implies that the total
amount of shareable risk is equalized between the two correlation structures. Next we
compare the consumption variances given Pareto efficient risk-sharing arrangements
subject to local information constraints.

Notice that

Varum‘f,p (‘T?Mf (p)> S Vargeo,g (ngeo (Q)) < 1Y S ﬁ (Q) =5 -

Hence, whenever
B-0(1—-0")
2(1-0)

(x”mf (p)) < Vare, (2% (o). In other

% geo \*"q

m >

we will have p (o) < p(p) and thus Var?

uni

words, fixing g, efficient risk sharing subject to the local information constraint per-
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forms strictly better under the uniform correlation setting than under the geometri-
cally decaying setting.

Moreover, the difference can be very stark. As m — oo,

L
p=plo)= M -0,
and thus
Varui, (57 (0) = == 2 asm oo o0
while
Varyo, (a1 (0) = 32 Vi

When also taking o — 1 (after taking m — 00), we get

lim Lim Varyniz (o) (x?nlf (p(g))) - 3’

o0—1 m—oo

. . geo _
,})ILI% mhlgo Vargeo,p (xz (Q)) =1

B.10 Quadratic Utility Functions

1

With quadratic utility functions w; (x;) = x; — 3ra?, the localized Borch rule requires

that /
_ By [ ()]
]E .

A x

J

Ai

ij [1 — T’ZL'Z']

_E
E

ij [1— 1]
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Postulating a bilateral linear rule:
tij (Il) = Q46 — (€5 + Cij

Notice that this is equivalent to specifying ¢;; (I;;) = au;y; — ovj;y; + ¢;; as we allow

p;; are simultaneously determined along with:

€T; = (1—2&5]') €i+zaji€j+ﬂi_zcij

JEN; jEN; JEN;
= (1 - E Oéij> Yi + E QY + ( E Qjifl; — E Oéiij) - E Cij
JEN; JEN; JEN; JEN; JEN;
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Plugging in the postulation,

hEN;\j heN;; heN;\N;
Aj
)\ +)\ 1-— Z ajp | €5+ Z Qpj€p + Z ahiEij [eh]
hEN;\i REN;; hEN;\N;
( ZhGN \j CL}L) - )‘j (:uj - ZhENj\i th) B A — )\j
)\i—F)\j T<)\i+/\j)
A
:)\+)\ 1— Zaih €i+ZOéhi€h+1+(d'p'_'_1> Z Oéhi'zek
¢ J hENz\7 heNij K [) hENL'\Nj keﬁij
Aj
)\ 1-— Zajh €j+ZOéhj6h+— Z Qps - Zek
+ /\ A d + 1 —
hEN;\i hEN;; heN \N; keN;
( ZheN \j Czh) - )\j (Mj - ZhENj\i th) _ A — )\j
)\i—F)\j r<)‘i+)‘j)

In the special case of equal weighting: \; = \;, we have

Oéz‘j:* 1—Zazh+ dj-i—l)p Z Qp; — Z Qp;

heN; heN;\N; hEN;\N;

Note that system of linear equations in « is exactly the same one as in Section 4.

B.11 Detailed Specification and Proof for Proposition 10

In our setting, for a given network G, individual i’s Myerson value is defined by

<# <S) _ 1)71('71 — # (S)) ';’I“O'2 [TVCLT’ <G|(S\{z})> + 0'2 —TVar (G|S)

MV (G) =)

SCN
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where # (S) denotes the number of individuals in a subset S of N, and G|g denotes
the subgraph of G restricted to the subset S of individuals. Given the CARA-normal
specification, TV ar (G’ s\ {i})> + 02 —TVar (G|g) is the surplus from risk reduction
through ¢’s links in S.

Notice that, given any S C N,

1 1
1Var (Glayy ) =TVar (Gls) = 1= G577 R ACRI AR

which is strictly increasing in d; (G|q) but strictly decreasing in dj (G|g) for each
Jj € Nip(Glg). Moreover, for any k € N, di, (G|g) is weakly increasing in S, i.e.,
SCS = di(Gly) < di(Gly).

Consider any pairwise stable network GG under the Myerson-value transfers. Then,

if 7, 7 are linked, it must be that
MV (G) = MV; (G —ij) > c.
Fixing 77, for each S C N, we have

TVar (G — ij|S\{i}> —TVar (G —1ijlg)

TVaT<G|S\{Z.}) —TVar (G|g), ifj¢58

1 1 . .
L= atayy t Zken( @\ afe)fa(as)n] I €5

SO

[TV(IT’ <G|S\{i}> — TVar(G]S)} - [TV&T (G - ij\s\{i}> —TVar (G — z'j|5)]

. 1 1
16} [gramm ey T SR @l
>1{jes ! 1
—{36}'b«%m«%+u+@«nM«%+i

Averaging over all possible S C N, we get

MV,(€) = MV,(G—ij) > -
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as

S;V (#(5) — 1;(!” —# (S)>]l {j € S} = Pr{i arrives later than j} = ;

From the perspective of social efficiency, the link ¢j in G is (strictly) socially

efficient if 1 1
d; (Q) [d; (G) +1] + RETACES > 2c.

Thus we can conclude that, given any pairwise stable network G under the Myerson-

value transfers, whenever a link ij is (strictly) socially efficient, it will be present in
G, because the increments in both i’s and j’s private benefits strictly exceed the cost

of linking c:

- 2c¢

C

MV (G) = MV; (G —ij) >

-2c=c.

NN

MV, (G) — MV; (G — ij) >

C Empirical Evidences for the Positive Correla-
tion Between Network Centrality and Consump-

tion Volatility

C.1 Data Description and Variable Construction

The Townsend Thai Monthly Survey (Townsend, 2016), initiated in 1998 as part of
the Townsend Thai Project, is an ongoing survey that provides monthly household-
level data on a wide range of aspects, including in particular household consumption
and social interactions, for approximately 720 households from 16 villages in Thai-
land. The data used in this section are based on the 196 months from August 1998
(labeled as month 1) to December 2014 (labeled as month 196), which constitutes
the entire sample publicly available at the writing of this draft. Below we provide
a brief description about a subset of the data from Townsend Thai that are most
relevant to our empirical analysis. A more comprehensive and detailed description
of the survey can be found in Samphantharak and Townsend (2010), Townsend and
Suwanik (2016), Pawasutipaisit et al. (2016) and also online at the official website of
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the Townsend Thai Project.

An initial village-wide census enumerated all households and structures in the sur-
veyed villages, allowing unique identification of a given household or a given structure
in a given village across all 196 months. The variable “newid” in the publicly released
data set, constructed by the data provider using an unknown scrambling algorithm in
conformation with public data dissemination protocols, serves as the unique identifier
for each household, but may also be used to uniquely identify the village in which
the household resides. For each given village, the variable “census structure number”
uniquely identifies a certain structure in the given village as recorded in the initial
census.

The subsequent monthly surveys cover a randomly sampled subset of households.
From each village, 45 households were randomly selected, and the subsequent monthly
survey recorded updates from the same households over time in all villages. Some of
surveyed households moved out of a village, and some new households were added to
the monthly survey during the sampled periods.

We focus mainly on two categories of variables in the monthly surveys: house-
hold consumption and social interactions. For each household, we use the former to
construct measures of consumption volatility, and the latter to construct measures of

degree centrality.

C.1.1 Consumption Variance

We first describe how we construct measures of consumption variance for each house-
hold.

First, we construct real monthly household consumption per capita using data on
household expenditures For a typical household (newid) in a given month (month),
the Townsend Thai Monthly Survey include a quite comprehensive range of finely
categorized monthly household expenditures. Among them some “shorter-term” cat-
egories, such as expenses on food, gasoline and daily commutes, are recorded at
biweekly frequency?” while other “longer-term” categories, such as utilities, rents and
clothing, are recorded at monthly frequency. All expenditures are recorded in nominal
Thailand bahts.

In our main analysis, we construct our monthly consumption variables in two

47To be precise, these categories are recorded at weekly frequency for months 1-24, and at biweekly
frequency from month 25 onward.
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ways for robustness (See Section C.2.2 for additional ways of variable construction).
The first version is constructed by aggregating over all categories of expenditures in
the survey except for the category called “other expenses”. The second version is
constructed by aggregating over all categories of expenditures, excluding not only
“other expenses” but also the categories labeled as “maintenance of houses and pri-
vate vehicles”. The reason for excluding these maintenance expenditures is that we
occasionally observe a very few number (about 8 among 133,188 household-month
records) of extremely large expenditures in these categories in certain months, caus-
ing the sample variances (across 133,188 records) to almost quadruple as well as the
sample skewness and kurtosis to blow up. As such occasional extraordinary expendi-
tures are hard to justify as fluctuations in monthly consumption, the second version
of consumption variables are constructed without these maintenance categories, and
will be indicated by an postscript “_nm”, short for “no maintenance”, whenever
applicable.

Second, we compute real monthly household consumption per capita, using data
on household sizes from the Townsend Thai Monthly Survey, as well as data on
monthly Consumer Price Index from the Thailand Ministry of Commerce. We con-
struct two measures of households sizes for robustness. The first version is constructed
based on the number of household members that are registered on the household com-
position roster and are interviewed by the survey for each household in each month.
The second version is constructed based on the number of household members who
are not only interviewed but also indicate that they have resided in the household
for at least fifteen days of the month. We indicate all variables constructed from
the second version of sizes with the postscript “_re”, short for “resident”, whenever
applicable.

Third, we keep only households whose consumption are recorded for at least 100
(not necessarily consecutive) out of 196 months. This selects a subsample of 689
households from a total of 780 distinct households, excluding in particular households
that moved out early or were added to the monthly survey late during the 196 months.
As we are interested in measuring consumption volatility across time, we impose this
subsample selection to ensure that we have a reasonable number of time periods for
each household and that the sample variance to be computed later are reasonably
accurate. Note that the selected households contribute an overwhelming proportion
(129,944 among 133,188, or 97.56 percent) of household-month observations on real
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consumption per capita.

Fourth, we compute detrended real consumption per capita with linear detrending
of logged real consumption per capital. Given that real consumption per capita should
be rising over a time frame of 196 months, detrending is required for the construction
of a sensible measure of consumption volatility. This is because, without detrending,
a deterministic path of real consumption per capita at a fixed positive growth rate will
generate positive variance in consumption without any uncertainty. We model growth
in real consumption per capita with a standard time trend, which is consistent with
the theory of balanced growth paths. Specifically, separately for each household, we
regress logged real consumption per capita on a time trend and obtain the predicted
values and residuals from the regressions.

We define detrended real consumption per capita as the difference between the
observed real consumption per capita and the predicted real consumption per capita,
computed as the exponent of predicted values from the trend regression of logged real
consumption per capita. We also define detrended log real consumption per capita,
computed as the residuals from the trend regression of log real consumption per
capita.

Finally, we compute the sample standard deviations of detrended real monthly
household consumption per capita, for each household across all months in which this
given household is surveyed. We compute four measures of consumption volatility,
named respectively, “sd_x”, “sd_x_nm”, “sd_x_re” and “sd_x_nm_re”, depending on
the definitions of consumption variables and household sizes as discussed above. We
also compute another set of volatility measures, using sample standard deviations
of detrended log real monthly household consumption per capita, which are named

“sd_lz”, “sd_lznm”, “sd_lr_re” and “sd_lx_nm_re”, respectively.

C.1.2 Network Degrees

We now describe how we construct measures of network degrees for each household
in each village. For robustness, we consider five definitions of network links, leading
to five different versions of network degrees.

The first measure of network degree is constructed based on records of within-
village gift and remittance, borrowing or lending transactions from the Townsend Thai
Monthly Survey. Among the many types of social and economic interactions among

households recorded by the survey, “gift and remittance” as well as “borrowing” and
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“lending” are arguably most relevant to the purpose of informal risk sharing.

Each month, each surveyed household, identified by a “newid”, reports whether
this household has given or received any gift or remittance during the month. The
data set records each gift and remittance giving, gift and remittance receiving, borrow-
ing and lending transactions separately, and includes some information on the coun-
terparties of each transaction. In particular, the data identify whether the a surveyed
household has a gift or remittance transaction with some counterparty household that
resides in the same willage as the surveyed household, and also identify the “census
structure number” of the counterparty household whenever available.

We define the “degree” of a certain household, identified by “newid”, as the number
of unique same-village counterparties who the household has ever interacted with over
the 196 months, each of whom resides at some structure identified by a certain “census
structure number”.

The second, third and fourth measures of network degrees we use are based on
records of reported kinship or neighbor relationships from the Townsend Thai Monthly
Survey. Such records are obtained from numerous records of within-village interac-
tions from five modules of the survey: household assets, agricultural assets, gifts
& remittance, borrowing, and lending. Again, each record identifies a household
who reports a certain interaction, the “census structure number” of the counterparty;,
whether the counterparty has kinship relationships with the given household, and
whether the counterparty relationship is a neighbor of the given household in the vil-
lage. Our second and third degree measures count the unique number of same-village
counterparties who are reported, respectively, as kins and neighbors. Our fourth
degree measures is constructed by taking a union of the kinship and neighborhood
links.

The fifth, and the last, degree measure is constructed by taking a union of the
transaction links (gifts, remittance, borrowing or lending) and the relationship links

(kinship or neighborhood).

C.1.3 Control Variables

We extract monthly information on the households’ real saving balances, use of insti-
tutional finance (borrowing from commercial banks, BAAG, PCG, Rice Bank, Agri-
cultural Co-operation or other institutions), use of personal finance (borrowing from

money lenders, store owners, input suppliers, relatives or friends), health insurance
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payment, life insurance payment and ROSCA payment. We construct a series of bi-
nary and real-valued variables based on these information, and then compute both
inter-temporal averages and inter-temporal sums of these variables across all 196
months for each household. We also calculate the inter-temporal sample standard
deviation of real saving balances to capture household-specific variation in savings.

See below for more details.

Saving  Saving may be used for consumption smoothing. We aggregate the
current balances of all accounts that each household as savings at each month, and
adjust them to real terms with the CPI data. We then compute inter-temporal
averages as well as standard deviations over the whole sampled periods as two control

variables.

Institutional finance Institutional finance, recorded by a binary variable,
represents whether a household has borrowed from commercial banks, BAAG, PCG,
Rice Bank, Agricultural Co-operation or other institutions at each month (1 is yes
and 0 is no), which may be regarded as proxy for access to formal financial institutions
that may help with consumption smoothing. We compute inter-temporal average and

sum of this variable for each household.

Personal finance Personal finance, recorded by a binary variable, represents
whether the household have borrowed from money lenders, store owners, input sup-
pliers or individuals such as relatives, friends or other individuals at each month (1

is yes and 0 is no). We compute inter-temporal average and sum of this variable for
each household.

Health insurance Health insurance, recorded by a binary variable, represents
whether the household has ever paid for health insurance fee at each month (1 is yes
and 0 is no). For those households that have paid health insurance fees, the amount
of health insurance premia paid is also recorded. We compute inter-temporal averages

and sums of these variables for each household.

Life insurance Life insurance, recorded by a binary variable, represents whether

the household has any life insurance policies or funeral fund memberships at each
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month(1 is yes and 0 is no). We also construct a binary variable that records whether
the household paid any money into the insurance policy/funeral fund since the last in-
terview, and a double variable that represents the amount paid to policy. We compute

inter-temporal averages and sums of these variables for each household.

ROSCA ROSCA, recorded by a binary variable, represents whether the house-
hold is participating in any ROSCAs that have not finished in each month (1 is yes
and 0 is no). We also construct a binary variable that records whether the household
have paid any money into ROSCA since the last interview, and a double variable that
represents the amount paid to ROSCAs. We compute inter-temporal averages and

sums of these variables for each household.

Lastly, we obtain monthly net operating income for each household from the in-
come statement section of the Townsend Thai Monthly Survey Household Financial
Accounting dataset Townsend (2017), which covers months 1-172. We compute lin-
early detrended log real income per capita from the dataset, and compute its sample
standard deviations (“sd_ly”) as well as the sample standard deviations of the differ-
ences between observed real income per capita and detrended real income per capita
(“sdy").

All these constructed variables, along with village-level fixed effects, are included

in the regression analysis as control variables.

C.1.4 Summary Statistics

With the three types of variables, i.e., the consumption variables, the network vari-
ables and the control variables, constructed above, we obtain a merged data set and
focus on the households for whom all three types of variables are not missing.This
effectively leaves us with a sample size of around 600 households. We now present

some summary statistics for this subset of households in Table 3.

[Table 2 about here.]
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C.2 Empircal Findings
C.2.1 Main Results

We now present our main empirical results on the positive correlation between degree
centrality and consumption variance.

Table 2 reports pairwise sample correlation coefficients between (i) household de-
grees according to five versions of network definitions and (ii) standard deviations of
six versions of detrended real monthly household consumption per capita or its logged
forms. All sample correlation coefficients are positive and statistically significant.

Table 4 reports results from fives sets of regressions of sample standard deviation
of detrended real consumption per capita on own network degree, average counterparty
degree, along with a list of control variables for risk heterogeneity and village-level
fixed effects. All five sets of regressions use the same four representative dependent
variables, “sd_z”, “sd_x_nm_re”, “sd_lx”, “sd_lz_nm_re”. Clearly, most estimated co-
efficients on network degrees are positive and statistically significant, after control-
ling for variations in average counterparty degree, village fixed effects and a list of
household-level control variables.

Table 5 reports results from the same five sets of regressions as those run in Table
4, except that regressions in Table 5 include standard deviations of detrended real
income per capita as an additional control variable. Specifically, all regressions with
reqular-scale consumption volatility measures (“sd_z”, “sd_r_nm_re”) as dependent
variables add “sd_y” as an additional right-hand-side variable, while those with log-
scale consumption volatility measures (“sd_lz”, “sd_lz_nm_re”) add “sd_ly” instead.
Again, most estimated coefficients on network degrees remain positive and statistically
significant.

It is noticeable that the coefficients in regressions of the dependent variable “sd_x”,
though remain positive, become statistically insignificant. This, however, is not par-
ticularly surprising, as the construction of variable “sd_z” involves very occasional
extraordinary (maintenance) expenditures, which we find, if not expressed in log
scale, blows up the variance, skewness and kurtosis of the whole sample remarkably
as discussed earlier.

In summary, Table 2, Table 4 and Table 5 demonstrate remarkably robust con-
sistency between the theoretical results obtained previously under our model and the

empirical patterns of informal risk sharing in real-world village communities.
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[Table 3 about here.|

[Table 4 about here.]

C.2.2 Alternative Specifications

Alternative Construction of Consumption Variable We construct the con-
sumption variable from Townsend Thai Monthly Survey, using both the biweekly
consumption record and the monthly consumption record, which cover different sets
of expenditures as listed in the survey questionnaire. In the main text, we aggregate
over all expenditures from both records, excluding “item 48: other expenses” from
the monthly record. In addition, for the “no-maintenance” version of variables, we
exclude expenditures on “maintenance of house and private vehicles” (item 27-31).
As an additional robustness check, here we provide another set of empirical results,
where we aggregate consumption variables to quarterly (3-month) levels so as to better
incorporate (or smooth out) seasonal expenditures, such as expenditure on clothing.

We find our results essentially unaffected using quarterly-level consumption data.

[Table 5 about here.|
[Table 6 about here.]

[Table 7 about here.]

Alternative Method of Detrending For the empirical results in the main text,
we detrend the consumption variables with a different linear trend for each household.
Here, we also provide a robustness check by detrending consumption with a common

trend among all households. Our main results remain essentially unchanged:

[Table 8 about here.|
[Table 9 about here.]

[Table 10 about here.]
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Table 3: Summary Statistics

variable obs. mean s.d. min max
(a) Monthly real consumption per capita
x 132,997 1625 4214 0 773,411
x_re 132,997 2497 7059 0 1,160,116
r_nm 132,997 1444 2408 0 181,988
r_nm_re 132,997 2226 4606 0 444,195
(b) Household consumption volatility
sd_x 607 2425 3520 98 55287
sd_x_re 607 4142 5922 173 84839
sd_x_nm 607 1661 1618 98 12854
sd_x_nm_re 607 3031 3504 171 32259
sd_lx 607 0.483  0.124 0.206 0.911
sd_lx_re 607 0471  0.118 0.198 0.945
sd_lx_nm 607 0.431 0.114 0.178 0.898
sd_lz_nm_re 607 0.420 0.105 0.177 0.813
# months 607 189.115 18.420 100 196
(¢) Household network degrees
Transactions 599 3.770 2.956 1 24
Kinship 607 2.129  1.870 0 10
Neighbors 607 3.684  2.980 0 22
Kinship & Neighbors 607 3.807  3.029 0 22
Transaction, Kinship, € Neighbors 607 4.008 3.088 1 24
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Table 4: Regression with control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 108.229 58.667 0.066 582 0.1993
sd_z-nm_re  288.345 55.886 0.000 582 0.1589
sd_lx 0.0083 0.0018 0.000 582  0.2091

sd_lz_nm._re 0.0070 0.0013 0.000 582 0.1998
(b) Kinship network

sd_x 58.106 84.309 0.491 590 0.1897
sd_z_nm_re 229.256 98.458 0.020 590 0.1221
sd_lz 0.0066 0.0031 0.035 590 0.1875

sd_lz_nm_re 0.0044 0.0024 0.068 590 0.1715
(c) Neighbors network

sd_x 98.247 56.015 0.080 290  0.1965
sd_z_nm_re  246.268 53.198 0.000 590  0.1475
sd_lx 0.0070 0.0019 0.000 290  0.2081

sd_lz_nm_re 0.0058 0.0014 0.000 590  0.1960
(d) Kinship & Neighbors network

sd_x 98.594 54.336 0.070 590  0.1969
sd_x_nm.re  247.487 53.603 0.000 590 0.1493
sd_lx 0.0070 0.0018 0.000 290  0.2091

sd_lz_nm_re 0.0058 0.0014 0.000 590 0.1972
(e) Transaction, Kinship & Neighbors network

sd_x 106.736 51.762 0.040 590 0.1988
sd_z_nm_re 246.632 50.432 0.000 590 0.1510
sd_lx 0.0073 0.0018 0.000 590 0.2124

sd_lx_nm_re 0.0060 0.0013 0.000 590  0.1996
Note: Some households are dropped in the regressions due to missing values in control
variables, reducing the sample sizes to 582 for (a) and 590 for (b)-(e), respectively.
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Table 5: Regression with income volatility, control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 84.261 56.930 0.139 582  0.2388
sdxnm_re  234.494 54.500 0.000 582 0.2315
sd_lx 0.0080 0.0019 0.000 582 0.2241

sd_lz_nm._re 0.0069 0.0014 0.000 582 0.2017
(b) Kinship network

sd_x 49.292 84.740 0.561 590 0.2326
sd_z_nm_re 214.264 99.047 0.031 590 0.2046
sd_lz 0.0061 0.0032 0.058 590 0.2070

sd_lz_nm_re 0.0043 0.0025 0.084 590 0.1751
(c) Neighbors network

sd_x 73.989 54.177 0.173 590 0.2364
sd_z_nm_re  206.068 50.615 0.000 590 0.2210
sd_lx 0.0066 0.0019 0.001 590 0.2238

sd_lz_nm_re 0.0057 0.0014 0.000 590 0.1979
(d) Kinship & Neighbors network

sd_z 76.515 52.534 0.146 590 0.2369
sd_z_nm_re 210.719 51.505 0.000 590 0.2232
sd_lx 0.0067 0.0018 0.000 590 0.2247

sd_lz_nm_re 0.0057 0.0014 0.000 590  0.1990
(e) Transactions, Kinship & Neighbors network

sd_x 84.885 50.136 0.091 590 0.2383
sd_z_nm_re 210.083 48.735 0.000 590 0.2245
sd_lz 0.0070 0.0018 0.000 590 0.2280

sd_lx_nm_re 0.0059 0.0013 0.000 590 0.2015
Note: Some households are dropped in the regressions due to missing values in control
variables, reducing the sample sizes to 582 for (a) and 590 for (b)-(e), respectively.
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Table 6: Pairwise Correlation Coeflicients

s.d. of detrended real consumption per capita
sd_x sd_x_re sd_x_nm  sd_x_nm_re

Network degrees

(a) Transactions 0.1784  0.1684  0.3089 0.2709

(0.0000)  (0.0000)  (0.0000) (0.0000)
- . 0.1682 0.1564  0.2854 0.2422
(d) Kinship & Neighbors ;000 0.0000)  (0.0000) (0.0000)

s.d. of detrended real consumption per capita
sd_lx  sd.lv_re sd_le-nm  sd_lz_nm_re

Network degrees

(a) Transactions 0.2102  0.2133 0.2204 0.2308

(0.0000)  (0.0000)  (0.0000) (0.0000)
- . 0.1812  0.1792  0.1965 0.2004
(d) Kinship & Neighbors ;000 0.0000)  (0.0000) (0.0000)
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Table 7: Regression with control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 191.297 106.958 0.074 576  0.1986
sd_x-nm_re  489.680 96.350 0.000 576 0.1617
sd_lx 0.00936 0.0021 0.000 576 0.1564

sd_lr-nm_re ~ 0.00918 0.0017 0.000 576  0.1417

(d) Kinshop & Neighbors network

sd_x 174.209 98.576 0.078 584 0.1951
sd_z_nm_re  422.660 92.008 0.000 584 0.1525
sd_lx 0.00778 0.0021 0.000 584  0.1530

sd_lr_nm_re 0.00754 0.0017 0.000 584 0.1318
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Table 8: Regression with income volatility, control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 145.547 103.637 0.161 576 0.2378
sdx-nm_re  417.920 94.797 0.000 576 0.2367
sd_lx 0.00898 0.0022 0.000 576 0.1723

sd_lz-nm_re ~ 0.00904 0.0017 0.000 576 0.1444
(d) Kinship & Neighbors network

sd_x 132.276 95.058 0.165 584  0.2350
sd_z_nm_re  356.886 89.112 0.000 584 0.2290
sd_lx 0.00738 0.0021 0.001 584  0.1692

sd_lr_nm_re 0.00741 0.0017 0.000 584 0.1344
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Table 9: Pairwise Correlation Coeflicients

s.d. of detrended real consumption per capita
sd_x sd_x_re sd_x_nm  sd_x_nm_re

Network degrees

(a) Transactions 0.1831  0.1799  0.3186 0.2742

(0.0000)  (0.0000)  (0.0000) (0.0000)
- . 0.1724 0.1661  0.2911 0.2426
(d) Kinship & Neighbors ;000 0.0000)  (0.0000) (0.0000)

s.d. of detrended real consumption per capita
sd_lx  sd.lv_re sd_le-nm  sd_lz_nm_re

Network degrees

(a) Transactions 0.2418  0.2399  0.2199 0.2216

(0.0000)  (0.0000)  (0.0000) (0.0000)
- . 0.2221 02111  0.2077 0.1988
(d) Kinship & Neighbors ;000 0.0000)  (0.0000) (0.0000)
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Table 10: Regression with control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 109.236 58.709 0.063 582 0.2006
sdr-nm_re  287.751 55.892 0.000 582  0.1595
sd_lx 0.00876 0.0019 0.000 582 0.2097

sd_lz-nm_re  0.00658 0.0015 0.000 582 0.2129

(d) Kinship & Neighbors network

sd_x 99.711 54.380 0.067 590  0.1982
sd_z_nm_re  247.962 53.596 0.000 590  0.1497
sd_lx 0.00715 0.0019 0.000 590  0.2097

sd_le_nm_re  0.00506 0.0016 0.000 590  0.2077
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Table 11: Regression with income volatility, control variables and village fixed effects

coefficient  robust s.e. p-value obs. R?
(a) Transactions network
sd_x 85.067 56.918 0.136 582 0.2407
sdr-nm_re  247.812 54.450 0.000 582  0.2326
sd_lx 0.00841 0.0020 0.000 582 0.2253

sd_lr-nm_re ~ 0.00649 0.0015 0.000 582 0.2146
(d) Kinship & Neighbors network

sd_x 77.455 52.528 0.141 590 0.2388
sd_z_nm_re 210.117 51.448 0.000 590 0.2242
sd_lz 0.00678 0.0019 0.001 590 0.2258

sd_le_nm_re ~ 0.00495 0.0016 0.002 590  0.2095

118



