Informal Risk Sharing with Local Information*

Attila Ambrus;† Wayne Y. Gao‡ Pau Milán§

June 28, 2019

Abstract

This paper considers the effect of contracting limitations in risk-sharing networks, arising for example from observability, verifiability, complexity or cultural constraints. We derive necessary and sufficient conditions for Pareto efficiency under these constraints in a general setting, and we provide an explicit characterization of Pareto efficient bilateral transfer profiles under CARA utility and normally distributed endowments. Our model predicts that network centrality is positively correlated with consumption volatility in large random graphs, as more central agents become quasi-insurance providers to more peripheral agents. The proposed framework has important implications for the empirical specification of risk-sharing tests, allowing for local risk-sharing groups that overlap within the village network.

Keywords: social network, risk sharing, Pareto efficiency, local information

*We thank Dirk Bergemann, Francis Bloch, Vasco Carvalho, Jan Eeckhout, Joan de Martí, Giacomo di Giorgi, Marcel Fafchamps, Dean Karlan, Larry Samuelson, Todd Sarver and Christopher Udry for useful comments. We thank Weiting Miao for excellent research assistance.

†Attila Ambrus: Department of Economics, Duke University, Durham, NC 27708, USA; attila.ambrus@duke.edu.

‡Wayne Yuan Gao: Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, USA; waynegao@sas.upenn.edu.

§Pau Milán: Department of Economics, Universitat Autònoma de Barcelona, Edifici B, Bellaterra 08193, Spain; pau.milan@gmail.com.
1 Introduction

Informal insurance arrangements in social networks have been shown to play an important role at smoothing consumption in a number of different contexts (Ellsworth 1988, Rosenzweig 1988, Deaton 1992, Paxson 1993, Udry 1994, Townsend 1994, Grimard 1997, Fafchamps and Lund 2003, and Fafchamps and Gubert 2007). A main finding in this literature is that informal insurance achieves imperfect consumption smoothing.\(^1\) There are different theoretical explanations as to why perfect risk sharing is not possible. One leading explanation is the presence of enforcement constraints: since risk-sharing arrangements are informal, they have to satisfy incentive compatibility, implying an upper bound on the amount of transfer that individuals can credibly promise to each other. This type of explanation has been explored in a social network framework by Ambrus, Mobius, and Szeidl (2014).\(^2\)

In this paper we explore an alternative explanation featuring imperfectness of the contracting environment. Specifically, we assume that bilateral risk sharing arrangements between a pair of agents cannot be made contingent on everyone’s endowment realizations in the community (global information), but only on a pair specific subset of endowment realizations (local information). These contractibility restrictions can come from limited observability or verifiability of endowment realizations of agents located far enough on the social network, social norms and complexity costs on writing contracts, among other sources. The empirical relevance of local information is documented by Alatas et al. (2016), who find that households’ information about each others’ financial situations is negatively correlated with the social distance between them.

In most of this paper, for expositional purposes, we focus on the specification where each individual in a network can only observe her own and her neighbors’ endowment realizations, and the local information each linked pair can contract upon

\(^1\)Some recent papers, like Schulhofer-Wohl (2011) and Mazzocco and Saini (2012) point out that in some contexts perfect risk-sharing cannot be rejected when allowing for heterogeneous preferences. We discuss how our work is related to this literature later in this section. On the other extreme, Kazianga and Udry (2006) find a setting in which informal social insurance does not improve welfare over autarchy.

\(^2\)See also Karlan et al. (2009), who investigate enforcement constraints in the case of a single borrowing transaction. There is also an extensive literature on the effects of limited commitment on risk-sharing possibilities for a pair of individuals instead of general networks (Coate and Ravallion 1993, Kocherlakota 1996, Ligon 1998, Fafchamps 1999, Ligon, Thomas, and Worrall 2002, Dubois, Jullien, and Magnac 2008).
consists only of the endowment realizations that they can commonly observe - i.e., their own and their common neighbors’ endowment realizations. However, we show how the results extend to more general contracting environments, where the informational network, that describes what information each contract can condition on, is defined independently of the physical transfer network, through which real transfers (monetary, in-kind, or otherwise) occur.

Relative to previous models, our framework provides a number of new and testable predictions. We find that centrally located individuals become quasi insurance providers to more peripheral households.3 Further, the current setup formalizes, and indeed generalizes, the notion of a “local sharing group” that has been invoked recently in the risk-sharing tests performed in the development literature.

Existing models of informal risk sharing in networks (Bloch et al. 2008, Bramoullé and Kranton 2007, Ambrus, Mobius, and Szejdl 2014, Ambrus et al. 2017) assume that any bilateral arrangement between connected individuals can be conditioned on global information, meaning the community’s full set of endowment realizations.4 We find that this explanation generates qualitatively different predictions relative to models of informal insurance with enforcement constraints. Hence, our results can help future empirical work identify which type of constraint plays the key role in maintaining informal insurance arrangements away from efficiency.5

There is a line of theoretical literature investigating the effect of imperfect observability of incomes on informal risk sharing arrangements between two individuals in isolation: see for example Townsend (1982), Thomas and Worrall (1990), and Wang (1995). The questions investigated in this literature are fundamentally different from the ones we focus on, mainly because we are interested in questions that are inherently network related.6

3Throughout the paper we maintain the terminology “individuals”, even though in many contexts the relevant unit of analysis is households.

4Bloch, Genicot, and Ray (2008) consider different types of exogenously-specified transfer rules, but these arrangements can depend on nonlocal information, potentially achieving first-best outcomes. See also Bourlès, Bramoullé, and Perez-Richet (2017), where individuals are motivated to send transfers to their neighbors for explicit altruistic reasons, but bilateral transfers depend on transfers among other individuals.

5Empirical papers trying to distinguish among different reasons of imperfectness of informal insurance contracts include Kinnan (2017) and Karavanov and Townsend (2014). For an empirical test between full insurance versus informational constraints, see Ligon (1998).

6Other differences include that our analysis is static while the above papers are inherently dynamic, and in our paper individuals perfectly observe local information (but not beyond), while in the above papers incomes are not observable even between two connected individuals.
The current framework also speaks to an ongoing debate in the development literature that emphasizes the importance of appropriately defining individuals’ risk-sharing groups in empirical work (Mazzocco and Saini 2012, Angelucci, De Giorgi, and Rasul 2017, Attanasio, Meghir, and Mommaerts 2018, Munshi and Rosenzweig 2016). A general trend in this literature considers alternative sub-groups within communities as the relevant risk-sharing units of individuals (e.g. an individual’s sub-caste or extended family). They argue that classical empirical tests of risk sharing (Townsend, 1994) must be adapted to accommodate heterogeneity in individuals’ risk sharing communities. However, they only allow for a limited form of heterogeneity in which group membership is mutually exclusive and groups do not interact among themselves. Instead, we provide a general framework that can accommodate these “partition models”, but also allows for local risk-sharing groups that overlap in complicated ways along a network of local information.

Our paper is also related to the recent line of papers pointing out that allowing for heterogeneous preferences, in some contexts the full insurance hypothesis cannot be rejected, or at least the imperfection of the insurance can be bounded to be small: see Schulhofer-Wohl (2011), Mazzocco and Saini (2012) and Chiappori et al. (2014). In some settings this hinges on some specific type of preference heterogeneity, for example in the context of Chiappori et al. (2014) it requires that wealth and risk preferences are uncorrelated, which is at odds with the standard assumption of decreasing risk aversion. Nevertheless, it is certainly possible that in some context informal social insurance is close to perfect. However, in other contexts empirical research found that informal social insurance is very ineffective and does not improve welfare relative to autarky (see the context in Kazianga and Udry (2006), and for certain types of risks in the context of Goldstein et al. (2001)). There are also some similarities between our work and the above literature. The latter investigates the role of heterogeneity of preferences in informal risk sharing, while our paper focuses on the role of heterogeneity in network positions.

The first part of our analysis characterizes Pareto efficient risk-sharing arrangements under local information constraints for general (concave) and possibly heterogeneous utility functions and endowment distributions. We show that Pareto efficiency in our context (subject to local information constraints) is equivalent to pairwise ef-

7For a recent paper finding support for preferences exhibiting decreasing risk aversion, see Paravisini, Rappoport, and Ravina (2016).
ficiency, that is the requirement that the risk-sharing agreement between any pair of neighbors is efficient, taking all other agreements between neighbors fixed. This means that any decentralized negotiation procedure that leads to an outcome in which neighbors do not leave money on the table would yield a Pareto efficient risk-sharing arrangement.

In the benchmark model with global information, the necessary and sufficient conditions for Pareto optimality, referred to as the Borch rule (Wilson, 1968; Borch, 1962) can be derived using standard techniques, and they state that the ratios of any two individuals’ marginal utilities of consumption must be equalized across states. We can generalize the Borch rule to this setting by showing that a necessary and sufficient condition for Pareto optimality of a risk-sharing arrangement with local information equates the ratios of expected marginal utilities of consumption for each linked pair, where expectations are conditional on local states (i.e. on the realizations of the contractible endowments).

The generalized Borch rule can be used to verify the Pareto efficiency of consumption plans achieved by candidate transfer agreements in concrete specifications of our model. We provide this characterization for the case of CARA utilities and jointly normally distributed endowments in the context when local information of a pair includes the endowment realizations of the pair and common neighbors. The characterization is particularly simple in the setting of independent endowments: each individual shares her endowment realization equally among her neighbors and herself; on top of that, the arrangement can include state independent transfers, affecting the distribution of surplus but not the aggregate welfare.\(^8\)

For the more general case of correlated endowment realizations in the CARA-normal setting, we show that efficient risk-sharing can still be achieved by transfers that are linear in endowment realizations and strictly bilateral (i.e. only contingent on the endowment realizations of the pair involved). In contrast to the local equal sharing rule that obtains in the case of independent endowments, we find that if individuals \(i\) and \(j\) are linked, increasing the exposure of \(i\) to transfers from non-common neighbors increases the share of \(i\)'s endowment realization transferred to \(j\), relative to local equal sharing, and decreases the share of \(j\)'s endowment realization transferred to \(i\). These correction terms, which are complicated functions of the

\(^8\)This type of transfer arrangement, which we refer to as the local equal sharing rule, was considered as an ad hoc sharing rule in Gao and Moon (2016).
network structure, take into account that more centrally located individuals are more exposed to the common shock component, and optimally correct for this discrepancy.

We show that more central individuals tend to end up with a higher consumption variance because they serve as quasi insurance providers to more peripheral neighbors. For large random graphs we show this analytically, and for specific village networks from real world data we show it via simulations. For a fixed set of welfare weights, more central individuals are compensated for this service through higher state-independent transfers ("insurance premium"). This is contrary to the predictions from models with enforcement constraints, like (Ambrus, Mobius, and Szeidl, 2014), in which more centrally connected individuals are better insured (i.e. end up with smaller consumption variance).\footnote{In a separate paper, Milán et al. (2018) test the pairwise transfer scheme predicted by local information constraints against the observed food exchanges between Tsimane’ households in the Bolivian Amazon. They find that bilateral transfers can be explained by network centrality, as predicted in Proposition 4 below, which provides further supporting evidence for the model.}

2 Illustrative Examples

2.1 Basic Setting

Before investigating general network structures, we first consider the simplest non-trivial network, where three individuals, denoted by 1, 2 and 3, are minimally connected in a line. Despite its simplicity, this example provides some useful insights on how local information constraints affect efficient risk-sharing arrangements.

Assume that individuals have homogeneous CARA preferences of the form $u(x) = -\exp(-rx)$, and that endowments $e_1, e_2, e_3 \sim iid \mathcal{N}(0, \sigma^2)$. Only linked individuals may enter into risk-sharing arrangements to mitigate endowment risks. Let t_{12} denote the net ex post transfer from individual 1 to individual 2, and t_{13} the net transfer
from individual 1 to individual 3. Let \(x_1, x_2, x_3 \) denote the final consumption to individuals after the transfers are implemented, i.e., \(x_1 = e_1 - t_{12} - t_{13} \), \(x_2 = e_2 + t_{12} \) \(x_3 = e_3 + t_{13} \).

2.2 Global Information

First we consider the benchmark case when bilateral risk-sharing arrangements can be conditioned on global information, that is on all three individuals’ endowment realizations: \(t_{12}, t_{13} \) can be arbitrary functions of the endowments \(e_1, e_2, e_3 \). Standard arguments (see Wilson, 1968) establish that Pareto efficient transfer rules \(t_{12}, t_{13} \) are the ones maximizing the social planner’s problem:

\[
\mathbb{E} \left[\sum_{i=1}^{3} \lambda_i u(x_i) \right] = \mathbb{E} \left[\lambda_1 u(e_1 - t_{12} - t_{13}) + \lambda_2 u(e_2 + t_{12}) + \lambda_3 u(e_3 + t_{13}) \right],
\]

for some \(\lambda_1, \lambda_2, \lambda_3 \in (0, 1) \) s.t. \(\lambda_1 + \lambda_2 + \lambda_3 = 1 \). By the well-known Borch rule (Wilson, 1968), the necessary and sufficient conditions for optimality are:

\[
\lambda_1 u'(e_1 - t_{12} - t_{13}) = \lambda_2 u'(e_2 + t_{12}) = \lambda_3 u'(e_3 + t_{13}) \quad \forall e_1, e_2, e_3.
\]

With CARA utility, this yields the **global equal sharing rule**:

\[
t_{12}(e_1, e_2, e_3) = \frac{1}{3} e_1 - \frac{2}{3} e_2 + \frac{1}{3} e_3 - \frac{1}{3} \ln \left(\frac{\lambda_2^2}{\lambda_1 \lambda_3} \right)
\]

and similarly for \(t_{13} \), leading to the final consumption plan:

\[
\begin{cases}
 x_1 = \frac{1}{3} (e_1 + e_2 + e_3) + \frac{1}{3} \ln \left(\frac{\lambda_2 \lambda_3}{\lambda_1^2} \right), \\
 x_2 = \frac{1}{3} (e_1 + e_2 + e_3) - \frac{1}{3} \ln \left(\frac{\lambda_1 \lambda_3}{\lambda_2^2} \right), \\
 x_3 = \frac{1}{3} (e_1 + e_2 + e_3) - \frac{1}{3} \ln \left(\frac{\lambda_1 \lambda_2}{\lambda_3^2} \right).
\end{cases}
\]

That is, Pareto efficient risk-sharing arrangements in every state divide each realized endowment shock equally among all individuals, and the global equal sharing is then corrected by state-independent transfers that implement the welfare weights.
2.3 Local information

Suppose now that each individual’s endowment realization is only locally observed by immediate neighbors, so that the transfers t_{12}, t_{13} in the risk-sharing arrangements can be contingent on the endowment realizations that each linked pair of individuals commonly observe, that is, $t_{12} = t_{12}(e_1, e_2)$, $t_{13} = t_{13}(e_1, e_3)$.

It is no longer possible to achieve consumption plans on the Pareto frontier, given by (1), subject to these local information constraints. However, a necessary condition for a transfer arrangement to be socially optimal is that, for any given realization of e_1 and e_2, t_{12} should maximize $\lambda_1 u (e_1 - t_{12} - t_{13}) + \lambda_2 u (e_2 + t_{12})$, given the distribution of e_3 conditional on e_1 and e_2, and the implied distribution of consumption levels (net of t_{12}) induced by t_{13}.\(^{10}\) In short, given t_{13}, t_{12} should maximize the planner’s welfare function:

$$\max_{t_{12}} \int \left[\lambda_1 u (e_1 - t_{12} - t_{13}) + \lambda_2 u (e_2 + t_{12}) \right] f_{3|1,2}(e_3) \, de_3$$

The necessary and sufficient FOC for this maximization problem is:

$$\lambda_1 \mathbb{E} \left[u' (e_1 - t_{12} - t_{13}(e_1, e_3)) \bigg| e_1, e_2 \right] = \lambda_2 u' (e_2 + t_{12}),$$

and similarly for t_{3} given t_{2}.

Solving this system of two integral equations, we obtain the following transfer rule

$$t_{12}(e_1, e_2) = \frac{1}{3} e_1 - \frac{1}{2} e_2 - \frac{1}{24} r \sigma^2 - \frac{1}{3} \ln \left(\frac{\lambda_1 \lambda_3}{\lambda_2^2} \right) \quad (2)$$

and similarly for $t_{13}(e_1, e_3)$. Notice the transfers can be decomposed into three parts. The first part, $\frac{1}{3} e_1 - \frac{1}{2} e_2$, corresponds to the “local equal sharing rule”, which is the local variant of the equal sharing rule. It implies that individual i’s endowment e_i is equally shared by i and i’s neighbors, i.e., $t_{ij} = e_i / d_{i+1} - e_j / d_{i+1}$. The second part of the equations in (2), $-\frac{1}{24} r \sigma^2$, corresponds to a state-independent transfer that can be regarded as the “insurance premium” paid by the “net insurance purchaser” to the

\(^{10}\)We show in Section 3 that this condition is actually also sufficient.
“net insurance provider”. In this case, as the final consumption are

\[
\begin{align*}
x_1 &= \frac{1}{3} e_1 + \frac{1}{2} e_2 + \frac{1}{2} e_3 + \frac{1}{24} r \sigma^2 + \frac{1}{3} \ln \left(\frac{\lambda_1 \lambda_2 \lambda_3}{\lambda_2 / \lambda_2 \lambda_3} \right), \\
x_2 &= \frac{1}{3} e_1 + \frac{1}{2} e_2 - \frac{1}{24} r \sigma^2 + \frac{1}{3} \ln \left(\frac{\lambda_2^2 / \lambda_1 \lambda_3}{\lambda_2 \lambda_1 \lambda_3} \right), \\
x_3 &= \frac{1}{3} e_1 + \frac{1}{2} e_3 - \frac{1}{24} r \sigma^2 + \frac{1}{3} \ln \left(\frac{\lambda_2^2 / \lambda_1 \lambda_2}{\lambda_1 \lambda_2 \lambda_3} \right),
\end{align*}
\]

individual 1 takes extra risk exposure \(\frac{1}{3} e_1 + \frac{1}{2} e_2 + \frac{1}{2} e_3 \) in comparison to individuals 2 and 3, \(\frac{1}{3} e_1 + \frac{1}{2} e_2 \) or \(\frac{1}{3} e_1 + \frac{1}{2} e_3 \). Hence, individual 1 is rewarded the certainty equivalent (CE) for her intermediary role in risk sharing. The third part of the equations in (2), \(-\frac{1}{3} \ln \left(\frac{\lambda_1 \lambda_2 / \lambda_3^2}{\lambda_1 \lambda_2 / \lambda_3} \right) \), redistributes wealth according to the welfare weights assigned to different individuals (it is zero when \(\lambda_1 = \lambda_2 = \lambda_3 \)).

To evaluate the welfare loss associated with risk-sharing arrangements that condition only on local information, since social welfare is a linear, strictly decreasing function of total variances under CARA utilities and normal endowments, we can simply compare the total variances of final consumption. With global information, the sum of consumption variances is: \(TVar_G = 3 \cdot Var \left[\frac{1}{3} \left(e_1 + e_2 + e_3 \right) \right] = \sigma^2. \) With bilateral risk-sharing arrangements subject to the local information constraints, the sum of consumption variances increases to: \(TVar_L = Var \left[\frac{1}{3} e_1 + \frac{1}{2} e_2 + \frac{1}{2} e_3 \right] + Var \left[\frac{1}{2} e_1 + \frac{1}{2} e_2 \right] + Var \left[\frac{1}{2} e_1 + \frac{1}{2} e_3 \right] = \frac{4}{3} \sigma^2. \) Hence the welfare loss arising from local information constraints is \(\frac{1}{3} \sigma^2 \) in the above example.

2.4 General Contractibility Constraints

The previous example has the feature that local information constraints are defined based on the underlying physical network at which transfers take place. This does not have to be the case. Our framework, is more general and may be interpreted as the “reduced-form” representation of all effective contractibility constraints. It may encode, say, primitive features of the environment that may be relevant to contractibility considerations, including the extent of observability, the technology of communication, and opportunities for ex post strategic interactions that may effectively implement truthful information transmission in equilibrium. More precisely, one might imagine that messages about endowments may be distributed along pairs of linked households, such that information extends beyond the immediate neighborhoods. Alternatively, one could also consider “directed information” whereby the
realization of some endowment e_k might be contractible to a pair i and j, but not vice versa.

To fix ideas, consider an augmented four-agent line network shown in Figure 2 and take this to be the underlying transfer network. Imagine, say, that we now allow transfers t_{12} and t_{23} to depend on e_4 as well as on direct neighbors’ endowments as before. This corresponds to a situation in which information constraints are not, strictly speaking, ”local”, in the sense of corresponding to the endowments of connected neighbors. Nonetheless, contracts remain incomplete since transfers are not contingent on all states.

In order to represent risk-sharing contracts in this setting we construct an alternative information network as shown in figure 3. This network is a directed super-graph of the original network, and we can now characterize transfers by considering “local information constraints” (as defined above) of this alternative network. In other words, any pair that is connected in the original transfer network can now contract on the common information of her “in-neighbors” of the directed information network.\footnote{If instead the information network in Figure 3 was undirected, this would correspond to a different contractibility environment in which not only would t_{12} and t_{23} depend on e_4, but t_{34} would now also depend on e_2.} Indeed, we show in Section 6.1 that we can apply our framework to information networks like these in order to extend our results to contractibility environments that do not necessarily coincide with the original transfer networks.
3 General Framework

We now turn to a general framework that extends the lessons of the previous example by characterizing the bilateral risk-sharing arrangements for any given network while allowing endowment shocks to be correlated across households.

3.1 Setup

Before we proceed to our main analysis, we first introduce the model setup and define some notations. Let $N = \{1, 2, \ldots, n\}$ be a finite set of individuals and let G be the adjacency matrix of a network structure on N. A pair of individuals i, j are linked if $G_{ij} = 1$, and by convention, $G_{ii} = 0$. Throughout the paper we assume, without loss of generality, that G represents a connected network.\footnote{Otherwise we may analyze each component separately.} Denote the neighborhood of i by $N_i := \{j \in N : G_{ij} = 1\}$ and the extended neighborhood of i by $\overline{N}_i := N_i \cup \{i\}$. Let $d_i := \#(N_i)$ denote individual i’s degree. The state of the world is defined as the vector of endowment realizations $e \equiv (e_i)_{i \in N} \in \Omega \equiv \mathbb{R}^n$, and its distribution is characterized by a probability measure P on $(\Omega, \mathcal{B}(\Omega))$. We assume that the distribution of e has finite expectation.

We assume that only linked pairs of individuals can engage in informal risk sharing directly, and such linked pairs can ex ante enter into and commit to a bilateral risk-sharing arrangement.\footnote{In this paper we abstract from ex-post enforcement problems for such contracts.} An ex ante risk-sharing arrangement between linked individuals i and j is a net transfer rule $t_{ij} : \Omega \to \mathbb{R}$, which prescribes a net amount of $t_{ij}(e)$ to be transferred from i to j at each realized state e. By definition, $t_{ij}(e) = -t_{ji}(e)$ for every $e \in \Omega$ and linked $i, j \in N$.

A central feature of our model is that we impose local information constraints on the bilateral contracts each linked pair of individuals may write. For most of the paper, we adopt the specification that individuals can only observe the endowment realizations of their direct neighbors, and the bilateral contract a linked pair of individuals enter into may only be made contingent on the endowment realizations that they can commonly observe, i.e., their own and their common neighbors’ endowment realizations. Define $N_{ij} := N_i \cap N_j$ and $\overline{N}_{ij} := \overline{N}_i \cap \overline{N}_j$. Let $I_i(e) := (e_j)_{j \in N_i}$ be the information vector of i, and $I_{ij}(e) := (e_k)_{k \in \overline{N}_{ij}}$ be the common information vector of a linked pair ij. We may later refer to I_{ij} as the local state for ij. Mathematically, the
local information constraints we introduce above requires that t_{ij} varies with I_{ij} only, or that $t_{ij} : \Omega \to \mathbb{R}$ be $\sigma(I_{ij})$-measurable, where $\sigma(I_{ij})$ denotes the sub-σ-algebra induced by I_{ij}.

This specification implicitly assumes that the information network that encodes observability (or other forms of information transmission) of endowment realizations coincides with the physical transfer network that encodes the ability for two individuals to write and commit to a bilateral risk-sharing contract ex ante. However, such a restriction is non-essential for our analysis, and it is imposed here for the expository simplicity. Section 6.1 considers a more general formulation of contractibility constraints, and provide generalization of our model, as well as the results, beyond the current specification.

We refer to the profile of ex ante risk-sharing arrangements t_{ij} between all pairs of linked individuals as a transfer arrangement t. Let \mathcal{T} denote the set of all admissible transfer arrangements $t : \Omega := \mathbb{R}^n \to \mathbb{R}^{\sum_{i \in N} d_i}$ that are only contingent on the local states for all linked pairs:

\[
\mathcal{T} := \left\{ t : \Omega \to \mathbb{R}^{\sum_{i \in N} d_i} \mid \forall i, j \text{ s.t. } G_{ij} = 1, \quad \text{and } t_{ij}(e) + t_{ji}(e) = 0, \quad \forall e \in \Omega, \quad \text{and } \mathbb{E}[t_{ij}] \text{ is finite.} \right\}
\]

Define $\langle s, t \rangle := \mathbb{E}\left[\sum_{G_{ij}=1} s_{ij}(e) t_{ij}(e)\right]$ for any $s, t \in \mathcal{T}$. It follows that $\langle \cdot, \cdot \rangle$ is an inner product and \mathcal{T} is a well-defined inner product space (see Lemma 1 in Appendix B.1 for a formal proof). We slightly abuse notations by treating each element in \mathcal{T} as an equivalent class of transfer arrangements that are indistinguishable under the norm induced by $\langle \cdot, \cdot \rangle$. Throughout the paper, we write “$s = t$” to mean “$\langle s - t, s - t \rangle = 0$”, whenever applicable.

Given a transfer arrangement $t \in \mathcal{T}$, we define the final consumption plan induced by t as $x^t : \Omega \to \mathbb{R}^n$ with $x^t_i(e) := e_i - \sum_{h \in N_i} t_{ij}(e)$. Individuals derive utilities from their own final consumption, and we assume that they have a strictly concave and twice differentiable utility function u, with $u' > 0$ and $u'' < 0$.

The timeline of our model is summarized as follows: ex ante, given a fixed network structure G, each linked pair ij enter into a bilateral risk-sharing contract t_{ij}; the

\[14\] Here we abstract away from constraints on minimum consumption levels, which clearly would further reduce the efficiency of the risk sharing contracts. However if income variances are small relative to expected income levels, then we expect the distortions to be small.
endowment vector \(e \) realizes; \textit{ex post}, each linked pair \(ij \) carries out the network transfer of amount \(t_{ij} (I_{ij} (e)) \) according to their ex-ante contract \(t_{ij} \) and their local information \(I_{ij} (e) \); after the transfers, each individual derive utility from her final consumption \(x_i^t (e) \).

The central question we seek to answer in the subsequent analysis to characterize the constrained Pareto efficient risk-sharing arrangements subject to the local information constraints.

3.2 General Conditions for Pareto Efficiency

To characterize the set of Pareto efficient transfers under the local information constraint, we consider the following problem:

\[
\max_{t \in T} J (t) := \mathbb{E} \left[\sum_{k \in N} \lambda_k u \left(e_k - \sum_{h \in N_k} t_{kh} \right) \right]
\]

(3)

Recall that both \(e \) and \(t \) are assumed to have finite expectation. As \(u \) is strictly concave, by Jensen’s inequality, we conclude that \(\mathbb{E} \left[u \left(e_k - \sum_{h \in N_k} t_{kh} \right) \right] < \infty \) for all \(k \in N \), so the social welfare function \(J : T \to \mathbb{R} \cup \{-\infty\} \) is well defined on \(T \).

The following proposition provides a formal characterization of the solution to the maximization problem above. Since the transfer rule \(t_{ij} \) is restricted to be measurable with respect to \(\sigma (I_{ij}) \), we slightly abuse notations and write it as \(t_{ij} : \mathbb{R}^{d_{ij} + 2} \to \mathbb{R} \) where \(d_{ij} + 2 = \dim (I_{ij}) \). We denote the distribution of \(I_{ij} \) on \(\mathbb{R}^{d_{ij} + 2} \) by \(\mathbb{P} I_{ij}^{-1} \).

Proposition 1. A profile of \(t \in T \) solves (3) if and only if it simultaneously solves the \(\sum_{i \in N} d_i \) optimization problems in the form of (4) at \(\mathbb{P} I_{ij}^{-1} \)-almost all possible local states of the linked pair: \(\forall i, j \) s.t. \(G_{ij} = 1 \), for \(\mathbb{P} I_{ij}^{-1} \)-almost all \(\tilde{I}_{ij} \in \mathbb{R}^{d_{ij} + 2} \),

\[
t_{ij} (\tilde{I}_{ij}) \in \arg \max_{t_{ij} \in \mathbb{R}} \mathbb{E} \left[\lambda_i u_i \left(e_i - \tilde{t}_{ij} - \sum_{h \in N_i \setminus \{j\}} t_{ih} (e) \right) + \lambda_j u_j \left(e_j + \tilde{t}_{ij} - \sum_{h \in N_j \setminus \{i\}} t_{jh} (e) \right) \middle| I_{ij} (e) = \tilde{I}_{ij} \right]
\]

(4)

Proposition 1 is an intuitive result. Its analogue under global information has a similar form and essentially connects the marginal utilities of consumption of two individuals in two different states (Wilson, 1968). With local information, the statement is now expressed, for every linked pair, in terms of a conditional expectation over the common information set of that pair. Therefore, equation (4) says that the
set of Pareto efficient transfers call for pairwise efficient risk sharing along each link of the network, where efficiency is measured with respect to an expectation over all possible realizations of the nonlocal information.

Importantly, Proposition 1 provides a motivation for investigating Pareto efficient risk sharing subject to local information by implying that these are exactly the possible outcomes resulting from decentralized negotiation procedures satisfying the weak requirement that neighboring agents end up with agreements that are efficient at the pair level. To see this, notice that Proposition 1 establishes an equivalence between Pareto-efficient risk-sharing arrangements subject to local information constraints and stable outcomes of decentralized bilateral risk sharing arrangements between neighbors subject to the same constraints. In problem (4), at each \(I_{ij} \), the choice of \(t_{ij} \) affects the expected utilities of only \(i \) and \(j \), so each optimization problem in (4) can be reinterpreted as the surplus maximization problem jointly solved by the linked pair \(ij \), given the transfer rules chosen by other linked pairs. Therefore, any bargaining procedure that leads to an agreement between any two neighboring agents that is efficient for the pair (does not leave surplus on the table) given other agreements, results in a Pareto efficient outcome at the social level.\(^{15}\)

The next result establishes that while in general there can be multiple transfer profiles satisfying the conditions for optimality (4), they all imply the same consumption plan in all states.

Proposition 2. All profiles of transfers \(t \in \mathcal{T} \) that solve (3) lead to \((\mathbb{P}\)-almost\) the same consumption plan \(x \).

By Proposition 2, if we can find a profile of transfers so that the induced consumption plan satisfy (4), then it must correspond to a Pareto efficient risk-sharing arrangement.

For simplicity, below we will denote the conditional expectation operator \(\mathbb{E} [\cdot | I_{ij}] \) by \(\mathbb{E}_{ij} [\cdot] \). Following Propositions 1 and 2, we may express the necessary and sufficient condition for Pareto efficiency as a requirement on the ratio of conditional expected marginal utilities.

Corollary 1. A profile of transfers \(t \) is Pareto efficient if and only if the ratio of the expected marginal utilities conditional on all local states is constant: for every

\(^{15}\)A concrete example for such a negotiation procedure is split the difference negotiations, originally proposed in Stole and Zwiebel (1996) and adopted to the risk sharing context in Ambrus et al. (2017).
\[i, j \in N \text{ s.t. } G_{ij} = 1, \]
\[
\frac{E_{ij} \left[u_i'(x_i^j) \right]}{E_{ij} \left[u_j'(x_j^i) \right]} = \lambda_j \frac{\lambda_j}{\lambda_i}. \tag{5}
\]

This result extends the well-known Borch rule (Borch, 1962; Wilson, 1968) for Pareto efficient risk-sharing arrangements to settings with local information constraints. As opposed to the global-information case, the ratio of expected marginal utilities need not be equal state by state and across all individuals: they only have to be equal between linked individuals and in expectation, conditional on local common information.

3.3 Efficient Risk-sharing in the CARA-Normal Setting

In this section we investigate Pareto efficient risk-sharing arrangements, subject to local information constraints, under the assumption of CARA utilities and jointly normally distributed endowments with a uniform global correlation structure.

Assumption 1. For the remainder of this section we assume that individuals have homogeneous CARA utility functions \(u(x) = -\exp(-rx) \), where \(r > 0 \) is the coefficient of absolute risk aversion. The vector of endowments \((e_i)_{i \in N} \) follows a multivariate normal distribution, \(e \sim \mathcal{N}(0, \sigma^2 \Sigma) \) with \(\Sigma_{ii} = 1 \) for all \(i \) and \(\Sigma_{ij} = \rho \) for all \(i \neq j \), for some \(\rho \in \left[-\frac{1}{n-1}, 1\right] \).

To maintain analytical tractability, we assume symmetric correlation structure, where any two individuals' endowments have the same correlation coefficient \(\rho \in \left[-\frac{1}{n-1}, 1\right] \). Equivalently, we are assuming that each individual's endowment can be decomposed additively into two independent components: a common shock and an idiosyncratic shock, i.e., \(e_i = \sqrt{\rho} \hat{e}_0 + \sqrt{1-\rho} \hat{e}_i \), with \((\hat{e}_k)_{k=0}^n \sim \text{iid } \mathcal{N}(0, \sigma^2) \). We later consider the implications of more general patterns of correlation.

We now proceed under Assumption 1 and fully characterize the transfer rules that achieve Pareto efficient consumption profiles subject to local information constraints, for any network. We will show that these rules are linear and strictly bilateral. A linear transfer rule specifies that the transfer between any two connected individuals is a linear function of endowment realizations in the pair's joint information set. We

\[\text{\footnote{\[-\frac{1}{n-1} \] is the lower bound for a global pairwise correlation in a } n\text{-person economy; mathematically, it is the smallest } \rho \text{ such that the variance-covariance matrix is positive semi-definite. For any } \rho \in \left[-\frac{1}{n-1}, 1\right], \text{ the variance-covariance matrix is positive semi-definite.}}\]
show in the next two sections that linear transfer rules can achieve any Pareto efficient risk-sharing arrangement, where the precise linear form depends crucially on the level of correlation in endowments. Moreover, we show that Pareto efficient consumption allocations may be achieved by linear rules that are also strictly bilateral – that is, a transfer between i and j need not condition on the information of a common neighbor k. In the next two subsections we give a precise characterization for these rules as a function of the underlying network structure.

3.3.1 Independent Endowments

To simplify the presentation of our results, we first analyze the case where endowments are independent, i.e., $\rho = 0$. We show that optimal transfers may be easily described as a localized version of the equal sharing rule, in which individuals transfer an equal share of their endowment to all their neighbors. We later show that adding correlation alters the formula for optimal transfers, while keeping a linear and bilateral form.

We first verify that the local equal-sharing arrangement is indeed the optimal linear rule subject to local information constraints (in T) satisfying the expectational Borch rule. Given any linear transfer scheme, final consumption, conditional on I_{ij}, also follows normal distribution, so $E_{ij} \left[u_i'(x_i)\right] = r \exp \left[-r \left(E_{ij} [x_i] - \frac{1}{r} Var_{ij} [x_i]\right)\right]$. Define the conditional certainty equivalent $CE(x_i | I_{ij}) := E_{ij} [x_i] - \frac{1}{r} Var_{ij} [x_i]$. Then (5) can then be rewritten as

$$CE(x_i^* | I_{ij}) - \frac{1}{r} \ln \lambda_i = CE(x_j^* | I_{ij}) - \frac{1}{r} \ln \lambda_j. \quad (6)$$

The profile of transfer schemes t achieves Pareto efficiency if and only if (6) holds for every pair of ij such that $G_{ij} = 1$. Intuitively, equation (6) states that the difference in the conditional certainty equivalents is constant across all local states for a linked pair.

We say a profile of transfer rules is strictly bilateral if t_{ij} is $\sigma(e_i, e_j)$-measurable. We now characterize efficient transfers subject to local information for the case of independent endowments.

Proposition 3. Given any profile of positive welfare weights $(\lambda_i)_{i \in N}$, there always exists a strictly bilateral Pareto efficient profile of transfer rules in T in the form of
the following “local equal sharing rules”:

\[t_{ij}^* (e_i, e_j) := \frac{e_i}{d_i + 1} - \frac{e_j}{d_j + 1} + \mu_{ij}^*, \]

for some constant \(\mu_{ij}^* \in \mathbb{R} \), for each linked pair \(ij \).

Proposition 3 shows that the efficient transfer \(t_{ij}^* (e_i, e_j) \) subject to the local information constraint is composed of two parts: the state-contingent “sharing rule” and the state-independent “insurance premium” (captured by \(\mu_{ij}^* \)), just like in the simple example above. The state-contingent transfer scheme corresponds to the local equal sharing rule in which \(i \) transfers a fraction \(1/(d_i + 1) \) of her endowment to each of her friends and receives a fraction \(1/(d_j + 1) \) from each friend \(j \).

Notice that this transfer scheme is linear in endowments and that only bilateral information is required for efficient risk sharing with local information. Also, this proposition suggests that two linked individuals \(ij \) only require ex ante knowledge of the local network structure (more precisely \(d_i \) and \(d_j \)) to compute and contract on the socially optimal transfer rule \(t_{ij}^* \).

Even though Proposition 2 guarantees the uniqueness of the Pareto efficient consumption plan, for general networks there might be multiple risk-sharing arrangements that are Pareto efficient. However, the transfer scheme achieving a Pareto efficient risk-sharing arrangement is unique up to superfluous transfers on cycles that can be state dependent. The transfers we provide are therefore the most parsimonious description of Pareto efficient arrangements, in which we set superfluous cycles to zero.\(^{17}\)

3.3.2 Correlated Endowments: General Characterization

Formally, notice that the joint information of individuals \(i \) and \(j \) affects the conditional distribution of some non-common endowment \(k \) as follows

\[
e_k | e_i, e_j \sim N \left(\frac{\rho}{1 + \rho} (e_i + e_j), \frac{1 + \rho - 2 \rho^2}{1 + \rho} \sigma^2 \right)
\] \hspace{1cm} (7)

\(^{17}\)In Appendix B.7 we show that for tree networks (i.e. cycle-free networks) the linear transfer scheme featured in Proposition 3 is the unique transfer arrangement that achieves a given Pareto efficient risk-sharing arrangement.
Setting $\rho = 0$ implies that $e_k|_{e_i, e_j} \sim \mathcal{N}(0, \sigma^2)$ as in the previous section, leading to local equal-sharing as the optimal transfer rule. In this section we show exactly how the local equal-sharing rule is affected by the presence of correlated endowments. We show that linear and strictly bilateral rules of the form

$$
t_{ij}(e_i, e_j) = \alpha_{ij}e_i - \alpha_{ji}e_j + \mu_{ij} \quad \text{for all } ij : G_{ij} = 1
$$

still achieve Pareto efficient allocations – as in the previous section – and we provide precise characterization for the coefficients α_{ij} as a function of the network and the correlation parameter ρ.

For clarity, we first illustrate the main ideas for the case of minimally-connected networks. Notice that, under minimal connectedness, $I_{ij} = (e_i, e_j)$, so transfer t_{ij} must be strictly bilateral. Then, the local FOC for optimality in equation (5) can be written as

$$
t_{ij} = \frac{1}{2}e_i - \frac{1}{2}e_j - \frac{1}{2r} \ln \mathbb{E} \left[\exp \left(r \sum_{k \in N_i \backslash \{j\}} t_{ik}(e_i, e_k) \right) \bigg| e_i, e_j \right]
+ \frac{1}{2r} \ln \mathbb{E} \left[\exp \left(r \sum_{k \in N_j \backslash \{i\}} t_{jk}(e_j, e_k) \right) \bigg| e_i, e_j \right] + \frac{1}{2r} \ln \frac{\lambda_j}{\lambda_i}
$$

Postulating a linear and strictly bilateral transfer scheme of the form, $t_{ij}(e_i, e_j) = \alpha_{ij}e_i - \alpha_{ji}e_j + \mu_{ij}$ for all $G_{ij} = 1$, we can substitute the postulated linear forms of t_{ik} into (9) and obtain expressions for the above conditional expectations in terms of linear combinations of endowments based on the conditional distribution given in (7). We can therefore explicitly derive the conditional expectation terms in the above formula and, after collecting terms and reconciling with the postulated formula for
\[\alpha_{ij} = \frac{1}{2} \left[1 - \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} + \frac{\rho}{1 + \rho} \left(\sum_{k \in N_i \setminus \{j\}} \alpha_{ki} - \sum_{k \in N_j \setminus \{i\}} \alpha_{kj} \right) \right] \quad \forall i,j \text{ s.t. } G_{ij} = 1. \quad (10) \]

In equation (10), the net transferred share \(\alpha_{ij} \) of \(e_i \) from \(i \) to \(j \) is given by the half of the “remaining share” after deducting the transfers to \(i \)'s other neighbors \(N_i \setminus \{j\} \), corrected by an adjustment for inflows of non-local endowments. The \(\frac{1}{2} \) multiplier is analogous to the equal sharing rule in the independent endowments case, but last term in the square brackets is new (i.e., it disappears when \(\rho = 0 \)). We refer to this term as an informational effect, for the following reason: \(\sum_{k \in N_i \setminus \{j\}} \alpha_{ki} \) is the sum of \(i \)'s shares of \(i \)'s other neighbors’ endowments \(\{e_k\}_{k \in N_i \setminus \{j\}} \), and the conditional expectation of each \(k \)'s endowment changes linearly with the realization of \(e_i \) by a factor of \(\frac{\rho}{1 + \rho} \). Similarly, \(\sum_{k \in N_j \setminus \{i\}} \alpha_{kj} \) is the sum of \(j \)'s shares of \(j \)'s other neighbors’ endowments \(\{e_k\}_{k \in N_j \setminus \{i\}} \), and the conditional expectation of each \(k \)'s endowment also changes linearly with the realization of \(e_i \) by a factor of \(\frac{\rho}{1 + \rho} \). Intuitively, due to the symmetric correlation structure, the realization of \(e_i \) provides the same amount of local information about all non-local endowments \(e_k \) for \(k \notin N_{ij} \), and thus its informational effect can be calculated as a simple net sum of endowment shares. Finally, since a larger \(e_i \) predicts that both \(i \) and \(j \) are more likely to obtain higher amounts of inflows from uncommon neighbors, this commonly recognized information can be used by the pair \(ij \) to (imperfectly) share the non-local risk exposures.\(^{19}\) After pooling the conditional expectations of non-local inflows, \(i \) and \(j \) again share the remaining shares of \(e_i \) and \(e_j \) equally.

Notice that every individual \(i \) carries out this kind of “equal sharing” behavior with all her neighbors, and the inflow/outflow shares \((\alpha_{ij}) \) must make all the sharing simultaneously equal (in expectation). In other words, solving for the transfer in

\(^{18}\)Rigorously there should be another set of equations that verify the guess for the state-independent constant transfers \(\mu_i \), which in general involve both \(\alpha \) and \(\mu \). However, Lemma 6 in Appendix A.4 implies that, given any admissible \(\alpha \), there exist some \(\mu \) such that \((\alpha, \mu) \) satisfies the set of verification equations for the constant transfers. Hence, system (10) (which involves only \(\alpha \)) constitutes the essential condition for Pareto efficiency. We therefore omit the conditions on \(\mu \) and delay our discussion about state-independent transfers to Section 6.4.

\(^{19}\)To be precise, by “inflow” we mean the undertaking of a share of someone else’s income endowment, which may be positive or negative; by “outflow” we mean the distribution of a share of one’s own endowment to someone else, which may also be positive or negative. In particular, a negative inflow is not the same as an outflow. Instead, \(i \)'s inflow from \(j \) is the same as \(j \)'s outflow to \(i \).
(8) explicitly involves solving conditions (10) simultaneously to obtain the full profile of bilateral shares, \((\alpha_{ij})\). We do this below for general network structures, which obviously include the case of minimally connected networks. However, for general network structures transfers need not be strictly bilateral. A general analysis must allow for this possibility.

In Appendix A.5, we show that, for general network structures, a linear and strictly bilateral profile of transfer rules which solves a particular system of linear equations, is indeed Pareto efficient. However, the required system of equations proves difficult to solve directly. Instead, we show in Lemma 8 that we may equivalently solve an alternative optimization problem that minimizes total consumption variances among all linear transfer rules, as we define below.

Specifically, let \(\alpha\) be a linear profile of transfer rules in \(\mathcal{T}\), and consider the following optimization problem that minimizes the sum of each individual’s consumption variance under the risk-sharing arrangements defined by \(\alpha\):

\[
\min_{\alpha} \sum_{i \in N} \text{Var} \left[\left(1 - \sum_{j \in N_i} \alpha_{ij} \right) e_i + \sum_{j \in N_i} \alpha_{ji} e_j \right].
\]

(11)

Let \(\Lambda_i\) be the Lagrange multiplier associated with \(i\)’s outflow constraint \(\sum_{j \in \overline{N}_i} \alpha_{ij} = 1\) and denote \(\Lambda_i := \frac{\Lambda_i}{2(1 - \rho)}\). Then, taking the FOC for the Lagrangian, we have

\[
\begin{align*}
\alpha_{ji} &= \Lambda_j - \frac{\rho}{1 - \rho} \left(\alpha_{ji} + \sum_{k \in N_i} \alpha_{ki} \right) \quad \forall j \in \overline{N}_i, \forall i \in N \\
\sum_{j \in \overline{N}_i} \alpha_{ij} &= 1 \quad \forall i \in N
\end{align*}
\]

(12)

This is a system of \((\sum_i d_i + 2n)\) equations in \((\sum_i d_i + 2n)\) variables \((\alpha, \Lambda)\).

With all this, we are now equipped to characterize the set of Pareto efficient linear and bilateral transfer rules by obtaining the complete profile of bilateral shares \((\alpha_{ij})\) that solve the above problem, and substituting them into equation (8). We present the following main characterization result:

Proposition 4. For any \(\rho \in \left(-\frac{1}{n-1}, 1 \right)\) and any network structure \(G\) there exists a unique solution to system (12) given by the following: \(\forall i \in N, \forall j \in \overline{N}_i,\)

\[
\alpha_{ji} = \Lambda_j - \frac{\rho}{1 + \rho d_i} \sum_{k \in \overline{N}_i} \Lambda_k
\]

(13)
where Λ_i is defined by any of the following equivalent representations:

- (Fixed point representation):

$$\Lambda_i = \frac{1}{d_i + 1} \left(1 + \sum_{j \in N_i, k \in N_j} \frac{\rho}{1 + \rho d_j} \Lambda_k \right)$$ \hspace{1cm} (14)

- (Closed-form representation): writing $\Lambda = (\Lambda_i)_{i=1}^n$

$$\Lambda = (\overline{D} - \overline{G} \Psi \overline{G})^{-1} 1$$

where \overline{D} is a diagonal matrix with its i-th diagonal entry being $d_i + 1$, Ψ is a diagonal matrix with its i-th diagonal entry being $\frac{\rho}{1 + \rho d_i}$, and $\overline{G} := G + I_n$.

- (Explicit representation): For $\rho \in [0, 1)$,

$$\Lambda_i = \frac{1}{d_i + 1} + \sum_{q \in \mathbb{N}} \sum_{\pi_{ij} \in \Pi_{ij}^q} W(\pi_{ij})$$ \hspace{1cm} (15)

where $W(\pi_{ij})$, the weight of each path $\pi_{ij} = (i_0, i_1, i_2, \ldots, i_q)$ of length q from i to j (i.e. $i_0 = i$ and $i_q = j$), is given by,

$$W(\pi_{ij}) := \frac{1}{d_{i_0} + 1} \cdot \frac{\rho}{1 + \rho d_{i_1}} \cdot \frac{1}{d_{i_2} + 1} \cdot \frac{\rho}{1 + \rho d_{i_3}} \cdots \frac{1}{d_{i_q} + 1}$$ \hspace{1cm} (16)

The above result provides the first closed-form prediction of risk-sharing transfers on a general network of informal insurance that we know of in the literature.20 This result includes the above case of independent endowments, but also allow for more sophisticated transfer rules that account for uniform correlations. Indeed, notice that for $\rho = 0$ equation (13) specifies that $\alpha_{ji} = \Lambda_j$ for all $i \in N_j$, which necessarily implies that $\alpha_{ji} = 1/(d_j + 1)$, as stated in Proposition 3. The way in which the presence of correlated endowments affects the shape of bilateral shares α_{ij} depends on the network structure in complicated ways, as captured by Λ_i. This centrality measure summarizes individuals’ relevant network position, by aggregating indirect effects that are interconnected across neighbors.

20See Appendix B.8 for Pareto efficient risk-sharing arrangements in the boundary cases of $\rho \in \left\{-\frac{1}{n-1}, 1\right\}$.
To obtain intuition for the “network features” contained in Λ, notice that the fixed point representation in equation (14) expresses each individual’s centrality recursively as a function of the centrality of their neighbors’ neighbors. This suggests that interactions at distance two (i.e. neighbors of neighbors) are directly relevant in this setting. To see this notice that the the network interaction terms in (12.1) define the shares going in to j as substitutes of one another. This implies that individuals at most two links apart (i.e. with a common neighbor, j) respond negatively to each others’ shares directly through this optimal trade-off.

Moreover, indirect effects play a crucial role here as well. To see this, notice that two households with a common neighbor j not only interact through their transfer to j, but might also exchange resources with other partners, and these other relations affect what j receives from them, given their constraints in (12.2). This is the main message behind equation (13), where these inter-dependencies along the network have been solved for, and we can express the share from i to j as a function of some constants Λ’s, that accumulate all these indirect effects.

The recursive representation in (14), is reminiscent of Katz-Bonacich, Page Rank, and other global network measures, albeit with two crucial differences: 1) The centrality of i depends on the centralities of not of direct neighbors, but of neighbors of neighbors, and 2) the weights are not a simple geometric series (as in the Bonacich measure), but instead depend explicitly on the degree of the direct neighbors that are linking i with all of her length-two neighbors.

Solving for Λ_i in (14) provides an alternative representation of the centrality as the accumulation of weighted even paths, shown in (15). This expression also reflects the two main differences with standard measures (i.e. length two and path-specific weights). To see this notice first that the explicit representation of (15) defines i’s centrality as the accumulation of weighted paths of even length starting from i. Second, notice that the weights given in (16) account for the degree of all individuals involved in a given path.

However, notice that (14) sums over individuals in \bar{N}_i and \bar{N}_j. In other words, self-loops are allowed. This implies that we are not in a situation where an individual that is, say, at distance 3 from i will not matter for i’s centrality measure. On the contrary, she will in fact matter because self-loops will allow us to reach any individual that is weakly connected to i. The weighting scheme, however, will depend crucially on the even-length paths that we can compute, starting from i. In other words, while
this measure ultimately relates individuals at all distances in the network, the specific weights between each pair of individuals require counting only the even-length paths that connect them.21

This complicated weighting scheme unfortunately makes comparative statics on the network structure difficult to analyze. To see this notice that when a link is removed from the network, a number of even-length paths disappear, lowering the total elements being summed in (15). However, this also lowers the degree of the two individuals involved in that link. This increases the weights associated to all even-length paths that go through either of these two individuals, as shown in equation (16). It is therefore difficult to know, in general, the way in which the centrality measure responds to changes in the network structure.

Lastly, we briefly discuss how social welfare, as measured by the total variance of final consumption across all individuals, varies with the correlation parameter. On the one hand, as the correlation parameter ρ becomes more positive, the scope for risk reduction via risk sharing gets smaller. At the extreme of perfect correlation, only uninsurable aggregate risk remains. On the other hand, as $|\rho|$ increases, local information becomes more informative about nonlocal endowment realizations, reducing the loss of surplus caused by local information constraints. In Section A.8. of the Appendix we provide simulations of bilateral transfers and show that bilateral share differences $\alpha_{ij} - \alpha_{ji}$ decrease with $|\rho|$.

4 Network Centrality and Consumption Volatility

In this section, we present an important implication of our model concerning the relationship between network centrality and consumption volatility in risk-sharing communities. Indeed, a crucial advantage of obtaining closed-form predictions on transfers is that we can provide clean and precise characterizations of the role of network heterogeneity on certain important features of ex-post consumption. We focus on consumption volatility, as this is an easily observable measure that highlights how network heterogeneity translates to differences in individual risk exposures under the local information constraints.

21In Section A.8 of the Appendix we go over a simple example with a small network of five individuals, and we show how to weight paths in order to construct the relevant network centrality measure, and how to obtain the predicted transfers α'_{ji} of Proposition 4.
We show that, as suggested in the simple three-individual example above, more central individuals function as insurance providers to more peripheral individuals. As a result, they absorb larger shares of endowment risk than they can unload on others, leading to more overall consumption volatility, for which they may get compensated via state independent transfers.

We first derive analytical results for the correlation between network centrality and consumption volatility according to our theoretical model. For star networks, we derive closed-form formula for individual consumption variances under any endowment correlation parameter, and show that the center’s final consumption is always more volatile than the peripherals’. Alternatively, assuming that endowments are independent and that networks are sampled according to an Erdős-Rényi random graph generating process, we derive exact formula for the asymptotic covariance between degree centrality and consumption variance, which turns out unambiguously positive.

4.1 Star Networks

We first provide analytical results for the positive relationship between network centrality and consumption volatility in star networks.

Let \(c \) denote the center individual, who is connected to \(n-1 \) peripheral individuals, and none of the peripheral individuals are connected to each other. We use \(p \) to refer to a generic peripheral individual.

It is straightforward to show that a linear risk-sharing arrangement achieving Pareto efficiency subject to local information constraints specifies the following endowment shares to be transferred:

\[
\alpha_{cp} = \frac{2 + 2(n-1)\rho}{n(2+n\rho)}, \quad \alpha_{pc} = \frac{1 + \rho}{2 + n\rho}, \quad \gamma_{cp} = \frac{(n-2)\rho}{2 + n\rho}.
\]

It can be shown that the difference in consumption variances in efficient contracts satisfies

\[
\text{Var}(x_c) - \text{Var}(x_p) = \frac{(n-2)(1 + (n-1)\rho)(1 - \rho^2)}{(2 + n\rho)^2} \geq 0
\]

with equality only at \(\rho \in \left\{ -\frac{1}{n-1}, 1 \right\} \). In particular, \(\text{Var}(x_c) - \text{Var}(x_p) \to \frac{1-\rho^2}{\rho} \) as \(n \to \infty \), and hence the consumption variance of the center can be much higher than the consumption variance of a periphery individual when \(\rho \) is low and \(n \) is high.
4.2 Erdős-Rényi Random Graphs

We now proceed to characterize the (large-network) asymptotic relationship between network centrality and consumption volatility under the Erdős-Rényi random graph setting, which lends great tractability to the analysis.

To formalize our results, write $\mathbb{P}_n^{ER}, \mathbb{E}_n^{ER}$ as the probability measure and expectation operator with respect to the Erdős-Rényi random graph generating process $\mathcal{G}_n^{ER} (n, p)$: for each $n \geq 2$ and $p \in (0, 1)$, let

$$
G_{ij} \equiv G_{ji} \sim_{i.i.d.} \text{Bernoulli} (p), \ \forall i, j \in \{1, \ldots, n\}.
$$

Fixing a sequence of $\{p_n\} \subseteq (0, 1)$, we write $\mathbb{P}_n^{ER}, \mathbb{E}_n^{ER}$ for the Erdős-Rényi random graph generating process $\mathcal{G}_n^{ER} (n, p_n)$.

For each network structure G_n, drawn from \mathbb{P}_n^{ER}, we write $d_i (G_n)$ as individual i's degree in G_n. We write e to denote a generic realization of the endowment vector, and take the distributions of e and G_n to be statistically independent from each other. Furthermore, we focus on the simple case with independent endowment shocks, i.e., the global correlation parameter $\rho = 0$. By previous results, we know that any Pareto efficient risk-sharing arrangements take the form of the local equal sharing rule, so that the final consumption allocation is given by

$$
x_i (G_n) [e] := \sum_{j \in N_i (G_n)} \frac{1}{d_j (G_n) + 1} e_j,
$$

and the individual consumption variance is given by

$$
\text{Var} (x_i (G_n)) = \sum_{j \in N_i (G_n)} \frac{1}{(d_j (G_n) + 1)^2}
$$

where $\text{Var} (\cdot)$ denotes the variance operator with respect to the endowment shocks e conditional on realized network structure being G_n.

Proposition 5. Let $\{G_n\}$ be a sequence of Erdős-Rényi random graphs generated by $\mathcal{G}_n^{ER} (n, p_n)$.

- (Dense Case) Suppose $p_n = p$ for all n. Then:

$$
\lim_{n \to \infty} n \text{Cov}_{n}^{ER} [\text{Var} (x_i (G_n)), d_i (G_n)] \to \frac{1 - p}{p} > 0.
$$
(Sparse Case) Suppose $np_n \to \lambda > 1$. Then:

$$
\lim_{n \to \infty} \text{Cov}_{n}^{ER}[\text{Var}(x_i(G_n)), d_i(G_n)] = \kappa(\lambda) := \mathbb{E} \left[\frac{\xi^3 + 4\xi^2 + 2(2 - \lambda)\xi - 3\lambda}{(\xi + 1)^2(\xi + 2)^2} \right],
$$

where $\xi \sim \text{Poisson}(\lambda)$. Numerical computation of $\kappa(\lambda)$ shows that $\kappa(\lambda)$ is positive whenever λ exceeds a threshold $\lambda \approx 3.8803$.

To see the intuition behind Proposition 5, fix an individual i with d_i neighbors in some network G, and consider adding a link between i and some individual j, who has d_j neighbors in G but is originally not a neighbor of i in G (that is, consider the network $G + ij$). Notice that adding the new neighbor j for risk sharing has two opposite effects on individual i’s consumption variance $\text{Var}(x_i)$. On one hand, there is one more individual, namely j, to share individual i’s income shock, reducing i’s exposure to her own income shock from $\frac{1}{d_i+1}e_i$ to $\frac{1}{d_i+2}e_i$ under the local equal sharing rule. On the other hand, individual i is now exposed to a share of j’s income shock, $\frac{1}{d_j+2}e_j$, which individual i has zero exposure to in the original network G. Hence, the net effect of the additional link ij on individual i’s consumption variance is:

$$
\text{Var}(x_i(G + ij)) - \text{Var}(x_i(G)) = \frac{1}{(d_j + 2)^2} - \left[\frac{1}{(d_i + 1)^2} - \frac{1}{(d_i + 2)^2} \right]
\quad = \frac{1}{(d_j + 2)^2} - \frac{2d_i + 3}{(d_i + 1)^2(d_i + 2)^2} = O(d_j^{-2}) - O(d_i^{-3}).
$$

(17)

In Erdős-Rényi random graphs, d_i and d_j are both stochastically of the order of $O_p(np_n)$, so the addition in variance induced by the link ij, is stochastically of a larger order of magnitude $O_p((np_n)^{-2})$ than the reduction in variance $O_p((np_n)^{-3})$.

In the dense case where $p_n = p$, the first effect dominates in the limit: on average, having an additional friend for risk sharing increases one’s own consumption variance in large Erdős-Rényi random graph, so that larger degree centrality is asymptotically positively correlated with consumption variance.

The sparse case, however, might be more theoretically informative and empirically relevant. In this case, where $np_n \to \lambda > 1$, the limit degree distribution is characterized by a Poisson distribution parameterized by the limit average degree λ. Numerical calculation indicates that, if the limit average degree λ is large enough (at least $\bar{\lambda} \approx 3.88$), then the imbalance in the orders of magnitudes between the two op-
posite effects is sufficiently pronounced, so that the asymptotic correlation between consumption variance and degree centrality becomes positive. Given that average degrees in many real-world networks are conceivably larger than $\bar{\lambda} \approx 3.88$, our theory predicts a positive asymptotic correlation between degree centrality and consumption volatility for most real-world networks even under the sparse (Poisson) asymptotics. As the sparse-case result provides a sharp quantification of the threshold on network density at which the asymptotic correlation between degree centrality and consumption variance becomes positive, it follows that all “moderately sparse” Erdős-Rényi random graph models under which $np_n \to \infty$, i.e., whenever p_n converges to zero at a rate slower than n^{-1}, the asymptotic correlation should remain positive.

Proposition 5 suggests that, under local information constraints, more central individuals tend to undertake larger consumption variances, effectively playing the roles of “quasi-insurance providers”. Even though Proposition 5 is derived in the setting of Erdős-Rényi random graphs, which lends great analytical tractability, the key economic driver of the result, that is, the difference in the orders of magnitudes between the two opposite effects of an additional neighbor on an individual’s consumption variance as captured by equation (17), clearly remains present beyond the setting of Erdős-Rényi random graphs. Heuristically, we expect that the asymptotic correlation remains to be positive in a large class of “sufficiently dense” network formation models, including the graphon model and most versions of the stochastic block models.

The analytical result we derived here is based on the asymptotic distribution of Erdős-Rényi random graphs. To investigate whether such large-sample results remain relevant in finite real-world network structures, we run simulations of our model using two real-world village networks in India from two different data sets, each randomly selected and provided to us by the researchers who collected the data.\footnote{The first network was provided to us by Erica Field and Rohini Pande, who collected it from villages in the districts of Thanjavur, Thiruvarur and Pudukkotai (Tamil Nadu) in India. In a subset of the villages, complete within-village network data was collected by surveying all households. The second network is from data collected by Abhijit Banerjee, Arun Chandrasekhar, Esther Duflo and Matthew Jackson in Karnataka, India (they collected complete within-village network data in 75 villages), used for example in the Banerjee, Chandrasekhar, Duflo, and Jackson (2018). From both datasets we received the network of financial connection for one randomly selected village with complete network data. From the original network we created the undirected “AND” network, that is, we defined a link between two households whenever both households indicated each other as a borrowing relationship. We excluded households that became isolated in the “AND” network.}

We computed the sample correlations between degree/eigenvector centrality and
consumption variance, found that the correlations are positive and statistically significant in both simulations. For the data set provided by Field and Pande, the sample correlation is 0.1994, while for the data set provided by Banerjee, Chandrasekhar, Duflo and Jackson, the correlation is 0.2084. Both results are highly statistically significant with p-values at orders of magnitudes below 10^{-10}.\(^{23}\)

Proposition 5 provides a sharp theoretical prediction of the model that is not only empirically feasible but also computationally easy to test. Moreover, it is not only empirically feasible but also computationally easy to test. Such practicality concerns are highly relevant in the network literature, as it is often challenging to conduct direct empirical tests of micro-founded theoretical results, especially when the result involves the whole network structure or complicated network statistics. However, Proposition 5 provides a direct prediction on a simple relationship (positive correlation) between consumption volatility and one of the simplest forms of network statistics, degree centrality.

In Appendix C, we report some supporting empirical evidences for Proposition 5. Specifically, we construct consumption variance and degree centrality using consumption and social interaction data from the Townsend Monthly Thai Survey, which tracks villages in rural Thailand from 1998 to 2014. We find that, over a range of different specifications and variable definitions, consumption variance is positively correlated with household’s degree centrality, even after controlling for a list of other variables that may proxy for other aspects of risk-related heterogeneity for a given household. We leave to future work a more thorough empirical investigation of other potential structural drivers for the positive correlation between degree centrality and consumption variance.

\(^{23}\)In both simulations, we randomly drew the endowment $e_i^{(t)}$ of each household according to the standard normal distribution for $T = 5000$ times: $\left\{e_i^{(t)}\right\}_{i,t} \sim_{iid} \mathcal{N}(0,1)$. We assumed that all households have CARA utility functions with $\lambda = 1$. We then computed the final consumption of each household under the equally-weighted Utilitarian optimal risk-sharing arrangement subject to local information constraints, using the results from subsection 4.1, and the sample variance of final consumption for each household (note that the variance does not depend on the planner’s weights).
5 Implications of the Theory for Empirical Tests of Risk Sharing

The performance of risk-sharing communities has been repeatedly tested in data since the work of Cochrane (1991), Mace (1991) and Townsend (1994). Their original approach developed empirical tests of full insurance that related household consumption and income. Indeed, the well known Borch rule – equating the ratio of marginal utilities across households – imposes that, under full insurance, household consumption should not respond to idiosyncratic movements in income after controlling for aggregate shocks. This implication can be tested in the following popular regression:

\[
\log(c_{it}) = \alpha_i + \beta_1\log(y_{it}) + \beta_2\log(\bar{y}_t) + \epsilon_{it} \tag{18}
\]

where \(c_{it}\) and \(y_{it}\) correspond to household \(i\)'s consumption and income at time \(t\), and where \(\bar{y}_t = \sum_i y_{it}\) represents aggregate village income at time \(t\).\(^{24}\) Full insurance implies that \(\beta_1 = 0\) and \(\beta_2 = 1\). An overwhelming proportion of studies have rejected the full-insurance hypothesis in a wide number of settings. As a result, a great deal of work has followed, that seeks to explain this stylized fact.

On the theory side, we have argued that this paper complements an ongoing effort to model the relevant contracting frictions in informal risk sharing environments.\(^{25}\) In this section we argue that our framework also responds to a recent strand of the literature that suggests modifying the classical Townsend test in order to accommodate various forms of heterogeneity. Some of this work argues that the standard consumption regression in (18) is misspecified if, for instance, households hold heterogeneous risk preferences.\(^{26}\) More relevant to the current discussion, several other studies have also suggested that households within a village indeed access different risk sharing groups, and that controlling for aggregate-level shocks, as in (18), would incorrectly estimate income coefficients: \(\bar{y}\) should be group-specific. In a couple well-known examples, Mazzocco and Saini (2012) argue that the relevant sharing group in India is the caste (rather than the village), while Attanasio, Meghir, and Mommaerts (2018)

\(^{24}\) Village-time fixed effects are traditionally used to capture aggregate shocks at the village level.

\(^{26}\) See for instance Mazzocco and Saini (2012) and Schulhofer-Wohl (2011).
test for efficient insurance within extended families in the U.S.27

This paper refines and generalizes the modified tests that evaluate the performance of insurance mechanisms on local sharing groups. Rather than taking groups as separate, perfectly insured communities, the current framework allows for a fully general social structure with interconnected sharing groups that are specific to each household, and which may overlap in complicated ways along any given network. We show how, under the local information constraints of our model, not defining the relevant local sharing group biases the estimates of risk-sharing tests. More importantly, we show that controlling for this bias will not eliminate the correlation between household consumption and income: the structure of the network, coupled with the information constraints, induces imperfect risk-sharing and generates heterogeneity in sharing behavior. The current framework therefore allows us to decompose the standard Townsend coefficient β_1 into an underlying distribution of household-specific coefficients that capture the varying risk-sharing possibilities induced by the network structure, and which can be interpreted economically in terms of consumption volatility (as shown in the previous section).

To fix ideas, consider the simple network with three individuals and independent endowments in section 2 and set $\lambda_i = 1$; all arguments below can be extended to general networks, correlated endowments, and any profile of Pareto weights. If we write down final consumption for each household in the form of the classical risk-sharing specification of equation (18), we have that,

\[
\begin{align*}
 c_{1t} &= \alpha_1 + \left(\frac{1}{3} - \frac{1}{2} \right) y_{1t} + \frac{1}{3} \bar{y}_t + \epsilon_{1t}, \\
 c_{2t} &= \alpha_2 + \left(\frac{1}{2} - \frac{1}{3} \right) y_{2t} + \frac{1}{3} \bar{y}_t + \left(\epsilon_{2t} - \frac{1}{3} y_{3t} \right), \\
 c_{3t} &= \alpha_3 + \left(\frac{1}{2} - \frac{1}{3} \right) y_{3t} + \frac{1}{3} \bar{y}_t + \left(\epsilon_{3t} - \frac{1}{3} y_{2t} \right),
\end{align*}
\]

where $\alpha_1 = \frac{1}{12} r \sigma^2$ and $\alpha_2 = \alpha_3 = \frac{1}{24} r \sigma^2$ correspond to state-independent transfers and are represented as household-specific intercepts. These equations reflect three important themes of this paper as they relate to empirical tests of risk-sharing: 1) coefficients on own income are generically different from zero for all households. i.e.

27In similar procedures Hayashi, Altonji, and Kotlikoff (1996) consider whether extended families can be viewed as collective units sharing risk efficiently. Munshi and Rosenzweig (2016) also find that the caste is the relevant group to explain migration patterns in rural India. Most relevant here, Fafchamps and Lund (2003) address the failure of efficient insurance in the data suggesting that households receive transfers not at the village level, but from a network of family and friends.
\(\alpha_{ii} \neq \alpha_{ij} \), 2) these coefficients vary according to households’ network position, and 3) imposing the common sharing group on all households generates biased estimates: notice the last two equations contain weighted incomes in the error term. The classical risk sharing test in (18) pools these equations and obtains a unique estimate for \(\beta_1 \); given the previous discussion we expect this estimate to be biased, different from zero, and positive.

In order to obtain unbiased estimates for \(\beta_1 \), consider estimating (18) with the relevant local sharing group instead. In this case, we show coefficients are properly estimated, but we still obtain heterogeneous estimates, \(\beta_i \), for the coefficients on own income. As a result, the risk sharing test still delivers positive estimates – not surprisingly, since risk sharing is not efficient under information constraints. To see this, rewrite again our consumption equations in the form of (18), but now allow for household-specific aggregates, \(\bar{y}_{it} = \sum_{j \in N_i} y_{jt} \), that sum over the incomes of \(i \)'s sharing partners. In this case we have,

\[
\begin{align*}
\epsilon_{1t} &= \alpha_1 + \left(\frac{1}{2} - \frac{1}{2} \right) y_{1t} + \frac{1}{2} \bar{y}_{1t} + \epsilon_{1t}, \\
\epsilon_{2t} &= \alpha_2 + \left(\frac{1}{2} - \frac{1}{3} \right) y_{2t} + \frac{1}{3} \bar{y}_{2t} + \epsilon_{2t}, \\
\epsilon_{3t} &= \alpha_3 + \left(\frac{1}{2} - \frac{1}{3} \right) y_{3t} + \frac{1}{3} \bar{y}_{3t} + \epsilon_{3t},
\end{align*}
\]

Because aggregate income terms are now household-specific (i.e. \(\bar{y}_i \)), the additional terms in the error disappear and we obtain unbiased estimators. Notice, however, that coefficients to own income are different from zero so long as \(\alpha_{ii} \neq \alpha_{ij} \). This implies that the pooled regression will again deliver positive coefficient for \(\beta_1 \), even with the appropriate local aggregates. In this context, the pooled estimate in fact represents the average of the underlying heterogeneity in risk-sharing possibilities across households, which respond to network effects and relate to consumption volatility as specified by the theoretical results above.

[Table 1 about here.]

Finally, notice that under sufficiently symmetric structures, we cannot reject this localized version of the Townsend test, because in “regular” networks \(\alpha_{ii} - \alpha_{ij} = 0 \). This means we are able to generalize the discussion on appropriate local aggregates in Townsend regressions – the theory is sufficiently rich to accommodate previous models of local sharing groups, as well as many other local structures. In fact, a well-defined local version of the Townsend test may fail to reject full insurance not only
if castes or extended families are perfectly connected partitions (as stressed in the previous literature), but also if the social structure is sufficiently symmetric. As an extreme example, consider the circle network in which all individuals are identically positioned. Although all local sharing groups overlap and none of them are perfectly connected, this network structure would nonetheless generate sufficient regularity to “pass” an appropriately defined version of the risk-sharing test.

The previous discussion can be observed compactly in Table 1, where the risk-sharing test is performed on simulated income data for the three individual “star” network discussed above, and the four individual “circle” network that exhibits perfect symmetry. The test is performed both with a common aggregate income term (columns 1 and 3) and with appropriately defined local sharing groups (columns 2 and 4). Notice that coefficients on own income are biased upwards by a whole order of magnitude when imposing a common aggregate income term but remain positive and significant in the star network, where the lack of symmetry keeps the pooled coefficient estimate away from zero. However, as discussed above, the circle network “passes” the Townsend test (coefficient to income is not significant) under appropriately specified local aggregate income terms.

6 Extensions

6.1 General Contractibility Constraints

In section 2.4 we showed – for a simple line network – how to describe risk-sharing arrangements subject to local information constraints that need not coincide with the physical transfer network. We now return to this question and provide a general characterization of the admissible structures where our main results continue to apply.

As before, let G denote a generic undirected and unweighted network structure defined on N. We now interpret G as physical (transfer) network: two individuals i and j can enter into a risk-sharing transfer contract if and only if they are linked in G, or $G_{ij} = 1$. As before, N_i and N_{ij} denote i’s neighborhood and ij’s common neighborhood under G, respectively.

We now specify a more general form of contractibility constraints. Suppose now that, for each linked pair of individuals ij in G, their bilateral transfer contract t_{ij} can be (effectively) contingent on the ex post realizations of the income shocks of
individuals in some predetermined set $Q_{ij} \subseteq N \setminus \{i, j\}$, in addition to their own income shocks e_i and e_j. In other words, t_{ij} can be contingent on the ex post realizations of e_k for all $k \in Q_{ij} := \{i, j\} \cup Q_{ij}$. We write Q (and equivalently \overline{Q}) to denote the joint requirements of pairwise contractibility constraints Q_{ij} for all linked individuals in G.\(^{28}\)

Clearly, by taking $Q_{ij} = N_{ij}$ for all linked ij, we reduce the model back to the special case of local information constraints as formalized in Subsection 3.1. By taking $Q_{ij} = N \setminus \{i, j\}$ for all ij, we reduce the model back to the simple "global-information" benchmark.

In this subsection we take Q as the primitive, and discuss how our methods and results can be adapted to accommodate the contractibility constraints encoded by Q. The question how the contractibility constraints Q may arise from individuals’ ex-post interactions that may support on-equilibrium information transmission will be deferred to the next subsection.

Clearly, under general contracting constraints encoded by Q, the social planner’s problem 3 remains a convex optimization problem: the objective function remains concave, while the choice space (space of admissible transfer arrangements under G and Q) remains a convex set.

Corollary 2. *Propositions 1 and 2 carry over with proper notational adoptions.*

Consequently Corollary 1 (the localized Borch rule) remains valid, too, with the conditional expectations on the left hand side of $\frac{\mathbb{E}_{ij}[u_i(x^*_i)]}{\mathbb{E}_{ij}[u_j(x^*_j)]} = \frac{\alpha_i}{\lambda_i}$ being taken with respect to the more general local information sets.

Next, we again specialize to the CARA-normal setting as considered in Subsection 3.3. We first provide a sufficient condition under which Propositions 3 and 4 generalize almost exactly.

Proposition 6. *Suppose that G is connected as before and that there exists an undirected and unweighted supergraph of G, denoted G', such that:*

(a) The contractibility constraints Q satisfies that $Q_{ij} = N'_i \cap N'_j$ for all linked ij in the original network G, where N'_i denotes i’s neighborhood in the supergraph network G'.

\(^{28}\) Alternatively, we could specify Q without reference to G. However, as we take both G and Q as primitives, this expositional difference is inconsequential.
(b) For every pair ij linked in G', there exists a path in G from i to j such that, for any individual k that lies on this path, we have that ik and jk are also linked in G'.

Then the constrained Pareto efficient consumption plan under (G, Q) is given by the consumption plan $x^* (G')$ induced by the hypothetical linear transfer rules $t^* (G')$, or equivalently the transfer shares $\alpha^* (G')$, as defined in Propositions 3 and 4.

Condition (a) essentially requires that all contractibility constraints are induced by common neighborhoods under an “informational network” G' that is a supergraph of the physical transfer network G. Condition (b) essentially requires that the physical transfer network G is rich enough to channel, potentially via a path of individuals in G, any net bilateral transfer scheme between two informationally linked individuals in G'. Simple examples of G' that satisfies condition (b) includes a supergraph of G which add (informational) links between some distance-2 pairs of individuals in the physical network G, and a supergraph of G which add links between all individuals within a distance of k from each other in the physical network G.

Under conditions (a)(b), only the “informational network” G' is relevant in determining the constrained Pareto efficient consumption plan, or equivalently the risk sharing transfer arrangements up to superfluous cyclical transfers, which can be computed by exactly the same formulas given by Propositions 3 and 4 with the informational network G' as the relevant network structure.

In the next subsection (6.2), we provide several examples of realistic ex-post communication protocols that may give rise to contractibility constraints Q that satisfies Conditions (a) and (b), so that it is sufficient to focus on the “informational network” G'.

Before proceeding to the next subsection, we point out that the method of analysis, together with some particular results, generalizes beyond Proposition 6. For simplicity, in the following we focus on the case of independent endowments ($\rho = 0$), and provide sufficient conditions under which the local equal sharing rule generalizes.

Proposition 7. Let $\rho = 0$. Given a network G and contractibility constraints Q, define a directed network \tilde{G} by setting $\tilde{G}_{ij} = 1$ if and only if there exists a path

29See the next subsection for a concrete example of how communication among individuals can establish such informational networks.
of individuals $i = k_0 k_1 \ldots k_m = j$ in G, such that $j \in Q_{k_h k_{h+1}}$ for all $h = 0, \ldots, m - 1$. Define the “in-neighborhood” $N_i \left(\overrightarrow{G} \right) := \{ k \in N : G_{ij} = 1 \}$ and the “in-degree” $d_i \left(\overrightarrow{G} \right) := \# (N_i \left(\overrightarrow{G} \right))$ accordingly. Then the following consumption plan

$$x_i^* \left(\overrightarrow{G} \right) := \frac{1}{d_i \left(\overrightarrow{G} \right) + 1} e_i + \sum_{j \in N_i \left(\overrightarrow{G} \right)} \frac{1}{d_j \left(\overrightarrow{G} \right) + 1} e_j$$

is constrained Pareto efficient subject to the contractibility constraints Q under network G.

Compared to Proposition 6, Proposition 7 relaxes both Condition (a) and Condition (b). Specifically, Q is no longer restricted to be inducible as common neighborhoods of an undirected graph, allowing for scenarios where $k \in Q_{ij}$ but $i \notin Q_{jk}$. Correspondingly, the constructed “informational network” \overrightarrow{G} is directed, only requiring that information about individual j’s endowment realization can transmit to individual i, but not necessarily vice versa. Most importantly, Proposition 7 asserts that, for any $k \in G_{ij} \setminus N_{ij}$, which may not be empty in general, the Pareto efficient consumption for ij, $x_i^* \left(\overrightarrow{G} \right)$ and $x_j^* \left(\overrightarrow{G} \right)$, are necessarily independent of e_k, even though t_{ij} may be made contingent on e_k. This feature is specific to the case of independent endowments, which is not covered by Proposition 6.

6.2 Risk Sharing with Ex-Post Communication

In Section 6.1, we abstract from the detailed specification of such ex post interactions, but instead use the contractibility constraints Q as a reduced-form representation of ex post interactions on the effective contractibility of risk sharing arrangements. In the current section, we investigate particular detailed specifications of ex post interactions. We show that natural specifications produce a contractibility structure Q as specified in Section 6.1 that satisfies both Conditions (a) and (b) in Proposition 6, and hence we may compute the constrained Pareto efficient risk-sharing arrangements by directly applying Proposition (4) using the relevant informational network G'.

Fix any connected network G. Consider a scenario where, after endowment realizations but before transfer payments, a single-round of simultaneous communication is allowed. Specifically, each individual i may send a message $m_{ij} \in M_{ij}$ to each
individual \(j \in N \setminus \{i\} \), where \(\mathcal{M}_{ij} \) denotes an arbitrary message space. The (local) observability of messages is determined by a communication protocol, which we take to be a primitive of the environment. For example, a few simplest communication protocols that lead to different levels of observability of messages are:

(a) \textit{Global communication}: \(m_{ij} \) is publicly observable by all individuals Equivalently, we might as well take \(m_{ij} \equiv m_i \) and \(\mathcal{M}_{ij} \equiv \mathcal{M}_i \), i.e., each individual can only send a public message that then becomes global common knowledge. For example, a global message be thought of as a Tweet, which everyone can observe (if he wants to).

(b) \textit{Local announcement}: \(m_{ij} \) is locally observable by the sender \(i \) and \(i \)'s neighbors. Again, we might as well take \(m_{ij} \equiv m_i \) and \(\mathcal{M}_{ij} \equiv \mathcal{M}_i \). For example, a local announcement can be thought of as a message \(i \) posts on his own Facebook timeline.

(c) \textit{Local comment}: \(m_{ij} \) is locally observable by the receiver \(j \) and \(j \)'s neighbors. For example, a local comment can be thought of as a message \(i \) leaves on \(j \)'s Facebook timeline.

(d) \textit{Private communication}: \(m_{ij} \) is only privately observable by the sender \(i \) and receiver \(j \). A variety of communication technologies such as personal meeting, phone calls, online chats fit into this category.

Given a communication protocol, for each linked pair \(ij \), their ex post local common knowledge before transfers are carried out not only include the endowment realizations they can commonly observe, denoted \(I_{ij} = (e_k)_{k \in N_{ij}} \), but also include the communication messages they can commonly observe, denoted \(M_{ij} \), which will differ across the four communication protocols above. Again, we require that the bilateral transfer contract \(t_{ij} \) be contingent only on ex post local common knowledge, i.e., \(t_{ij} \) be \(\sigma (I_{ij}, M_{ij}) \)-measurable. As before, we abstract from ex post enforcement issues of the contract \(t_{ij} \) per se, but focus on the strategic aspects of ex post messages.

We summarize in the following Proposition how the four ex-post communication protocols introduced above may give rise to different informational network structures, with which we can directly apply Proposition 6.
Proposition 8. Under either of the four communication protocols listed above, there exists a profile of bilateral risk-sharing contracts \(t^* \) such that: (i) \(t_{ij} \) is \(\sigma (I_{ij}, M_{ij}) \)-measurable for each linked \(ij \) in \(G \); (ii) there exists an undirected supergraph \(G' \) of \(G \) such that the constrained Pareto efficient consumption plan \(x^* (G') \) with respect to \(G' \) can be implemented in ex-post Nash equilibrium; (iii) the effective information network \(G' \), under the four communication protocols, is given by, respectively:

- (a) Global communication: \(G' \) is the complete graph.
- (b) Local announcement: \(G' = G^{(2)} \), i.e., the graph obtained by linking pairs of individuals within a graphic distance of 2 from each other in the original network \(G \).
- (c) Local comment: \(G' = G^{(3)} \), i.e., the graph obtained by linking pairs of individuals within a graphic distance of 3 from each other in the original network \(G \).
- (d) Private communication: \(G' = G \).

The main idea for constructing the message-augmented contract \(t^* \) that induces truthful information transmission in ex-post Nash equilibrium is to cross-validate reports of certain non-local endowment realizations from two different individuals. Admittedly, there are clearly many other plausible forms of ex-post interactions that lead to different extents of information transmission, and it is conceivable that some forms of ex-post interactions may not be able to support the “hard-information” contractibility structure as studied in this paper. However, we will defer a more thorough analysis of this problem to future work.\(^{30}\)

6.3 Spatial Correlation Structure

In the previous section we considered a symmetric correlation structure, in which the correlation between the endowments of two individuals did not depend on their positions on the network. An alternative specification, however, is to incorporate the possibility of spatially correlated endowments, that is correlation that decays with

\(^{30}\)A related exercise is conducted in an ordinal setting in a recent paper by Bloch and Ockers (2018).
social distance.31 As we illustrate below (and in more details in Appendix \textbf{B.9}), this type of correlation structure can be detrimental to the efficiency of informal risk sharing with local information constraints.

For concreteness, take the same environment as in Section 3.3 (identical CARA utilities and jointly normally distributed endowments), but assume that the correlation between \(e_i \) and \(e_j \) geometrically decays with the social distance between \(i \) and \(j \):

\[
\text{Corr}(e_i, e_j) = \varrho^{\text{dist}(i,j)},
\]

where the social distance \(\text{dist}(i, j) \) is formally defined as the length (i.e., the number of links) of the shortest path connecting \(i \) and \(j \) in network \(G \). Also, for analytical simplicity we focus on circle networks with \(n = 2m + 1 \) individuals. In order to make comparable the risk-sharing efficiencies under geometrically decaying spatial correlation structure with that under the uniform global correlation structure analyzed in Section 3.3, we control the "shareable risk" to be the same across the two specifications by setting \(\rho = \rho_m(\varrho) := \frac{\varrho(1-\varrho^m)}{m(1-\varrho)} \), where \(\rho \) is the uniform global pairwise correlation, while \(\varrho \) is the rate of decay in the geometrically decaying correlation structure. Then informal risk sharing subject to the local information constraint achieves drastically different levels of asymptotic efficiency under the two correlation structures.

Proposition 9. Let \(x_i^{\text{unif}}(\rho), x_i^{\text{geo}}(\varrho) \) denote the Pareto efficient consumption plan subject to the local information constraint under the uniform and the geometrically decaying correlation structures, parameterized by \(\rho \) and \(\varrho \) respectively, and let \(\text{Var}_{\text{unif},\rho}, \text{Var}_{\text{geo},\rho} \) correspond to the variance operators under the two probability distributions induced by the two correlation structures. Then:

\[
\lim_{\varrho \to 1} \lim_{m \to \infty} \text{Var}_{\text{unif},\rho_m(\varrho)}(x_i^{\text{unif}}(\rho_m(\varrho))) = \frac{1}{3},
\]

\[
\lim_{\varrho \to 1} \lim_{m \to \infty} \text{Var}_{\text{geo},\rho}(x_i^{\text{geo}}(\varrho)) = 1.
\]

Hence, for \(\varrho \) close to 1 and sufficiently large \(m \), uniform correlation leads to significant risk sharing (yielding payoffs close to that under independent endowments), while geometrically decaying correlation yields payoffs very close to the autarky payoffs, even though the two correlation structures lead to the same payoffs if global information can be used for risk sharing.

31There are many reasons why this correlation structure is more realistic for certain types of endowment shocks: for example, as shown in Fafchamps and Gubert (2007) and in Conley and Udry (2010), social distance tends to be highly correlated with geographic proximity.
This difference in risk-sharing efficiency, driven by the difference in underlying correlation structures, is a peculiar feature of the local information constraint considered in this paper. With global information, a geometrically decaying correlation structure does not in itself imply risk-sharing inefficiency relative to the uniform correlation structure. For example, in a large ring network considered above, shocks that are spatially far away from each other are almost independent, and each given individual is spatially far away from most of the individuals in the network. Hence, under global information mostly shocks with low correlations are pooled together, thus yielding significant risk reduction. However, with local information, only spatially close shocks are pooled, rendering risk sharing virtually ineffective due to the high local correlation.

This might help explain why it is the case that while in most settings empirical research found that informal insurance works well, Kazianga and Udry (2006) found a setting in which informal insurance does not seem to help, and Goldstein, de Janvry, and Sadoulet (2001) found that certain types of endowment shocks are not well insured through informal risk sharing. In particular, this may be due to high correlation between endowments of neighboring households in the above settings, for the types of endowment shocks investigated.

6.4 Endogenous Network Formation

So far our analysis focused on characterizing Pareto efficient risk-sharing arrangements subject to local information constraints on an exogenously given network, implicitly assuming that the network structure is mainly shaped by predetermined factors such as kinship. Here we briefly discuss some implications of allowing for endogenous link formation in the context of informal risk sharing with local information constraints, in the CARA-normal environment of Section 3.3. The approach we take is similar as in Ambrus et al. (2017), who consider network formation in a risk-sharing framework with global information contracts, and propose a two-stage game in which in the first stage individuals can simultaneously indicate other individuals they want to link with. If two individuals each indicated each other, the link is formed, and the two connecting individuals each incur a cost of $c \geq 0$. The solution concept we use is pairwise stability. In the second stage, whatever network is formed in the first stage,

32 This simple game of network formation was originally considered in Myerson (1991). See also Jackson and Wolinsky (1996).
it is assumed that individuals agree on a Pareto efficient risk-sharing arrangement subject to local information constraints.

In our analysis of the CARA-normal framework so far, state independent transfers played a very limited role. However, when we allow for endogenous network formation, it becomes crucial how the network structure influences state independent transfers, and hence the distribution of surplus created by risk sharing, as it directly affects incentives to form links. Therefore, it is important to specify exactly which Pareto efficient risk-sharing arrangement prevails for each possible network that can form. Different ways of specifying state-independent transfers can lead to very different conclusions regarding network formation, as we demonstrate below.

A benchmark case is when all state-independent transfers are set to 0, which case is extensively investigated by Gao and Moon (2016) who assume local equal sharing with no state-independent transfers as an ad hoc sharing rule. They show that, even with zero cost of linking, an individual i's benefit for establishing an extra link with j falls very fast with the existing number of links the individual i has, as with more existing neighbors (larger d_i) the marginal reduction in self-endowment exposure $\left(\frac{1}{d_i+1} - \frac{1}{d_i+2}\right)$ is small relative to the additional exposure to j's endowment $\frac{1}{d_j+2}$. Typically this implies severe under-investment into social links.

An alternative approach is pursued by Ambrus et al. (2017), in the context of risk-sharing arrangements with global information: they assume that the profile of state-independent transfers is determined according to the Myerson value. The Myerson value, proposed in Myerson (1980), is a network-specific version of the Shapley value that allocates surplus according to average incremental contribution of individuals to total social surplus.33 In particular, Ambrus et al. (2017) show that with state-independent transfers specified as above (for whatever network is formed), if individuals are ex ante symmetric then there is never under-investment, that is given any stable network, there is no potential link that is not established, even though its net social value would be strictly positive. Below we show that the same conclusion holds in our setting with local information constraints, in the case of CARA utilities and independently an jointly normally distributed endowments. The detailed specification and the proof are available in Appendix B.11.

33Ambrus et al. (2017) also provide micro-foundations, in the form of a decentralized bargaining procedure between neighboring individuals that leads to state independent transfers achieving the Myerson value allocation.
Proposition 10. Suppose that, for any given network structure, the Pareto efficient consumption plan subject to the local information constraint is implemented, and the state-independent transfers are induced by the Myerson values. Consider the first-stage network formation game in which each individual pays a private cost of c for each of her established links. Then, there is no under-investment in social links in any pairwise stable network.

We leave a more detailed investigation of network formation in the context of risk sharing with local information constraints to future research.

7 Conclusion

This paper analyzes informal risk sharing arrangements under local information constraints, when bilateral transfers can only depend on endowment realizations of a subset of individuals. We characterize the Pareto efficient consumption allocations in this setting, and provide closed-form descriptions of the bilateral transfer arrangements that lead to them in a widely studied context of CARA utilities and jointly normally distributed endowments. We show that more central individuals have more volatile consumption and we test this implication using data from rural villages in Thailand. This model generalizes the notion of a local sharing group that has been invoked recently in the risk-sharing tests performed in the development literature.

The model provides numerous further implications for empirical work. In a first approach, Milán et al. (2018) show that the current framework fits the observed sharing behavior of indigenous communities in the Bolivian Amazon. However, further empirical work is needed to distinguish local information constraints from other similar contractual frictions, such as the hidden income model identified by Kinnan (2017) as the relevant friction in Thai data. Indeed, in future work we plan to derive a dynamic version of the model that provides testable predictions between current consumption and past information, which can be compared to those of other proposed risk-sharing frictions. Another empirical project to follow from this work takes the model’s predictions on bilateral exchanges in order to develop a complete model of spillover effects across individuals that can be used to structurally estimate the underlying network structure following techniques in Manresa (2016) and most recently in De Paula, Rasul, and Souza (2018).
References

Table 1: Simulated Risk-Sharing Test under the Model for Two Simple Economies

Dependent variable: Consumption

<table>
<thead>
<tr>
<th></th>
<th>Star Network</th>
<th></th>
<th>Circle Network</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Common Group</td>
<td>Local Group</td>
<td>Common Group</td>
<td>Local Group</td>
</tr>
<tr>
<td>Income</td>
<td>(1) 0.201</td>
<td>(2) 0.027</td>
<td>(3) 0.121</td>
<td>(4) 0.001</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Agg. Income</td>
<td>(1) 0.780</td>
<td>(2) 0.977</td>
<td>(3) 0.845</td>
<td>(4) 0.998</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Observations</td>
<td>300,000</td>
<td>300,000</td>
<td>400,000</td>
<td>400,000</td>
</tr>
<tr>
<td>R²</td>
<td>0.529</td>
<td>0.692</td>
<td>0.477</td>
<td>0.654</td>
</tr>
</tbody>
</table>

Note: Income data simulated from log-normal distribution with $\sigma^2 = 4$ and $t = 100,000$. Model estimated on logged data. Values in parentheses are standard errors.
Supplement to “Informal Risk Sharing with Local Information”

Not for Publication

Attila Ambrus34, Wayne Y. Gao35, Pau Milán36

A Main Proofs and Supporting Materials

The proofs for all the lemmas stated in this section are available in Appendix B.

Define $J(t) := \mathbb{E}\left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh}\right)\right]$, the objective function in equation (3).

Lemma 1. \mathcal{I} with $\langle \cdot, \cdot \rangle$ forms an inner product space.

Lemma 2. J is concave on \mathcal{I}.

Lemma 3. J is Gâteaux-differentiable.

Lemma 4. For any $t \in \mathcal{I}$ that solves (4), we have $J'(t) = 0$.

Lemma 5. The set of consumption plan induced by the profiles of transfer rules t in \mathcal{I} is convex.

A.1 Proof of Proposition 1

Proof. We first prove the “only if” part. Note that, given any $t \in \mathcal{I}^*$, $\forall i, j,$

\[
\mathbb{E}\left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh}\right) | I_{ij}\right]\right] \\
\leq \mathbb{E}\left[\max_{t_{ij} \in \mathbb{R}} \mathbb{E}\left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh}\right) | I_{ij}\right]\right]
\]

34Ambrus: Department of Economics, Duke University, Durham, NC 27708, USA, attila.ambrus@duke.edu.

35Gao: Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, USA, waynegao@sas.upenn.edu.

36Milán: Department of Economics, Universitat Autònoma de Barcelona, Edifici B, Bellaterra 08193, Spain, pau.milan@uab.cat.
This is because, conditional on I_{ij}, t_{ij} must be constant across all possible states, and thus the maximization of the conditional expectation is to solve for the optimal real number t_{ij}. For t to be a solution for problem (3), suppose there exists linked ij such that t_{ij} does not solve the problem (4). Then, by the inequality above, there exists another t_{ij}, specified for each different realization of I_{ij} and hence each possible state of nature, that leads to higher value of $\mathbb{E} \left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh} \right) \right]$, contradicting the optimality of t for problem (3). Note that the “\mathbb{P}-almost-all” quantifier applies here.

For the “if” part, notice that by Lemma 4, t solves all (4) simultaneously implies that $J'(t) = 0$. As $J : \mathcal{T} \rightarrow \mathbb{R}$ is concave by Lemma 2 and Gâteaux-differentiable by Lemma 3, we can apply a mathematical result on convex optimization in normed space, specifically Theorem 3.24 and Proposition 3.20 in Peypouquet (2015), to conclude that asserting that if $J'(t) = 0$, then $J(t)$ is the unique global maximum.

A.2 Proof of Proposition 2

Proof. Following the proof of Lemma 2, we can easily show, by the strict concavity of $u_i(\cdot)$, that the objective function in (3) is strictly concave in the consumption plan x. Lemma 5 shows that the set of admissible consumption plan induced by the set of transfer rules in \mathcal{T} is convex. Hence, there is at most of one consumption plan that solves (3).

A.3 Proof of Corollary 1

Proof. By the concavity (shown in Lemma 2) of the objective function in (4), the FOC is both sufficient and necessary for maximization. The FOC w.r.t t_{ij}, is

$$\mathbb{E} \left[\lambda_i u'_i \left(e_i - \sum_{h \in N_i} t_{ih}(e) \right) + \lambda_j u'_j \left(e_j - \sum_{h \in N_j} t_{jih}(e) \right) \right] \cdot (-1) \bigg| I_{ij} = 0$$

Rearranging the above we have

$$\frac{\mathbb{E}_{ij} [u'_i(x'_i)]}{\mathbb{E}_{ij} [u'_j(x'_j)]} = \frac{\mathbb{E} \left[u'_i \left(e_i - \sum_{h \in N_i} t_{ih}(e) \right) \bigg| I_{ij} \right]}{\mathbb{E} \left[u'_j \left(e_j - \sum_{h \in N_j} t_{jih}(e) \right) \bigg| I_{ij} \right]} = \frac{\lambda_j}{\lambda_i}.$$
A.4 Proof of Proposition 3

Proof. Let \(x_i^* \) be the consumption plan induced by the transfer \(t^* \) described above. Then

\[
CE(x_i^* | I_{ij}) = \mathbb{E}_{ij} \left[e_i - \sum_{k \in N_i} t_{ik}^* \right] - \frac{1}{2} r \text{Var}_{ij} \left[e_i - \sum_{k \in N_i} t_{ik}^* \right]
\]

\[
= \frac{e_i}{d_i + 1} + \frac{e_j}{d_j + 1} - \mu_{ij}^* - \sum_{k \in N_i \setminus N_j} \left(\frac{e_i}{d_i + 1} - \mathbb{E}_{ij} \left[\frac{e_k}{d_k + 1} + \mu_{ik}^* \right] \right) - \frac{1}{2} r \text{Var} \left[\sum_{k \in N_i \setminus N_j} \frac{e_k}{d_k + 1} \right]
\]

\[
= \frac{e_i}{d_i + 1} + \frac{e_j}{d_j + 1} + \sum_{k \in N_i \setminus N_j} \frac{e_k}{d_k + 1} - \sum_{k \in N_i} \mu_{ik}^* - \frac{1}{2} r \sigma^2 \cdot \sum_{k \in N_i \setminus N_j} \frac{1}{(d_k + 1)^2}.
\]

The necessary and sufficient condition for \(t^* \) to be Pareto efficient is given by (6). Plugging the above into (6) and canceling out the terms dependent on local information \((e_k)_{k \in \overline{N}_i}\), we arrive at the following condition for Pareto efficiency:

\[
\sum_{k \in N_i} \mu_{ik}^* + \frac{1}{2} r \sigma^2 \cdot \sum_{k \in N_i \setminus \overline{N}_j} \frac{1}{(d_k + 1)^2} + \frac{1}{r} \ln \lambda_i = \sum_{k \in N_j} \mu_{jk}^* + \frac{1}{2} r \sigma^2 \cdot \sum_{k \in \overline{N}_i \setminus N_j} \frac{1}{(d_k + 1)^2} + \frac{1}{r} \ln \lambda_j
\]

(20)

Any profile of state-independent transfers \(\mu^* \) that solves the above system (20) makes \(t^* \) efficient under weightings \(\lambda \).

Notice that, if \(CE(x_i^* | I_{ij}) - \frac{1}{r} \ln \lambda_i = CE(x_j^* | I_{ij}) - \frac{1}{r} \ln \lambda_j \) holds for any \(e \),

\[
CE(x_i^*) - \frac{1}{r} \ln \lambda_i = \mathbb{E} \left[CE(x_i^* | I_{ij}) - \frac{1}{r} \ln \lambda_i \right] - \frac{1}{2} r \text{Var} \left[CE(x_i^* | I_{ij}) - \frac{1}{r} \ln \lambda_i \right]
\]

\[
= CE(x_j^*) - \frac{1}{r} \ln \lambda_j
\]

Hence, with \(G \) assumed WLOG to be connected, we have

\[
CE(x_i^*) - \frac{1}{r} \ln \lambda_i = \frac{1}{n} \sum_{k \in N} \left(CE(x_k^*) - \frac{1}{r} \ln \lambda_k \right)
\]

\[
= - \frac{r \sigma^2}{2n} \sum_{k \in N} \frac{1}{d_k + 1} - \frac{1}{nr} \sum_{k \in N} \ln \lambda_k
\]

(21)

50
On the other hand, as \(x_i^* = \frac{c_i}{d_i + 1} + \sum_{k \in N_i} \left(\frac{c_k}{d_k + 1} - \mu_{ik}^* \right) \),

\[
CE(x_i^*) = -\sum_{k \in N_i} \mu_{ik}^* - \frac{1}{2} r \sigma^2 \sum_{k \in N_i} \frac{1}{(d_k + 1)^2} \tag{22}
\]

Equating the expressions for \(CE(x_i^*) \) in (21) and (22), we obtain

\[
\sum_{k \in N_i} \mu_{ik}^* = \frac{1}{2} r \sigma^2 \left(\frac{1}{n} \sum_{k \in N} \frac{1}{d_k + 1} - \sum_{k \in N_i} \frac{1}{(d_k + 1)^2} \right) + \frac{1}{r} \left(\frac{1}{n} \sum_{k \in N} \ln \lambda_k - \ln \lambda_i \right) \tag{23}
\]

Lemma 6. Given any real vector \(c \in \mathbb{R}^n \) such that \(\sum_{i \in N} c_i = 0 \), there exists a real vector \(\mu \in \mathbb{R}^N \), such that \(\mu_{ik} + \mu_{ki} = 0 \) for every linked pair \(ik \) and

\[
\sum_{k \in N_i} \mu_{ik} = c_i.
\]

The solution is unique if and only if the network is minimally connected.

Lemma 6 has established that there indeed exists a solution \(\mu^* \) to (23). Given any solution \(\mu^* \) to (23), as \(\bar{N}_i \setminus (N_i \setminus \bar{N}_j) = \bar{N}_{ij} \), we have

\[
\sum_{k \in N_i} \mu_{ik}^* + \frac{1}{2} r \sigma^2 \sum_{k \in N_i \setminus \bar{N}_j} \frac{1}{(d_k + 1)^2} + \frac{1}{r} \ln \lambda_i
\]

\[
= \frac{1}{2} r \sigma^2 \left(\frac{1}{n} \sum_{k \in N} \frac{1}{d_k + 1} - \sum_{k \in N_i \setminus \bar{N}_j} \frac{1}{(d_k + 1)^2} \right) + \frac{1}{nr} \sum_{k \in N} \ln \lambda_k
\]

\[
= \sum_{k \in N_j} \mu_{jk}^* + \frac{1}{2} r \sigma^2 \sum_{k \in N_j \setminus \bar{N}_i} \frac{1}{(d_k + 1)^2} + \frac{1}{r} \ln \lambda_j,
\]

implying that \(\mu^* \) also solves the system of equations (20). Hence, \(t^* \) is Pareto efficient. \(\blacksquare \)

A.5 Preparatory Derivations for Proposition 4

As previewed in Section 3.3.2, we now explain in more details two preparatory steps for our main result, Proposition 4, which characterizes the Pareto efficient transfer shares under CARA-Normal setting with correlation parameter \(\rho \).
First, we show that the Pareto efficient profile of linear and strictly bilateral transfer rules: \(t_{ij}(e_i, e_j) := \alpha_{ij}e_i - \alpha_{ji}e_j + \mu_{ij} \) correspond to the solution of a complicated system of linear equations.

Lemma 7. If there exist a vector \(\gamma \) such that \((\alpha, \gamma)\) jointly solve the following system of linear equations,

\[
\begin{align*}
\alpha_{ij} &= \frac{1}{2} \left(1 - \sum_{k \in \mathcal{N}_i \setminus \{j\}} \alpha_{ik} + \gamma_{ij} \right) \quad (24.1) \\
0 &= \alpha_{ki} - \alpha_{kj} + \gamma_{ij} \quad \forall k \in \mathcal{N}_{ij} \quad (24.2) \forall i, j \text{ s.t. } G_{ij} = 1 \\
\gamma_{ij} &= \frac{\rho}{1 + (d_{ij} + 1)^\rho} \left(\sum_{k \in \mathcal{N}_i \setminus \mathcal{N}_j} \alpha_{ki} - \sum_{k \in \mathcal{N}_j \setminus \mathcal{N}_i} \alpha_{kj} \right) \quad (24.3)
\end{align*}
\]

then, given any constant vector \(c \) with \(c_{ij} = c_{ji} \) for all \(ij \in G \), the profile of linear and strictly bilateral transfer rules defined by

\[
t_{ij}(e_i, e_j) := \alpha_{ij}e_i - \alpha_{ji}e_j + c_{ij}, \quad \forall ij \in G
\]

for all \(ij \in G \) are Pareto efficient in \(\mathcal{T} \).

We next show that instead of solving the set of linear equations (24) that imply Pareto efficiency in \(\mathcal{T} \), we may solve an alternative optimization problem (11) that minimizes total consumption variances among all linear transfer rules.

Lemma 8. \(\forall \rho \in \left(-\frac{1}{n-1}, 1\right) \), if system (12) admits a unique solution, then the solution also solves system (24): i.e., a profile of linear and strictly bilateral transfer rules is Pareto efficient in \(\mathcal{T} \) if it uniquely minimizes the sum of consumption variances among all profiles of linear and strictly bilateral transfer rules in \(\mathcal{T}^* \).

Finally, we show in Proposition 4 in the main text that, for any given network, system (12) indeed admits a unique solution that can be expressed in closed form. The solution depends on the pairwise correlation \(\rho \) and on the positions of individuals in the network, and can be represented as a linear function of accumulated paths along the network.
A.6 Proof of Proposition 4

Proof. Let $\overline{G} := G + I_n$ so that $\overline{G}_{ii} = 1 \forall i \in N$. The optimality conditions given in equation (12.1) and (12.2) can be rewritten as

$$\alpha_{ji} = \overline{G}_{ij} \left(\Lambda_j - \frac{\rho}{1 - \rho} \sum_{k \in N} \overline{G}_{ik} \alpha_{ki} \right) \quad (25)$$

Let $\overline{\alpha}_i := (\alpha_{1i}, \alpha_{2i}, \ldots, \alpha_{ni})'$ denote the vector of i’s inflow shares, $\Lambda = (\Lambda_1, \Lambda_2, \ldots, \Lambda_n)'$ the vector of rescaled constraint multipliers, and g_i represent the i-th column of \overline{G}. Then (25) can be rewritten in vector form as

$$\left(I + \frac{\rho}{1 - \rho} g_i g_i' \right) \alpha_i = \text{diag} (g_i) \Lambda$$

where $\text{diag} (g_i)$ is a diagonal matrix with g_i’s entries on the diagonal. Left-multiplying both sides by $\left(I - \frac{\rho}{1 + \rho d_i} g_i g_i' \right)$, which is well-defined for any $\rho > -\frac{1}{n-1}$ and any G, we have

$$\alpha_i = \left(I - \frac{\rho}{1 + \rho d_i} g_i g_i' \right) \text{diag} (g_i) \Lambda$$

As $g_i g_i' \cdot \text{diag} (g_i) = g_i g_i'$, the above becomes

$$\alpha_i = \left(\text{diag} (g_i) - \frac{\rho}{1 + \rho d_i} g_i g_i' \right) \Lambda \quad (26)$$

Now, notice that (12.3) implies

$$1 = \sum_{j \in N} \alpha_{ij} = (d_i + 1) \Lambda_i - \sum_{j \in N} \overline{G}_{ij} \left(\frac{\rho}{1 + \rho d_j} \sum_k \overline{G}_{jk} \Lambda_k \right) \quad (27)$$

and thus we have

$$\Lambda_i = \frac{1}{d_i + 1} \left(1 + \sum_{j \in N_i} \sum_{k \in N_j} \frac{\rho}{1 + \rho d_j} \Lambda_k \right).$$

This establishes the recursive representation of the solution.
To obtain the closed-form solution, rewrite equation (27) as

\[
1 = \sum_{i \in N} \left(\text{diag}(g_i) - \frac{\rho}{1 + \rho d_i} g_i g_i' \right) \Lambda = (\overline{D} - \overline{G} \Psi \overline{G}) \Lambda
\]

where \(\overline{D}\) is a diagonal matrix with its \(i\)-th diagonal entry being \(d_i + 1\), and \(\Psi\) is a diagonal matrix with its \(i\)-th diagonal entry being \(\frac{\rho}{1 + \rho d_i}\). Notice that \(\forall \xi \in \mathbb{R}^n \setminus \{0\}\),

\[
\xi' (\overline{D} - \overline{G} \Psi \overline{G}) \xi = \sum_{i \in N} (d_i + 1) \xi_i^2 - \sum_{i \in N} \frac{\rho}{1 + \rho d_i} \left(\sum_{j \in N_i} \xi_j \right)^2
\]

\[
\geq \sum_{i \in N} (d_i + 1) \xi_i^2 - \sum_{i \in N} \frac{1}{1 + d_i} \left(\sum_{j \in N_i} \xi_j \right)^2
\]

\[
\geq \sum_{i \in N} (d_i + 1) \xi_i^2 - \sum_{i \in N} \frac{1}{1 + d_i} \cdot (1 + d_i) \sum_{j \in N_i} \xi_j^2
\]

\[
= \sum_{i \in N} (d_i + 1) \xi_i^2 - \sum_{i \in N} (d_i + 1) \xi_i^2
\]

\[
= 0
\]

where the equality holds if and only if \(\rho = 1\) and \(\xi = c \cdot 1\) for some \(c > 0\). Hence, \(\forall \rho \in (-\frac{1}{n - 1}, 1), (\overline{D} - \overline{G} \Psi \overline{G})\) is positive definite and thus invertible. Hence,

\[
\Lambda = (\overline{D} - \overline{G} \Psi \overline{G})^{-1} 1,
\]

\[
\alpha_i = \left(\text{diag}(g_i) - \frac{\rho}{1 + \rho d_i} g_i g_i' \right) (\overline{D} - \overline{G} \Psi \overline{G})^{-1} 1.
\]

Finally, we solve for the inverse matrix above as a series of powers of \(\overline{G}\). Notice that

\[
(\overline{D} - \overline{G} \Psi \overline{G})^{-1} = \left(\overline{D}^{\frac{1}{2}} \left(\overline{I} - \overline{D}^{-\frac{1}{2}} \overline{G} \Psi \overline{G} \overline{D}^{-\frac{1}{2}} \right) \overline{D}^{\frac{1}{2}} \right)^{-1} = \overline{D}^{-\frac{1}{2}} \left(\overline{I} - \overline{D}^{-\frac{1}{2}} \overline{G} \Psi \overline{G} \overline{D}^{-\frac{1}{2}} \right)^{-1} \overline{D}^{-\frac{1}{2}}
\]

where the middle term \(\left(\overline{I} - \overline{D}^{-\frac{1}{2}} \overline{G} \Psi \overline{G} \overline{D}^{-\frac{1}{2}} \right)^{-1}\) is also invertible and positive definite for \(\rho \in (-\frac{1}{n - 1}, 1)\) due to the positive definiteness of \(\overline{D} - \overline{G} \Psi \overline{G}\) and the invertibility of \(\overline{D}\).

For \(\rho \in (0, 1)\), notice that \(\overline{D}^{-\frac{1}{2}} G \Psi \overline{G} \overline{D}^{-\frac{1}{2}}\) is also positive definite, so its eigenvalues must be positive. Also, its largest eigenvalue \(\varphi_{max}\) must be smaller than 1. Otherwise,
there exists a nonzero vector ξ such that

$$\xi' \left(I - D^{-\frac{1}{2}} G\Psi G D^{\frac{1}{2}} \right) \xi = (1 - \phi_{max}) \xi' \xi < 0$$

contradicting the positive definiteness of $\left(I - D^{-\frac{1}{2}} G\Psi G D^{\frac{1}{2}} \right)$. Then, we may write

$$\left(I - D^{-\frac{1}{2}} G\Psi G D^{\frac{1}{2}} \right)^{-1} = I + \sum_{k=1}^{\infty} \left(D^{-\frac{1}{2}} G\Psi G D^{\frac{1}{2}} \right)^k$$

and thus

$$\left(D - \overline{G} \Psi \overline{G} \right)^{-1} = D^{-1} + D^{-\frac{1}{2}} \sum_{k=1}^{\infty} \left(D^{-\frac{1}{2}} G\Psi G D^{\frac{1}{2}} \right)^k D^{-\frac{1}{2}}$$

$$= D^{-1} + \sum_{k=1}^{\infty} \left(D^{-1} \overline{Q} \right)^k D^{-1}$$

where $\overline{Q} := \overline{G}\Psi \overline{G}$ can be interpreted as the weighted square of the extended adjacency matrix. Consider the set of all paths of length q between i and j under G as

$$\Pi^q_{ij}(G) = \{(i_0, i_1, i_2, \ldots, i_q) \mid i_0 = i, i_q = j and \overline{G}_{i_n i_{n+1}} = 1 for n = 0, 1, \ldots q - 1\}$$

For every $\pi_{ij} \in \Pi^q_{ij}(G)$, let $W(\pi_{ij})$ denote the weight associated to this path. It is not difficult to see that,

$$W(\pi_{ij}) = \frac{1}{d_i + 1} + \frac{\rho}{d_{i1} + 1} + \frac{\rho}{d_{i2} + 1} + \frac{\rho}{d_{i3} + 1} + \cdots + \frac{1}{d_j + 1}$$
Then

\[\Lambda_i = \left[(D - G \Psi \overline{G})^{-1} \right]_i \]

\[= \left(D^{-1} \right)_i + \left(\sum_{k=1}^{\infty} \left(D^{-1} Q \right)^k D^{-1} \right)_i \]

\[= \frac{1}{d_i + 1} + \sum_{j \in N} \left(\sum_{k=1}^{\infty} \left(D^{-1} G \Psi \overline{G} \right)^k \right)_{ij} \cdot \frac{1}{d_j + 1} \]

\[= \frac{1}{d_i + 1} + \sum_{j \in N} \sum_{k=1}^{\infty} \left(D_{[i]}^{-1} G \Psi G \overline{D}_{[j]}^{-1} \ldots D_{[i]}^{-1} G \Psi \overline{G}_{(j)} \right) \cdot \frac{1}{d_j + 1} \]

\[= \frac{1}{d_i + 1} + \sum_{j \in N} \sum_{k=1}^{\infty} \left(\frac{1}{d_i + 1} \cdot \rho \cdot \frac{1}{d_j + 1} \cdot \ldots \right) \cdot \frac{1}{d_j + 1} \]

\[= \frac{1}{d_i + 1} + \sum_{q=1}^{\infty} \sum_{j \in N} \sum_{\pi_{ij} \in \Pi_{ij}^q} W(\pi_{ij}) \]

This concludes the proof. \(\blacksquare \)

A.7 Proof of Proposition 5

Proof for the Dense Case \((p_n = p)\)

Proof. To start with, notice that as \(d_i \sim B(n - 1, p)\), we have

\[\frac{1}{n} d_i = \frac{n - 1}{n} \cdot \frac{1}{n - 1} d_i \xrightarrow{a.s.} p \]

and

\[\frac{d_i - np}{\sqrt{np(1-p)}} = \sqrt{\frac{n - 1}{n}} \cdot \frac{d_i - (n - 1)p}{\sqrt{(n - 1)p(1-p)}} \xrightarrow{d} \mathcal{N}(0, 1). \]
For each \(n \), set \(\bar{d}_n \) by

\[
\bar{d}_n := \left(\mathbb{E}_n^{ER} \left[\frac{1}{(d_j (G_n) + 1)^2} \right| ij \in G_n \right] \right)^{-\frac{1}{2}} - 1
\]

where \(\tilde{d}_j \sim B(n - 2, p) \)

so that

\[
\mathbb{E}_n^{ER} \left[\frac{1}{\left(\frac{1}{n} d_j (G_n) + \frac{1}{n} \right)^2} \right| ij \in G_n \right] - \frac{1}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2} = 0.
\]

Notice that

\[
\frac{1}{n} \bar{d}_n = \left(\mathbb{E}_n^{ER} \left[\frac{1}{\left(\frac{1}{n} + \frac{1}{n - 2} \cdot \frac{1}{n} \bar{d}_j \right)^2} \right] \right)^{-\frac{1}{2}} - \frac{1}{n} \rightarrow \left(\frac{1}{(0 + p)^2} \right)^{-\frac{1}{2}} = p.
\]

Now, consider

\[
\text{Cov}_n^{ER} [\text{Var} (x_i (G_n)), d_i (G_n)]
\]

\[
= \text{Cov}_n^{ER} \left[\text{Var} (x_i (G_n)) - \frac{p}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2}, d_i (G_n) - (n - 1) p \right]
\]

\[
= \mathbb{E}_n^{ER} \left[\left(\text{Var} (x_i (G_n)) - \frac{p}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2} \right) (d_i (G_n) - (n - 1) p) \right]
\]

\[
- \mathbb{E}_n^{ER} \left[\text{Var} (x_i (G_n)) - \frac{p}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2} \right] \mathbb{E}_n^{ER} [d_i (G_n) - (n - 1) p]
\]

\[
= \mathbb{E}_n^{ER} \left[\left(\text{Var} (x_i (G_n)) - \frac{p}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2} \right) (d_i (G_n) - (n - 1) p) \right]
\]

\[
= \mathbb{E}_n^{ER} \left[\text{Var} (x_i (G_n)) - \frac{p}{\left(\frac{1}{n} \bar{d}_n + \frac{1}{n} \right)^2} \right] \cdot (d_i (G_n) - (n - 1) p)
\]

where the second last equality follows from the fact that

\[
\mathbb{E}_n^{ER} [d_i (G_n) - (n - 1) p] = 0.
\]
Then,

\[
\mathbb{E}_n^{ER} \left[n \text{Var} \left(x_i (G_n) \right) \mid d_i (G_n) \right]
\]

\[
= \mathbb{E}_n^{ER} \left[\frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{n} + \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{n} d_i + \frac{1}{n} \sum_{j \in \mathbb{N}_i} \left\{ \frac{1}{(\frac{1}{n} d_j + \frac{1}{n})^2} - \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \right\} \right] \mid d_i (G_n)
\]

\[
= \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{n} + \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{n} d_i + \frac{1}{n} \sum_{j \in \mathbb{N}_i} \left\{ \mathbb{E}_n^{ER} \left[\frac{1}{(\frac{1}{n} d_j + \frac{1}{n})^2} \mid d_i (G_n) \right] - \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \right\}
\]

\[
\overset{\text{a.s.}}{=} \frac{1}{(p + 0)^2} \cdot 0 + \frac{1}{(p + 0)^2} \cdot p = \frac{1}{p}
\]

where the last equality follows from the definition of \(d_n \). By appropriate centering, we now have

\[
\frac{1}{\sqrt{n}} (d_i - (n-1)p) \cdot \sqrt{n} \left(n \mathbb{E}_n^{ER} \left[\text{Var} \left(x_i (G_n) \right) \mid d_i (G_n) \right] - \frac{np}{(\frac{1}{n} d_i + \frac{1}{n})^2} \right)
\]

\[
= \frac{1}{\sqrt{n}} (d_i - (n-1)p) \cdot \left[\frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{\sqrt{n}}{n} + \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{\sqrt{n}} (d_i - np) \right]
\]

\[
= \frac{1}{\sqrt{n}} p \cdot \left[\frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{\sqrt{n}}{n} + \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{\sqrt{n}} (d_i - np) \right]
\]

\[
\frac{\sqrt{n}}{n} \cdot \frac{1}{(\frac{1}{n} d_i + \frac{1}{n})^2} \cdot \frac{1}{\sqrt{n}} (d_i - np) + \frac{p(1-p)}{(\frac{1}{n} d_i + \frac{1}{n})^2} \left(\frac{d_i - np}{\sqrt{np(1-p)}} \right)^2
\]

\[
\overset{\text{d}}{=} 0 + 0 + \frac{p(1-p)}{p^2} \cdot \chi_1^2
\]

so that

\[
\mathbb{E}_n^{ER} \left[\frac{1}{\sqrt{n}} (d_i - np) \cdot \sqrt{n} \left(\mathbb{E}_n^{ER} \left[n \text{Var} \left(x_i (G_n) \right) \mid d_i (G_n) \right] - \frac{p}{(\frac{1}{n} d_i + \frac{1}{n})^2} \right) \right]
\]

\[
\rightarrow \mathbb{E} \left[\frac{p(1-p)}{p^2} \cdot \chi_1^2 \right] = \frac{1-p}{p}.
\]
In summary, we have
\[
\begin{split}
& n \text{Cov}^E_n [\text{Var} (x_i (G_n)), d_i (G_n)] \\
= & \mathbb{E}_n^{ER} \left[\sqrt{n} \mathbb{E}_n^{ER} \left[n \text{Var} (x_i (G_n)) - \frac{np}{(\frac{1}{n} \overline{d}_n + \frac{1}{n})^2} \right] d_i (G_n) \right] \cdot \frac{1}{\sqrt{n}} (d_i (G_n) - (n - 1) p) \\
\rightarrow & \frac{1 - p}{p} > 0.
\end{split}
\]

Proof for the Sparse Case \((np_n \rightarrow \lambda > 1) \)

Proof. Suppose \(np_n \rightarrow \lambda > 1 \). In this case it is well known that
\[
d_i (G_n) \xrightarrow{d} \text{Poisson} (\lambda),
\]
i.e.,
\[
\mathbb{P}_n^{ER} [d_i (G_n) = k] \rightarrow e^{-\lambda} \frac{\lambda^k}{k!}, \quad \forall k \in \mathbb{N}.
\]
Now we set \(\overline{d}_n \) as, for each \(n \),
\[
\overline{d}_n := \left(\mathbb{E}_n^{ER} \left[\frac{1}{(d_j (G_n) + 1)^2} \right] i j \in G_n \right)^{-\frac{1}{2}} - 1
\]
\[
= \left(\mathbb{E}_n^{ER} \left[\frac{1}{(2 + \overline{d}_j)^2} \right] \right)^{-\frac{1}{2}} - 1 \quad \text{where} \quad \overline{d}_j \sim B (n - 2, p_n).
\]
\[
\rightarrow d_\infty := \left(\mathbb{E} \left[\frac{1}{(2 + \text{Poisson} (\lambda))^2} \right] \right)^{-\frac{1}{2}} - 1
\]
Again,
\[
\mathbb{E}_n^{ER} [\text{Var} (x_i (G_n)) | d_i (G_n)] = \frac{1}{(d_i + 1)^2} + \frac{1}{(\overline{d}_n + 1)^2} \cdot d_i
\]
and thus

\[
Cov_n^{ER} [Var(x_i(G_n)), d_i(G_n)] \\
= \mathbb{E}_n^{ER} \left[\mathbb{E}_n^{ER} [Var(x_i(G_n)) | d_i(G_n)] \cdot d_i(G_n) \right] - \mathbb{E}_n^{ER} [Var(x_i(G_n))] \cdot \mathbb{E}_n^{ER} [d_i(G_n)] \\
= \mathbb{E}_n^{ER} \left[\frac{d_i}{(d_i + 1)^2} + \frac{1}{(d_n + 1)^2} \cdot d_i \right] - \mathbb{E}_n^{ER} \left[\frac{1}{(d_i + 1)^2} + \frac{1}{(d_n + 1)^2} \cdot d_i \right] \cdot \mathbb{E}_n^{ER} [d_i] \\
= \mathbb{E}_n^{ER} \left[\frac{d_i}{(d_i + 1)^2} \right] - \mathbb{E}_n^{ER} \left[\frac{1}{(d_i + 1)^2} \right] \cdot \mathbb{E}_n^{ER} [d_i] + \frac{1}{(d_n + 1)^2} \cdot Var_n^{ER} [d_i] \\
\to \kappa(\lambda) := \mathbb{E} \left[\frac{\xi - \lambda}{(\xi + 1)^2} \right] + \frac{\lambda}{(d_{\infty} + 1)^2}, \quad \text{where } \xi \sim \text{Poisson}(\lambda) \\
= \mathbb{E} \left[\frac{\xi}{(\xi + 1)^2} \right] - \lambda \mathbb{E} \left[\frac{1}{(\xi + 1)^2} - \frac{1}{(\xi + 2)^2} \right], \quad \text{where } \xi \sim \text{Poisson}(\lambda) \\
= \mathbb{E} \left[\frac{\xi^3 + 4\xi^2 + 2(2 - \lambda)(\xi - 3\lambda)}{(\xi + 1)^2(\xi + 2)^2} \right], \quad \text{where } \xi \sim \text{Poisson}(\lambda)
\]

which may be positive or negative depending on \(\lambda \).

Numerical computation of \(\kappa(\lambda) \) in Mathematica shows that \(\kappa(\lambda) \) is positive for large enough \(\lambda \) with a cutoff \(\lambda \approx 3.8803 \). See Figure 4 for numerical plots of \(\kappa(\lambda) \).

A.8 An Example on Constructing Transfers with a Simple Network

In this section we provide additional intuition on how to construct bilateral transfers from a given fixed network. We show how to construct the Lagrangean centrality measure by accumulating weighted paths, and how this leads to a precise prediction on gross transfers as a function of the underlying correlation parameter \(\rho \).

We consider a simple network where \(A, B \) and \(C \) form a triangle, and \(C \) is linked to \(D \) who is linked to \(E \). This network is shown in Figure 5 above, where the Lagrangean Centrality measures appear next to each node. These measures are calculated by the accumulation of weighted paths, as indicated in Proposition 4. These weights are
Figure 4: Plot of $\kappa(\lambda)$
Figure 5: Centrality Measures in a Five-Player Network with $\rho = 0.4$

path-specific and depend on the degree of each node involved in each even-length path. To fix ideas, consider as an example all paths of length 4 starting from E. Since we are considering self-links (or loops) there are many such paths – for instance one such path is $\{E - E - E - E - E\}$, while another such path is $\{E - D - C - B - A\}$ and even another one is $\{E - D - C - B - B\}$, or $\{E - D - C - C - C\}$, and so on. As you can see, there are many such paths. For each one of these paths, the weight assigned to it depends on the degrees of those involved in the path, as described in the last equation of Proposition 4. For instance, for the path $\{E - E - E - E - E\}$ the entire path only involves individual E, which has $\bar{d}_E = 2$, so we therefore compute the following weight:

$$W(\{E - E - E - E - E\}) = \frac{1}{2 + 1} \cdot \frac{\rho}{1 + 2\rho} \cdot \frac{1}{2 + 1} \cdot \frac{\rho}{1 + 2\rho} \cdot \frac{1}{2 + 1}$$

Another example involves the path $\{E - D - C - B - A\}$, which involves all nodes in the network. In this case, we have that

$$W(\{E - D - C - B - A\}) = \frac{1}{2 + 1} \cdot \frac{\rho}{1 + 3\rho} \cdot \frac{1}{4 + 1} \cdot \frac{\rho}{1 + 3\rho} \cdot \frac{1}{3 + 1}$$

We could continue this way and compute the weights of all such paths of length 4 and 6 and 8 and so on. The centrality measures, Λ_i, shown in Proposition 4 can be interpreted as the sum of the weights of all even-length paths starting from i in this way. In Figure 5 above we compute these measures for the case in which the uniform correlation parameter ρ is equal to 0.4. Once we have the measures Λ_i for
all individuals i we can compute the flows α_{ij} from i to j as a linear function of these centrality measures, as shown in the first equation of Proposition 4. Figure 6 shows the resulting gross flows across every pair of connected individuals for the case with $\rho = 0.4$.

Figure 6: Gross Transfers in a Five-Player Network $\rho = 0.4$

Notice from Figure 6 that individual C transfers a larger share of its endowment to individuals A and B than to individual D, since B and A can share this efficiently, but D cannot share these proceeds with E, given the informational constraints that make it impossible for t_{DE} to depend on c_C. Moreover, we can see that individual C takes on a larger share from others’ endowments than the share it sends out. As explained earlier this generates a larger volatility of consumption for individual C, which acts as a net provider of insurance to the rest of the community. Finally, notice that the transfer from E to D is larger than the transfer from D to E: because E is more peripheral, it is optimal that it unloads a greater share of risk unto D than vice versa, since D is insured in turn by C.

Of course, for different values of ρ the Lagrangean centralities vary widely, and therefore the resulting transfers are also very different. In fact, notice that when $\rho = 0$ it is clear from the second equation in Proposition 4 that $\Lambda_i = \frac{1}{\alpha_i+1}$ which is the reciprocal of the number of connections of individual i (including itself). In that
case, it is clear from the first equation in Proposition 4 that

$$\alpha_{ji} = \lambda_j = \frac{1}{d_j + 1}$$

which corresponds to the local equal-sharing rule, as described in section 3.3.1 on independent endowments. Figure 7 shows simulation results for different values of \(\rho \). Notice that as we increase the value of \(\rho \in \left(-\frac{1}{n-1}, 1 \right) \) gross transfers between any pair of individuals converge, and therefore all net transfers tend to zero.

Figure 7: Predicted Bilateral Transfers for Different Uniform Correlation Values \(\rho \)

A.9 Alternative Model Specifications

The main results in Section 3.3 are developed under the CARA-normal setting (Assumption 1) with a global correlation structure. We now consider the extendability of those results under some alternative model specifications.
Quadratic Utility Function

As to the specification of utility functions, we could alternatively work with quadratic utility functions, \(u_i (x_i) = x_i - \frac{1}{2} r x_i^2 \) for \(i \in N \), which also admits a mean-variance expected utility representation. Noting that \(u'_i (x_i) = 1 - r x_i \), the conditional Borch rule in Proposition 1 takes the form of \(\lambda_i (1 - r E_{ij} [x_i]) = \lambda_j (1 - r E_{ij} [x_j]) \). With equal Pareto weightings (\(\lambda = 1 \)) and normal endowments, it can be shown that this leads to exactly the same system of linear equations as in (24).\(^{37}\) Hence, the linear transfer shares given in Proposition 4 also characterize a Pareto efficient risk-sharing arrangement under the quadratic-normal setting. However, the Pareto efficient frontier traced out by all admissible Pareto weightings will correspond to a collection of different state-dependent transfer shares \(\alpha \).

Relaxing the Normality of the Endowments Distribution

The family of normal distributions have two properties that are technically essential to the proof of Pareto efficiency via the conditional Borch rule. First, a linear combination of a jointly normal vector remains normal, which allows us to explicitly characterize the distribution of final consumption \(x_i = e_i - \sum_{j \in N} \alpha_{ij} e_j \) when transfer rules are linear. Second, normal distributions admit linear conditional expectations in the form of (31), which allows us to transform the conditions for Pareto efficiency into a system of linear equations on transfer shares. The assumption of normality can be relaxed slightly: if the endowment vector has a joint elliptical distribution,\(^{38}\) then both properties carry over,\(^{39}\) and thus the transfer shares given by Proposition 4 continue to characterize the Pareto efficient risk-sharing arrangements. Without the joint normality (or ellipticity) assumption, linear risk-sharing arrangements are in generally not Pareto efficient. For example consider again the 3-individual line network with the random endowment vector \(e = (Y, Z, -Z^3) \) where \(Y, Z \) are independent standard normal random variables. As there are effectively no uncertainty, the unique Pareto efficient profile of transfer rules is given by \(t_{12} (e_1, e_2) = \frac{1}{3} e_1 - \frac{2}{3} e_2 - \frac{1}{3} e_3 \), \(t_{13} (e_1, e_3) = \frac{1}{3} e_1 - \frac{2}{3} e_3 - \frac{1}{3} e_{1/3} \) which are clearly nonlinear.

\(^{37}\)The proof is available in Appendix B.10.

\(^{38}\)Normal distribution is a special case of elliptical distribution.

\(^{39}\)See, for example, Fang, Kotz, and Ng (1990), Theorem 2.16 & 2.18.
Heterogeneity in Expected Endowments

Throughout Section 4 we maintained the specification that endowment distributions have zero mean. However, we argue that, as risk sharing is the sole concern of this paper, the specification of zero mean is a warranted normalization. For concreteness, let \(\bar{\bar{y}}_i \) be the expected level of endowment for individual \(i \), and \(y_i = \bar{\bar{y}}_i + e_i \) be the random realization of endowment, where \(e_i \) is assumed to have zero mean. Clearly \(y \) and \(e \) induce the same local information structures \(\sigma(y_k : k \in N_{ij}) \equiv \sigma(e_k : k \in N_{ij}) \), so it makes no differences whether the risk-sharing arrangements are specified to be contingent on \(y \) or \(e \). Hence our results remain valid regardless of whether "endowments" or "endowment shocks" are shared. Moreover, neither does it make any difference whether the linear "guess" is taken to be \(t_{ij} = \alpha_{ij} e_i - \alpha_{ji} e_j + \sum_{k \in N_{ij}} \beta_{ijk} e_k + \mu_{ij} \) or \(t_{ij} = \alpha_{ij} y_i - \alpha_{ji} y_j + \sum_{k \in N_{ij}} \beta_{ijk} y_k + \bar{\mu}_{ij} \); both will lead to the same system of linear equations in (24), so the Pareto efficient state-dependent transfer shares are given by exactly the same formulas in Proposition 4, irrespective of the value of mean-income vector \(\bar{\bar{y}} \). Any difference induced by \(\bar{\bar{y}} \) is completely absorbed by the state-independent transfers \(\mu \), which are irrelevant to Pareto efficiency in our framework.

A.10 Proof of Proposition 6

Proof. Condition (a) implies that the contractibility constraints encoded in \(Q \) are equivalent to the "local information constraints", characterized by the common neighborhoods as in Section (3), under the informational network \(G' \). Hence, no feasible consumption plan subject to the contractibility constraints \(Q \) can strictly Pareto dominate \(x^* (G') \).

It remains to show that \(x^* (G') \) is feasible under contractibility constraints \(Q \) on network \(G \). Specifically, consider each link \(ij \in G' \setminus G \). As \(ij \) is not directly linked in \(G \), the net transfer \(t_{ij}^* (G') = \alpha_{ij}^* (G') e_i - \alpha_{ji}^* (G') e_j + \mu_{ij}^* \) cannot be directly transferred between individual \(i \) and individual \(j \). However, by Condition (b), there exists a path of individuals in \(G \), in the form of \(i = k_0 - k_1 - \ldots - k_m = j \), such that \(\{i, j\} \subseteq N_{k_h} (G') \) for all \(h = 0, \ldots, m \). Hence, \(\{i, j\} \subseteq N_{k_h k_{h+1}} (G') \) for all \(h = 0, \ldots, m - 1 \). Now, define

\[
\hat{t}_{k_h k_{h+1}} (G') := \alpha_{ij}^* (G') e_i - \alpha_{ji}^* (G') e_j + \mu_{ij}^* \quad \text{for all } h = 0, \ldots, m - 1,
\]
and

\[
\bar{t}_{kh_{h+1}} := t^{*}_{kh_{h+1}} (G') + \bar{t}_{kh_{h+1}} (G') \\
\bar{t}_{ij} := 0
\]

Clearly, the transfer profile \(\bar{t} \) still satisfy the contractibility constraints \(Q \), as \(\{i, j\} \subseteq \bar{N}_{kh_{h+1}} (G') = Q_{ij} (G) \) by Condition (a). Now, it is easy to see that the new transfer profile \(\bar{t} \) induces the same consumption plan \(x^* (G') \). However, there is no more direct transfer between individuals \(i \) and \(j \), who are not physically linked in \(G \). In the meantime, as \(G_{kh_{h+1}} = 1 \) for all \(h = 0, \ldots, m - 1 \), we have not added any transfer between pairs of individuals who are not originally linked in \(G \).

By induction on all such pairs of individuals \(G' \setminus G \), which must terminate in finite steps, we conclude that there exists a transfer profile \(t^{**} \) that: (i) satisfies the contractibility constraints \(Q \); (ii) induces the same consumption plan \(x^* (G') \); and (iii) respects the physical transfer network \(G \), i.e., \(t^{**}_{ij} = 0 \) only if \(G_{ij} = 1 \).

A.11 Proof of Proposition 7

Proof. For each ordered pair \(ij \) such that \(\bar{G}_{ij} = 1 \), define the following adjusted local equal sharing rule,

\[
t^{*}_{ij} (\bar{G}) := \frac{1}{d^*_{ij} (\bar{G}) + 1} e^*_{ij},
\]

as the transfer of \(j \)'s endowment shock to individual \(i \). Then \(t^{*} (\bar{G}) \) would lead to the consumption plan \(x^*_i (\bar{G}) \) as defined in (19):

\[
x_i = e_i + \sum_{j: \bar{G}_{ij} = 1} t^{*}_{ij} (\bar{G}) - \sum_{j: \bar{G}_{ji} = 1} t^{*}_{ji} (\bar{G}) = x^*_i (\bar{G}).
\]

For each \(ij \in G' \setminus \bar{G} \), there exists a path of individuals \(i = k_0 k_1 \ldots k_{m} = j \) in \(G \), such that \(j \in Q_{kh_{h+1}} \) for all \(h = 0, \ldots, m - 1 \). Define

\[
\bar{t}_{kh_{h+1}} := t^{*}_{kh_{h+1}} (\bar{G}) + \frac{1}{d^*_{j} (\bar{G}) + 1} e_j
\quad \text{for } h = 0, \ldots, m - 1,
\]

\[
\bar{t}_{kh_{h+1}} := 0.
\]
It is straightforward to see that \(\bar{t} \) induces the same consumption plan \(x^* \left(\tilde{G} \right) \), satisfies the contractibility constraints \(Q \) and no longer involves direct transfer between \(ij \). By induction on the set \(G \backslash \tilde{G} \), we conclude that there exists a physically feasible linear transfer profile \(t^{**} \left(G \right) \) that satisfies the contractibility constraints \(Q \) and induces the consumption plan \(x^* \left(\tilde{G} \right) \).

We now show that \(x^*_i \left(\tilde{G} \right) \) achieves constrained Pareto efficiency subject to the contractibility constraints \(Q \). Fix any \(ij \in G \). By the definition of \(\tilde{G} \), it is easy to prove that \(k \in N_i \left(\tilde{G} \right) \cap Q_{ij} \) implies that \(k \in N_j \left(\tilde{G} \right) \), and thus

\[
N_i \left(\tilde{G} \right) \cap Q_{ij} = N_{ij} \left(\tilde{G} \right) \cap Q_{ij} = N_j \left(\tilde{G} \right) \cap Q_{ij}.
\]

Hence, the difference in the local certainty equivalents for individuals \(i \) and \(j \), conditional on subvector of endowment realizations that \(t_{ij} \) can be contingent on, namely \(e_{\tilde{Q}_{ij}} = (e_i, e_j, e_{Q_{ij}}) \), is given by

\[
CE \left(x^*_i \left(\tilde{G} \right) \left| e_{\tilde{Q}_{ij}} \right. \right) - CE \left(x^*_j \left(\tilde{G} \right) \left| e_{\tilde{Q}_{ij}} \right. \right) \\
= \frac{1}{d_i \left(\tilde{G} \right) + 1} e_i + \frac{1}{d_j \left(\tilde{G} \right) + 1} e_j + \sum_{k \in N_i \left(\tilde{G} \right) \cap Q_{ij}} \frac{1}{d_k \left(\tilde{G} \right) + 1} e_k \\
+ \sum_{k \in N_i \left(\tilde{G} \right) \backslash Q_{ij}} \frac{1}{d_k \left(\tilde{G} \right) + 1} \mathbb{E} \left[e_k \left| e_{\tilde{Q}_{ij}} \right. \right] + C_i \\
- \frac{1}{d_i \left(\tilde{G} \right) + 1} e_i - \frac{1}{d_j \left(\tilde{G} \right) + 1} e_j - \sum_{k \in N_j \left(\tilde{G} \right) \cap Q_{ij}} \frac{1}{d_k \left(\tilde{G} \right) + 1} e_k \\
- \sum_{k \in N_j \left(\tilde{G} \right) \backslash Q_{ij}} \frac{1}{d_k \left(\tilde{G} \right) + 1} \mathbb{E} \left[e_k \left| e_{\tilde{Q}_{ij}} \right. \right] - C_j \\
= C_i - C_j, \tag{28}
\]

as \(\mathbb{E} \left[e_k \left| e_{\tilde{Q}_{ij}} \right. \right] = 0 \) for any \(k \notin \tilde{Q}_{ij} \) due to the independence of endowments, which is essential for this result. As equation (28), an adapted version of (6), represents the FOC’s for constrained Pareto efficiency subject to the contractibility constraints \(Q \), we conclude that \(x^*_i \left(\tilde{G} \right) \), as well as \(t^{**} \left(G \right) \), are constrained Pareto optimal. \(\blacksquare \)
A.12 Proof of Proposition 8

Proof.

(a) Global Communication

Under the global communication protocol, the first-best consumption plan induced by global equal sharing can be achieved.

Specifically, let each individual \(i \) submits ex post a public report \(m_i \) of her own endowment realization \(e_i \). As the whole vector of reports \(m \) is globally observable, for any linked pair \(ij \), they make make their transfer contract \(t_{ij} \) effectively contingent on \(I_{ij} = (e_k)_{k \in \overline{N}_{ij}} \) and \(m \).

Consider the following specification of \(t_{ij} \):

\[
t_{ij} (I_{ij}, m) = \tilde{t}_{ij} (I_{ij}, m_{N \setminus \overline{N}_{ij}}) + |e_i - m_i| - |e_j - m_j|,
\]

where \(m_{N \setminus \overline{N}_{ij}} \) denotes the reports from individuals outside \(\overline{N}_{ij} \). Clearly, \(t_{ij} \) respects the measurability constraints.

Let \(m_i^* : \mathbb{R}^{|\overline{N}_i|} \to \mathbb{R} \) denote individual \(i \)'s reporting strategy. Given the risk sharing arrangement \(t \) specified above, it is easy to see that, after endowment realizations, it is a Nash equilibrium for each individual to report his own \(e_i \) truthfully, i.e., setting \(m^*(e) \equiv e \). This is because, given the endowment realizations \(e \) and the induced local state \(I_{ij} \) for each \(j \in N_i \), strategically individual \(i \) should choose \(m_i \) to maximize his final consumption under \(t \):

\[
x_i^t (e, m) = e_i - \sum_{j \in N_i} t_{ij} (e, m)
\]

\[
= \left[e_i - \sum_{j \in N_i} \tilde{t}_{ij} (I_{ij}, m_{N \setminus \overline{N}_{ij}}) + \sum_{j \in N_i} |e_j - m_j| \right] - d_i |e_i - m_i|,
\]

which depends on \(m_i \) only via the last term, \(-d_i |e_i - m_i|\). It is then a dominant strategy for individual \(i \) to set \(m_i = e_i \).

Anticipating this global truthful revelation of endowment realizations, it is obvious that \(\tilde{t} \) should be configured to implement the global equal sharing rule\(^{40} \), with the understanding that \(m_{N \setminus \overline{N}_{ij}} = e_{N \setminus \overline{N}_{ij}} \) in equilibrium ex post.

\(^{40}\)This is clearly feasible under connectedness of \(G \).
In summary, global communication as specified above completely solves all information problems, and effectively (in the sense of ex post dominant strategy implementability) produces an informational network G' that is given by the complete network. Then, the local Borch rule, applied to the complete network G' (or the corresponding contractibility structure Q as defined in 6.1), immediately implies that the first best global equal sharing can be achieved.

(b) Local Announcements

With local announcement, the effective (ex post dominant strategy implementable) informational network G' is effectively given by connecting all 2nd-order neighbors in the physical network G.

Let x^* denote the constrained Pareto efficient consumption plan computed according to Proposition 4 with the informational network G'. As G is connected, there exists a profile of bilateral transfer rules \bar{t} defined on physical transfer links in G that satisfies the following two conditions:

- \bar{t} induces the consumption plan x^*; and

- for every $i \in N$, individual i’s exposure to e_k for any individual k of distance 2 to individual i in G is implemented by \bar{t} completely through a shortest path between i and k in G.

Notice that the existence of such a transfer arrangement \bar{t} is guaranteed by the complete arbitrariness in the configuration of superfluous cyclical transfers.

The key implication of condition (ii) is that, for any linked pair ij in G, whenever there exists some individual k of distance 2 to both i and j, then the net share β_{ijk} of e_k transferred from i to j must be exactly 0. This is because, either i’s or j’s exposure of e_k should be completely channeled via their shortest paths (of length 2) to individual k, which necessarily does not include link ij; moreover, any other individual’s shortest path to k does not include link ij, either. Similarly, another implication of condition (ii) is that, for any lined pair ij in G and any $k \in N_{ij}$, between ij there is zero share of e_k being transferred, i.e., $\beta_{ijk} = 0$.

With the two implications of condition (ii) in mind, we deduce that, as \bar{t}_{ij} can be contingent on endowment realizations of individuals in

$$N'_{ij} = \bar{N}_{ij} \cup (N_i \setminus N_j) \cup (N_j \setminus N_i) \cup \{k : k \text{ is of distance } 2 \text{ to both } i \text{ and } j\},$$

70
i.e., the common neighborhood of ij under the supergraph G' that treats distance-2 individuals in G as linked (in G'), the transfer arrangement \tilde{t} admits the following linear representation:

$$\tilde{t}_{ij}(e) = \tilde{\alpha}_{ij}e_i - \tilde{\alpha}_{ji}e_j + \sum_{k \in N_i \setminus N_j} \tilde{\beta}_{ijk}e_k - \sum_{k \in N_j \setminus N_i} \tilde{\beta}_{ijk}e_k.$$

We now proceed to construct a risk sharing arrangement t using ex post messages based on \tilde{t}.

This can be achieved by letting each individual i submit a report m_i of all endowment realizations i observes, i.e., $(e_k)_{k \in N_i}$. As m_i is observed by i's neighbors, the bilateral transfer contract t_{ij} between i and i's neighbor j can be contingent on I_{ij} as well as (m_i, m_j).

Consider the following specification of t_{ij}:

$$t_{ij}(I_{ij}, m_i, m_j) = \tilde{t}_{ij}(I_{ij}, (m_{ik})_{k \in N_i \setminus N_j}, (m_{jk})_{k \in N_j \setminus N_i}) + C'(|e_j - m_{ij}| - |e_i - m_{ji}|)$$

$$= \tilde{\alpha}_{ij}e_i - \tilde{\alpha}_{ji}e_j + \sum_{k \in N_i \setminus N_j} \tilde{\beta}_{ijk}m_{ik} - \sum_{k \in N_j \setminus N_i} \tilde{\beta}_{jik}m_{jk}$$

$$+ C'(|e_j - m_{ij}| - |e_i - m_{ji}|)$$

where m_{ik} denotes individual i's report of e_k and C is constant given by

$$C := \max_{ij \in G} \sum_{k \in N_i \setminus N_j} |\tilde{\beta}_{ikj}|. \tag{29}$$
Again, \(i \)'s final consumption under \(t \) is given by

\[
x_i^t(e, m) = \left(1 - \sum_{j \in N_i} \tilde{\alpha}_{ij}\right) e_i + \sum_{j \in N_i} (\tilde{\alpha}_j e_j - C |e_j - m_{ij}| + C |e_i - m_{ij}|)
- \sum_{j \in N_i} \left(\sum_{k \in N_i \setminus N_j} \tilde{\beta}_{ijk} m_{ik} - \sum_{k \in N_j \setminus N_i} \tilde{\beta}_{jik} m_{ji}\right)
= \left[\left(1 - \sum_{j \in N_i} \tilde{\alpha}_{ij}\right) e_i + \sum_{j \in N_i} \left(\tilde{\alpha}_j e_j + C |e_j - m_{ji}| + \sum_{k \in N_j \setminus N_i} \tilde{\beta}_{jik} m_{ji}\right)\right]
- \sum_{j \in N_i} \left(C |e_j - m_{ij}| + \sum_{k \in N_i \setminus N_j} \tilde{\beta}_{ikj} m_{ij}\right),
\]

which by (29) strictly increases in \(m_{ij} \) whenever \(m_{ij} < e_j \), and strictly decreases in \(m_{ij} \) whenever \(m_{ij} > e_j \). Hence, ex post individual \(i \)'s dominant strategy is to set \(m_{ij} = e_j \).

Lastly, notice that no information about third-order neighbors can be possibly transmitted under the protocol of local announcements.

In summary, all individuals will truthfully report \((e_k)_{k \in N_i}\) in an ex post dominant strategy equilibrium, together achieving the constrained Pareto efficient consumption plan with respect to the augmented informational network \(G' \), a supergraph of the physical transfer network \(G \) that links all distance-2 neighbors in \(G \).

(c) Local Comments

With local comments, the effective (ex post dominant strategy implementable) informational network \(G' \) is effectively given by connecting all neighbors within a distance of 3 in the physical network \(G \).

Now, each individual \(i \) may submit to each neighbor \(j \in N_i \) a report \(m_{ij} \) of the endowment realizations \(i \) observe, i.e., \(I_i \equiv (e_k)_{k \in N_i} \). Specifically, \(m_{ij} \in \mathbb{R}^{[N_i]} \) and we write \(m_{ijk} \) to denote \(i \)'s report of \(e_k \) to individual \(j \).

Now that for any linked pair \(ij \), they can commonly observe endowment realizations \(I_{ij} \), all comments received by \(i \) and all comments received by \(j \) (say, displayed on \(i \)'s and \(j \)'s Facebook pages). This facilitates transmission of distance-3 information: for any path \(i \rightarrow j \rightarrow k \rightarrow h \) in \(G \), individual \(i \) can now observe on \(j \)'s comment book a comment left by \(k \) about \(h \)'s endowment realization \(e_h \). We now simply need to
properly construct the bilateral contracts to incentivize truthful reporting ex post.

A formal procedure can be constructed in a similar way to the procedure for (b)
"local announcements" above. For avoid repetition, we now just provide a description
of the key idea.

If \(i \) lies about own endowment realization \(e_i \) to \(j \in N_i \), this is immediately
detectable by \(j \). Then by properly specifying a punishment transfer from \(i \) to \(j \) based on
\(|e_i - m_{ij}z_i| \), we can incentivize \(i \) to truthfully reports his own endowment realizations
to his neighbors. This implies that, each individual \(i \) can now observe a truthful report
of his 2nd-order neighbors, based on their truthful comments sent to \(i \)'s first-order
neighbors.

Now consider a linked pair \(ij \). If \(i \) lies to \(j \) about \(e_k \) for some \(k \in N_i \setminus N_j \),
this is detectable by \(j \) because \(j \) also observes \(k \)'s report to \(i \), namely \(m_{ki} \), which
includes a truthful report \(m_{kik} \) of \(e_k \). Contract \(t_{ij} \) may then specify a sufficient
punishment transfer from \(i \) to \(j \), which ensures the truthfulness of \(m_{ijk} \) about \(e_k \) in
a Nash equilibrium. Hence, each individual \(i \) can now observe a truthful report of
his 3rd-order neighbor's endowment \(e_k \), which is included in a report from one of \(i \)'s
2nd-order neighbor to one of \(i \)'s (1st-order) neighbor.

Now, suppose that both \(i \) and \(j \) "effectively know" \(e_k \) for some \(k \notin N_{ij} \). If \(k \in
N_i \cup N_j \), then \(k \) submits a truthful report to either \(i \) or \(j \), which is commonly observable
by \(i \) and \(j \), so \(t_{ij} \) can be optimally contingent on \(m_{kik} \) or \(m_{kj} \). If \(k \notin N_i \cup N_j \), there
are two possibilities.

First, if \(k \) is a 2nd-order neighbor of \(i \) (or \(j \) with similar arguments), then there
must exist some \(h \in N_i \) that submits a report \(m_{hi} \) to \(i \), which is commonly observed
by \(ij \) and includes a truthful report of \(e_k \), so \(t_{ij} \) can be optimally contingent on \(m_{kik} \).

Second, if \(k \) is a 3rd-order neighbor of both \(i \) and \(j \), there are three sub-cases.
In sub-case 1, \(ij \) are both linked to \(h \), of whom \(k \) is a 2nd-order neighbor. Then \(ij \)
commonly observe a report received by \(h \), which includes a truthful report of \(e_k \). In
sub-case 2, there exists a path \(k \to i \) and a path \(k \to j \) that both pass through some
\(h \in N_k \), but the condition for sub-case 1 does not hold. Then there is no report of \(e_k \)
that is commonly observed by \(ij \), but \(h \) is a diagonal node for link \(ij \) in a pentagon
subgraph. This does not affect risk-sharing efficiency due to the redundancy of link
\(ij \): efficient exposure to \(e_k \) can be channeled completely through the two paths from
\(h \) to \(i \) and \(j \) respectively, and it has been shown in the above arguments that \(e_k \) or a
truthful report of \(e_k \) is commonly observable by the two contracting parties in each
link along the two paths. In sub-case 3, any two paths \(k \rightarrow i \) and \(k \rightarrow j \) must be disjoint (except at \(k \)), in which case \(k \) is the diagonal node to link \(ij \) in a heptagon subgraph. Again this does not affect risk-sharing efficiency due to the redundancy of link \(ij \): efficient exposures to \(e_k \) can still be channeled completely through the two paths. In particular consider the path \(k \rightarrow i_2 \rightarrow i_1 \rightarrow i \), and notice that a truthful report of \(e_k \) from \(i_2 \) to \(i_1 \) is commonly observable by both \(i_1 \) and \(i \), thus being contractible.

This completes the proof that “local comment” leads to an implementable informational network with effective local observability of 2nd-order and 3rd-order neighbors in the physical network \(G \). Lastly, notice that no information about 4th-order neighbors is possible with local comment, so no other contracts can do better.

(d) Private Communication

With private communication, the informational network remains unchanged. This is because when messages are completely private there is no information spillover to any other party. In the meanwhile, the ex post messaging game is a zero-sum game (as the messages are mapped into net transfers). Hence, given each local state \(I_{ij} \), both \(i \) and \(j \) are guaranteed the value of the ex post game in any Nash equilibrium, so the equilibrium payoffs do not depend on nonlocal endowment realizations. Thus the implementable informational network remains unchanged. ■
B Additional Materials

Not for Publication

B.1 Proofs of Lemmas 1-5

Lemma 1: T^* with $\langle \cdot, \cdot \rangle$ forms an inner product space.

Proof. We first show that $\langle \cdot, \cdot \rangle$ is a well-defined inner product. Symmetry immediately follows from the definition. Linearity in the first argument follows from the linearity of the expectation operator:

$$
\langle \alpha s + \beta t, r \rangle = \mathbb{E} \left[\sum_{G_{ij}=1} (\alpha s_{ij} + \beta t_{ij}) r_{ij} \right] = \alpha \mathbb{E} \left[\sum_{G_{ij}=1} s_{ij} r_{ij} \right] + \beta \mathbb{E} \left[\sum_{G_{ij}=1} t_{ij} r_{ij} \right]
$$

$$
= \alpha \langle s, r \rangle + \beta \langle t, r \rangle.
$$

Positive definiteness is also obvious: $\langle t, t \rangle = \mathbb{E} \left[\sum_{G_{ij}=1} t_{ij}^2 (e) \right] \geq 0$ and $\langle t, t \rangle = 0$ if and only if $t = 0$, i.e., $t_{ij} (\omega) = 0$ for all linked ij and \mathbb{P}-almost all $e \in \Omega$.

We then show that T is a linear space. $\forall s, t \in T, \forall \alpha, \beta \in \mathbb{R}, \alpha s (I_{ij}) + \beta t (I_{ij})$ is also $\sigma (I_{ij})$-measurable, and

$$
\alpha s_{ij} (e) + \beta t_{ij} (e) = - (\alpha s_{ji} (e) + \beta t_{ji} (e)).
$$

Finiteness of expectation is obvious. Hence, $\alpha s + \beta t \in T$.

Lemma 2: The objective function in (3)

$$
J(t) := \mathbb{E} \left[\sum_{k \in N} \lambda_k u_k \left(e_k - \sum_{h \in N_k} t_{kh} (e) \right) \right],
$$

is concave on T.

75
Proof. \(\forall s, t \in \mathcal{T}, \forall \alpha \in [0, 1], \)
\[
\begin{align*}
J (\alpha s + (1 - \alpha) t) \\
= & \mathbb{E} \left[\sum_i \lambda_i u_i \left(e_i - \sum_{j \in N_i} (\alpha s_{ij} (e)) + (1 - \alpha) t_{ij} (e) \right) \right] \\
= & \sum_i \lambda_i \mathbb{E} \left[u_i \left(\alpha \left(e_i - \sum_{j \in N_i} s_{ij} (e) \right) + (1 - \alpha) \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \right) \right] \\
\geq & \sum_i \lambda_i \mathbb{E} \left[\alpha u_i \left(e_i - \sum_{j \in N_i} s_{ij} (e) \right) + (1 - \alpha) u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \right] \\
= & \alpha \mathbb{E} \left[\sum_i \lambda_i u_i \left(e_i - \sum_{j \in N_i} s_{ij} (e) \right) \right] + (1 - \alpha) \mathbb{E} \left[\sum_i \lambda_i u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \right] \\
= & \alpha J (s) + (1 - \alpha) J (t).
\end{align*}
\]

\[\blacksquare\]

Lemma. 3: \(J \) is Gâteaux-differentiable.
Proof. \(\forall s, t \in \mathcal{T}, \) for \(\alpha > 0, \)

\[
J(t + \alpha s) - J(t) \\
= \alpha \mathbb{E} \left[\sum_i \lambda_i \left[u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) - \alpha \sum_{j \in N_i} s_{ij} (e) \right) - u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \right] \right] \\
= \mathbb{E} \left[\sum_i \lambda_i \left[\frac{u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) - \alpha \tilde{s} (e) \right) \cdot \alpha \sum_{j \in N_i} s_{ij} (e)}{\alpha} \right] \right] \\
\text{for some } \tilde{s}_{ij}(e) \text{ between 0 and } \sum_{j \in N_i} s_{ij} (e)
\]

\[
= -\mathbb{E} \left[\sum_i \lambda_i \left[u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) - \alpha \tilde{s} (e) \right) \cdot \sum_{j \in N_i} s_{ij} (e) \right] \right] \\
\rightarrow -\mathbb{E} \left[\sum_i \lambda_i \left[u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \cdot \sum_{j \in N_i} s_{ij} (e) \right] \right] \text{ as } \alpha \rightarrow 0
\]

\[
= -\sum_i \lambda_i \mathbb{E} \left[u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) 1_{i \times N_i} \cdot s (e) \right] \\
= \sum_i \lambda_i < f_i, s >
\]

where

\[
f_i (e) := -u_i \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) 1_{i \times N_i}
\]

and \(1_{i \times N_i} \) is vector of 0 and 1s that equals 1 for the (directed) link \(ij \) for any \(j \in N_i \) so that \(1_{i \times N_i} \cdot s (e) = \sum_{j \in N_i} s_{ij} (e) \). Define \(\mathcal{J}'(t) : \mathcal{T} \rightarrow \mathbb{R} \) by

\[
\mathcal{J}'(t)s = \sum_i \lambda_i < f_i, s >.
\]

Clearly \(\mathcal{J}'(t) \) is a linear operator on \(\mathcal{T} \), and is thus the Gâteaux-derivative of \(J \). \(\blacksquare \)

Lemma. 4: For any \(t \in \mathcal{T} \) that solves (4), we have

\[
\mathcal{J}'(t) = 0.
\]
Proof. To solve (4)

\[
\max_{t_{ij} \in \mathbb{R}} J^{(i_j, I_{ij})}(\tilde{t}_{ij}) := \mathbb{E} \left[\lambda_i u_i \left(e_i - \tilde{t}_{ij} - \sum_{h \in N_i} t_{ih} \right) + \lambda_j u_j \left(e_j + \tilde{t}_{ij} - \sum_{h \in N_j} t_{jh} \right) \right]_{I_{ij}}
\]

we first notice the objective function \(J^{(i_j, I_{ij})}(\tilde{t}_{ij}) \) is strictly concave in \(\tilde{t}_{ij} \) on \(\mathbb{R} \). Hence, the sufficient and necessary condition for optimality is given by the FOC:

\[
\mathbb{E} \left[\lambda_i u_i' \left(e_i - \sum_{h \in N_i} t_{ih} (e) \right) \right]_{I_{ij}} = \mathbb{E} \left[\lambda_j u_j' \left(e_j - \sum_{h \in N_j} t_{jh} (e) \right) \right]_{I_{ij}}
\]

Then, \(\forall s \in \mathcal{T} \),

\[
J'(t) s = -\mathbb{E} \left[\sum_i \lambda_i \left[u_i' \left(e_i - \sum_{j \in N_i} t_{ij} (e) \right) \cdot \sum_{j \in N_i} s_{ij} (e) \right] \right]
\]

\[
= -\frac{1}{2} \sum_{G_{ij}=1} \mathbb{E} \left[\left(\lambda_i u_i' \left(e_i - \sum_{h \in N_i} t_{ih} (e) \right) - \lambda_j u_j' \left(e_j - \sum_{h \in N_j} t_{jh} (e) \right) \right) \cdot s_{ij} (e) \right]
\]

\[
= -\frac{1}{2} \sum_i \sum_{j \in N_i} \mathbb{E} \left[s_{ij} (I_{ij}) \cdot \mathbb{E} \left[\lambda_i u_i' \left(e_i - \sum_{h \in N_i} t_{ih} (e) \right) - \lambda_j u_j' \left(e_j - \sum_{h \in N_j} t_{jh} (e) \right) \right]_{I_{ij}} \right]
\]

\[
= -\frac{1}{2} \sum_i \sum_{j \in N_i} \mathbb{E} \left[s_{ij} (I_{ij}) \cdot 0 \right]
\]

\[
= 0.
\]

Hence \(J'(t) = 0 \). \qed

Lemma 5: The set of consumption plan induced by the profiles of transfer rules \(t \) in \(\mathcal{T} \) is convex.

Proof. Let \(x, x' \) be two profiles of consumption plans induced by \(t, t' \) respectively. Then \(\forall \lambda \in [0, 1] \),

\[
\lambda x_i (e) + (1 - \lambda) x'_i (e) = \lambda \left[e_i - \sum_{j \in N_i} t_{ij} (e) \right] + (1 - \lambda) \left[e_i - \sum_{j \in N_i} t'_{ij} (e) \right]
\]

\[
= e_i - \sum_{j \in N_i} \left[\lambda t_{ij} (e) + (1 - \lambda) t'_{ij} (e) \right]
\]

78
Thus \((\lambda x + (1 - \lambda) x')\) can be induced by \((\lambda t + (1 - \lambda) t')\). \(\mathcal{T}\), as an inner product space, is convex, so the set of consumption plans induced by the profiles of transfer rules in \(\mathcal{T}\) must also be convex.

B.2 Proof of Lemma 6

Lemma. 6: Given any real vector \(c \in \mathbb{R}^n\) such that \(\sum_{i \in N} c_i = 0\), there exists a real vector \(\mu \in \mathbb{R}^{\sum d_i}\) such that \(\mu_{ik} + \mu_{ki} = 0\) for every linked pair \(ik\) and

\[
\sum_{k \in N_i} \mu_{ik} = c_i. \quad (30)
\]

The solution is unique if and only if the network is minimally connected.

Proof. With the restrictions that \(\mu_{ik} = -\mu_{ki}\) for all linked pair \(ik\), (30) constitutes a system of \(n\) linear equations with \(\frac{1}{2} \sum_{i \in N} d_i\) variables \(\mu_{ik}\). Summing up all the \(n\) equations, we have

\[0 = \sum_{i \in N} c_i = \sum_{i \in N} (\mu_{ik} + \mu_{ki}) = \sum_{i \in N} c_i = 0.
\]

Hence, the \(n\) linear equations impose at most \((n - 1)\) linearly independent conditions.

Viewing (30) in vector form,

\[C \mu = c\]

where \(C\) is a \(n \times \frac{1}{2} \sum_{i \in N} d_i\) matrix. Note that in each column of \(C\), denoted \(C_{ij}\) for \(i < j\), there are either no nonzero entries (when \(G_{ij} = 0\)), or just two nonzero entries: 1 on the \(i\)-th row and -1 on the \(j\)-th row when \(G_{ij} = 1\). Suppose \(G_{ij} = 1\). Then, given any subset of individuals \(S\) that include \(i\) and \(j\), if the rows of \(C\) corresponding to \(S\) are linearly dependent, these rows must sum to 0: this can be true only if all entries \(ik\) with \(i \in S\) and \(k \notin S\) are zero, implying that \(S\) form a component under \(G\), and thus \(G\) is not connected if \(#(S) < n\). This is in contradiction with the supposition that \(G\) is connected when \(#(S) < n\). Hence, \(C\) must have exactly \((n - 1)\) linearly independent rows.

Let \(\tilde{C}\) and \(\tilde{c}\) be the first \((n - 1)\) rows of \(C\) and \(c\). Then, as \(\tilde{C}\) has full row rank, there always exists a solution to \(\tilde{C} \mu = \tilde{c}\), and any of the solutions \(\mu\) must also solve the equation \(C \mu = c\). The solution is unique if and only if the component is minimally connected, when there are precisely \((n - 1)\) links and thus \(\tilde{C}\) is an invertible square matrix.
We can obtain one particular solution using the following algorithm. First, we can arbitrarily select a subset of links that minimally connect the nodes, i.e., the graph restricted to this subset of links is minimally connected. Then, there must exist at least one peripheral node, and we can first easily obtain μ_{ij} for all such peripheral nodes $i \in P_1 := \{ k \in N : d_k = 1 \}$. Then, we can look for new peripheral nodes ignoring the links involving nodes in P_1, and obtain μ_{ij} for all $i \in P_2 := \{ k \in N : k \notin P_1 \land G_{kj} = 1 \text{ for some } j \in P_1 \}$ with all previously calculated μ’s taken as given. We iterate this process until we exhaust all nodes. Then we are left with a profile of μ that solves (30). \hfill

B.3 Proof of Lemma 7

Proof. For general network structures, the analysis is very similar to the above, but there are several complications. As $I_{ij} = (e_i, e_j, e_{N_{ij}})$, the transfer rule t_{ij} can be contingent on $e_{N_{ij}} := (e_k)_{k \in N_{ij}}$ in addition to e_i, e_j. Furthermore, as the knowledge of the ex post realization of $e_{N_{ij}}$ brings in extra information about the distribution of non-local endowment realizations, Pareto efficiency requires that t_{ij} be contingent on $e_{N_{ij}}$. Specifically,

$$
e_k|_{e_i, e_j, e_{N_{ij}}} \sim \mathcal{N}\left(\frac{\rho}{1 + (d_{ij} + 1) \rho} \left(e_i + e_j + \sum_{k \in N_{ij}} e_k \right), V_{d_{ij}+2} \right) \quad (31)$$

where $d_{ij} := \#(N_{ij})$ and $V_{d_{ij}+2}$ denotes the variance of e_k conditional on observing $(d_{ij} + 2)$ endowment realizations.\footnote{See, for example, Eaton (2007), p116-117.}

We again postulate a linear transfer rule: $t_{ij} = \alpha_{ij} e_i - \alpha_{ji} e_j + \sum_{k \in N_{ij}} \beta_{ijk} e_k + \mu_{ij}$, and plug in the postulated form to obtain a system of verification equations. Again, we ignore the verification equations for the state-independent transfers μ, and defer the discussion of μ to Section 6.3. After some tedious algebraic transformations, we again arrive at a rather complicated system of linear equations in (α, β) that defines the condition for Pareto efficiency, namely system (32) as shown below.

Lemma 9. A linear profile of transfer rules $t = (\alpha, \beta, \mu)$ is Pareto efficient if $\forall ij$ s.t.
\[G_{ij} = 1, \]

\[
\begin{align*}
\alpha_{ij} &= \frac{1}{2} \left(1 - \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} + \sum_{k \in N_{ij}} \beta_{jki} + \gamma_{ij} \right) \\
\beta_{ijk} &= \frac{1}{2} \left[\alpha_{ki} - \alpha_{kj} + \sum_{h \in N_{ijk}} (\beta_{ikh} - \beta_{jkh}) \\
&\quad - \sum_{h \in N_{ik} \setminus N_j} \beta_{ikh} + \sum_{h \in N_{jk} \setminus N_i} \beta_{jkh} + \gamma_{ij} \right] \quad \forall k \in N_{ij} \\
\gamma_{ij} &= \frac{\rho}{1 + (d_{ij} + 1)\rho} \left[\sum_{k \in N_i \setminus N_j} \left(\alpha_{ki} - \sum_{h \in N_{ik} \setminus N_j} \beta_{ikh} \right) \\
&\quad - \sum_{k \in N_j \setminus N_i} \left(\alpha_{kj} - \sum_{h \in N_{jk} \setminus N_i} \beta_{jkh} \right) \\
&\quad - \sum_{k \in N_{ij}} \left(\sum_{h \in N_{ik} \setminus N_j} \beta_{ikh} - \sum_{h \in N_{jk} \setminus N_i} \beta_{jkh} \right) \right]
\end{align*}
\]

(32)

Instead of solving for this complicated system directly, we first present an innocuous simplification of it. Due to the possible existence of cycles and superfluous transfers along cycles, this system may in general admit multiple solutions. For example, given a complete triad \(ijk\), we can make a superfluous transfer of a \(\epsilon\) share of \(c_i\) from \(i\) to \(j\), \(j\) to \(k\) and \(k\) to \(i\) by adding \(\epsilon\) to \(\alpha_{ij}\), \(\beta_{jki}\), and subtracting \(\epsilon\) from \(\alpha_{ik}\). It can then be checked that this operation is indeed superfluous, in the sense that \((\alpha_{ij} + \epsilon, \beta_{jki} + \epsilon, \beta_{jki} - \epsilon, \alpha_{ik} - \epsilon)\), keeping everything else fixed, still solves the system of equations for Pareto efficiency with the induced final consumption plan left unchanged. Since any amount of superfluous cycles are redundant, we can set \(\beta_{ijk} = 0\) for all triads \(ijk\) without loss of Pareto efficiency. Hence, in the following, we establish that there exists some vector of strictly bilateral transfer shares \((\alpha^*, \beta^* = 0)\) that solves (32) and thus achieves Pareto efficiency. In other words, the strictly bilateral linear transfer rules that we characterize below are the “simplest” Pareto efficient rules in terms of minimizing the sum of state-contingent transfers.

By setting \(\beta = 0\), we achieve a significant simplification of (32) and obtain the system (24), which is repeated here for easier reference:

\[
\begin{align*}
\alpha_{ij} &= \frac{1}{2} \left(1 - \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} + \gamma_{ij} \right) \quad (??1) \\
0 &= \alpha_{ki} - \alpha_{kj} + \gamma_{ij} \quad \forall k \in N_{ij} \quad (??2) \forall i, j \text{ s.t. } G_{ij} = 1 \\
\gamma_{ij} &= \frac{\rho}{1 + (d_{ij} + 1)\rho} \left(\sum_{k \in N_i \setminus N_j} \alpha_{ki} - \sum_{k \in N_j \setminus N_i} \alpha_{kj} \right) \quad (??3)
\end{align*}
\]

The first equation (24.1) states that the share of \(c_i\) transferred from \(i\) to \(j\) is half of the remaining share after \(i\)'s transfers to \(i\)'s other neighbors plus the informational adjustment term between \(ij\). With \(\gamma = 0\), which is implied by \(\rho = 0\), \(\alpha\) will be simply
reduced to the local equal sharing rule. The second equation (24.2) requires that the difference in the shares of e_k undertaken by i and j is equal to the informational effect between ij, so that it is indeed optimal for ij to set $\beta_{ijk} = 0$. This confirms again that strict bilaterality ($\beta = 0$) is not an assumption, as (24.2) also incorporates the efficiency requirements for $\beta = 0$. The third equation (24.3) defines the auxiliary variable γ_{ij}. We interpret γ_{ij} as the net informational effect because it is the rate at which locally observed endowment realizations affect the pair ij’s joint expectation of non-local endowments. Notice that γ_{ij} is the same across $k \in \mathcal{N}_{ij}$ because each element of $(e_k)_{k \in \mathcal{N}_{ij}}$ provides exactly the same amount of information to the linked pair ij for their joint inference on non-local endowments. Given α, $|\gamma_{ij}|$ is decreasing in d_{ij}, indicating that the magnitude of the informational effect (for any single endowment realization) is decreasing in the amount of local information. Below we proceed to show the existence and provide a closed-form characterization of a solution to (24).

We first prove that (24.2) are implied by (24.1) and (24.3). By differencing (24.1) for k_i and for k_j we get: $\alpha_{ki} - \alpha_{kj} = \gamma_{ki} - \gamma_{kj}$. Hence, in the presence of (24.1) equation (24.2) is equivalent to, for all triads ijk, $\gamma_{ij} + \gamma_{jk} + \gamma_{ki} = 0$. This is reminiscent of the Kirchhoff Voltage Law for electric resistor networks, which states that the sum of voltage differences across any closed cycle must sum to zero. It turns out that the Kirchhoff Voltage Law indeed holds in our setting for any cycle in a general network. ■

Lemma 10. “Kirchhoff Voltage Law”: $\forall \rho \in (-\frac{1}{n-1}, 1)$, if (24.1) and (24.3) admit a unique solution (α, γ), this solution also satisfy (24.2); furthermore, given any cycle $i_1i_2...i_mi_1$, γ satisfies the “Kirchhoff Voltage Law” $\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_mi_1} = 0$.

Proof. Intuitively, Pareto optimality requires that ij share equally the net difference in the conditional expectations of nonlocal inflow exposures (captured by γ_{ij}) by creating an opposite net difference in their local inflow exposures, as specified in equation (24.2). This adjustment guarantees the expectational Borch rule in equation (5), and therefore Pareto efficiency. To see this, notice that conditional expectation and variance of consumption will differ only by a constant across different local states (I_{ij}). Together, this implies that conditional CE’s differ only by a constant, as required.

Given the redundancy of (24.2) in the presence of (24.1) and (24.3), we may now conclude that any solution to the system consisting of (24.1) and (24.3) defines a linear and Pareto efficient profile of transfer rules in \mathcal{T}. ■
B.4 Proof of Lemma 8

Proof. Write system (24) in the following form:

\[
\begin{cases}
2\alpha_{ij} + \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} - \gamma_{ij} = 1, & \text{row } i_j \\
\gamma_{ij} = \frac{\rho}{1 + (d_i + 1)\rho} \left(\sum_{k \in N_i \setminus \overline{N}_j} \alpha_{ki} - \sum_{k \in N_j \setminus \overline{N}_i} \alpha_{kj} \right), & \text{row } i_j
\end{cases}
\forall G_{ij} = 1.
\]

This is a system of \(2\sum_i d_i\) equations in \(2\sum_i d_i\) variables \((\alpha, \gamma)\). Notice that this system can have at most one solution by Proposition 2, as each distinct solution to the above system will define a distinct consumption plan.

Write system (12) in the following form: \(\forall i, j\) s.t. \(G_{ij} = 1\), and \(\forall i \in N\)

\[
\begin{cases}
\alpha_{ji} = \Lambda_j - \frac{\rho}{1 - \rho} \left(\sum_{k \in N_i} \alpha_{ki} + \alpha_{ii} \right), & \text{row } j_i \\
\alpha_{ii} = \Lambda_i - \frac{\rho}{1 - \rho} \left(\sum_{k \in N_i} \alpha_{ki} + \alpha_{ii} \right), & \text{row } i_i, \forall i \in N \\
\alpha_{ii} + \sum_{k \in N_i} \alpha_{ik} = 1, & \text{row } i_i, \forall i \in N
\end{cases}
\forall G_{ij} = 1
\]

This is a system of \((\sum_i d_i + 2n)\) equations in \((\sum_i d_i + 2n)\) variables \((\alpha, \Lambda)\). Suppose that this system has a unique solution. 42

We now show that there exist \(\sum_i d_i\) linearly independent sequences of row operations that produce the tautology "\(0 = 0\)". Given that the system \((12, 13)\) has a unique solution \((\alpha_{ij})_{G_{ij}=1}, \alpha\), this will imply that the \((\alpha_{ij})_{G_{ij}=1}\), along with \(\gamma\) defined by \(3\), will also solve system \((13)\).

Notice that, by the proof of Lemma 10 in Appendix B.6, \((1)\) and \((3)\) imply that

\[
(1 + \rho) \gamma_{ij} = \rho \left(\sum_{h \in N_i} \alpha_{hi} - \sum_{h \in N_j} \alpha_{hj} + \alpha_{ij} - \alpha_{ji} \right)
\]

In other words, \((5)_{ij}\) can be obtained by a sequence of row operations on \((1)\) and \((3)\).

Consider a fixed linked pair \(ij\) with \(i < j\).

By \((1 - \rho) \times \left((12)_{ji} - (12)_{ij} + (12)_{ii} - (12)_{jj} \right)\), we have

\[
(1 - \rho) (\alpha_{ji} - \alpha_{ij} + \alpha_{ii} - \alpha_{jj}) + 2\rho \left(\sum_{k \in N_i} \alpha_{ki} + \alpha_{ii} - \sum_{k \in N_j} \alpha_{kj} - \alpha_{jj} \right) = 0,
\]

\[\text{It indeed has a unique solution given by Proposition 4.}\]
which is equivalent to

\[(1 + \rho) (\alpha_{ii} - \alpha_{jj} + \alpha_{ij} - \alpha_{ji}) + 2\rho \left(\sum_{k \in N_i} \alpha_{ki} - \sum_{k \in N_j} \alpha_{kj} + \alpha_{ij} - \alpha_{ji} \right) = 0.\]

Plugging \(5_{ij}\) into the second term above, we have

\[(1 + \rho) (\alpha_{ii} - \alpha_{jj}) + (1 - \rho) (\alpha_{ji} - \alpha_{ij}) + 2(1 + \rho) \gamma_{ij} = 0,
\]

which, divided by \((1 + \rho)\) on both sides, is equivalent to

\[\alpha_{ii} - \alpha_{jj} + \alpha_{ji} - \alpha_{ij} + 2\gamma_{ij} = 0.\]

By \(13_{ji} - 1_{ij}\), we have

\[\alpha_{ii} - \alpha_{ij} + \gamma_{ij} = 0.\]

By \(13_{ij} - 1_{ji}\), we have \(\alpha_{jj} - \alpha_{ji} + \gamma_{ji} = 0\). As \(3_{ij} + 3_{ji}\) implies \(\gamma_{ij} + \gamma_{ji} = 0\), we have

\[\alpha_{ij} - \alpha_{ji} = 0.\]

By \(14_{ij} - 15_{ij} + 16_{ij}\), we reach the tautology \(\alpha_{ii} = 0\).

Now, consider \(12_{ji} + 12_{ij} - 12_{ii} - 12_{jj}\), which leads to

\[\alpha_{ii} + \alpha_{ij} - \alpha_{ji} - \alpha_{jj} = 0.\]

Then \(17_{ij} + 15_{ij} + 16_{ij}\) leads to the tautology \(\alpha_{ii} = 0\).

In summary of the above, for each fixed linked pair \(ij\) with \(i < j\), we have established that

\[
\begin{aligned}
\xi_{ij} & : \frac{1-\rho}{1+\rho} \left(\frac{12_{ji}}{1} - \frac{12_{ij}}{1} + \frac{12_{ii}}{1} - \frac{12_{jj}}{1} \right) - \frac{13_{j}}{1} + \frac{13_{i}}{1} + \zeta_{ij} \frac{1}{1} + n_{ij} \frac{3}{3} = 0', \\
\tilde{\xi}_{ij} & : \frac{12_{ji}}{1} + \frac{12_{ij}}{1} - \frac{12_{ii}}{1} - \frac{12_{jj}}{1} + \frac{13_{j}}{1} + \frac{13_{i}}{1} + \zeta_{ij} \frac{1}{1} + \tilde{n}_{ij} \frac{3}{3} = 0'.
\end{aligned}
\]

for some conformable vector \(\zeta_{ij}, \tilde{\zeta}_{ij}, n_{ij}, \tilde{n}_{ij}\). Clearly, the two tautology-generating row operations above are linear independent: any linear combination of the two operations
that cancels out $\frac{\alpha_{ij}}{j_1}$ cannot cancel out $\frac{\alpha_{ij}}{j_2}$.

Moreover, $\frac{\alpha_{ij}}{j_1}$, $\frac{\alpha_{ij}}{j_2}$ do not show up in any tautology-generating row operation within $\{\xi_{hk}, \bar{\xi}_{hk} : (i, j) \neq (h, k)\}$, so $\{\xi_{ij}, \bar{\xi}_{ij}\}$ must be linearly independent from $\{\xi_{hk}, \bar{\xi}_{hk} : (i, j) \neq (h, k)\}$.

Hence, we have constructed a set of $\sum d_i$ linearly independent tautology-generating row operations $\{\xi_{ij}, \bar{\xi}_{ij} : G_{ij} = 1, i < j\}$.

B.5 Proof of Lemma 9

Lemma. A linear profile of transfer rules $t = (\alpha, \beta, \mu)$ is Pareto efficient if $\forall ij$ s.t. $G_{ij} = 1$,

$$
\begin{cases}
\alpha_{ij} & = \frac{1}{2} \left(1 - \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} + \sum_{k \in N_{ij}} \beta_{jki} + \gamma_{ij}\right) \\
\beta_{ijk} & = \frac{1}{2} \left[\alpha_{ki} - \alpha_{kj} + \sum_{h \in N_{ijk}} (\beta_{ikh} - \beta_{jkh}) \\
& \quad - \sum_{h \in N_{ihk}} \beta_{ihk} + \sum_{h \in N_{jkh}} \beta_{jkh} + \gamma_{ij}\right] \forall k \in N_i \\
\gamma_{ij} & = \frac{\rho \rho}{\sum_{k \in N_i \setminus \{j\}} \rho} \left[\sum_{k \in N_i \setminus \{j\}} \left(\alpha_{ki} - \sum_{h \in N_{ihk}} \beta_{ikh}\right) \\
& \quad - \sum_{k \in N_i \setminus \{j\}} \left(\sum_{h \in N_{jkh}} \beta_{jkh} - \sum_{h \in N_{jkh}} \beta_{jkh}\right)\right] \\
& \quad - \sum_{k \in N_i \setminus \{j\}} \left(\sum_{h \in N_{jkh}} \beta_{jkh} - \sum_{h \in N_{jkh}} \beta_{jkh}\right) \right]
\end{cases}
$$

(32)

Proof. For each $k \in N_i \setminus \{j\}$, we then have

$$
\sum_{k \in N_i \setminus \{j\}} t_{ik} = e_i \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} - \sum_{k \in N_i \setminus \{j\}} \alpha_{ki} e_k + \sum_{k \in N_i \setminus \{j\}} \sum_{h \in N_{ik}} \beta_{ikh} e_h + c_{ij}
$$

$$
= e_i \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} - \sum_{k \in N_i \setminus \{j\}} \alpha_{ki} e_k + \sum_{k \in N_i \setminus \{j\}} \left(\beta_{ikh} e_j + \sum_{h \in N_{ijk}} \beta_{ikh} e_h\right) + \sum_{k \in N_i \setminus \{j\}} \sum_{h \in N_{ijk}} \beta_{ikh} e_h
$$

$$
- \sum_{k \in N_i \setminus \{j\}} \alpha_{ki} e_k + \sum_{k \in N_i \setminus \{j\}} \sum_{h \in N_{jkh}} \beta_{ikh} e_h + \sum_{k \in N_i \setminus \{j\}} \sum_{h \in N_{jkh}} \beta_{ikh} e_h + c_{ij}
$$

85
so that
\[
\begin{align*}
t_{ij} &= \frac{1}{2} e_i - \frac{1}{2} e_j - \frac{1}{2} \sum_{k \in \mathcal{N}_i \backslash \{j\}} \alpha_{ik} e_i + \frac{1}{2} \sum_{k \in \mathcal{N}_j \backslash \{i\}} \alpha_{jk} e_j - \frac{1}{2} \sum_{k \in \mathcal{N}_{ij}} \left(\beta_{ikj} e_j - \beta_{jk} e_i \right) \\
&+ \frac{1}{2} \sum_{k \in \mathcal{N}_{ij}} \left[(\alpha_{ki} - \alpha_{kj}) e_k - \sum_{h \in \mathcal{N}_{ijk}} \left(\beta_{ikh} - \beta_{jkh} \right) e_h \right] \\
&- \frac{1}{2} \sum_{k \in \mathcal{N}_i \backslash \mathcal{N}_h \backslash \mathcal{N}_j} \sum_{h \in \mathcal{N}_{ijk}} \beta_{jkh} e_h + \frac{1}{2} \sum_{k \in \mathcal{N}_i \backslash \mathcal{N}_j} \sum_{h \in \mathcal{N}_{ijk}} \beta_{jkh} e_h \\
&- \frac{\rho}{2 \left(1 + (d_{ij} + 1) \right)} \left(e_i + e_j + \sum_{k \in \mathcal{N}_{ij}} e_k \right) \sum_{k \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ikh} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) \\
&- \frac{\rho}{2 \left(1 + (d_{ij} + 1) \right)} \left(e_i + e_j + \sum_{k \in \mathcal{N}_{ij}} e_k \right) \sum_{k \in \mathcal{N}_i \backslash \mathcal{N}_j} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \alpha_{ki} - \sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ik} \right) \\
&+ \frac{\rho}{2 \left(1 + (d_{ij} + 1) \right)} \left(e_i + e_j + \sum_{k \in \mathcal{N}_{ij}} e_k \right) \sum_{k \in \mathcal{N}_j \backslash \mathcal{N}_i} \left(\sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \alpha_{kj} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) \\
&= \frac{1}{2} \left\{ 1 - \sum_{k \in \mathcal{N}_i \backslash \{j\}} \alpha_{ik} + \sum_{k \in \mathcal{N}_{ij}} \beta_{jki} + \frac{\rho}{1 + (d_{ij} + 1)} \left[\sum_{k \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \alpha_{ki} - \sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ik} \right) \\
- \sum_{k \in \mathcal{N}_i \backslash \mathcal{N}_j} \left(\alpha_{kj} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) - \sum_{k \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ikh} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) \right] \right\} \cdot e_i \\
&- \frac{1}{2} \left\{ 1 - \sum_{k \in \mathcal{N}_i \backslash \{j\}} \alpha_{ik} + \sum_{k \in \mathcal{N}_{ij}} \beta_{jki} + \frac{\rho}{1 + (d_{ij} + 1)} \left[\sum_{k \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \alpha_{kj} - \sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{jkh} \right) \\
- \sum_{k \in \mathcal{N}_i \backslash \mathcal{N}_j} \left(\alpha_{ki} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{ik} \right) - \sum_{k \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ikh} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) \right] \right\} \cdot e_j \\
&+ \frac{1}{2} \sum_{k \in \mathcal{N}_{ij}} \left(\alpha_{ki} - \alpha_{kj} + \sum_{h \in \mathcal{N}_{ijk}} \left(\beta_{ikh} - \beta_{jkh} \right) - \sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ikh} + \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \\
+ \frac{\rho}{1 + (d_{ij} + 1)} \left[\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \alpha_{ki} - \sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ik} \right) \\
- \sum_{h \in \mathcal{N}_{ij}} \left(\sum_{h \in \mathcal{N}_{ik} \backslash \mathcal{N}_j} \beta_{ikh} - \sum_{h \in \mathcal{N}_{jk} \backslash \mathcal{N}_i} \beta_{jkh} \right) \right] \right\} \cdot e_k + C_{ij} \\
\end{align*}
\]
86
The last equality is obtained by collecting terms and switching summand indexes.

B.6 Proof of Lemma 10

Lemma. 10: “Kirchhoff Voltage Law”: \(\forall \rho \in \left(-\frac{1}{n-1}, 1\right) \), if (24.1) and (24.3) admit a unique solution \((\alpha, \gamma)\), this solution also satisfy (24.2); furthermore, given any cycle \(i_1i_2...i_{m}i_1\), \(\gamma\) satisfies the “Kirchhoff Voltage Law” \(\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_{m}i_1} = 0\).

Proof. We begin by proving the first part, which only involves triads. We rewrite (24) in the following way:

\[
\begin{aligned}
2\alpha_{ij} + \sum_{k \in N_i \setminus \{j\}} \alpha_{ik} - \gamma_{ij} &= 1, \quad \forall G_{ij} = 1 \quad (1) \\
\alpha_{ki} - \alpha_{kj} + \gamma_{ij} &= 0 \quad \forall k \in N_{ij}, \quad \forall G_{ij} = 1; \quad (2) \\
\gamma_{ij} &= \frac{\rho}{1+(d_{ij}+1)\rho} \left(\sum_{k \in N_i \setminus N_j} \alpha_{ki} - \sum_{k \in N_j \setminus N_i} \alpha_{kj} \right), \quad \forall G_{ij} = 1; \quad (3)
\end{aligned}
\]

In matrix form we write

\[
\begin{bmatrix}
A \\
M
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\gamma
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
\begin{array}{c}
\text{1} \wedge \text{3}
\end{array}
\begin{array}{c}
\text{2}
\end{array}
\]

where \(\alpha, \gamma\) are both \(\sum d_i\)-dimensional vectors, \(A\) is a \((2 \sum d_i) \times (2 \sum d_i)\) square matrix, \(b := \begin{pmatrix}
\frac{1}{\sum d_i} & d_i \\
0 & \frac{1}{\sum d_i}
\end{pmatrix}\) is a \((2 \sum d_i)\)-dimensional vector, \(M\) is a \((\sum_{G_{ij}=1} d_{ij}) \times (2 \sum d_i)\) rectangular matrix, and \(0\) is a \((\sum_{G_{ij}=1} d_{ij})\)-dimensional vector. The upper block \(A\left(\begin{bmatrix}
\alpha \\
\gamma
\end{bmatrix}\right) = b\) corresponds to equations in (1) and (3), while the lower block \(M\left(\begin{bmatrix}
\alpha \\
\gamma
\end{bmatrix}\right) = 0\) corresponds to equations in (2).

Note that \((3)_{ij}\) in the definition above is not written in its canonical form, i.e., it is not written in such way that the LHS of the equality sign is a linear combination of unknown variables \((\alpha, \gamma)\) while the right-hand side (RHS) is a constant scalar. In the following, we interpret any written linear equation to be representative of the underlying canonical form obtained by moving all linear combinations of \((\alpha, \gamma)\) on the RHS of “=” to the LHS (left-hand side) while moving all constants on the LHS to the RHS. For example, we interpret \((3)_{ij}\) to represent a canonical form such that
the coefficient before the unknown variable γ_{ij} is 1 and the coefficient before α_{ki} for some $k \in N_i \setminus N_j$ to be $-\frac{\rho}{1 + (d_{ij} + 1)\rho}$.\footnote{This convention should resolve any ambiguity about the signs of coefficients before (α, γ) in all the equations written out thereafter.}

Given that the system consisting of (1) and (3) admit a unique solution, its coefficient matrix A and its augmented matrix $\tilde{A} = [A \mid b]$ must have full rank $2 \sum_i d_i$. To prove that the unique solution of (1) and (3) also satisfies (2), it suffices to show that the augmented matrix for the system of (1), (3) and (2)

$$
\begin{bmatrix}
A & b \\
M & 0
\end{bmatrix}
$$

still have rank $2 \sum_i d_i$. We show this by demonstrating the existence of $\sum_{G_{ij} = 1} d_{ij}$ nonzero and linearly independent vector $\xi \in \mathbb{R}^{\sum_i d_i + \sum_{G_{ij} = 1} d_{ij}}$ such that

$$
\xi' \begin{bmatrix}
A & b \\
M & 0
\end{bmatrix} = (0, 0, \ldots, 0)_{2 \sum_i d_i + 1}.
$$

We first fix any linked triad ijk.

Multiplying (3)$_{ij}$ (the ij-th equation in (3)) with $(1 + (d_{ij} + 1) \rho)$, we obtain

$$
[1 + (d_{ij} + 1) \rho] \gamma_{ij} = \rho \left(\sum_{h \in N_i \setminus N_j} \alpha_{hi} - \sum_{h \in N_i \setminus N_j} \alpha_{hj} \right),
$$

which is equivalent to

$$
[1 + (d_{ij} + 1) \rho] \gamma_{ij} = \rho \left[\sum_{h \in N_i} \alpha_{hi} - \sum_{h \in N_j} \alpha_{hj} - \sum_{h \in N_{ij}} (\alpha_{hi} - \alpha_{hj}) - \alpha_{ji} - \alpha_{ij} \right] \quad (4)_{ij}.
$$

Adding (2)$_{ih}$ for all $h \in N_{ij} \setminus \{k\}$ to (4)$_{ij}$, we get

$$
[1 + (d_{ij} + 1) \rho] \gamma_{ij} = \rho \left[\sum_{h \in N_i} \alpha_{hi} - \sum_{h \in N_j} \alpha_{hj} + (d_{ij} - 1) \gamma_{ij} - \alpha_{ki} + \alpha_{kj} - \alpha_{ji} + \alpha_{ij} \right]
$$

which is equivalent to

$$
(1 + 2\rho) \gamma_{ij} = \rho \left(\sum_{h \in N_i} \alpha_{hi} - \sum_{h \in N_j} \alpha_{hj} + \alpha_{kj} - \alpha_{ki} + \alpha_{ij} - \alpha_{ji} \right) \quad (5)_{ij}.
$$
Summing up 5_{ij}, 5_{jk}, 5_{ki}, we have

$$(1 + 2\rho) \left(\gamma_{ij} + \gamma_{jk} + \gamma_{ki}\right) = \rho \left[(\alpha_{kj} - \alpha_{ki} + \alpha_{ij} - \alpha_{ji}) + (\alpha_{ik} - \alpha_{ij} + \alpha_{jk} - \alpha_{kj}) \right]
+ (\alpha_{ji} - \alpha_{jk} + \alpha_{ki} - \alpha_{ik}) = 0$$

For $n = 3$ and $\rho > -\frac{1}{2}$, or for $n \geq 4$, we have $1 + 2\rho > 0$ and thus

$$\gamma_{ij} + \gamma_{jk} + \gamma_{ki} = 0. \quad \text{6}_{ijk}$$

Alternatively, taking $1_{ki} - 1_{kj} + 2_{ij},$ we obtain $\gamma_{ij} - \gamma_{kj} + \gamma_{ki} = 0.$ By $3_{jk} + 3_{kj},$ we have $\gamma_{jk} + \gamma_{kj} = 0$ and thus

$$\gamma_{ij} + \gamma_{jk} + \gamma_{ki} = 0. \quad \text{7}_{ijk}$$

Then $6_{ijk} - 7_{ijk}$ leads to the tautology "$0 = 0$". Let $\xi^{ijk} \in \mathbb{R}^{2\sum d_i - \sum a_{ij}}$ be a vector that characterizes all the row operations conducted above. Clearly

$$\left(\xi^{ijk}\right)^\prime \begin{bmatrix} A & b \\ M & 0 \end{bmatrix} = 0'.$$

Notice that we can obtain one ξ^{ijk} for each ordered triad (i, j, k). Clearly each ξ^{ijk} is nonzero: in particular, the entries of ξ that correspond to equations 1_{ki} and 1_{kj} must be nonzero, $\xi^{1_{ki}} \neq 0$, $\xi^{1_{kj}} \neq 0$, because $1_{ki}, 1_{kj}$ are used to obtain 7_{ijk} and nowhere else.

Fixing k, for a row operation in question $\xi^{i_{1}i_{2}i_{3}}$, coefficients corresponding to 1_{kh} for $h \in N_k$ may be nonzero only if $i_3 = k$. Hence, \{ $\xi^{i_{1}i_{2}k} : i_1, i_2 \in N_k, G_{i_1i_2} = 1$ \} must be linearly independent from $\{ \xi^{i_{1}i_{2}i_{3}} : i_1, i_2 \in N_k, G_{i_1i_2} = 1, i_3 \neq k \}$. We now consider $\{ \xi^{i_{1}i_{2}k} : i_1, i_2 \in N_k, G_{i_1i_2} = 1 \}$. Notice that $1_{ki}, 1_{kj}$ show up in the form of "$1_{ki} - 1_{kj}$" during the process. Hence, summing up along general cycles\(^{44}\) is the only possible type of row operations that can cancel out all coefficients before 1_{ki} for all $i \in N_k$. However, this operation does not lead to the tautology $(0', 0)$, because the coefficients before $2_{i_1i_2k}$, ..., $2_{i_mi_1k}$ are all kept nonzero. (Notice that these only show up in $\xi^{i_{1}i_{2}k}$ in the step leading to 7_{ijk} and nowhere else).

\(^{44}\)By general cycles we mean cycles that may involve "self cycles" of the form "$i_1i_2i_1$".
Hence, no nontrivial linear combination of \(\{ \xi_{i_1i_2} : i_1, i_2 \in N_k, G_{i_1i_2} = 1 \} \) is zero, so \(\{ \xi_{i_1i_2} : i_1, i_2 \in N_k, G_{i_1i_2} = 1 \} \) is linearly independent. In summary, we conclude that \(\{ \xi_{i_1i_2} : i_1, i_2 \in N_k, G_{i_1i_2} = 1 \} \) are linearly independent, so we have established the existence of \(\sum_{G_{ij}=1} d_{ij} \) nonzero and linearly independent vector \(\xi \in \mathbb{R}^{2 \sum d_i + \sum_{G_{ij}=1} d_{ij}} \).

We now prove the second part, the statement for cycles of any size. Note that we still have \((\xi_{i_1i_2} \gamma_{ij} = \rho \left(\sum_{h \in N_i} \alpha_{hi} - \sum_{h \in N_j} \alpha_{hj} + \alpha_{ij} - \alpha_{ji} \right) \). Given any cycle \(i_1i_2...i_mi_1 \), summing up \(\xi_{i_1i_2}, \xi_{i_2i_3}, ..., \xi_{i_mi_1} \), we have

\[
(1 + \rho) \left(\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_mi_1} \right) = \rho \left(\alpha_{i_1i_2} + ... + \alpha_{i_mi_1} - \alpha_{i_1i_1} - ... - \alpha_{i_1i_m} \right) \tag{10}
\]

By \(\xi_{i_1i_2} - \xi_{i_2i_1} \) and \(\gamma_{ij} + \gamma_{ji} = 0 \), we have \(\alpha_{i_1i_2} - \alpha_{i_2i_1} = \sum_{h \in N_{i_2}} \alpha_{i_2h} - \sum_{h \in N_{i_1}} \alpha_{ih} + 2\gamma_{i_1i_2} \). Summing over \(i_1i_2, ..., i_mi_1 \),

\[
\alpha_{i_1i_2} + ... + \alpha_{i_mi_1} - \alpha_{i_2i_1} - ... - \alpha_{i_1i_m} = 2 \left(\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_mi_1} \right) \tag{11}
\]

Then \((10) + \rho \times (11) \) gives \((1 - \rho) \left(\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_mi_1} \right) = 0. \) For \(\rho < 1 \), we have \(\gamma_{i_1i_2} + \gamma_{i_2i_3} + ... + \gamma_{i_mi_1} = 0. \)

B.7 Uniqueness in Minimally Connected Networks

Proposition 11. Under the independent CARA-Normal setting, if the network is minimally connected, then there is a unique profile of transfer rules in \(T^* \) that is Pareto efficient, and it takes the form of the local equal sharing rule.

Proof. Consider minimally connected network \(G \). For Pareto efficiency, we need for all linked pair \(ij \)

\[
\frac{e_{i_1} (x_i)}{e_{i_2} (x_j)} = c_{ij}.
\]

As the network is minimally connected, we have \(N_{ij} = \emptyset \). Notice that

\[
E \left[re^{-r(e_i-t_{i_1}+\sum_{k \in N_{i}(j)} t_{ik}(e_i,e_k))} \Big| e_i, e_j \right] = c_{ij} E \left[re^{-r(e_j+t_{ij}+\sum_{h \in N_{j}(i)} t_{jh}(e_j,e_k))} \Big| e_i, e_j \right].
\]

90
By independence,

\[\mathbb{E} \left[re^{-r(e_i-t_{ij}-\sum_{k \in N_i \setminus \{j\}} t_{ik}(e_i,e_k))} \mid e_i \right] = c_{ij} \mathbb{E} \left[r e^{-r(e_j+t_{ij}-\sum_{h \in N_j \setminus \{i\}} t_{jh}(e_j,e_h))} \mid e_j \right] \]

\[\Leftrightarrow e_i - t_{ij} - \frac{1}{r} \sum_{k \in N_i \setminus \{j\}} \ln \mathbb{E} \left[e^{r t_{ik}(e_i,e_k)} \mid e_i \right] = e_j + t_{ij} - \frac{1}{r} \sum_{h \in N_j \setminus \{i\}} \ln \mathbb{E} \left[e^{r t_{jh}(e_j,e_h)} \mid e_j \right] - \frac{1}{r} \ln c_{ij} \]

\[\Leftrightarrow t_{ij} = \frac{1}{2} e_i - \frac{1}{2} e_j - \frac{1}{2r} \sum_{k \in N_i \setminus \{j\}} \ln \mathbb{E} \left[e^{r t_{ik}(e_i,e_k)} \mid e_i \right] + \frac{1}{2r} \sum_{h \in N_j \setminus \{i\}} \ln \mathbb{E} \left[e^{r t_{jh}(e_j,e_h)} \mid e_j \right] + \frac{1}{2r} \ln c_{ij} \]

(33)

where

\[T_{ik} := \mathbb{E} \left[e^{r t_{ik}(e_i,e_k)} \mid e_i \right] \]

Then, taking conditional expectations of (33), we have

\[T_{ij} = e^{r T_{ij} + \frac{1}{2r} \ln T_{ij} + \frac{1}{2r} \ln \alpha_{ij}} \cdot \mathbb{E} \left[e^{r \frac{1}{2r} \sum_{h \in N_j \setminus \{i\}} \ln T_{jh}} \mid e_i \right] \]

\[= e^{r \left(\frac{1}{2} e_i + \frac{1}{2} r \sigma^2 - \frac{1}{2r} \sum_{k \in N_i \setminus \{j\}} \ln T_{ik} + \frac{1}{2r} \ln \alpha_{ij} \right) \cdot \prod_{h \in N_j \setminus \{i\}} \mathbb{E} \left[T_{jh}^{\frac{1}{2}} \right]} \]

and

\[\frac{1}{r} \ln T_{ij} = \frac{1}{2} e_i + \frac{1}{2} r \sigma^2 - \frac{1}{2} \sum_{k \in N_i \setminus \{j\}} \frac{1}{r} \ln T_{ik} + \frac{1}{2r} \ln \alpha_{ij} + \sum_{h \in N_j \setminus \{i\}} \ln \mathbb{E} \left[T_{jh}^{\frac{1}{2}} \right]. \]

Introducing notation

\[\tilde{T}_{ij} = \frac{1}{r} \ln T_{ij}, \]

we have

\[\tilde{T}_{ij} = \frac{1}{2} e_i - \frac{1}{2} \sum_{k \in N_i \setminus \{j\}} \tilde{T}_{ik} + c_{ij} \]

\[^{45}\text{We hope the unfortunate notational coincidence of the endowment vector } e \text{ and the natural exponential power } e^{'} \text{ will not result in any confusion.} \]
\[\sum_{j \in N_i} \tilde{T}_{ij} = \frac{d_i}{2} e_i - \frac{1}{2} (d_i - 1) \sum_{j \in N_i} \tilde{T}_{ik} + \sum_{j \in N_i} c_{ij} \]
\[\sum_{j \in N_i} \tilde{T}_{ij} = \frac{d_i}{d_i + 1} e_i + \frac{2}{d_i + 1} \sum_{j \in N_i} c_{ij} \]
\[\tilde{T}_{ij} = \frac{1}{2} e_i - \frac{1}{2} \sum_{k \in N_i \setminus \{j\}} \tilde{T}_{ik} + c_{ij} \]
\[= \frac{1}{2} e_i - \frac{1}{2} \sum_{k \in N_i} \tilde{T}_{ik} + \frac{1}{2} \tilde{T}_{ij} + c_{ij} \]
\[\frac{1}{2} \tilde{T}_{ij} = \frac{1}{2} \left(e_i - \frac{d_i}{d_i + 1} e_i - \frac{2}{d_i + 1} \sum_{k \in N_i} c_{ik} \right) + c_{ij} \]
\[\tilde{T}_{ij} = \frac{1}{d_i + 1} e_i - \frac{1}{d_i + 1} \sum_{k \in N_i} c_{ik} + c_{ij} \]

Hence, by (33), we have

\[t_{ij} = \frac{1}{2} e_i - \frac{1}{2} e_j - \frac{1}{2} \sum_{k \in N_i \setminus \{j\}} \left(\frac{1}{d_i + 1} e_i - \frac{1}{d_i + 1} \sum_{k' \in N_i} c_{ik'} + c_{ik} \right) \]
\[+ \frac{1}{2} \sum_{k \in N_i \setminus \{i\}} \left(\frac{1}{d_j + 1} e_j - \frac{1}{d_j + 1} \sum_{k' \in N_j} c_{jk'} + c_{jk} \right) + \frac{1}{2r} \ln \alpha_{ij} \]
\[= \frac{1}{2} \left(1 - \frac{d_i - 1}{d_i + 1} \right) e_i - \frac{1}{2} \left(1 - \frac{d_i - 1}{d_i + 1} \right) e_j + C_{ij} \]
\[= \frac{1}{d_i + 1} e_i - \frac{1}{d_i + 1} e_j + C_{ij}. \]

B.8 Linear Pareto Efficient Transfer Shares for Boundary Correlation Parameters

Proposition 12.
• for $\rho = -\frac{1}{n-1}$ and any G such that $\max_{i \in N} d_i < n - 1$, a Pareto efficient profile of transfer rules is given by Proposition 4

• For $\rho = -\frac{1}{n-1}$ and any network structure G such that $\max_{i \in N} d_i = n - 1$, let i^* be any individual with $d_{i^*} = n - 1$. Then a Pareto efficient profile of transfer rules is given by

$$\alpha_{ji^*} = 1, \quad \alpha_{i^*j} = \alpha_{jk} = 0, \quad \forall j, k \in N \setminus \{i^*\}.$$

• For $\rho = 1$ and any network structure G, any profile of transfer rules that satisfies the Kirchhoff Circuit Law as defined below is Pareto efficient:

$$\sum_{j \in N_i} \alpha_{ij} = \sum_{j \in N_i} \alpha_{ji} \quad \forall i \in N.$$

Proof. For $\rho = -\frac{1}{n-1}$ and G s.t. $\max_{i \in N} d_i = n - 1$, the profile of transfer rules given above attains zero variance in consumption for each individual, and is thus Pareto efficient. For $\rho = 1$, any profile of transfer rules that satisfies the Kirchhoff Circuit Law achieves the same profile of consumption plan as the null transfer (autarky), which is clearly Pareto efficient. ■

B.9 Detailed Specification and Proof for Proposition 9

Specifically, we assume that the correlation between e_i and e_j geometrically decays with social distance between i and j:

$$\text{Corr}(e_i, e_j) = \rho^{\text{dist}(i,j)},$$

where the social distance $\text{dist} (i, j)$ is formally defined as the length (i.e., the number of links) of the shortest path connecting i and j in network G. For notational simplicity we set $\sigma^2 = 1$.

For tractability, we restrict attention to circle networks with $n = 2m + 1$ individuals. A n-circle consists of n individuals and n links: $G_{i,i+1} = 1$ for $i = 1, ..., n$.46 For any linked pair $i, i+1$ along a n-circle (with $n \geq 4$), the conditional distribution of

46We, for notational simplicity, define individual $n + 1$ to be individual 1, and individual 0 to be individual n.

93
\(e_{i-1} \) (and similarly for \(e_{i+2} \)) is

\[
e_{i-1|e_i, e_{i+1}} \sim \mathcal{N}(\theta e_i, 1 - \theta) .
\]

Following a similar argument as in Section 4.2, we obtain the following condition for Pareto efficiency subject to local information constraints:

\[
\begin{aligned}
\alpha_{i,i+1} &= \frac{1}{2} \left(1 - \alpha_{i-1,i} + \theta \alpha_{i-1,i} \right) \\
\alpha_{i+1,i} &= \frac{1}{2} \left(1 - \alpha_{i+1,i+2} + \theta \alpha_{i+2,i+1} \right)
\end{aligned}
\]

for all \(i \in N \). Then, the unique and symmetric solution for the above system is given by

\[
\alpha_{ij}^* \equiv \alpha_{geq}^* (\theta) = \frac{1}{1 - \frac{\theta}{3}} \quad \forall G_{ij} = 1.
\]

Under \(\alpha^* \), the final consumption for each individual is

\[
x_{i}^{geq} (\theta) = \frac{1}{3 - \theta} e_{i-1} + \frac{1 - \theta}{3 - \theta} e_{i} + \frac{1}{3 - \theta} e_{i+1}
\]

with a variance of

\[
Var_{geq, \theta} (x_{i}^{geq} (\theta)) = \frac{1 + \theta}{3 - \theta}.
\]

In comparison, under the symmetric correlation structure in Section 4.2, the condition for Pareto efficiency on a \(n \)-circle is

\[
\alpha_{i,i+1} = \frac{1}{2} \left[1 - \alpha_{i-1,i} + \frac{\rho}{1 + \rho} (\alpha_{i-1,i} - \alpha_{i+2,i+1}) \right]
\]

with its unique and symmetric solution being

\[
\alpha_{ij} \equiv \alpha_{unif} (\rho) = \frac{1}{3} \quad \forall G_{ij} = 1,
\]

which is exactly the local equal sharing rule. This implies a final consumption of

\[
x_{i}^{unif} (\rho) = \frac{1}{3} e_{i-1} + \frac{1}{3} e_{i} + \frac{1}{3} e_{i+1}
\]

with a variance of

\[
Var_{unif, \rho} (x_{i}^{unif} (\rho)) = \frac{1 + 2\rho}{3}.
\]

94
We compare the correlation structures by setting \(\rho \) and \(\varrho \) to be such that each individual’s consumption variance is equalized across the two correlation structures under the global equal sharing rule (which achieves first best risk sharing):

\[
x_i^{FB} = \frac{1}{n} \sum_{k \in N} c_k.
\]

The consumption variances that this sharing rule implies for the two correlation structures are:

\[
\begin{align*}
\text{Var}_{\text{unif}, \rho} \left(x_i^{FB} \right) &= \frac{1 + 2m\rho}{2m + 1} \\
\text{Var}_{\text{geo}, \varrho} \left(x_i^{FB} \right) &= \frac{1 + 2 \sum_{k=1}^{m} \varrho^k}{2m + 1} = \frac{\frac{2^{1-\varrho^{m+1}} - 1}{1-\varrho}}{2m + 1},
\end{align*}
\]

The first-best total variances under the two correlations structures are equal if and only if

\[
\begin{align*}
\text{Var}_{\text{unif}, \rho} \left(x_i^{FB} \right) &= \text{Var}_{\text{geo}, \varrho} \left(x_i^{FB} \right) \iff \frac{1 + 2m\rho}{2m + 1} = \frac{\frac{2^{1-\varrho^{m+1}} - 1}{1-\varrho}}{2m + 1} \\
&\iff \rho = \rho_m \left(\varrho \right) := \frac{\varrho (1 - \varrho^m)}{m (1 - \varrho)}.
\end{align*}
\]

Noticing that the total variances without risk sharing at all are both equal to \((2m + 1)\) under either correlation structure, setting \(\rho = \rho_m \left(\varrho \right) \) implies that the total amount of shareable risk is equalized between the two correlation structures. Next we compare the consumption variances given Pareto efficient risk-sharing arrangements subject to local information constraints.

Notice that

\[
\begin{align*}
\text{Var}_{\text{unif}, \rho} \left(x_i^{\text{unif}} (\rho) \right) \leq \text{Var}_{\text{geo}, \varrho} \left(x_i^{\text{geo}} (\varrho) \right) \iff \rho \leq \bar{\rho} (\varrho) := \frac{2 \varrho}{3 - \varrho}.
\end{align*}
\]

Hence, whenever

\[
m > \frac{(3 - \varrho) (1 - \varrho^m)}{2 (1 - \varrho)}
\]

we will have \(\rho (\varrho) < \bar{\rho} (\varrho) \) and thus \(\text{Var}_{\text{unif}, \rho} \left(x_i^{\text{unif}} (\rho) \right) < \text{Var}_{\text{geo}, \varrho} \left(x_i^{\text{geo}} (\varrho) \right) \). In other words, fixing \(\varrho \), efficient risk sharing subject to the local information constraint per-
forms strictly better under the uniform correlation setting than under the geometrically decaying setting.

Moreover, the difference can be very stark. As \(m \to \infty \),

\[
\rho = \rho(\varrho) = \frac{\varrho (1 - \varrho^m)}{m(1 - \varrho)} \to 0,
\]

and thus

\[
Var_{unif, \rho}(x_i^{unif}(\rho)) = \frac{1 + 2\rho}{3} \to \frac{1}{3}, \quad \text{as } m \to \infty
\]

while

\[
Var_{geo, \rho}(x_i^{geo}(\varrho)) = \frac{1 + \varrho}{3 - \varrho} \quad \forall m.
\]

When also taking \(\varrho \to 1 \) (after taking \(m \to \infty \)), we get

\[
\lim_{\varrho \to 1} \lim_{m \to \infty} Var_{unif, \rho(\varrho)}(x_i^{unif}(\rho(\varrho))) = \frac{1}{3},
\]

\[
\lim_{\varrho \to 1} \lim_{m \to \infty} Var_{geo, \rho}(x_i^{geo}(\varrho)) = 1.
\]

B.10 Quadratic Utility Functions

With quadratic utility functions \(u_i(x_i) = x_i - \frac{1}{2}rx_i^2 \), the localized Borch rule requires that

\[
\frac{\lambda_j}{\lambda_i} = \frac{\mathbb{E}_{ij}[u_i'(x_i)]}{\mathbb{E}_{ij}[u_i'(x_j)]} = \frac{\mathbb{E}_{ij}[1 - rx_i]}{\mathbb{E}_{ij}[1 - rx_j]}
\]
\[
\Leftrightarrow \lambda_i - \lambda_i r \left(\mu_i + e_i - t_{ij} - \sum_{h \in N_i} E_{ij} [t_{ih}] \right) = \lambda_j - \lambda_j \left(\mu_j + e_j + t_{ij} - \sum_{h \in N_j} E_{ij} [t_{jih}] \right)
\]

\[
\Leftrightarrow r (\lambda_i + \lambda_j) t_{ij} = - (\lambda_i - \lambda_j) + \lambda_i r \left(\mu_i + e_i - \sum_{h \in N_i \setminus j} E_{ij} [t_{ih} (I_{ih})] \right)
- \lambda_j r \left(e_j - \sum_{h \in N_j \setminus i} E_{ij} [t_{jih} (I_{jih})] \right)
\]

\[
\Leftrightarrow t_{ij} = \frac{\lambda_i}{\lambda_i + \lambda_j} \left(\mu_i + e_i - \sum_{h \in N_i \setminus j} E_{ij} [t_{ih} (I_{ih})] \right)
- \frac{\lambda_j}{\lambda_i + \lambda_j} \left(\mu_j + e_j - \sum_{h \in N_j \setminus i} E_{ij} [t_{jih} (I_{jih})] \right) - \frac{\lambda_i - \lambda_j}{r (\lambda_i + \lambda_j)}
\]

Postulating a bilateral linear rule:

\[
t_{ij} (I_{ij}) = \alpha_{ij} e_i - \alpha_{ji} e_j + c_{ij}
\]

Notice that this is equivalent to specifying \(t_{ij} (I_{ij}) = \alpha_{ij} y_i - \alpha_{ji} y_j + c_{ij} \) as we allow \(\mu_{ij} \) are simultaneously determined along with:

\[
x_i = \left(1 - \sum_{j \in N_i} \alpha_{ij} \right) e_i + \sum_{j \in N_i} \alpha_{ji} e_j + \mu_i - \sum_{j \in N_i} c_{ij}
\]

\[
\equiv \left(1 - \sum_{j \in N_i} \alpha_{ij} \right) y_i + \sum_{j \in N_i} \alpha_{ji} y_j + \left(\sum_{j \in N_i} \alpha_{ji} \mu_i - \sum_{j \in N_i} \alpha_{ij} \mu_j \right) - \sum_{j \in N_i} c_{ij}
\]
Plugging in the postulation,

\[t_{ij} = \frac{\lambda_i}{\lambda_i + \lambda_j} \left(1 - \sum_{h \in N_{i \setminus j}} \alpha_{ih} \right) e_i + \sum_{h \in N_{ij}} \alpha_{hi} e_h + \sum_{h \in N_{i \setminus j}} \alpha_{hi} \mathcal{E}_{ij} [e_h] \]

\[- \frac{\lambda_j}{\lambda_i + \lambda_j} \left(1 - \sum_{h \in N_{j \setminus i}} \alpha_{jh} \right) e_j + \sum_{h \in N_{ij}} \alpha_{hj} e_h + \sum_{h \in N_{j \setminus i}} \alpha_{hj} \mathcal{E}_{ij} [e_h] \]

\[+ \frac{\lambda_i}{\lambda_i + \lambda_j} \left(\mu_i - \sum_{h \in N_{i \setminus j}} c_{ih} \right) - \lambda_j \left(\mu_j - \sum_{h \in N_{j \setminus i}} c_{jh} \right) - \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \]

\[= \frac{\lambda_i}{\lambda_i + \lambda_j} \left(1 - \sum_{h \in N_{i \setminus j}} \alpha_{ih} \right) e_i + \sum_{h \in N_{ij}} \alpha_{hi} e_h + \frac{\rho}{1 + (d_{ij} + 1) \rho} \sum_{h \in N_{i \setminus j} \setminus \mathbb{N}_i} \alpha_{hi} \sum_{k \in \mathbb{N}_{ij}} e_k \]

\[- \frac{\lambda_j}{\lambda_i + \lambda_j} \left(1 - \sum_{h \in N_{j \setminus i}} \alpha_{jh} \right) e_j + \sum_{h \in N_{ij}} \alpha_{hj} e_h + \frac{\rho}{1 + (d_{ij} + 1) \rho} \sum_{h \in N_{j \setminus i} \setminus \mathbb{N}_i} \alpha_{hj} \sum_{k \in \mathbb{N}_{ij}} e_k \]

\[+ \frac{\lambda_i}{\lambda_i + \lambda_j} \left(\mu_i - \sum_{h \in N_{i \setminus j}} c_{ih} \right) - \lambda_j \left(\mu_j - \sum_{h \in N_{j \setminus i}} c_{jh} \right) - \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \]

In the special case of equal weighting: \(\lambda_i = \lambda_j \), we have

\[\alpha_{ij} = \frac{1}{2} \left(1 - \sum_{h \in N_i} \alpha_{ih} + \frac{\rho}{1 + (d_{ij} + 1) \rho} \left(\sum_{h \in N_{i \setminus j} \setminus \mathbb{N}_i} \alpha_{hi} - \sum_{h \in N_{j \setminus i} \setminus \mathbb{N}_i} \alpha_{hi} \right) \right)\]

\[c_{ij} = \frac{1}{2} (\mu_i - \mu_j) - \frac{1}{2} \left(\sum_{h \in N_{i \setminus j}} c_{ih} - \sum_{h \in N_{j \setminus i}} c_{jh} \right)\]

Note that system of linear equations in \(\alpha \) is exactly the same one as in Section 4.

B.11 Detailed Specification and Proof for Proposition 10

In our setting, for a given network \(G \), individual \(i \)'s Myerson value is defined by

\[MV_i (G) := \sum_{S \subseteq N} \frac{\# (S) - 1}{n!} \left(n - \# (S) \right) \frac{1}{2} r \sigma^2 \left[TVar \left(G_{\downarrow (S \setminus \{i\})} \right) + \sigma^2 - TVar \left(G_{S} \right) \right] \]
where \(\#(S)\) denotes the number of individuals in a subset \(S\) of \(N\), and \(G|_{S}\) denotes the subgraph of \(G\) restricted to the subset \(S\) of individuals. Given the CARA-normal specification, \(TVar\left(G|_{S\setminus\{i\}}\right) + \sigma^2 - TVar\left(G|_{S}\right)\) is the surplus from risk reduction through \(i\)’s links in \(S\).

Notice that, given any \(S \subseteq N\),

\[
TVar\left(G|_{S\setminus\{i\}}\right) - TVar\left(G|_{S}\right) = 1 - \frac{1}{d_i(G|_{S}) + 1} + \sum_{k \in N_i(G|_{S})} \frac{1}{d_k(G|_{S}) [d_k(G|_{S}) + 1]},
\]

which is strictly increasing in \(d_i(G|_{S})\) but strictly decreasing in \(d_k(G|_{S})\) for each \(j \in N_k(G|_{S})\). Moreover, for any \(k \in N, d_k(G|_{S})\) is weakly increasing in \(S\), i.e., \(S \subseteq S' \Rightarrow d_k(G|_{S}) \leq d_k(G|_{S'})\).

Consider any pairwise stable network \(G\) under the Myerson-value transfers. Then, if \(i, j\) are linked, it must be that

\[
MV_i(G) - MV_i(G - ij) \geq c.
\]

Fixing \(ij\), for each \(S \subseteq N\), we have

\[
TVar\left(G - ij|_{S\setminus\{i\}}\right) - TVar\left(G - ij|_{S}\right) = \begin{cases}
TVar\left(G|_{S\setminus\{i\}}\right) - TVar\left(G|_{S}\right), & \text{if } j \notin S \\
1 - \frac{1}{d_i(G|_{S}) + 1} + \sum_{k \in N_i(G|_{S}) \setminus \{j\}} \frac{1}{d_k(G|_{S}) [d_k(G|_{S}) + 1]}, & \text{if } j \in S
\end{cases}
\]

so

\[
\left[TVar\left(G|_{S\setminus\{i\}}\right) - TVar\left(G|_{S}\right)\right] - \left[TVar\left(G - ij|_{S\setminus\{i\}}\right) - TVar\left(G - ij|_{S}\right)\right] \\
= \mathbb{1}\{j \in S\} \cdot \left[\frac{1}{d_i(G|_{S}) [d_i(G|_{S}) + 1]} + \frac{1}{d_j(G|_{S}) [d_j(G|_{S}) + 1]}\right] \\
\geq \mathbb{1}\{j \in S\} \cdot \left[\frac{1}{d_i(G) [d_i(G) + 1]} + \frac{1}{d_j(G) [d_j(G) + 1]}\right]
\]

Averaging over all possible \(S \subseteq N\), we get

\[
MV_i(G) - MV_i(G - ij) \geq \frac{1}{2} \cdot \left[\frac{1}{d_i(G) [d_i(G) + 1]} + \frac{1}{d_j(G) [d_j(G) + 1]}\right]
\]

99
as
\[
\sum_{S \subseteq N} \frac{\#(S) - 1}{n!} (n - \#(S)) 1 \{j \in S\} = \Pr \{i \text{ arrives later than } j\} = \frac{1}{2}.
\]

From the perspective of social efficiency, the link \(ij\) in \(G\) is (strictly) socially efficient if
\[
\frac{1}{d_i(G) [d_i(G) + 1]} + \frac{1}{d_j(G) [d_j(G) + 1]} > 2c.
\]
Thus we can conclude that, given any pairwise stable network \(G\) under the Myerson-value transfers, whenever a link \(ij\) is (strictly) socially efficient, it will be present in \(G\), because the increments in both \(i\)'s and \(j\)'s private benefits strictly exceed the cost of linking \(c\):
\[
MV_i(G) - MV_i(G - ij) > \frac{1}{2} \cdot 2c = c
\]
\[
MV_j(G) - MV_j(G - ij) > \frac{1}{2} \cdot 2c = c.
\]

C Empirical Evidences for the Positive Correlation Between Network Centrality and Consumption Volatility

C.1 Data Description and Variable Construction

The Townsend Thai Monthly Survey (Townsend, 2016), initiated in 1998 as part of the Townsend Thai Project, is an ongoing survey that provides monthly household-level data on a wide range of aspects, including in particular household consumption and social interactions, for approximately 720 households from 16 villages in Thailand. The data used in this section are based on the 196 months from August 1998 (labeled as month 1) to December 2014 (labeled as month 196), which constitutes the entire sample publicly available at the writing of this draft. Below we provide a brief description about a subset of the data from Townsend Thai that are most relevant to our empirical analysis. A more comprehensive and detailed description of the survey can be found in Samphantharak and Townsend (2010), Townsend and Suwanik (2016), Pawasutipaisit et al. (2016) and also online at the official website of
the Townsend Thai Project.

An initial village-wide census enumerated all households and structures in the surveyed villages, allowing unique identification of a given household or a given structure in a given village across all 196 months. The variable “newid” in the publicly released data set, constructed by the data provider using an unknown scrambling algorithm in conformation with public data dissemination protocols, serves as the unique identifier for each household, but may also be used to uniquely identify the village in which the household resides. For each given village, the variable “census structure number” uniquely identifies a certain structure in the given village as recorded in the initial census.

The subsequent monthly surveys cover a randomly sampled subset of households. From each village, 45 households were randomly selected, and the subsequent monthly survey recorded updates from the same households over time in all villages. Some of surveyed households moved out of a village, and some new households were added to the monthly survey during the sampled periods.

We focus mainly on two categories of variables in the monthly surveys: household consumption and social interactions. For each household, we use the former to construct measures of consumption volatility, and the latter to construct measures of degree centrality.

C.1.1 Consumption Variance

We first describe how we construct measures of consumption variance for each household.

First, we construct real monthly household consumption per capita using data on household expenditures. For a typical household (newid) in a given month (month), the Townsend Thai Monthly Survey include a quite comprehensive range of finely categorized monthly household expenditures. Among them some “shorter-term” categories, such as expenses on food, gasoline and daily commutes, are recorded at biweekly frequency⁴⁷ while other “longer-term” categories, such as utilities, rents and clothing, are recorded at monthly frequency. All expenditures are recorded in nominal Thailand bahts.

In our main analysis, we construct our monthly consumption variables in two

⁴⁷To be precise, these categories are recorded at weekly frequency for months 1-24, and at biweekly frequency from month 25 onward.
ways for robustness (See Section C.2.2 for additional ways of variable construction). The first version is constructed by aggregating over all categories of expenditures in the survey except for the category called “other expenses”. The second version is constructed by aggregating over all categories of expenditures, excluding not only “other expenses” but also the categories labeled as “maintenance of houses and private vehicles”. The reason for excluding these maintenance expenditures is that we occasionally observe a very few number (about 8 among 133,188 household-month records) of extremely large expenditures in these categories in certain months, causing the sample variances (across 133,188 records) to almost quadruple as well as the sample skewness and kurtosis to blow up. As such occasional extraordinary expenditures are hard to justify as fluctuations in monthly consumption, the second version of consumption variables are constructed without these maintenance categories, and will be indicated by an postscript “_nm”, short for “no maintenance”, whenever applicable.

Second, we compute real monthly household consumption per capita, using data on household sizes from the Townsend Thai Monthly Survey, as well as data on monthly Consumer Price Index from the Thailand Ministry of Commerce. We construct two measures of household sizes for robustness. The first version is constructed based on the number of household members that are registered on the household composition roster and are interviewed by the survey for each household in each month. The second version is constructed based on the number of household members who are not only interviewed but also indicate that they have resided in the household for at least fifteen days of the month. We indicate all variables constructed from the second version of sizes with the postscript “_re”, short for “resident”, whenever applicable.

Third, we keep only households whose consumption are recorded for at least 100 (not necessarily consecutive) out of 196 months. This selects a subsample of 689 households from a total of 780 distinct households, excluding in particular households that moved out early or were added to the monthly survey late during the 196 months. As we are interested in measuring consumption volatility across time, we impose this subsample selection to ensure that we have a reasonable number of time periods for each household and that the sample variance to be computed later are reasonably accurate. Note that the selected households contribute an overwhelming proportion (129,944 among 133,188, or 97.56 percent) of household-month observations on real
consumption per capita.

Fourth, we compute detrended real consumption per capita with linear detrending of logged real consumption per capital. Given that real consumption per capita should be rising over a time frame of 196 months, detrending is required for the construction of a sensible measure of consumption volatility. This is because, without detrending, a deterministic path of real consumption per capita at a fixed positive growth rate will generate positive variance in consumption without any uncertainty. We model growth in real consumption per capita with a standard time trend, which is consistent with the theory of balanced growth paths. Specifically, separately for each household, we regress logged real consumption per capita on a time trend and obtain the predicted values and residuals from the regressions.

We define detrended real consumption per capita as the difference between the observed real consumption per capita and the predicted real consumption per capita, computed as the exponent of predicted values from the trend regression of logged real consumption per capita. We also define detrended log real consumption per capita, computed as the residuals from the trend regression of log real consumption per capita.

Finally, we compute the sample standard deviations of detrended real monthly household consumption per capita, for each household across all months in which this given household is surveyed. We compute four measures of consumption volatility, named respectively, “sd_x”, “sd_x_nm”, “sd_x_re” and “sd_x_nm_re”, depending on the definitions of consumption variables and household sizes as discussed above. We also compute another set of volatility measures, using sample standard deviations of detrended log real monthly household consumption per capita, which are named “sd_lx”, “sd_lx_nm”, “sd_lx_re” and “sd_lx_nm_re”, respectively.

C.1.2 Network Degrees

We now describe how we construct measures of network degrees for each household in each village. For robustness, we consider five definitions of network links, leading to five different versions of network degrees.

The first measure of network degree is constructed based on records of within-village gift and remittance, borrowing or lending transactions from the Townsend Thai Monthly Survey. Among the many types of social and economic interactions among households recorded by the survey, “gift and remittance” as well as “borrowing” and
“lending” are arguably most relevant to the purpose of informal risk sharing.

Each month, each surveyed household, identified by a “newid”, reports whether this household has given or received any gift or remittance during the month. The data set records each gift and remittance giving, gift and remittance receiving, borrowing and lending transactions separately, and includes some information on the counterparties of each transaction. In particular, the data identify whether the surveyed household has a gift or remittance transaction with some counterparty household that resides in the same village as the surveyed household, and also identify the “census structure number” of the counterparty household whenever available.

We define the “degree” of a certain household, identified by “newid”, as the number of unique same-village counterparties who the household has ever interacted with over the 196 months, each of whom resides at some structure identified by a certain “census structure number”.

The second, third and fourth measures of network degrees we use are based on records of reported kinship or neighbor relationships from the Townsend Thai Monthly Survey. Such records are obtained from numerous records of within-village interactions from five modules of the survey: household assets, agricultural assets, gifts & remittance, borrowing, and lending. Again, each record identifies a household who reports a certain interaction, the “census structure number” of the counterparty, whether the counterparty has kinship relationships with the given household, and whether the counterparty relationship is a neighbor of the given household in the village. Our second and third degree measures count the unique number of same-village counterparties who are reported, respectively, as kins and neighbors. Our fourth degree measures is constructed by taking a union of the kinship and neighborhood links.

The fifth, and the last, degree measure is constructed by taking a union of the transaction links (gifts, remittance, borrowing or lending) and the relationship links (kinship or neighborhood).

C.1.3 Control Variables

We extract monthly information on the households’ real saving balances, use of institutional finance (borrowing from commercial banks, BAAG, PCG, Rice Bank, Agricultural Co-operation or other institutions), use of personal finance (borrowing from money lenders, store owners, input suppliers, relatives or friends), health insurance
payment, life insurance payment and ROSCA payment. We construct a series of binary and real-valued variables based on these information, and then compute both inter-temporal averages and inter-temporal sums of these variables across all 196 months for each household. We also calculate the inter-temporal sample standard deviation of real saving balances to capture household-specific variation in savings. See below for more details.

Saving Saving may be used for consumption smoothing. We aggregate the current balances of all accounts that each household as savings at each month, and adjust them to real terms with the CPI data. We then compute inter-temporal averages as well as standard deviations over the whole sampled periods as two control variables.

Institutional finance Institutional finance, recorded by a binary variable, represents whether a household has borrowed from commercial banks, BAAG, PCG, Rice Bank, Agricultural Co-operation or other institutions at each month (1 is yes and 0 is no), which may be regarded as proxy for access to formal financial institutions that may help with consumption smoothing. We compute inter-temporal average and sum of this variable for each household.

Personal finance Personal finance, recorded by a binary variable, represents whether the household have borrowed from money lenders, store owners, input suppliers or individuals such as relatives, friends or other individuals at each month (1 is yes and 0 is no). We compute inter-temporal average and sum of this variable for each household.

Health insurance Health insurance, recorded by a binary variable, represents whether the household has ever paid for health insurance fee at each month (1 is yes and 0 is no). For those households that have paid health insurance fees, the amount of health insurance premia paid is also recorded. We compute inter-temporal averages and sums of these variables for each household.

Life insurance Life insurance, recorded by a binary variable, represents whether the household has any life insurance policies or funeral fund memberships at each
month (1 is yes and 0 is no). We also construct a binary variable that records whether the household paid any money into the insurance policy/funeral fund since the last interview, and a double variable that represents the amount paid to policy. We compute inter-temporal averages and sums of these variables for each household.

ROSCA ROSCA, recorded by a binary variable, represents whether the household is participating in any ROSCAs that have not finished in each month (1 is yes and 0 is no). We also construct a binary variable that records whether the household have paid any money into ROSCA since the last interview, and a double variable that represents the amount paid to ROSCAs. We compute inter-temporal averages and sums of these variables for each household.

Lastly, we obtain monthly *net operating income* for each household from the income statement section of the Townsend Thai Monthly Survey Household Financial Accounting dataset *Townsend (2017)*, which covers months 1-172. We compute *linearly detrended log real income per capita* from the dataset, and compute its sample standard deviations ("sd_ly") as well as the sample standard deviations of the differences between observed real income per capita and detrended real income per capita ("sd_y").

All these constructed variables, along with village-level fixed effects, are included in the regression analysis as control variables.

C.1.4 Summary Statistics

With the three types of variables, i.e., the consumption variables, the network variables and the control variables, constructed above, we obtain a merged data set and focus on the households for whom all three types of variables are not missing. This effectively leaves us with a sample size of around 600 households. We now present some summary statistics for this subset of households in Table 3.

[Table 2 about here.]
C.2 Empirical Findings

C.2.1 Main Results

We now present our main empirical results on the positive correlation between degree centrality and consumption variance.

Table 2 reports pairwise sample correlation coefficients between (i) household degrees according to five versions of network definitions and (ii) standard deviations of six versions of detrended real monthly household consumption per capita or its logged forms. All sample correlation coefficients are positive and statistically significant.

Table 4 reports results from five sets of regressions of sample standard deviation of detrended real consumption per capita on own network degree, average counterparty degree, along with a list of control variables for risk heterogeneity and village-level fixed effects. All five sets of regressions use the same four representative dependent variables, “sd_x”, “sd_x_nm_re”, “sd_dx”, “sd_lx”. Clearly, most estimated coefficients on network degrees are positive and statistically significant, after controlling for variations in average counterparty degree, village fixed effects and a list of household-level control variables.

Table 5 reports results from the same five sets of regressions as those run in Table 4, except that regressions in Table 5 include standard deviations of detrended real income per capita as an additional control variable. Specifically, all regressions with regular-scale consumption volatility measures (“sd_x”, “sd_x_nm_re”) as dependent variables add “sd_y” as an additional right-hand-side variable, while those with log-scale consumption volatility measures (“sd_lx”, “sd_lx_nm_re”) add “sd_ly” instead. Again, most estimated coefficients on network degrees remain positive and statistically significant.

It is noticeable that the coefficients in regressions of the dependent variable “sd_x”, though remain positive, become statistically insignificant. This, however, is not particularly surprising, as the construction of variable “sd_x” involves very occasional extraordinary (maintenance) expenditures, which we find, if not expressed in log scale, blows up the variance, skewness and kurtosis of the whole sample remarkably as discussed earlier.

In summary, Table 2, Table 4 and Table 5 demonstrate remarkably robust consistency between the theoretical results obtained previously under our model and the empirical patterns of informal risk sharing in real-world village communities.
Table 2: Pairwise Correlation Coefficients

<table>
<thead>
<tr>
<th></th>
<th>sd. of detrended real consumption per capita</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sd. x</td>
<td>sd. x_re</td>
<td>sd. x_nm</td>
<td>sd. x_nm_re</td>
<td>sd. lx</td>
<td>sd. lx_re</td>
<td>sd. lx_nm</td>
<td>sd. lx_nm_re</td>
</tr>
<tr>
<td>Network degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Transactions</td>
<td>0.1816</td>
<td>0.1793</td>
<td>0.3170</td>
<td>0.2743</td>
<td>0.2496</td>
<td>0.2563</td>
<td>0.2359</td>
<td>0.2518</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>(b) Kinship</td>
<td>0.1018</td>
<td>0.1114</td>
<td>0.1287</td>
<td>0.1540</td>
<td>0.1449</td>
<td>0.1318</td>
<td>0.1431</td>
<td>0.1377</td>
</tr>
<tr>
<td></td>
<td>(0.0121)</td>
<td>(0.0060)</td>
<td>(0.0015)</td>
<td>(0.0001)</td>
<td>(0.0003)</td>
<td>(0.0011)</td>
<td>(0.0004)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>(c) Neighbors</td>
<td>0.1740</td>
<td>0.1655</td>
<td>0.2873</td>
<td>0.2395</td>
<td>0.2308</td>
<td>0.2339</td>
<td>0.2235</td>
<td>0.2351</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors</td>
<td>0.1707</td>
<td>0.1655</td>
<td>0.2886</td>
<td>0.2428</td>
<td>0.2327</td>
<td>0.2352</td>
<td>0.2270</td>
<td>0.2383</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>(e) Transactions, Kinship & Neighbors</td>
<td>0.1742</td>
<td>0.1668</td>
<td>0.2919</td>
<td>0.2461</td>
<td>0.2386</td>
<td>0.2452</td>
<td>0.2259</td>
<td>0.2414</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
</tbody>
</table>

Note: P-values are reported in parentheses under corresponding correlation coefficients. The numbers of observations (households) are 599 for row (a), and 607 for rows (b)-(e).
C.2.2 Alternative Specifications

Alternative Construction of Consumption Variable We construct the consumption variable from Townsend Thai Monthly Survey, using both the biweekly consumption record and the monthly consumption record, which cover different sets of expenditures as listed in the survey questionnaire. In the main text, we aggregate over all expenditures from both records, excluding “item 48: other expenses” from the monthly record. In addition, for the “no-maintenance” version of variables, we exclude expenditures on “maintenance of house and private vehicles” (item 27-31).

As an additional robustness check, here we provide another set of empirical results, where we aggregate consumption variables to quarterly (3-month) levels so as to better incorporate (or smooth out) seasonal expenditures, such as expenditure on clothing. We find our results essentially unaffected using quarterly-level consumption data.

Alternative Method of Detrending For the empirical results in the main text, we detrend the consumption variables with a different linear trend for each household. Here, we also provide a robustness check by detrending consumption with a common trend among all households. Our main results remain essentially unchanged:
Table 3: Summary Statistics

<table>
<thead>
<tr>
<th>variable</th>
<th>obs.</th>
<th>mean</th>
<th>s.d.</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Monthly real consumption per capita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>132,997</td>
<td>1625</td>
<td>4214</td>
<td>0</td>
<td>773,411</td>
</tr>
<tr>
<td>x_re</td>
<td>132,997</td>
<td>2497</td>
<td>7059</td>
<td>0</td>
<td>1,160,116</td>
</tr>
<tr>
<td>x_nm</td>
<td>132,997</td>
<td>1444</td>
<td>2408</td>
<td>0</td>
<td>181,988</td>
</tr>
<tr>
<td>x_nmm_re</td>
<td>132,997</td>
<td>2226</td>
<td>4606</td>
<td>0</td>
<td>444,195</td>
</tr>
<tr>
<td>(b) Household consumption volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>607</td>
<td>2425</td>
<td>3520</td>
<td>98</td>
<td>55287</td>
</tr>
<tr>
<td>sd_x_re</td>
<td>607</td>
<td>4142</td>
<td>5922</td>
<td>173</td>
<td>84839</td>
</tr>
<tr>
<td>sd_x_nm</td>
<td>607</td>
<td>1661</td>
<td>1618</td>
<td>98</td>
<td>12854</td>
</tr>
<tr>
<td>sd_x_nmm_re</td>
<td>607</td>
<td>3031</td>
<td>3504</td>
<td>171</td>
<td>32259</td>
</tr>
<tr>
<td>sd_lx</td>
<td>607</td>
<td>0.483</td>
<td>0.124</td>
<td>0.206</td>
<td>0.911</td>
</tr>
<tr>
<td>sd_lx_re</td>
<td>607</td>
<td>0.471</td>
<td>0.118</td>
<td>0.198</td>
<td>0.945</td>
</tr>
<tr>
<td>sd_lx_nm</td>
<td>607</td>
<td>0.431</td>
<td>0.114</td>
<td>0.178</td>
<td>0.898</td>
</tr>
<tr>
<td>sd_lx_nmm_re</td>
<td>607</td>
<td>0.420</td>
<td>0.105</td>
<td>0.177</td>
<td>0.813</td>
</tr>
<tr>
<td># months</td>
<td>607</td>
<td>189.115</td>
<td>18.420</td>
<td>100</td>
<td>196</td>
</tr>
<tr>
<td>(c) Household network degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transactions</td>
<td>599</td>
<td>3.770</td>
<td>2.956</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Kinship</td>
<td>607</td>
<td>2.129</td>
<td>1.870</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Neighbors</td>
<td>607</td>
<td>3.684</td>
<td>2.980</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Kinship & Neighbors</td>
<td>607</td>
<td>3.807</td>
<td>3.029</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Transaction, Kinship, & Neighbors</td>
<td>607</td>
<td>4.008</td>
<td>3.088</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>
Table 4: Regression with control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>108.229</td>
<td>58.667</td>
<td>0.066</td>
<td>582</td>
<td>0.1993</td>
</tr>
<tr>
<td>$sd_{x, nm, re}$</td>
<td>288.345</td>
<td>55.886</td>
<td>0.000</td>
<td>582</td>
<td>0.1589</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0083</td>
<td>0.0018</td>
<td>0.000</td>
<td>582</td>
<td>0.2091</td>
</tr>
<tr>
<td>$sd_{lx, nm, re}$</td>
<td>0.0070</td>
<td>0.0013</td>
<td>0.000</td>
<td>582</td>
<td>0.1998</td>
</tr>
<tr>
<td>(b) Kinship network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>58.106</td>
<td>84.309</td>
<td>0.491</td>
<td>590</td>
<td>0.1897</td>
</tr>
<tr>
<td>$sd_{x, nm, re}$</td>
<td>229.256</td>
<td>98.458</td>
<td>0.020</td>
<td>590</td>
<td>0.1221</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0066</td>
<td>0.0031</td>
<td>0.035</td>
<td>590</td>
<td>0.1875</td>
</tr>
<tr>
<td>$sd_{lx, nm, re}$</td>
<td>0.0044</td>
<td>0.0024</td>
<td>0.068</td>
<td>590</td>
<td>0.1715</td>
</tr>
<tr>
<td>(c) Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>98.247</td>
<td>56.015</td>
<td>0.080</td>
<td>590</td>
<td>0.1965</td>
</tr>
<tr>
<td>$sd_{x, nm, re}$</td>
<td>246.268</td>
<td>53.198</td>
<td>0.000</td>
<td>590</td>
<td>0.1475</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0070</td>
<td>0.0019</td>
<td>0.000</td>
<td>590</td>
<td>0.2081</td>
</tr>
<tr>
<td>$sd_{lx, nm, re}$</td>
<td>0.0058</td>
<td>0.0014</td>
<td>0.000</td>
<td>590</td>
<td>0.1960</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>98.594</td>
<td>54.336</td>
<td>0.070</td>
<td>590</td>
<td>0.1969</td>
</tr>
<tr>
<td>$sd_{x, nm, re}$</td>
<td>247.487</td>
<td>53.603</td>
<td>0.000</td>
<td>590</td>
<td>0.1493</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0070</td>
<td>0.0018</td>
<td>0.000</td>
<td>590</td>
<td>0.2091</td>
</tr>
<tr>
<td>$sd_{lx, nm, re}$</td>
<td>0.0058</td>
<td>0.0014</td>
<td>0.000</td>
<td>590</td>
<td>0.1972</td>
</tr>
<tr>
<td>(e) Transaction, Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>106.736</td>
<td>51.762</td>
<td>0.040</td>
<td>590</td>
<td>0.1988</td>
</tr>
<tr>
<td>$sd_{x, nm, re}$</td>
<td>246.632</td>
<td>50.432</td>
<td>0.000</td>
<td>590</td>
<td>0.1510</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0073</td>
<td>0.0018</td>
<td>0.000</td>
<td>590</td>
<td>0.2124</td>
</tr>
<tr>
<td>$sd_{lx, nm, re}$</td>
<td>0.0060</td>
<td>0.0013</td>
<td>0.000</td>
<td>590</td>
<td>0.1996</td>
</tr>
</tbody>
</table>

Note: Some households are dropped in the regressions due to missing values in control variables, reducing the sample sizes to 582 for (a) and 590 for (b)-(e), respectively.
Table 5: Regression with income volatility, control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>84.261</td>
<td>56.930</td>
<td>0.139</td>
<td>582</td>
<td>0.2388</td>
</tr>
<tr>
<td>$sd_x_{nm_re}$</td>
<td>234.494</td>
<td>54.500</td>
<td>0.000</td>
<td>582</td>
<td>0.2315</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0080</td>
<td>0.0019</td>
<td>0.000</td>
<td>582</td>
<td>0.2241</td>
</tr>
<tr>
<td>$sd_{lx_nm_re}$</td>
<td>0.0069</td>
<td>0.0014</td>
<td>0.000</td>
<td>582</td>
<td>0.2017</td>
</tr>
<tr>
<td>(b) Kinship network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>49.292</td>
<td>84.740</td>
<td>0.561</td>
<td>590</td>
<td>0.2326</td>
</tr>
<tr>
<td>$sd_x_{nm_re}$</td>
<td>214.264</td>
<td>99.047</td>
<td>0.031</td>
<td>590</td>
<td>0.2046</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0061</td>
<td>0.0032</td>
<td>0.058</td>
<td>590</td>
<td>0.2070</td>
</tr>
<tr>
<td>$sd_{lx_nm_re}$</td>
<td>0.0043</td>
<td>0.0025</td>
<td>0.084</td>
<td>590</td>
<td>0.1751</td>
</tr>
<tr>
<td>(c) Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>73.989</td>
<td>54.177</td>
<td>0.173</td>
<td>590</td>
<td>0.2364</td>
</tr>
<tr>
<td>$sd_x_{nm_re}$</td>
<td>206.068</td>
<td>50.615</td>
<td>0.000</td>
<td>590</td>
<td>0.2210</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0066</td>
<td>0.0019</td>
<td>0.001</td>
<td>590</td>
<td>0.2238</td>
</tr>
<tr>
<td>$sd_{lx_nm_re}$</td>
<td>0.0057</td>
<td>0.0014</td>
<td>0.000</td>
<td>590</td>
<td>0.1979</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>76.515</td>
<td>52.534</td>
<td>0.146</td>
<td>590</td>
<td>0.2369</td>
</tr>
<tr>
<td>$sd_x_{nm_re}$</td>
<td>210.719</td>
<td>51.505</td>
<td>0.000</td>
<td>590</td>
<td>0.2232</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0067</td>
<td>0.0018</td>
<td>0.000</td>
<td>590</td>
<td>0.2247</td>
</tr>
<tr>
<td>$sd_{lx_nm_re}$</td>
<td>0.0057</td>
<td>0.0014</td>
<td>0.000</td>
<td>590</td>
<td>0.1990</td>
</tr>
<tr>
<td>(e) Transactions, Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>84.885</td>
<td>50.136</td>
<td>0.091</td>
<td>590</td>
<td>0.2383</td>
</tr>
<tr>
<td>$sd_x_{nm_re}$</td>
<td>210.083</td>
<td>48.735</td>
<td>0.000</td>
<td>590</td>
<td>0.2245</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.0070</td>
<td>0.0018</td>
<td>0.000</td>
<td>590</td>
<td>0.2280</td>
</tr>
<tr>
<td>$sd_{lx_nm_re}$</td>
<td>0.0059</td>
<td>0.0013</td>
<td>0.000</td>
<td>590</td>
<td>0.2015</td>
</tr>
</tbody>
</table>

Note: Some households are dropped in the regressions due to missing values in control variables, reducing the sample sizes to 582 for (a) and 590 for (b)-(e), respectively.
<table>
<thead>
<tr>
<th></th>
<th>s.d. of detrended real consumption per capita</th>
<th>sd_x</th>
<th>sd_x_re</th>
<th>sd_x_nm</th>
<th>sd_x_nm_re</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Transactions</td>
<td>0.1784</td>
<td>0.1684</td>
<td>0.3089</td>
<td>0.2709</td>
<td>(0.0000)</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td></td>
</tr>
<tr>
<td>(d) Kinship & Neighbors</td>
<td>0.1682</td>
<td>0.1564</td>
<td>0.2854</td>
<td>0.2422</td>
<td>(0.0000)</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td></td>
</tr>
<tr>
<td>s.d. of detrended real consumption per capita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sd_lx</td>
<td>sd_lx_re</td>
<td>sd_lx_nm</td>
<td>sd_lx_nm_re</td>
<td></td>
</tr>
<tr>
<td>Network degrees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Transactions</td>
<td>0.2102</td>
<td>0.2133</td>
<td>0.2204</td>
<td>0.2308</td>
<td>(0.0000)</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td></td>
</tr>
<tr>
<td>(d) Kinship & Neighbors</td>
<td>0.1812</td>
<td>0.1792</td>
<td>0.1965</td>
<td>0.2004</td>
<td>(0.0000)</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Regression with control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sd.x)</td>
<td>191.297</td>
<td>106.958</td>
<td>0.074</td>
<td>576</td>
<td>0.1986</td>
</tr>
<tr>
<td>(sd.x_{nm_re})</td>
<td>489.680</td>
<td>96.350</td>
<td>0.000</td>
<td>576</td>
<td>0.1617</td>
</tr>
<tr>
<td>(sd.lx)</td>
<td>0.00936</td>
<td>0.0021</td>
<td>0.000</td>
<td>576</td>
<td>0.1564</td>
</tr>
<tr>
<td>(sd.lx_{nm_re})</td>
<td>0.00918</td>
<td>0.0017</td>
<td>0.000</td>
<td>576</td>
<td>0.1417</td>
</tr>
</tbody>
</table>

| (d) Kinshop & Neighbors network |
\(sd.x \)	174.209	98.576	0.078	584	0.1951
\(sd.x_{nm_re} \)	422.660	92.008	0.000	584	0.1525
\(sd.lx \)	0.00778	0.0021	0.000	584	0.1530
\(sd.lx_{nm_re} \)	0.00754	0.0017	0.000	584	0.1318
Table 8: Regression with income volatility, control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>145.547</td>
<td>103.637</td>
<td>0.161</td>
<td>576</td>
<td>0.2378</td>
</tr>
<tr>
<td>$sd_{x _nm _re}$</td>
<td>417.920</td>
<td>94.797</td>
<td>0.000</td>
<td>576</td>
<td>0.2367</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00898</td>
<td>0.0022</td>
<td>0.000</td>
<td>576</td>
<td>0.1723</td>
</tr>
<tr>
<td>$sd_{lx _nm _re}$</td>
<td>0.00904</td>
<td>0.0017</td>
<td>0.000</td>
<td>576</td>
<td>0.1444</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>132.276</td>
<td>95.058</td>
<td>0.165</td>
<td>584</td>
<td>0.2350</td>
</tr>
<tr>
<td>$sd_{x _nm _re}$</td>
<td>356.886</td>
<td>89.112</td>
<td>0.000</td>
<td>584</td>
<td>0.2290</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00738</td>
<td>0.0021</td>
<td>0.001</td>
<td>584</td>
<td>0.1692</td>
</tr>
<tr>
<td>$sd_{lx _nm _re}$</td>
<td>0.00741</td>
<td>0.0017</td>
<td>0.000</td>
<td>584</td>
<td>0.1344</td>
</tr>
<tr>
<td>Network degrees</td>
<td>s.d. of detrended real consumption per capita</td>
<td>sd. _x & sd. _x_re & sd. _x_nm & sd. _x_nm_re</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>(a) Transactions</td>
<td>0.1831 & 0.1799 & 0.3186 & 0.2742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0000) & (0.0000) & (0.0000) & (0.0000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Kinship & Neighbors</td>
<td>0.1724 & 0.1661 & 0.2911 & 0.2426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0000) & (0.0000) & (0.0000) & (0.0000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Network degrees | s.d. of detrended real consumption per capita | sd. _lx & sd. _lx_re & sd. _lx_nm & sd. _lx_nm_re |
|----------------|---|---------------------------------|---------------------------------|---------------------------------|
| (a) Transactions | 0.2418 & 0.2399 & 0.2199 & 0.2216 |
| | (0.0000) & (0.0000) & (0.0000) & (0.0000) |
| (d) Kinship \& Neighbors | 0.2221 & 0.2111 & 0.2077 & 0.1988 |
| | (0.0000) & (0.0000) & (0.0000) & (0.0000) |
Table 10: Regression with control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>109.236</td>
<td>58.709</td>
<td>0.063</td>
<td>582</td>
<td>0.2006</td>
</tr>
<tr>
<td>$sd_x_{nm}_{re}$</td>
<td>287.751</td>
<td>55.892</td>
<td>0.000</td>
<td>582</td>
<td>0.1595</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00876</td>
<td>0.0019</td>
<td>0.000</td>
<td>582</td>
<td>0.2097</td>
</tr>
<tr>
<td>$sd_{lx}{nm}{re}$</td>
<td>0.00658</td>
<td>0.0015</td>
<td>0.000</td>
<td>582</td>
<td>0.2129</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>99.711</td>
<td>54.380</td>
<td>0.067</td>
<td>590</td>
<td>0.1982</td>
</tr>
<tr>
<td>$sd_x_{nm}_{re}$</td>
<td>247.962</td>
<td>53.596</td>
<td>0.000</td>
<td>590</td>
<td>0.1497</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00715</td>
<td>0.0019</td>
<td>0.000</td>
<td>590</td>
<td>0.2097</td>
</tr>
<tr>
<td>$sd_{lx}{nm}{re}$</td>
<td>0.00506</td>
<td>0.0016</td>
<td>0.000</td>
<td>590</td>
<td>0.2077</td>
</tr>
</tbody>
</table>
Table 11: Regression with income volatility, control variables and village fixed effects

<table>
<thead>
<tr>
<th></th>
<th>coefficient</th>
<th>robust s.e.</th>
<th>p-value</th>
<th>obs.</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Transactions network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>85.067</td>
<td>56.918</td>
<td>0.136</td>
<td>582</td>
<td>0.2407</td>
</tr>
<tr>
<td>$sd_{x_{\text{nm} _ re}}$</td>
<td>247.812</td>
<td>54.450</td>
<td>0.000</td>
<td>582</td>
<td>0.2326</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00841</td>
<td>0.0020</td>
<td>0.000</td>
<td>582</td>
<td>0.2253</td>
</tr>
<tr>
<td>$sd_{lx_{\text{nm} _ re}}$</td>
<td>0.00649</td>
<td>0.0015</td>
<td>0.000</td>
<td>582</td>
<td>0.2146</td>
</tr>
<tr>
<td>(d) Kinship & Neighbors network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd_x</td>
<td>77.455</td>
<td>52.528</td>
<td>0.141</td>
<td>590</td>
<td>0.2388</td>
</tr>
<tr>
<td>$sd_{x_{\text{nm} _ re}}$</td>
<td>210.117</td>
<td>51.448</td>
<td>0.000</td>
<td>590</td>
<td>0.2242</td>
</tr>
<tr>
<td>sd_{lx}</td>
<td>0.00678</td>
<td>0.0019</td>
<td>0.001</td>
<td>590</td>
<td>0.2258</td>
</tr>
<tr>
<td>$sd_{lx_{\text{nm} _ re}}$</td>
<td>0.00495</td>
<td>0.0016</td>
<td>0.002</td>
<td>590</td>
<td>0.2095</td>
</tr>
</tbody>
</table>