A Comparison of Discrete and Parametric Approximation Methods
for Continuous-State Dynamic Programming Problems'

Hugo Benitez-Silva, Yale University and S.U.N.Y. Stony Brook
George Hall, Yale University
Gunter J. Hitsch, Yale University
Giorgio Pauletto, University of Geneva
John Rust,} Yale University

Preliminary and Incomplete. Comments Welcome

June 4, 2000

' Benitez-Silva and Hitsch are grateful for the financial support of the Cowles Foundation for Research in
Economics through a Carl Arvid Anderson Dissertation Fellowship. Benitez-Silva is also grateful to the John Perry
Miller Fund for additional financial support. Hall and Rust gratefully acknowledge financial support from a National
Science Foundation grant, SES-9905145.

i Corresponding author: John Rust, Department of Economics, Yale University, 37 Hillhouse Avenue, New
Haven CT 06520-8264, phone: (203) 432-3569, fax: (203) 432-6323, e-mail: jrust@gemini.econ.yale.edu



Abstract

We compare alternative numerical methods for approximating solutions to continuous-state dy-
namic programming (DP) problems. We distinguish two approaches: discrete approrimation
and parametric approrimation. In the former, the continuous state space is discretized into a
finite number of points NV, and the resulting finite-state DP problem is solved numerically. In
the latter, a function associated with the DP problem such as the wvalue function, the policy
function, or some other related function is approximated by a smooth function of K unknown
parameters. Values of the parameters are chosen so that the parametric function approximates
the true function as closely as possible. We focus on approximations that are linear in parame-
ters, i.e. where the parametric approximation is a linear combination of K basis functions. We
also focus on methods that approximate the value function V' as the solution to the Bellman
equation associated with the DP problem. In finite state DP problems the method of policy
iteration is an effective iterative method for solving the Bellman equation that converges to V'
in a finite number of steps. Each iteration involves a policy valuation step that computes the
value function V,, corresponding to a trial policy a. We show how policy iteration can be ex-
tended to continuous-state DP problems. For discrete approximation, we refer to the resulting
algorithm as discrete policy iteration (DPI). Each policy valuation step requires the solution of
a system of linear equations with N variables. For parametric approximation, we refer to the
resulting algorithm as parametric policy iteration (PPI). Each policy valuation step requires the
solution of a linear regression with K unknown parameters. The advantage of PPI is that it
is generally much faster than DPI, particularly when V' can be well-approximated with small
K. The disadvantage is that the PPI algorithm may either fail to converge or may converge
to an incorrect solution. We compare DPI and PPI to some of the best alternative methods
such as parameterized expectations algorithm (PEA) for several test problems with closed-form
solutions. We also compare the performance of these methods in several “real” applications,
including a life-cycle consumption problem, an inventory investment problem, and a problem of
optimal pricing, advertising, and exit decisions for newly introduced products.

Keywords: Dynamic Programming, Numerical Methods, Policy Iteration, Linear-Quadratic
problems, Consumption/Saving problems, Stochastic growth problems, Inventory control prob-
lems, Product advertising and pricing problems.

JEL classification: C0, DO



1 Introduction

Despite the rapid growth in computing power and new developments in the literature on numerical
dynamic programming in economics (for recent surveys see Rust 1996, Santos 1999, the text by
Judd 1998, and Christiano and Fisher, 2000), multi-dimensional infinite-horizon continuous-state
dynamic programming (DP) problems are still quite challenging to solve. Most economists are aware
of the “curse of dimensionality” and the limits it places on our ability to solve high-dimensional
DP problems. Despite recent theoretical results that suggest that it is possible to break the curse
of dimensionality under certain conditions (see Rust, 1997a and Rust, Traub and Wozniakowski,
2000), solutions to most high-dimensional DP problems are still beyond our grasp even using the
best algorithms and the fastest workstations and supercomputers.

There is considerable disagreement in the literature about the most efficient algorithms to solve
high-dimensional DP problems. The debate is roughly whether it is better to solve DP problems
by discrete approrimation or by parametric approximation. In the former approach, the continuous
state space is discretized into a finite number of grid points, N, and the resulting finite-state DP
problem is solved numerically. The value function and policy function can be computed at points
in the state space that are not elements of the predefined grid via interpolation. In parametric
approximation, the value or policy function (or some other related function) is approximated by
a smooth parametric function with K unknown parameters. These parameters are chosen in such
a way that the resulting function “best fits” the true solution according to some metric. The
argument for the superiority of the parametric approximation approach is roughly that in many
cases, one can obtain a good global approximation to a function in question using a small number
of parameters K, whereas in high-dimensional problems discretization requires very large values of
N to obtain a comparably accurate approximation.

It is true that naive discretization of multidimensional DP problems leads directly to the curse
of dimensionality, since in a d-dimensional problem one can show that O(1/¢) points in each dimen-
sion, or a total of N = O(1/€%) grid points, are required in order to obtain an e-approximation to
the value or policy function. Since N increases exponentially fast in the dimension d, it follows that
naive discretization results in a curse of dimensionality. However the fact that naive discretization
leads to a curse of dimensionality does not imply that all ways of discretizing the problem neces-
sarily produce a curse of dimensionality. Rust’s (1997a) “random multigrid algorithm” breaks the

curse of dimensionality using a random discretization of the state space. This algorithm results



in approximate solution to the DP problem with an ezpected error of e using only N = O(1/€2)
points. However the regularity conditions for Rust’s result require a Lipschitz-continuous transition
probability for the state variables, and in some economic applications this condition will not be
satisfied. In addition, Rust’s result applies to DP problems where the control variable takes on
only a finite number of possible values: we do not know whether Rust’s result can be extended to
problems where the control variables are continuous.

The appeal of parametric approximation methods is that a potentially infinite-dimensional
problem (e.g. finding the solution V' to the Bellman functional equation) is reduced to a finite-
dimensional problem with a relatively small number K of unknown parameters. To illustrate this
approach, suppose we are interested in approximating the value function V' (s), which is the unique
solution to Bellman’s equation

V(s) =T(V)(s) = max [ (s,a -I—,B/ (s'|s,a)ds'| . (1)

a€A(s)

Suppose we conjecture that V' can be approximated as a linear combination of a relatively small

number K of “basis functions” {pi(s),... ,px(s)}

K
s) = Z9kplc(3)- (2)
k=1

The hope is that if the true V is not too irregular, and if we have chosen a “good basis” we will
be able to find a good approximation to V for a relatively small value of K. The goal is to find a
particular parameter value 6 such that the approximate value function Vj; “best fits” the true value
function V. Since V is not known, this can’t be done directly. However since V is the zero to a
certain residual function, ¥(V) =V —T'(V), this suggests that there should be ways of solving for 6
so that the resulting function Vj; should be a good approximation to V. Consider the case where the
state space S is a compact subset of R%, where u(s, a) is a bounded, continuous function of (s, a), and
the conditional expectation operator is weakly continuous (i.e. where Eh(s,a) = [h(s (s']s,a)
is a bounded, continuous bounded function of (s, a) for each continuous, bounded function h). In
this case we know the value function V' will be an element of B(S), the Banach space of bounded,
continuous functions of S. It will be the unique solution Bellman’s equation, or alternatively the
zero to the residual operator W. This can be expressed as

V = argmin |W —T(W)]|. (3)
{WeB(8)}



where ||W|| is the usual sup-norm, i.e. ||W| = sup,cg|W(s)|. This representation of the problem
suggests that we should choose 6 as the corresponding solution to the finite-dimensional minimiza-
tion problem:

Vy= argmin [[Vg ~T(Vy)]| 4)

{VolocRX}
Using fact that I' is a contraction mapping, a simple application of the triangle inequality yields
the following error bound:
Vs — TVl
(1-8)

Thus, to the extent that we can find a “good basis” {p1, ..., px} with a relatively small number of

Vs =Vl < (5)

elements K such that the quantity ||V — I'(V})]| is small, we can be guaranteed that Vj is a good
global approximation to the true solution V. Further, to the extent that it does not take too many
evaluations of the error function g(8) = ||V — I'(Vp)|| to find the minimizing parameter vector 6,
the parametric approximation approach could be much faster than discrete approximation of V.

However we are not aware of a formal proof that parametric approximation methods similar to
the one outlined above succeed in breaking the curse of dimensionality. Indeed there are several
reasons why we would expect parametric approximation to be subject to an unavoidable curse
of dimensionality. First, in the absence of some sort of “special structure”, the number of basis
functions required to provide a uniform approximation to a smooth function of d variables increases
exponentially in d (see, e.g. Traub, Wasilkowski, and Wozniakowski, 1988). Second, the objective
function g(0) = ||Vy — T'(Vp)|| is generally not concave in # (and may not even be smooth in ),
and there is a well known curse of dimensionality associated with solving non-concave minimization
problems, regardless of whether deterministic or random algorithms are allowed (see Nemirovsky
and Yudin, 1978). Indeed, we are not aware of any formal analysis of the complexity or parametric
approximation methods, or even a derivation of error bounds or proofs of convergence that account
for the fact that the function g(6) cannot generally be evaluated exactly. Instead both the Bellman
operator I'(Vp) and the sup-norm, ||V — I'(Vj)|| must be approximated, and it can be costly to
approximate these objects to a sufficient level of accuracy to insure that Vj; does in fact provide a
good approximation to V.

Practical applications of parametric approximation methods (see e.g. Taylor and Uhlig, 1990,
Deaton and Laroque, 1992, Christiano and Fisher 2000, Santos 1999, and Miranda and Schnitkey

1995) have yielded mixed results. In some cases the nonlinear optimization problem can be solved



quickly and reliably, but others have been plagued by problems multiple optima and have experi-
enced considerable difficulty in getting the minimization problem (4) to converge, especially when
the underlying function being approximated has kinks or discontinuities. In this paper we propose
an alternative parametric approximation strategy based on iterative solution of a sequence of para-
metric minimization problems each of which can be solved by the method of ordinary least squares
(OLS). This method is motivated by the iterative policy iteration algorithm for solving finite and
infinite-dimensional DP problems (see Howard 1960, and Puterman and Brumelle, 1979). Under
mild regularity conditions it can be proved that policy iteration results in a monotonically improving
sequence of approximate value functions that converge to V in a finite number of iterations.
Policy iteration will be described more formally in section 2, but briefly, it consists of an
alternating sequence of policy improvement and policy valuation steps. The policy valuation step

results in a linear functional equation for the value function V,, corresponding to policy a:

V() = u(s, a(s)) + B / Va()p(s']5, a(s))ds’ (6)

Discrete approximation methods involve solving an approximate finite state DP problem defined
over a grid of N points {s1,...,sy} in the state space. Discretization converts the infinite-
dimensional linear functional equation into a system of N linear equations in the N unknowns
{Va(51),--- , Va(sn)}. The amount of work required to solve this system is bounded by O(N3), the
time required by standard linear equation solvers (e.g. LU factorization and back-substitution) for
dense systems.

Now consider solving the policy valuation step (6) via a linear parametric approximation to

Vi such as in equation (2). Substituting the parametric approximation of V,, into equation (6) we

obtain
K K
> i) = ulssa(s) + Y [ (ol ls (o)) (7)
k=1 k=1

If we evaluate this equation at M points {s1,... ,sy} where M > K, we can solve for the value 6

that approximately solves equation (7) by the method of ordinary least squares (OLS). In fact, if
M = K and the points {s1,... ,sk} are chosen so that the K x K matrix X whose (,j) element
is given by

zij = pi(s;) — ﬂ/pi(sl)p(3'|3j, a(s;))ds' (8)
has full rank, then we can find an exact solution to the system (7). The solution is given by

0 = (X'X)~' X'y where y; = u(s;, a(s;)). The hope is that if we have chosen a “good basis” that
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enables us to find a good approximation to V, for small K, then parametric policy iteration (PPI)
will be far faster than a discrete policy iteration (DPI), since the value of K necessary to obtain
an e-approximation to V, will be far smaller than the value N that would be required by discrete
approximation methods. The other key advantage of PPI is that unlike problem (4) the implied
global minimization problem has an explicit solution and can be carried out in O(K?) time in the
worst case. If PPI also shares the rapid, global convergence rate of ordinary policy iteration, then
it could be quite promising for solving high-dimensional DP problems.

In this paper we compare the performance of DPI and PPI in a number of “test problems” that
admit closed-form solutions for the value and policy functions. These test problems include the
infinite-horizon consumption/saving problem studied by Phelps (1962) and Hakansson (1970), the
linear-quadratic optimal control problem studied by Holt, Modigliani and Simon (1949) and Hansen
and Sargent (1995), an optimal replacement model studied by Rust (1985, 1986), and an stochastic
growth model analyzed in Santos (1999). In addition to DPI and PPI, we also compare some other
leading alternative parametric approximation strategies such as the parameterized expectations al-
gorithm (PEA) introduced by Marcet (1988) and den Hann and Marcet (1990) modified according
to the recommendations in Christiano and Fisher (2000). Instead of focusing on parameterizing
the value function and attempting to solve the Bellman equation, the PEA approach involves pa-
rameterizing a certain conditional expectation function that enters the Euler equation. The latter
equation is derived from the first order condition to DP problems with continuous control variables.
We also compare parametric and discrete approximation methods in finite-horizon versions of the
consumption/savings problem. Finally we study the performance of the methods in several “real”
applications including a model of optimal consumption and labor supply at the end of the life-cycle
studied by Benitez-Silva (2000), a model optimal inventory investment and commodity price spec-
ulation studied in Hall and Rust (1999a,b), and a model of optimal pricing and advertising and
product exit decisions for newly introduced products studied by Hitsch (2000).

Section 2 reviews the finite- and infinite-dimensional versions of the Howard (1960) policy itera-
tion algorithm. However since it is not feasible to exactly solve infinite-dimensional linear equations
(linear functional equations), we describe ways of forming feasible approximations to the systems
that must be solved when using policy iteration in DP problems with continuous state spaces. This
leads us to formally define the DPI and PPI variants of policy iteration. We provide a taxono-
my of different variants of of these algorithms corresponding to different ways of discretizing the

state space, different basis functions for parametric approximations, different quadrature methods



for computing integrals underlying conditional expectations, different optimization algorithms for
approximating the max operator in the Bellman equation, and so forth. We also provide a general
description of other leading parametric approximation methods used in our comparisons includ-
ing PEA. Section 3 introduces the test problems used in our study and presents their analytical
solutions. Section 4 presents results for a stochastic growth problem with and without leisure.
Section 5 presents the results of our numerical comparisons for the finite and infinite-horizon con-
sumption/savings problem. Section 6 presents results for an optimal replacement problem, which
unlike the previous problems is one with a discrete control variable and where there is a kink in the
optimal value function. Section 7 presents results for the linear-quadratic-gaussian (LQG) control
problem, our last test problem. Section 8 presents introduces the more realistic models presenting
results for Hall and Rust’s model of optimal inventory investment and commodity price speculation.
Section 9 presents results for Hitsch’s model of pricing and advertising and product exit decisions
for newly introduced consumer products. Section 10 show the results for Benitez-Silva’s analysis of
consumption/savings and labor supply decisions at the end of the life cycle. Section 11 presents our
conclusions about the performance of the various algorithms, and our recommendations for future
research in this area.

We realize that the large number of methods and algorithms available for solving DP problems
actually presents a daunting burden to non-experts who are interested in solving a specific problem.
Our hope is that by studying a larger range of problems, practioners interested in solving a specific
DP problem will find their problem to be sufficiently similar to one of the problems analyzed here
that they might be able to use this analysis to help them select the algorithm that is likely to be
best for their particular problem. We have attempted to provide a clear summary of the strengths
and weaknesses of various methods and to present our “bottom line” recommendations about the
algorithms that work best for various problems. Most importantly, we also provide (via the web
site http://gemini.econ.yale.edu/jrust/sdp) fully documented source code in Gauss, Matlab,
and C that implement all the methods and will recreate all the results presented in this paper.
Our hope that providing this software library to the economics community will accelerate the use
of these methods and enable the profession to get further practical experience with these methods

and hopefully, expand the range of interesting applied problems that can be solved in practice.



2 Algorithms

This section reviews some basic facts about infinite horizon DP problems and provides a brief
description of policy iteration, DPI and PPI algorithms, and the parameterized expectations algo-

rithm.

2.1 Review of the DP Problem
Consider an infinite horizon dynamic programming problem where the state s € S C R%. Bellman’s
equation is

Vi(s) = arenjx [u(s,a —I—ﬂ/V (s|s,a)ds"]. (9)

The optimal policy «(s) is the solution to:
a(s) = argmaz[u(s,a —I—ﬁ/ (s|s,a)ds"]. (10)
acA(s)

In abstract terms V' = I'(V) is the unique fixed point to the Bellman operator I' : B — B, where
B is a Banach space of functions from S to R and the Bellman operator is given by

F(V)(s) = max u(s,a —I—ﬂ/V (s'|s,a)ds"]. (11)

a€A(s)

Most previous work has focused on proving approximation theorems based on some type of Dis-
cretized Bellman operator:

N
T (V)(s) = max {ms,a)+5ZV(si)pN<sz-|s,a)], (12)
=1

a€A(s)

where py is a discrete probability distribution over a finite grid {s1,... ,sy} in S, where S = [0, 1]¢
for simplicity. In that case I'y has a dual interpretation, it can be regarded as a contraction mapping
on RY (this is where the computation is done, resulting in a fixed point Vi € RY), but it is also a
valid contraction mapping I'y : B — B. This latter feature makes it easy to prove approximation
bounds since the function I'(Vy) can be regarded as an element of B, and thus is a natural candidate
as an approximation to V =T(V).

Now consider an alternative way of approximating V', namely as a linear combination of a set
of basis functions {p1(s),p2(s),---,pr(s)}. These functions may not literally be a basis for B,

but should have the property that the sequence is ultimately dense in B in the sense that for any



V € B we have:

1 f = 1
i 8, V1031 =0, 9

It is possible that families of functions that are nonlinear in the parameters # could be considered
also, such as neural net and wavelet bases. We restrict attention to bases which are linear in
parameters for simplicity, since as we will see below it vastly simplifies the problem of determining
the optimal values of : the optimal § will be the solution to a simple ordinary least squares problem
which is trivial to compute. If the basis is a nonlinear function of 6 then we will have to solve a
nonlinear least squares problem, which could be more time consuming and it may be difficult or
impossible to prove that the algorithm breaks the curse of dimensionality.!

2.2 Policy Iteration for Continuous and Discrete MDPs

To understand the PPI algorithm I first review the infinite dimensional version of policy iteration.
Puterman and Shin (1978) proved the convergence of this algorithm, showing that it is basically

equivalent to an infinite-dimensional version of Newton’s method for solving the nonlinear equation
(I-T)(V)=0.

The algorithm consists of alternating policy valuation and policy improvement steps.

Policy Iteration (Infinite-Dimensional Version)

1. Policy Valuation Step: given an initial guess of policy a compute V,, the value function

implied by policy a:
Va(s) = u(s, a(s)) + BEVa(s), (14)
where E, is the Markov operator corresponding to a:

/V (s'|s, as))ds'. (15)

'Barron’s 1993 result on the properties of neural nets as a means of breaking the curse of dimensionality of
approximating certain classes of functions notwithstanding, there is the computational problem of finding a globally

minimizing 6 vector and this is where a curse of dimensionality could arise.



There is a unique solution to the linear operator equation defining V,, (Fredholm integral

equation of the second kind):
Vo =ta+ BEsV = (I - fEa)™" ta, (16)

where (I — BE,) exists and has the following geometric series or Neumann series representa-
tion:
o
(I —BE.)"" =) [BEa]". (17)
t=0
2. Policy Improvement Step: Compute improved policy o' using V,:

o' (s) = argmaz|u(s,a) —I—ﬂ/Va(s')p(s'|s,a)ds']. (18)
a€A(s)

If the Policy iteration algorithm converges, it is easy to see that the policy o* that it converges
to, and the corresponding value function V,« are solutions to Bellman’s equation, and thus are the
solution to the DP problem. It is well known that policy iteration always converges in a finite
number of steps from any starting point if the state space S and action sets A(s), s € S are finite
sets. Puterman and Shin provided sufficient conditions for policy iteration to converge when S and
A(s) contain a continuum of points.

One strategy for approximating the solutions to continuous state DP problems is via discretation
that results on an approximate MDP problem on a finite state space Sy = {s1,...,sn}, and the
use of policy iteration for the finite MDP on Spy. This results in the finite-dimensional version
described below.

Policy Iteration (Finite-Dimensional Version)

1. Policy Valuation Step: given an initial guess of policy o compute V, v, the value function

(in RY) implied by policy o
Van(s) = u(s,a(s)) + BEa,nVa,n(s), (19)

where E, y is the discrete Markov operator corresponding to a:

EonV(s) =Y V(si)pn(sils, a(s)). (20)

=1

There is a unique solution to the linear system of equations defining V,, y € RN

Va,N = Uq + IBEa,NVa,N = (I - /BEC!,N)_l Uy (21)



where (I — 8E, ) exists and has the following geometric series representation:

(I = BEan)™" = [BEan]" (22)
t=0

where I is the N x N identity matrix and E, y is the N x N Markov transition matrix with

(,7) entry given by:
Eao,nli; j] = [pn(silsj, afs;))] - (23)

2. Policy Improvement Step: Compute improved policy o' using V,:

N

o' (s) = argmaz[u(s,a —i—ﬂZVaN si)pN(sils,a)]. (24)
a€A(s) i—1

2.3 Parametric Policy Iteration

This algorithm is basically the same as the infinite dimensional version of policy iteration, except
that we approximately solve each policy valuation step by approximating the solution V,, as a linear

combination of k basis functions {p1,... , px}. Thus, suppose we set

k
) Oipi(s). (25)
i=1

Then the equation for V,

Va(s) = u(s, afs +,3/ (s, a(s)ds’ (26)

is transformed into a linear equation with ¥ unknown parameters 6 = {61, ... ,0;}:

Zwm u(s, as +@/sz (5, a(s))ds (27)

Suppose we evaluate the above equation at a set of M points in S, with M > K. Then define the
(M x K matrices P and EP with elements P;; and EP; given by

Pj i = p(sj) (28)

Eﬂkz/ﬁMﬂMﬂ%ﬂQM- (29)

Define the (M x 1) vector y with j — th element y; given by
yj = ulsj, als;))- (30)

10



and let the (M x K) matrix X be given by
X = (P — BEP) (31)
Then the system of equations (27) can be written in matrix form as
y = X0. (32)
If M = K and X is invertible the solution for 8 is simply
0=y/X =X1y. (33)

If M > K we have an overdetermined system and in general there is no § € RX that allows us
to exactly solve y = X6. However we can form an approximate solution using the ordinary least

squares estimator (OLS), i.e. the value § that minimizes the distance ||y — X 6|2, is given by
f=y/X =(X'X)"'X"y (34)

In general we will not be able to exactly integrate the basis functions and must use a quadrature
rule to approximate the elements of EP given in equation (29). Thus, the PPI algorithm requires

the following choices:
1. The quadrature rule for computing the elements of EP.
2. The sample points {s1,... ,sp} at which P and EP are evaluated at.
3. The set of basis functions {p1,... ,px}-

Note that the policy improvement step would only be done on the same M points {s1,... , s}
Thus only M x K numerical integrations and M maximizations are required for each policy valuation
and policy improvement step, so if M and K can be chosen to be small, it is possible to find an
approximation solution to the DP problem with amazingly few computations, provided the basis
functions {pi(s),... ,px(s)} are sufficiently easy to evaluate at each s € S. The resulting solution
is defined by a parameter vector § that enables us to evaluate Vy(s) = Z,le 0rpr(s) very rapidly at
any s € S. Evaluating the corresponding decision «(s) at that point would require an approximate

solution to

a€A(s

K A~
a(s) = max) [u(s,a)—i—ﬂ/ g Orpi(s)p(s'|s, a)ds' | . (35)
k=1

In many cases this can be done quite rapidly, or alternatively, using the values {«a(s;)}, j =
1,..., M from the last step of policy iteration, it might be possible to interpolate values of «f(s)

for s € {s1,...,sm} if the decision rule is sufficiently smooth.

11



2.4 Parameterized Expectations Algorithm

The basic strategy of the parameterized expectations algorithm is to find a parametric approxima-

tion to which depends one finite-deminsional vector of parameters 6.

2.5 Choices, choices, choices

From the above discussion it may seem as if there are only a couple of choices one must make when
picking a solution technique: discrete or parametric approximation? if discrete: value function
iteration or discrete policy function iteration? if parametric: parameterize the decision rule or
parameterize the value function? But in fact these choices are just the start. There are a seemingly
unlimited number of choices a researcher must make before finalizing any decision about solution
methods.

In Table 1 we outline the primary choices a research must make if s/he wishes to implement
any of the posed algorithms. Of course the first decision is whether to use a discrete or parametric
approach. If one decides to use a discrete approach, the first choice is what grid to use. As
discussed in the introduction, naive discretization of multidimensional DP problems leads directly
to the curse of dimensionality, since in a d-dimensional problem one can show that O(1/¢) points
in each dimension, or a total of N = O(1/e?) grid points, are required in order to obtain an e-
approximation to the value or policy function. Since N increases exponentially fast in the dimension
d, it follows that naive discretization results in a curse of dimensionality.

However the fact that naive discretization leads to a curse of dimensionality does not imply that
all ways of discretizing the problem necessarily produce a curse of dimensionality. Rust’s (1997)
“random multigrid algorithm” breaks the curse of dimensionality using a random discretization
of the state space. This algorithm results in approximate solution to the DP problem with an
expected error of € using only N = O(1/€?) points. However, the regularity conditions for Rust’s
result require a Lipschitz-continuous transition probability for the state variables, and in some
economic applications this condition will not be satisfied. In addition, Rust’s result applies to DP
problems where the control variable takes on only a finite number of possible values: we do not
know whether Rust’s result can be extended to problems where the control variables are continuous.

As can be seen from the Bellman equation (9) and the definition of the optimal policy (10),
the policy improvement step requires the solution of a constrained optimization problem involving

the conditional expectation of the value function. Since in general no analytic solutions to this
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conditional expectations will exist, we usually must resort to numerical integration. The most
common approach to numerical integration is quadrature. The quadrature approach approximates

the integral by a probability weighted sum:

/V ‘3 a’ ZV S'L 3]|pz) (pi|p)

where p(s;|s) is a discretized approximation to the transition probability density p(s'|s).2
A second method of approximating this integral is “monte carlo, probability integral transform

method” (MC-PIT) given by

N
[Vl = 53 VG -a (36)

where {p;,q;} are draws from the density h(¢'|p’,q)g(p'|p) computed from uniformly distributed
draws {7y, 72} from the unit square, [0,1]? via the probability integral transform method.

Instead of using pseudo-random random draws for {@, , U2} one can obtain acceleration using
Generalized Faure sequences (also known as Tezuka sequences). Using number theoretic methods
(see, e.g. Neiderreiter 1992, or Tezuka, 1995), one can prove that for certain classes of integrand-
s, the convergence of monte carlo methods based on deterministic low discrepancy sequences is
O(log(N)?/N) (where d is the dimension of the integrand and N is the number of points), whereas
traditional monte carlo methods converge at rate O,(1/v/N). These favorable rates of convergence
have been observed in practice, (See e.g. Papageorgiou and Traub 1996 and 1997).

It is critical to use numerical integration methods that provide accurate approximations of
both the levels and the derivatives of the value function, since the latter determine the first order
conditions for a constrained optimum for a. In regions where the value function is nearly flat in
a, small inaccuracies in the estimated derivatives can create large instabilities in the estimated
value of a. In our own experimentation with these methods, we have found these two methods can
also be sensitive to the discretization of the s and a axes and the number of points used in the
discretization. We find it useful to experiment with different integration methods, and different
choices for grids

Interpolation is any method that construct a smooth function that satisfies a predetermined set

of conditions. We use interpolation in one an two dimensions extensively in the numerical solutions

2 For a detailed characterization of quadrature methods we refer the reader to Tauchen and Hussey (1991),
Judd (1998), and Burnside (1999).
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to the test and real problems. When running DPI solutions and finite horizon problems we chose
linear and bilinear interpolation but we have experimented with other smoothing methods.
Within the two broad classes of solution methods, discrete or parametric, there are numerous
variations of techniques. In this paper we do not attempt to survey every possible combination of
these choices. Instead the methods we employ we have made are based on our own experimentation
and biases. The computer code we are making available is designed with numerous “switches” which
allow user to experiment with different choices. We invite users to try different combinations of
these methods, and let us know if we have overlooked a particular accurate and/or fast set of

choices.

3 Test problems used in the numerical experiments

This section describes several “test problems” used in the numerical experiments in section 4-7.
These test problems have closed-form solutions which are extremely useful in enabling us to judge
the accuracy of alternative algorithms. We will defer a description of the three “real” applications

until they are introduced in sections 8, 9 and 10, respectively.

3.1 The Stochastic Growth Model with Leisure
Counsider the model

o
max Ejy Zﬁt)\lnct + (1= X)Inl;
t=0

lt,ct kit

subject to:
ctt+iy = z AR
ki1 = (1—0)k+ 44
Inzzp1y = plnzg+ ey e~ N(0,0).

In this problem at each period ¢, a single agent enters each period with a given level of capital k;.
The agent

The Bellman equation can be written as:
V(k,z) = maxl,c,k' {AInc+ (1 - X\)Inl + EBV (K, 2")}
subject
c+k = 2AR1 + (1 - 6)k.

15



By taking first-order conditions and applying the envelope theorem, we write the Euler equation
as:

Y
ZAke(1—1)e + (1= 0)k — &'

aZ A(K)e 11 -2 +1-6 )

- (z’A(k')“(l =)+ (1= 0k — R o

Following Santos (1999), we derive decision rules for both ¢ and k' as functions of /. From the
first-order conditions we get

 AzARU(1 - )
=AW e (38)

and

K = 2ARS(1 = 1)1 4 (1 §)k — %1(1 — )z Ak(1 — 1)@ (39)

So the problem reduces to a unidimensional choice problem in [.
In the special case of § = 1, it is well known that an analytical solution to the Bellman equation

exists and takes the form
V(k,z) =F+Glnk+ Hlnz

where

Ao
1—ap’
A
(1-pB)1—ap)

The decision rules involving working a constant fraction of the time endowment regardless of the

state:

(1=N0A = ap)

l:)\(l—a)-l-(l—)\)(l—aﬂ)

and consuming a constant fraction of current output:

c=(1-aB)zAk*(1 - 1)@
k' = af)zAk*(1 —1)17@

3.2 The Consumption/Saving Problem

Consider the problem of optimal consumption and saving first analyzed by Phelps (1962). Under
some conditions the simplist version of this problem can be viewed as a special case of the stochastic

growth model.
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The state variable s denotes a consumer’s current wealth, and the decision d is how much to
consume in the current period. Since consumption is a continuous decision, we will use ¢; rather
than d; to denote the values of the control variable, and let w; to denote the state variable wealth.
The consumer is allowed to save, but is not allowed to borrow against future income. Thus, the
constraint set is D(w) = {c|0 < ¢ < w}. The consumer can invest his savings in a single risky
asset with random rate of return R which is IID with distribution F. Thus, p(dwt+1|wt,ct) =
F((dwit1/(wy — ¢t)). Let the consumer’s utility function be given by u(w,c) = In(c). Then

Bellman’s equation for this problem is given by:

V¥(w) = Oglcagxw [In(c) + B /000 V*(R(w — ¢))F(dR)]. (40)

As in the previous example, V; has the form, V = F + Gln(w) for constants A; and B;. Thus,
it is reasonable to conjecture that this form holds in the limit as well. Inserting the conjectured
functional form V*(w) = A In(w) + By into (40) and solving for the unknown coefficients Ay,

and By, we find:

A =1/(1-5) (41)
B =In(l-p)/(1-p)+AW(B)/(1-B)>+ BE{l(R)}/(1 - p)?
and the optimal decision rule or consumption function is given by:
a(w) = (1 - B)w, (42)

as shown in Phelps (1962) and Hakansson (1970). Thus, the logarithmic specification implies that a
strong form of the permanent income hypothesis holds in which optimal consumption is independent
of the distribution F' of investment returns.

Section 5 shows the closed form solutions using other utility functions. It also shows the closed
form solutions of the finite horizon case with the different utility functions and compares all these

results with those of numerical solutions of the problems.

3.3 The Optimal Replacement Problem

Sometimes one can derive a differential equation for V' and in certain cases one can derive analytical
solutions to this differential equation and use it to characterize the optimal decision rule. Consider,
for example, the problem of optimal replacement of durable assets analyzed in Rust (1985,1986).
In this case the state space S = Ry, where s; is interpreted as a measure of the accumulated

utilization of the durable (such as the odometer reading on a car). Thus s; = 0 denotes a brand
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new durable good. At each time ¢ there are two possible decisions {keep,replace} corresponding to
the binary constraint set D(s) = {0,1} where d; = 1 corresponds to selling the existing durable for
scrap price P and replacing it with a new durable at cost P. Suppose the level of utilitization of
the asset each period has an exogenous exponential distribution. This corresponds to a transition
probability p is given by:
1 —exp{—A(dsit1 —st)} ifdy =0and s441 > st
p(dsi1|se,di) = ¢ 1 —exp{—A(dsiz1 —0)} ifd; =1and s;pq >0 (43)
0 otherwise.
Assume the per-period cost of operating the asset in state s is given by a function c(s) and that
the objective is to find an optimal replacement policy to minimize the expected discounted costs of
owning the durable over an infinite horizon. Since minimizing a function is equivalent to maximizing

its negative, we can define the utility function by:

u(st, dt) _ —C(jt) if dt =0 (44)
—[P—-P]—¢(0) ifd=1.

Bellman’s equation takes the form:
V() =max|  —cls) + 5/00 V*(s') A exp{—A(s' — 5)}ds’,
[P—P]—c(0)+8 / s hexp{—A(s )}ds']. (45)

Observe that V* is a non-increasing, continuous function of s and that the second term on the right
hand side of (45), the value of replacing the durable, is a constant independent of s. Note also
that P > P implies that it is never optimal to replace a brand-new durable s = 0. Let y be the
smallest value of s such that the agent is indifferent between keeping and replacing. Differentiating
Bellman’s equation (45), it follows that on the continuation region, [0,y), V* satisfies the differential
equation:

!

V*(s) = —=c/(8) + Ae(s) + A1 — B)V*(s). (46)

This is known as a free boundary value problem since the boundary condition:

Vi) = [P - P14+ V'(0) = —eln) + 67" () = 120, (47)

is determined endogenously. Equation (46) is a linear first order differential equation which can be

integrated to yield the following closed-form solution for V*:

V*(s) = maX[IC_(Vﬂ)’ Ic_(g + /: f’iy)ﬂ [1— ,Be—/\(l—ﬂ)(y—s)]dy], (48)
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where v is the unique solution to:

[P—P]= /07 - [1— Be X PW]ay.

1-p

It follows that the optimal decision rule is given by:

“(s) 0 ifse(0,9]
a*(s) =
1 ifs>4.

3.4 Linear-Quadratic Control Problems

(49)

Consider the following linear-quadratic-gaussian (LQG) control problem whose solution is given in

the following theorem.

Theorem: Let S = R and A(s) = S, Vs € S. Consider and MDP with the following utility

function and transition density:

u(s,a) = [Aea® + Ma + Xo] + s[po + p1a] + ps?

1
s'|s,a exp {—(s' — ko — K10 — K25)? /(202
p(s13,0) = o exp {=(s/ R0~ mia —k2s)’/(207)}
o = [no+ma+n2s]

where

w<0, X<0, and p%—4u)\2<0.

Then V (s) is given by:

V(s) = max[sa+ﬁ/V (s'|s,a)ds’

a€A(s)

= 70+ 758 + 728

and the optimal decision rule «(s) is given by:

a(s) = fo+ fis
where:

_ P14 2B7a(k1K2 + M)
2 [A2 + Br2(n? + K?)]

h

fo

AL+ By + 2Bv(nom + Koki)

2 A2 + Bya(n? + K2)]
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where:

—ky — /kZ — dkzko

Y = 2%y
_ Po+2Byalkoka + nome] + 1 [A + 282 (om + Koka)]
" 1= BlrLf1+ ha)
o = X3 + M fo+ Mo+ Byi(ko + K1 fo) + Bya [(mo + m fo)® + (ko + K1fo)?] (57)

(1-5)

where:

ko = pf—4pro

kio= 4[Nl —B(s5 +15)] — uB(nf + K1) + p1B(k1k2 + ming)]

ke = A[B(sT+n])[L - B(r3 +15)] + B2 (r1rkg +mm2)?] . (58)
If 1 and 79 are set to zero, the MDP given in equations (6.12) and (6.13) can be formulated

as an optimal linear regular problem (OLRP) and solved recursively.? In particular, this MDP can

rewritten as:

o
max F Z Bz, Rey + ujQuy + 2u, Wy} (59)
=0
subject to:
Tyl = Az; + Bug + €441 (60)

where the matrices R and () are symmetric, negative definite matrices. Setting 7 is set to zero, we
assume €;41 is a 2 x 1 vector of random variables that is independently and identically distributed

through time with a mean vector zero and a covariance matrix:
!
E6t+16t+1 =3.

For the problem at hand, we set z; = [1 s¢]', uy = ay,

Ao 3P0 1
R= 1 2 ; Q:[AQ]’WZE[Al p1]7
2b0 M
1 0 0 0 0
A= , B = , and X =
ko b K1 0 no

3See Bertsekas (1995) section 4.1, and Hansen and Sargent (1995).
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Bertsekas (1995) and Hansen and Sargent (1995) show the value function can then written as

V(z) = 2} Pz, where P solves the algebraic matrix Riccati equation:
P=R+BA'PA— (BAPB+W')(Q+BB'PB) ' (BB'PA+W)
and the optimal decision rule is:
u = —(Q + BB'PB) Y (BA'PB + W)z;.

For the example presented here, iterating on the Riccati equation yields identical results as the

PPI algorithm for both the value function and the decision rules.

4 The Stochastic Growth Model

In this section we solve the stochastic growth model (SGM) presented in section 3 using the pa-
rameterized expectations algorithm, discrete policy iteration, and parametric policy iteration.

Since there are large variety of ways to solve this model first we solve the stochastic growth
model without leisure. When solving this model, we follow Christiano and Fisher’s (2000) Galerkin-
Chebychev PEA discussed in section 4.2.3 of their paper. The model we study differs from the one
studied by Christiano and Fisher in two ways: first, in our case investment is fully reversible; and
second, the shock is continuous.

We then solve the stochastic growth with leisure. This is the identical model studied by Santos

(1999).

4.1 Solving the SGM without leisure with PEA

Recall the model
o0
max FE ‘lne
Jnax Ho ; B Inc

subject to:

c+iy = zAkY
kiy1 = (1—5)kt—|—’it

Inziyn = plnzi+ ey e~ N(0,0).
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The Euler equation associated with this problem is:

1 OéZt+1Ak'?_’__11 +1-46 —0
ZtAkta + (1 — (5)kt — kt+1 Zt_|_1Akta+1 + (1 — 5)kt+1 — kH_Q

We parameterize the marginal utility of consumption:

1
AR (1= 0k — () = Pexplf(k.2).

Solving for k'(k, z) yields:

, _ Bexp(f(k,2))(zAk* + (1 = 0)k) — 1
Fik2) = Bexp(J (. 2) |

So implicitly we have parametrized the decision rule for next period’s capital stock.

As with any weighted residual method, we assume f(k, z) is a finite linear combination of known
basis functions. In this case we use Chebychev polynomials as the basis functions. Chebychev
polynomials are defined on [—1,1] and the i** polynomial is given by T¢® = cos(i(arccos(z))).
Since the domain (k, z) is not given by [—1, 1], let ¢(z) = 2(x —a)/(b—a) — 1 where a and b denotes
the lower and upper bounds of the variable.

We let Bexp(f(k,z)) = 0T (4(k), ¢(z)) where 0 is a vector of N x 1 vector of polynomials, T
is a N x 1 vector of complete degree j Chebychev polynomials in 2 variables. For a discussion of
complete polynomials see Judd (1998), pages 239-240.

Having parametrized the decision rule for capital, we define the residual function R(k, z|0):

_ aZ AK' (k,z|0)* P +1 -4 ,
Bk, 210) = f (k. 2]6) ~In (/ 2 AR (k, 210)® + (1 — 8)K'(k, 2]0) — k' (K'(k, 2]6), 2'|6) dz) -

61)

Thus the strategy for solving the model involves finding a vector of parameters § which set a
weighted sum of R(k,z) as close as possible to 0 for all £ and z. Mathematically this means

choosing 6 such that

w(k, 2)R(k, 2|0) dk dz = 0 (62)
/]

where w(k, z) is a weighting function.
The problem of finding a 6 that solves (62) can be approximated by Gauss-Chebychev quadra-
ture. Let X denote the M x N matrix of N Chebychev polynomials evaluated at each of the M

(k, z) grid points. Hence (62) can be approximated by
X'R(k, 2|0) = 0 (63)
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We evaluated (63) at the Chebychev zeros of k and z. Let My and M, denote the number of
grid points choose for k£ and z respectively. Thus M = My x M,. If M > N this method is often
called a Galerkin method. If M = N (so X is a square), this method is referred to as a collocation

method. There are (at least) three strategies to solving (63).

1. Direct Gauss-Chebychev quadrature: Simply find the vector # which sets X'R(k,z) = 0.
However as Christiano and Fisher (2000) point out, it is convenient to exploit the special

structure of this problem. This leads to two other approaches.

2. As an iterative linear regression problem: To see this let

B aZ AK'(k,2)* 1 +1 -6 '
Yik,2) = ln/ (z’Ak’(k,z)o‘ + (1 = 0)k'(k,z) — k’(k’(k,z),z’)) -

The function X'R(k,z) =0 can then be rewritten as:
X'(X0 — Y (k,z)) = 0.
Premultipling both sides of this equation by (X'X)~! yields

60— (X'X)'X'Y(k,2) =0 (64)

6= (X'X)"'X'Y(k, 2). (65)
Note that since Chebychev polynomials are orthogonal to each other (X'X) is a diagonal
matrix; so taking its inverse is trivial.
So the following algorithm could be followed:
(a) Guess an initial N x 1 vector of 6.
(b) Compute Y (k, z|0).
(c) Regress Y (k,z|0) on X to obtain a new value of 6.

(d) Repeat steps (b) and (c) until convergence

3. As a simple non-linear equation problem: Instead of finding the 8 vector that solves

X'R(k,z) =0, one can find the 0 vector that solves equation (64).

In practice, we solved this problem via method 3 with a non-linear equation solver. We parame-

terized f(k, z) to be a complete polynomial of degree three in two variables, k and z. Thus N = 10.
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Figure 1: The k'(k, z|0) function Figure 2: The difference between the param-
eterized decision rule, k'(k, z|@) and the ana-

Iytical solution.

we obtained starting value for @ by arbitrarily setting the initial # vector and then iterating via the
“regression” strategy a couple of times.

This method works well. We set the following parameter values: o = 0.34, A = 10, § = 0.95,
0 =1, p=0.90, and o = 0.008. For the grids, for the log of the technology shock In z we choose the
15 (thus M,=15) Chebychev zeros between -0.35 and 0.35. For the capital stock k I set M) = 25 and
bound the grid between 1.1 times the steady-state value of the capital stock evaluated at z = .35
and .9 times the steady-state value of the capital evaluated at z = —.35. Again, the Chebychev
zeros were used. To evaluate the integral in (61) we used Gaussian quadrature at 100 nodes. Using
Matlab on 266Mhz machine, the model took 457 seconds to solve.

As discussed in section 3.1, since § = 1, there is an analytical solution to this model. In figure 1
we plot the parametrized decision rule for capital. In figure 2 we plot the difference between the

parametrized decision rule and the analytical solution.

4.2 Solving the SGM with leisure using PEA

Consider the model studied by Santos (1999):

o
max Eg Y fAlnc + (1—X)Inl,
t=0

lesct ki1

24



subject to:

¢t + ’it = ZtAktaltl_a
kt+1 == (]. - (5)]91: + ’it

Inzzp1y = plnzg+ey1 e~ N(0,0).

The Euler equation is then:

AR A =) e 416
A _ )\GE, Qzp1 AR ( : t+1) + (66)
2 ARX (1 — 1) + (1 — 6)kt — ke Zt_}_lAk?_l_l(l — b))+ (1 — 0) kg1 — Kiyo

As discussed above, we, can write both ¢; and k;y1 as functions of [;:

Az ARCL(1 - o)
Sl e o0

and

A

ki1 = ZtAka(l — lt)l_a + (1 — (S)klt 1 )\lt(l — a)ztAkf(l — lt)_a (68)

So the problem reduces to a unidimensional choice problem.

In contrast to the previous problem, if we parameterize the marginal utility of consumption,
we must use a non-linear equation solver to back out the decision rule for leisure (and thus the
decision rules for consumption and next period’s capital stock). Therefore we parameterized the

leisure function directly:
1

1+ exp(0'T (¢(k), 4(2)))

As before, T is a N x 1 vector Chebychev polynomials. This parameterization forces [ to take

Iy ~ (K, 2) =

values between 0 and 1.

Thus we can define the residual function as:

B 1
B(k;2) =In (zAka(l (K, 20))Te + (1 — o)k — k’(l(k,z|0))> N
az AK'(1(k, 2]0))* (1 = I(k,2]0))} ¢ +1 -6

1nﬂ/ ARk, 2007 (1 — 107, 10) ™ T (L~ )k (i, 218)) — e,z 7oy &)

where, using equation (68), k' is written as a function of /(k,z). As in the previous problem,
I discretized the state space using with the Chebychev zeros of k£ and z, and approximated the
integral in equation (69) with Gaussian quadrature.

Since we parametrized the decision rule for leisure directly, we cannot rewrite the problem as

a linear regression problem. Thus we approximate the weighted residual problem (62) directly
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Figure 3: Stochastic growth model with  Figure 4: The difference between the param-
leisure: the k'(k, z|6) function eterized decision rule, k'(k, z|#) and the ana-

Iytical solution.

by Gaussian-Chebychev quadrature (method 1 above). We set the following parameter values:
a=034, A=10,8 =095 6 =1, A =1/3, p = 0.90, and o = 0.008. The grid of the log of
the technology shock Inz we choose the 15 (M,) Chebychev zeros between -0.35 and 0.35. For the
capital stock grid k I chose the 25 Chebychev zeros (Mj) and bound the grid .1 and 4.0.

This method seems to work well only if one starts off with good initial guess for §. We param-

eterized the decision rule for leisure as

In (@—1) — OT(H(k), 6(2)

Since the analytical solution for leisure is constant, the algorithm should set 5 = 63 = 0. Indeed
any polynomial approximation of the leisure decision rule (including a Chebychev polynomial)
should nail the solution exactly.

If we initialize 6 at [ -1; 0 ; 0 ], this algorithm leads to the correct solution: [ -.72; 0; 0 ]. The
Matlab program converges in 132 seconds on a 266 Mhz computer. Figures 3 and 4 display the
numerical decision rule for capital and the difference between the numerical decision rule for capital

and the exact analytical solution. The difference between the numerical and analytical solutions
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are tiny. However if we initialize # at a starting value away from the correct value, (e.g. 6 = [ -1;
.5; -.5]) the non-linear equation solver (which uses a least squares method) fails to find the correct

solution.

5 The Consumption/Saving Model

In this section we show the closed form solutions to the classical consumption/saving problem
presented in Section 3.2. using other utility functions. We also solve the problem in the finite

horizon and compare all the solutions with those of our numerical computations.

5.1 Infinite Horizon: Closed Form Solutions

In solving this classical problem we do not need to restrict our attention to the logarithmic utility
case. We can also consider the very same problem but assuming that the utility function is of the

CRRA type. That is,

cl=7

u(c) (70)

where v > 0 is the parameter of relative risk aversion. We can again find a closed form solution
for the value function and the decision rule for this model, as shown in Phelps (1962), Levhari and
Srinivasan (1969), and Hakansson (1970). They are obtained by the same procedure outlined in
Section 3.2. and we replicate these solutions below,
1\~
(1- 87 [BG*)]7)

V(w) = T , (71)

and
c(w) = [1 - ﬁ% [E(r')] %] w . (72)

The other interesting utility function we can use is the constant absolute risk aversion (CARA)

utility. That is,
u(c) = —e ¢, (73)

where v > 0 is the parameter of absolute risk aversion. Unfortunately, we have not been able

to find, so far, a closed form solution for the value function and the decision rule, using the
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same distributional assumptions for the interest rates as in the other cases.* We present here the
derivation for the certainty case, and further below the numerical solution of the uncertainty case
using log-normal returns to capital.

Using Hakansson’s (1970) presentation of the problem we can conjecture that the value function

has the following form:
V(w)=—-Ne?v, (74)
where N and )\ are positive constants. Then we can write,

—Ne?v = [ax [—e"c - BN e_)‘R(“’_C)] ) (75)
<c<w

where R = (1 + r), with r as the fixed interest rate on capital investments, and v > 0 is the
parameter of absolute risk aversion. Taking f.o.c. we reach a solution for the decision rule in terms
of the parameters of the problem,

ARw In (M%)

W = SR¥y T ARty (76)

We can then calculate w — ¢ and rewrite the value function in such a way that we can start matching
unknown coefficients,

(2200 i (808)

_Ne—/\w - _ 6_7(’\/\15_”7)6(W) — BNQ_)‘R(A_KUT’Y)@<W) . (77)

Then from this equation we can find the value of X,

y(R-1)
A= —". 78
B (78)
The value function can then be rewritten as,
V(w)=—-Ne-mw (79)
Next we can find the solution for the remaining unknown coefficient, N,
In BNAR
N = e + BN e ARty , (80)

4 Hakansson (1970) presents, in fact, closed form solutions using the CARA utility for a model that extends
Phelps’ (1962) by allowing borrowing, and appropriately treating non-labor income. We have not been able to use his
results to find the solution to our problem given that the assumptions under which his results are valid seem unclear
and are not discussed in his paper.
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using the solution we obtained for A this expression simplifies to the following equation,

N(1-BBN(R-D]'F ) = [BN(R-1)]%. (81)

A trivial and uninteresting solution for the this equation is N = 0, assuming that N > 0 we can
actually derive a closed form solution for N and obtain the closed form solutions for the value

function and consumption rule,
N o= [[BR-DF+pBER-1F | (82)

Then we can write,

Viw) = [BR-DI%+8BER-1)]F | 0w, (83)
and
In (ﬂ(Rl) (18- %+15(R-1) 7" Rj)
c(w) = %w — R (84)

5.2 Infinite Horizon: Numerical vs. Closed Form Solutions

To solve these problems numerically we first use the policy iteration algorithm, and in particular
Discrete Policy Iteration (DPI).

Figure 5 shows the difference between the true infinite horizon decision rule of the Phelps’
problem with logarithmic utility, and the computed solution using a discrete uniform grid of 200
points and integration using probability weights and low discrepancy sequences.

It is worth mentioning how we approximate the conditional expectation operator via the Prob-

ability Integral Transform method:

S
BV (w,0) = 5 S V(F () (w ) (85)

where F(r) = [7_ f(z)dz and {ui,... ,us} are IID draws from U(0,1), or alternatively, draws
from a low discrepancy sequence such as a Generalized Faure sequence.

In this case the numerical methods do not perform too well. The differences are large in
percentage terms and they are increasing in wealth. In part the differences are the product of the
method of extrapolation that penalizes investments once you have a high level of wealth, what

leads to overconsumption by the agents. We will see below that in the finite horizon case once
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we extrapolate linearly the opposite effect appears, that is, underconsumption, to take advantage
of the better investing opportunities as wealth increases beyond the space of the grid. Figure
6 shows the value functions resulting from solving the problem numerically compared with the
true solution. We can see that they are fairly similar except for higher levels of wealth when the
numerical solutions consistently underpredicts the true solution.

We will also present the solutions of PPI and PEA methods for this problem, along with the

discussion of the performance of the model using utility functions.
5.3 Finite Horizon: Closed Form Solutions
In this subsection we solve a finite horizon version of the consumption/saving problem. Agents

choose consumption according to the following utility maximizing framework:

max F;
0<cs<w F
s=

T
Zﬂs‘tu(cs)] : (86)

where § is the discount factor, which includes the mortality probabilities, ¢ represents consumption,
and w is wealth at the beginning of the period. Savings accumulate at an uncertain interest rate
of return 7 such that wy 1 = 7#(w — ¢;), as in the infinite horizon case. Utility still depends only
on consumption.

We can again solve this problem using Dynamic Programming and Bellman’s principle of opti-

mality. We solve it by backward induction starting in the last period of life, in which the individual
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solves

Vr(w) = Jnax, In(c) + K In(w —¢) , (87)

assuming a logarithmic utility function where K € (0,1) is the bequest factor.> By deriving the

first order condition with respect to consumption we find that

w

=—— 88
cr 1+ K ’ ( )
and from this we can write the analytical expression for the last period value function:
w wK
=1 K1 .
Viw) = In(e) + K (%) (59)

We can then iterate by backward induction and write the next to last period value function as:
Vr_1(w) = Juax In(c) + B E Vp(w —¢), (90)
where the second term in the right hand side can be written as
rmax
E Vi(w—¢) = / Vi (i (w — &) f(7) dF , (91)
0

where 7 is the stochastic return on capital accumulation, and rmazx is the truncation point of the

log-normal distribution of returns. Then we can write

Ve (w) = gmax In(e) + B B InGr (2S)) + g B g (279K

0<c<w 1+ K

) - (92)

Here the logarithmic utility simplifies the problem. Again taking first order conditions with respect

to consumption, we obtain an expression for the consumption rule in the next to last period of life:

w

= 93
T 1= 1T 518K (93)
We then have an expression for Vp_; in the following form:
w wp wpBK
Vr— =ln(——)+FfIn(——=)+[FK In(——)+ 71, 94
r-1(w) = W gmap) A (g ) HA K Wi gk (94)

5 Agents in this model care only about the absolute size of their bequests, leading to its been called the “egoistic”
model of bequests. A bequest factor of one would correspond to valuing bequest in the utility function as much
as current consumption. The importance of bequest motives is still an open issue in the literature. Here we take
the position of acknowledging that bequests do exist and explore the implications of changing the importance of
the bequest motive in the utility function. Hurd (1987, 1989), Bernheim (1991), Modigliani (1988), Wilhem (1996)
and Laitner and Juster (1996) are some of the main references on the debate over the significance of bequests and
altruism in the life cycle model. Kotlikoff and Summers (1981) stress the importance of intergenerational transfers
in aggregate capital accumulation.
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where T gathers all the terms that do not depend on w. From here we can write Vr_s and again

derive first order conditions, resulting in

w

cr—2 = . 95
T2 T 148101 BPK (95)

Through backward induction, we continue iterating to find cp_
= (96)

TR TI B+ P+ +.. B+ K
for any k < T. From these decision rules, we can observe that as T grows large, the finite horizon
solution with bequests converges to the infinite horizon solution, already shown, since the influence
of the bequest parameter becomes less important as the time horizon increases.

The derivation of the decision rules in the case of the CRRA utility function is similar though
somewhat more involved. We show below only the optimal decision rule for the last period of life
and the recursive formula to obtain the optimal consumption in all other periods, and present the
full derivation in the Appendix. We now use the utility function specified in (70). In the last period

of life agents consume

or = —— 97)

1
1+ K~
where w is wealth at the beginning of that last period, and K is the bequest factor. Then we can

write the general closed form solution for the decision rule as

w
Cr— — T 2 k 1 ’ (98)
1487 E(f1=7)+ 87 E(F1=")+...+ 7 K7 E (7177)

where ( is the discount factor, and the interest rate, 7, follows a log-normal distribution with mean
p and variance o2, then given that E(7) = e e and denoting E(7) as T we can write

EF#) = 7007 (99)
We can also see that if  is equal to 1 we are back to the logarithmic utility case. It is also
important to emphasize that this expression is the finite horizon counterpart to the one obtained in
Levhari and Srinivasan (1969), and also replicated in the previous section, once a bequest motive
is introduced, and that their results regarding the effects of uncertainty (decreasing proportion of

wealth consumed as the uncertainty grows if v > 1) go through in this case.

32



We next can assume a constant absolute risk aversion (CARA) utility function. Similarly to
the infinite horizon case, we have not found a closed form solution for this problem under uncertain
returns that follow a log-normal distribution as in the cases above. We therefore solve the finite
horizon problem under certainty. The utility function used is the one presented in (73). We again
present below only the optimal decision rule for the last period of life and the general solution for
the rest of the periods, the full derivation is presented in the Appendix.

In the last period of life the optimal consumption rule is

cr = min (maac (0, % — % IDTK> ,w) , (100)
where K is again the bequest factor.

We can then characterize the decision rule for any other period up to the first period of life

Rfw 24+ R+ ...+ RF11 InKr_;
) — ,w |, (101)
24+ R+...+RF 24+ R+...+ R¥ v

cr_r = min (max (O

where R =1+ r and r is the fixed rate of interest, and Kp_; is shown below, and it is a function

of some of the parameters of the problem and the previous constants, and where we can write the

expression 2+ R+ R?>+ ...+ RFas 1 + [1_Rk+1] and similarly for the other series,

1-R
_pk—1
1+[1 i e RE=UinKp_y
RK i KTk TRl | Kol
Krp = —20 e k] R
1+ [lf_}z] W

We can see from these solutions the different effect of risk given the utility functions, as the
theory tells us. The v coefficient of risk aversion only has an absolute effect for the CARA utility,
regardless of the wealth level. In the case of the CRRA utility the effect is relative to the level of

resources.

5.4 Finite Horizon: Numerical vs. Closed Form Solutions

Our ability to derive an analytical solution for these finite horizon models allows us to evaluate the
effectiveness of our numerical methods, which are all that we have available in more complicated
models. The exercise of solving the model numerically is also interesting on its own given that
the infinite horizon version of this model has been shown to be quite difficult to replicate using
numerical methods, even with the logarithmic utility function, as discussed in the previous section

and in Rust (1999).
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The numerical procedure is by nature very similar to the analytical approach, involving back-
ward recursion starting in the last period of life. We discretize wealth and compute the optimal
value of consumption for all those wealth levels using bisection. Bisection is an iterative algorithm
with all the components of a nonlinear equation solver. It makes a guess, computes the iterative
value, checks if the value is an acceptable solution, and if not, iterates again. The stopping rule
depends on the desired precision given that the solution is bracketed by the nature of the algorithm
and that the round-off errors will probably not allow us to increase the precision beyond a certain
limit. In each iteration of the numerical solution, except for the final one where all uncertainty
has been eliminated, we have to compute the expectation in equation (91), which is potentially the
most computationally demanding step. For this we use Gaussian Legendre quadrature. We also
compute the derivative of this expectation using numerical differentiation, also requiring quadra-
ture as part of its routine. Here the analytical derivatives are simple to compute, but this is not
always the case for more complicated models. We therefore wish to evaluate the accuracy of the
numerical strategy.

Gaussian quadrature approximates the integral through sums using rules to choose points and
weights based on the properties of orthogonal polynomials corresponding to the density function
of the variable over which we are integrating, in this case the draws of the interest rates following
a log-normal distribution. The points and weights are selected in such a way that finite-order
polynomials can be integrated exactly using quadrature formulae. The weights used have the
natural interpretation of probabilities associated with intervals around the quadrature points.

At this point we are considering a one dimensional problem, for which quadrature methods
have been shown to be very accurate compared with other techniques of computing expectations
(integrals) such as Monte Carlo integration and weighted sums.5

This all amounts to manipulating (91) through a change of variables such that we can write
it as an integral in the (0,1) interval and then approximate it by a series of sums depending on
the quadrature weights and quadrature abscissae which we compute recursively, following readily
available routines (e.g. Press et al. 1992a).”

An additional numerical technique that we use to solve the model completely is function approx-

imation by interpolation. Since savings in a given period are accumulated at a stochastic interest

5 For an analysis of how different techniques perform in other applied problems see Rust (1997b).
" We can write J.V(r)fr dr after a change of variables as fol V(F~")du, which can then be approximated by
Z;N:l w;V(F~"(u;)), where w; are the quadrature weights and u; are the quadrature abscissae.
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rate, next period’s wealth will not necessarily fall in one of the grid points for which we have the
value of the function already calculated. Ideally we would solve the next period’s problem for any
wealth level, but this is computationally infeasible. Therefore, we use linear interpolation to find
the corresponding value of the function given the values in the nearest grid points.®

The bisection algorithm that uses the quadrature and interpolation procedures eventually con-
verges to a maximum of the lifetime consumption problem for a given value of wealth in a given
period (or reaches the pre-decided tolerance level). This procedure is repeated until the solution of
the first-period problem is obtained.

Once we have solved the model, we have a decision rule for every level of wealth in our initial
grid. Here case we have chosen a grid space of 500 points; to gain accuracy more of these points
are concentrated at low wealth levels where the function is changing rapidly. Figures 7-9 show
the decision rule of the consumption/saving problem for wealth ranging from 0 to 100 units. For
expositional purposes we have solved a 10-period model.

Figure 7 plots several decision rules given logarithmic utility. It first plots the numerical solu-
tions for different time periods, denoted C7, Co, and so on. It also plots the solution of the infinite
horizon problem, denoted by CINF in the figure. We have chosen a discount factor of 0.95 and
a bequest parameter of 0.6. Figure 8 plots the decision rule when we consider a CRRA, with risk
aversion parameter equal to 1.5, = 0.95, and bequest parameter equal to 0.6, we also plot the
analytical solution of the infinite horizon problem. For both types of utility function we observe
that the consumption rules increase with wealth and time and that in very few periods we are fairly
close to the solution of the infinite problems. Figure 9 plots the consumption rules using a CARA
utility function, with the same underlying parameters as the other functional forms. For every level
of wealth, consumption is now lower than in the other two cases. We also plot the infinite horizon
solution of the model with certainty we derived above.

Figures 10-12 are concerned with comparing the numerical solutions with the true analytical
solutions derived above. We plot in all figures the percentage difference between the two solutions
in terms of the value of the true solution, for a sample of time periods. The numerical technique
performs quite well for the logarithmic and CRRA utility. For about half of the range of values, the
numerical solution is very accurate with deviations below 1%, for both types of utility functions.

After that, errors are a bit larger, especially for early time periods. For the first period and for high

8 More sophisticated interpolation procedures can be used such as splines or Chebyshev interpolation but they
are not considered for this problem.
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levels of wealth the error reaches 12% to 13%, depending on the utility function. The undercon-
sumption resulting from our numerical technique seem to be an artifact of the linear extrapolation
for values of wealth outside the chosen grid. The implied return from the extrapolation is higher
than the one agents were facing before, so the normal reaction is to under-consume with respect
to the true solution for levels of wealth approaching the upper bound value for wealth. For the
CARA utility we already mentioned that we do not have a closed form solution for the model with
uncertainty, but we did derive the certainty case. In Figure 12 we compare the closed form solutions
under certainty with the numerical solutions under uncertainty, but with a distribution of returns
with a very low variance. The numerical methods perform quite well again, and in this case the
differences for most of the range of values do not seem to increase as we move towards the first
period of life.

In Figure 13 we plot the decision rules of the limiting finite horizon of our numerical model
with uncertainty vs. the closed form solution of the infinite horizon we derived before. For the
finite horizon case we solve a 100 and a 200 period model. The limiting finite horizon seems to
approximate the infinite horizon but even with 200 periods it stills delivers a significantly higher
decision rule for consumption. Another issue to notice is that the true infinite horizon decision
rule is zero for a significant portion of the wealth space and then is linear increasing in wealth, the
computed limiting finite horizon is positive and higher than the infinite solution for all values of
wealth.

In Figures 14 and 15 we simulate this model using the numerical solution for the CRRA utility
function, to show the behavior implied by the decision rules shown above. We report the results of
5,000 simulations of an 11-period model with 500 grid points for wealth in the 0 to 200,000 range.
We plot consumption and wealth paths with an initial wealth level of 10,000.° We also consider
several values for the parameters of interest. In the first specification, v is taken to be 1.5 (the
parameter of relative risk aversion), and it is increased to 2.5 in the second specification (hg lines
in the plots). We then increase the bequest parameter to 0.6, leaving v = 1.5 (bq lines in the plots),
and finally, we decrease the relative risk aversion parameter to 0.7 (lg lines in the figures).

We observe that people consume less at the beginning of their lives, with increased consumption
in the final periods of life, given uncertain interest rates represented by draws from a truncated

log-normal distribution. Consumption does, however, decrease if the risk aversion parameter is less

9 This is approximately the net worth reported by Poterba (1998), using the Survey of Consumer Finances, for
individuals at the beginning of their working lives.
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Figure 10: Computed vs. True Decision Rule. Log Utility
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Figure 11: Computed vs. True Decision Rule. CRRA Utility
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than 1. Focusing on the pattern of wealth accumulation, we observe that individuals deaccumulate
their wealth gradually. We also see that increasing the relative risk aversion parameter has the
effect of making consumption less smooth (with higher wealth accumulation), while decreasing the
parameter from the benchmark value of 1.5 leads to more smoothing (with lower wealth accumu-
lation). We can also observe the expected effect of the bequest parameter: those with a higher
concern for their offspring, represented by a higher valuation of bequests in the utility function,
consume uniformly less over the life cycle than do those with a lower bequest parameter. This
former population also accumulates more and for a longer period. These results regarding the
effect of the bequest motives are consistent with, and in fact extend, the theoretical model of Hurd

(1987) to the case of agents with various levels of bequest.

39



Figure 13: Limiting Finite vs. True Infinite. CARA U.

Differences between Limiting Finite and Infinite Horizon. CARA U.

Consumption

Wealth

Figure 14: Simulated Consumption. CRRA Utility

Consumption. C/S problem. 5000 simulations

1500 2000

Dollars
1000

500

Figure 15: Simulated Wealth Accumulation. CRRA Utility

Wealth Accumulation. C/S problem. 5000 simulations

x 10%

Dollars
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0 1.1

40



6 Optimal Replacement Problem

This section has yet to be included.

7 The Linear-Quadratic Model

This section has yet to be included.

8 An Inventory Model

This section has yet to be included.
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9 A Model of Product Introduction

The model described below is motivated by an empirical phenomenon we observe in many industries:
Firms frequently introduce new products, but a majority of these products stays in the market for
only a brief time. A specific example is the US ready-to-eat breakfast cereal industry, where the
high rate of new product introductions has been noted by economists already a long time ago.'?
The model outlined in this section is used by Hitsch (2000) in a dynamic structural estimation
framework to uncover the operation and rationale for new product introductions in the ready-to-
eat breakfast cereal industry. However, it can be applied to other industries, and furthermore, it
can be used to investigate dynamic aspects of firm entry.

The model is designed to capture the behavior of a firm which introduces a new product in a
market, and is uncertain about the demand the product will generate. Eventually, the firm learns
about the level of sales it can expect from its new brand, and decides whether to keep the product,
or drop it from its product line.

The uncertainty which the firm faces arises because some characteristics of the new product,
and the way these characteristics influence consumer choice are unobservable to the firm. The effect
of these characteristics is summarized in a parameter A, which enters the product demand function,
and will be referred to as product quality. The firm has an initial prior on A, and through time, it
learns about the product quality from observing sales.!!

The decisions the firm takes are as follows: At the beginning of each period the firm decides to
keep the product, or drop it from its product line. If the firm decides to keep the product and stay
in the market, it sets a product price and spends a certain amount on advertising.'? At the end of
the period, the firm observes sales, and updates its prior on the product quality.

An appropriate framework to describe the problem of the firm necessarily has to be dynamic. In
a static framework, the objective function of the firm would be specified as current-period expected
profits. If these expected profits were negative, the firm would discontinue producing the product.

However, such a static framework would give the wrong prediction on the optimal exit/stay decision

19Gee Schmalensee (1978).
1 The model resembles Jovanovich (1982), where firms learn about their productivity. However, this model is only

concerned with the decisions of a single agent, while Jovanovich’s paper is about the evolution of a whole industry.
For recent empirical work including models of learning see Ackerberg (1998), Ching (2000), Crawford and Shum

(1999), and Erdem and Keane (1996).
12Currently, other marketing mix variables like price promotions or couponing are not included in the model.
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of a forward-looking firm, because it cannot recognize the value of staying in the market in order
to obtain a more precise estimate of the product quality parameter. Hence, there will be situations
where the firm rationally stays in the market to learn more about the product, even though the
expectation of current-period profits is negative.

The model outlined below is a model of market experimentation, where firms experiment using
the exit/stay decision. Furthermore, if some marketing variable, for example advertising, influences
the speed at which the firm learns about the true product quality, the firm will optimally alter this
variable from the value which maximizes current profits, and hence experiment using that decision.'?

Beyond learning, there are other potential reasons why the firm’s problem has to be treated
in a dynamic framework. Current marketing activities may have long-lasting effects in the form
of advertising carryover and purchase reinforcement. Advertising carryover occurs if current ad-
vertising expenditures affect demand in the future, and purchase reinforcement occurs if a current
purchase incidence changes the preferences of a household, such that the household is more likely
the buy the currently consumed product again. In both cases, current advertising expenditures,
or the current price, will change demand in the future. In the specific model discussed below,
only advertising carryover is incorporated to keep the problem as simple as possible. A related
intertemporal demand effect is variety-seeking, which is a preference to consume new products, or
products whose characteristics differ from the products recently consumed. In the model, we treat
variety-seeking in a rather reduced form by allowing the product to yield extra utility to consumers
during the first periods after product introduction, i.e. we assume that all extra consumption due
to variety-seeking motives occurs shortly after product introduction.

Out model describes the actions of a single agent, and does not take strategic interaction into
account. A model allowing for competition among firms would be computationally very intensive,
and on currently available hardware (maybe with the exception of advanced supercomputers) it
would not be possible to estimate such a model in a reasonably short amount of time.

In the following, the different elements of the model are explained.

States and decisions. The state vector z; = (x¢, bt, g¢, ht) contains the following components:

1. x is an indicator variable which equals 1 if the product is in the market, and 0 if it has been

dropped from the firm’s product line.

13See Aghion et. al. (1991).

43



2. b; is the firm’s belief about the product quality A. b; could be any arbitrary probability
distribution, but to make the model solvable on a computer, the model is restricted in such a
way that the firm’s belief is always normal, and can therefore be described by the parameter
i, the conditional expectation of the product quality, and o?, the variance of the belief.

Hence by = (ug, 02).

3. gt is the beginning-of-period goodwill stock, which represents the accumulated effect of past

advertising.

4. hy records the time elapsed since the product has been introduced, where only the first T
periods after product introduction are of relevance, i.e. h stays at hy = T after T periods. h
accounts for systematic demand effects which occur only shortly after product introduction,

and can be due to variety-seeking behavior.

The decisions taken by the firm in each period are dy = (x¢+1,Pt, at), where x;4+1 is the exit/stay

decision, p; is the product price, and a; is the dollar amount spent on advertising.'4

Advertising and goodwill. Advertising has intertemporal effects through an accumulated ad-
vertising stock called goodwill, denoted by g;. At the beginning of each period, the firm decides
to spend a certain dollar amount on advertising, which increases beginning-of-period goodwill g,
and yields a quantity called added goodwill, denoted by ¢* = ®(g,a). A larger quantity of added
goodwill increases the demand for the firm’s product through a function ¥(g%). The functional

forms chosen are
®(g,a) =g+ F-(1—e %), (103)
T(g?) =G - (1 —e¥9"). (104)
Both the increase of goodwill through advertising, and the increase of utility through added goodwill
are bounded by F' and G. The parameters ¢ and 1 determine the speed at which goodwill and

utility can be increased.

The law of motion for the goodwill stock is specified as

ger1 = exp(veq1) - 97 (105)

14Using the same symbol ’x’ for both a state and decision variable is not quite concise, but it highlights that in
period t, the firm decides whether the product will be in the market at the beginning of period ¢ + 1, indicated by

Xt+1-
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where v is i.i.d. normal with mean y, and variance o2. The expectation of the log-normally
distributed random variable exp(vyy1) is E( exp(v441)) = exp(p, + 02/2), and hence we restrict
its parameters such that p, + 02/2 < 0, in which case goodwill will stochastically decay from one

period to the next.

Demand. The demand for the firm’s product is given by the logit formula

exp(d¢)

= M = Mi.
Q= Mo = M exp(51)

(106)

where M is the market size, and s; is the market share. z is an indicator of the competitive strength
of all rival products.!® The term §;, which in the context of a logit model has the interpretation of

mean (across households) utility, is specified as
Oy :)\—apt+\D(Q?)+Tht + &¢. (107)

pt is the product price, and ¥(gf) is the effect of added goodwill. h; records the time elapsed
since product introduction, and indexes one of the time dummies 7y, ..., 7, where 7r4; = 7r
for all ¢ > 0. Systematic differences in demand which arise only during the first periods after
product introduction, for example variety-seeking effects, are accounted for by these terms. Finally,
g; ~ N(0,0?) is an i.i.d. shock to demand, which can be interpreted as a random component of
advertising, as the effectiveness of a given dollar amount spent on advertising will generally not be

exactly known in advance.

Learning. At the beginning of each period, the belief of the firm about the product quality
is described by b; = (u,0?), which indexes a specific normal distribution. The firm receives a
normally distributed signal w;, and hence also its posterior will be normal.

At the end of the period the firm can calculate the exact value of the unknown components

A + & by observing demand, which can be seen from the relationship

log(st) — log(sot) = d¢, (108)

15The logit demand system can be derived from the aggregation of brand choices across households. Each household
h chooses one of the brands 1, ..., J or the outside alternative 0. The utility of alternative i is U = §; + el!, where
d; is the mean utility of alternative 4 across households, and el is an household-specific utility component which
has the extreme value distribution. Aggregating across households, one finds that the market share of brand ¢ is
si = exp(d:)/ >, exp(dx). In the context of our model, if we consider the demand for product 4, the indicator of

competition is z = 37, ; exp(dx).
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where sg; is the ’outside’ market share. We actually assume that the firm observes only a noisy

signal of the sum of these two unknown components:
Wt = >\+€t+’r}t. (109)

The term 7; can be interpreted as observation error, for example because exact data on market
shares are not immediately available. Alternatively, n; can be thought of as introducing some mild
form of bounded rationality into the problem, in the sense that the managers of the firm make

slight errors when updating their posteriors.'® The component 7; is i.i.d. normal with mean 0 and

2

variance oy,

and hence also wy is normally distributed: w, ~ N(X, 02 + 07).
The firm updates its belief using Bayes rule, and then, given the beginning-of-period belief

b = (14, 07), the belief in the next period is

pir1 = pt + q(we — pe), (110)

ot = (1= ot (111)

where the coefficient ¢;, which can be interpreted as the speed of learning, is given by the formula
o}

—_. 112
0t2+0§+a,27 (112)

qt =

Note that the evolution of the variance o7 is deterministic, which means that even though the firm
does not know its conditional expectation of the product quality next period, it knows how precise
its belief will be. The conditional expectation of the product quality next period, conditional on

the information at the beginning of period ¢, is normally distributed:
2/ 2 2
pe1 ~ N(pe, q; (07 +0p)). (113)
The objective function of the firm. Current period profits are denoted by 7; and given by

Tt = Qt(pt - C) —ar — k. (114)

¢ is the unit cost of production, which is assumed to be a constant parameter. Realistically, having
a product included in the product line incurs a cost which will be positive even if sales are tiny.

This per period fixed cost is denoted by k, and includes the value of managerial time devoted to

S Without the error component 7, the model will generally be rejected by the data. See Hitsch (2000) for the
details.
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managing the project, as well as the opportunity cost of shelf space both in the supermarket where
the product is sold and in the warehouse where it is stored intermittently. All uncertainty about
current-period profits is due to the uncertainty about current-period demand.

The firm chooses its actions to maximize the objective function

Vi) =E(Y" B X1 (Qrlps =€) = ar = ) | - (115)

The discount rate 3 is constant, and the firm is risk-neutral.'”

Solution of the model. In the previous subsections all elements of the decision process were
outlined. Under the assumptions made, in particular given that all variables follow Markov pro-
cesses, the optimal policies will be time-invariant functions d(x) = (x(x), p(z), a(z)). These policies

can be recovered from the value function, which satisfies the Bellman equation
V(x¢) = max(0, SUDy, =1 ,p;,a¢ E(m + BV (z441)|x¢, di))- (116)

As the firm has the option to drop the product from its product line, the value of the product is
always non-negative.

To calculate the expectation of the current-period profit flow, we note that all uncertainty about
7 comes in through the uncertainty about the product quality A, and through the demand shock
€. € is an i.i.d. random variable with a normal distribution, e; ~ N(0,¢2). From the point of view
of the firm, the product quality A is also normal with mean y; and variance o7, A ~ N(us,0%2).
Given a state x¢, and marketing choices p; and ay, all randomness in profits is due to randomness
in the mean utility level §;, and randomness in ¢; is due to the term A + ¢; = &. & also has a
normal distribution, & ~ N(u¢, 07 + 02), and we denote its density by f¢(-|z,d). The conditional

expectation of the current period profit flow can then be calculated as

E(7|zs, dy) = /_00 Qi(pt — c)dF¢(|zy, dy) — ap — k. (117)

As regards the expected future value of the product, note that among the state variables only
the conditional expectation u and the goodwill stock g do not evolve deterministically. We have

seen before that ps1 has a normal distribution, and g¢11 is log-normally distributed. Then, if the

1" Typically, a new brand accounts only for a small portion of the profits of a cereal firm, and hence does not change

the variability of the firm’s performance in a significant way.
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product is not withdrawn from the market today, i.e. if x;+1 = 1, the expected future value is

E(V (@41) |z, dt) :/ / V(1,p,0701, 9, hei1)dFydF,. (118)
—oo JO

If the product is withdrawn, its value is 0.

The maximization involved in the calculation of the Bellman operator can be made faster by
solving for the optimal price p* before starting the policy iteration algorithm. This is possible
because the product price affects only the current period profit flow, but not the future value of
the product. In this case, p* has to be defined as a function of u, o2, h, and g* instead of g, and
the profit flow can be redefined as implicitly incorporating the optimal choice of the product price.
The only continuous control remaining is the advertising expenditure a.

Furthermore, note that T periods after product introduction, the state variable h remains
constant at h = T'. One can then solve the dynamic programming problem by first computing the

value function for h = T. The value functions for h < T' can then be recursively computed by
VT (z) = max (0, supg, E(m + BVTH (1) |2y, di)) T=T-1,..,0, (119)

where one has to include the appropriate time dummy in the profit flow m;. This is much more
efficient than iterating on the full state space, as the solution on the region of the state space where

h < T is not needed in updating the value function on the region where h = T.

Computational details The value function is represented by a discrete approximation with
uniform grids. The size of the array which stores the value function is N, - N2 - Ny - (T +1).18

As noted before, the current pricing decision does not affect the expect future value of the
product, and hence the optimal price and corresponding profit flow is calculated as a function of
the current state, where goodwill is replaced by added goodwill. This calculation takes only a small
fraction of the total time needed to find a solution to the Bellman equation.

The stationary part of the value function, i.e. the value function at least T" periods after product
introduction is found by using policy iteration. The optimal advertising decision is calculated using
Brent’s method.'® We use Gauss-Hermite quadrature to calculate the expected future value of the

product. Because a§+1 is known at time ¢, the integral has to be taken only over y and g. The

18 The indicator x; adds no additional dimension to the computational complexity, as we know that V = 0 whenever

the product is no longer in the market.
9See Press et. al. (1992b), p. 402.
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value function is evaluated using three-dimensional linear interpolation, both for points within be
boundaries of the grid and for points outside the grid, i.e. the value function is extrapolated from
its two closest values at the boundary. The exit/stay decision is then made by checking whether the
optimal value from staying in the market is non-negative. Having computed the stationary part,
we then compute the value function recursively at time h =T —1,...,0 after product introduction.

We experimented using Chebyshev polynomials to approximate V, but failed to obtain a satis-
factory solution. The problem that arises is due to the kink of the value function at the boundary
between the exit/stay regions of the state space (see Figure 17). Knowing where the value function

hits 0 is essential to determining the exit rule. We tried to solve this problem by approximating

W (@) = supy,,,—1pp,0 B+ BV (2141) |24, dy)), (120)

instead of directly approximating the value function V. W is the value of the product if the firm
has to keep it in the market this period, but can withdraw it at any point in the future. Note that
V = max(0, W), and therefore, we can infer V immediately if we know W. As opposed to V, W is
a smooth function, and hence it can be more easily approximated by polynomials than the value
function. In fact, it turns out that max(0, W) approximates V quite well overall, but often has
its kink at the wrong point and therefore yields an inaccurate exit rule. This is due to the fact
that the Chebyshev approximation routine does not take into account the importance of finding
a very concise approximation close to the exit region. If the model were used only for illustrative
purposes, this might not be a major issue, however, the exit/stay decision is of importance when
calculating the likelihood function, and in this sense the Chebyshev approximation did not turn
out to work well.

As an example, we approximate the continuous part of the state space using N, = 21, N,> = 11,
and Ny = 26 points, and there are 3 initial time periods, i.e. T' = 3. The stationary part of the
state space contains 6006 points. The discount rate S is set to 0.975. The solution of the model is
found on a computer using an Intel Pentium IIT 500 MHz processor. All parts of the program are
coded in C/C++2%°, and the program is compiled using the MS Visual C/C++ compiler using all
optimization flags. The solution is found in 35 seconds. Figure 16 shows the value function, and

Figures 17-19 show the pricing, advertising, and exit policy.

20T be precise, certain parts of the program are coded using C++ language elements, however, we do not make
use of the distinguishing object-oriented programming features of C++, and hence the whole program could as well

be written using standard C.
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Figure 16: Value Function
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Figure 17: Pricing Policy
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Figure 18: Advertising Policy
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Figure 19: Exit Policy
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10 Consumption/Saving and Labor/Leisure Choices

In this section we present an extension to the classical consumption/saving model under uncertainty
discussed in previous sections by introducing the labor/leisure decision as endogenous.?! Utility is
now a function of consumption and leisure, and agents will optimally choose both in every period
of their lives. They solve

T

max By [ Y B u(cs, 1) | (121)

Csyls st

again in finite horizon. The within-period utility function is assumed to be Isoelastic and Cobb-
Douglas between consumption and leisure in time ¢:

G

122
. (122)

u(ce, ly) =

where 7 is the coefficient of relative risk aversion and 7 is the valuation of consumption versus
leisure.?? Consumption and leisure are substitutes or complements depending on the value of
as discussed in Heckman (1974) and Low (1998), with the cutoff approximately equal to 1.2 In
our analysis below we will assume values of = larger than 1, implicitly assuming substitutability
between consumption and leisure. We will also assume that the agent has only three choices with
respect to the labor decision: part-time, full-time, or out of the labor force.?* It is also important
to emphasize that for computational convenience we have chosen a lower bound on leisure equal to
20% of the available time during a given period.?> Given that we allow for consumption and leisure
to influence each other using a CRRA utility function, and considering that we are concerned with
corner solutions for the labor decision, the model can only be solved numerically. To do so we
employ the techniques presented throughout the paper.

The model introduces, on top of the capital uncertainty we had in the previous models, income

uncertainty, and allows for the labor/leisure decision to be endogenous.?® This feature complicates

21 This subsection borrows from Section 3 in Benitez-Silva (2000) and also from Benitez-Silva et al. (2000).

22 See Browning and Meghir (1991) for evidence on non-separability of consumption and leisure within periods.

23 Heckman presents a model of perfect foresight and shows that by introducing the labor supply decision it is
possible to reconcile the empirical evidence on consumption paths with the life cycle framework, without resorting to
credit market restrictions or uncertainty. Low’s (1998, 1999) work is fairly close in nature to the model summarize
here, but he abstracts from capital uncertainty but allows borrowing. French’s (2000) model is also close to this
extended model, although it focuses on the retirement decision and assumes separability between consumption and
leisure in the utility function.

24 We solve in this case an 80-period model, with agents making decision between age 20 and 100.

25 Different values of this parameter have essentially no effect on the solutions presented below.

26 We do not allow here for nonzero correlation between income shocks and asset returns. For a discussion of this
possibility at the micro level see Davis and Willen (2000).
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the model because the value functions now depend on the uncertain wage realizations. We introduce

serially correlated wages such that,
Inw, = 1-—p)ap+plnw_1 + €, (123)

where «(t) is a quadratic trend that mimics a concave profile of a representative individual. The
€ are i.i.d. draws from a normal distribution with mean 0 and variance o?.
We write the problem solved by the agents in the last period of life as
Vr(w,w) = (ogcgﬁi)%l—l),l) Ule,) + KU(w+w(l—-1)-¢)], (124)
where labor is again chosen among the three possible states. Once we obtain the decision rules
numerically we can write the value function in the next to last period:

- = E 1-1)— . 12
Vi) = max  Uled) + BB Vi(wtw(l=1) - o) (125)

The functions for the earlier periods are again obtained recursively. The expectation E V;(w(1 —

l) + w — ¢,w) appearing in the value functions for the different periods can be written as follows:

/Or /Ow V(f(w+ ol =1) —c),w) f(o)do f(F)dF . (126)

The interpolation of the values of the next period value function has to be carried out in two
dimensions, a slightly more cumbersome and slower procedure, we use bilinear interpolation using

C to speed up the calculations.?”

The double integrals are again solved by Gaussian Legendre
quadrature, but we use iterated integration since we are assuming independence of wages and
interest rates.?8

Figures 20-22 show the averages of 5,000 simulations of the paths of the relevant variables. Our
results show that consumption profiles track income paths very closely up to age 45, when wealth
accumulation starts in meaningful amounts. Wealth accumulation then continues up to quite late
in life when deaccumulation starts to occur. These two results are quite important since show

that the classical life cycle model of consumption can be reconciled with empirical evidence quite

closely once we take into account labor supply endogenously, and in the presence of capital and

2T We also interpolated our functions using b-simplicial interpolation as suggested by Judd (1998) but found that
it was not as accurate as the more standard bilinear and it was not necessarily faster once we wrote the routine in C.

28 Given that the value function depends on wealth and wages, we needed to discretize both variables in order
to approximate the integrals, using 50 points for wealth and 50 points for wages. We found that using fewer points
significantly affected the accuracy of the calculations, leading to possible erroneous conclusions.
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wage uncertainty. The labor supply profile shows full-time work during most of the individuals’
life, with part-time work at the very beginning and very end of the life cycle.?? We plot the case of
individuals starting with wealth of 10,000 units, initial wages of 30,000 units, and serial correlation
parameter equal to 0.9.

From the solution and simulation of these models we can conclude that a life cycle model with
endogenized labor supply behaves quite consistently with the empirical data on wealth accumulation
and consumption profiles and that wealth accumulation seems to start only in mid-life. Additionally,
such a model endogenously captures the exiting from the labor force by older individuals who face
lower wages. We consider these results as encouraging examples of the interesting models that can

be solved with the techniques highlighted in this paper.

29 Benitez-Silva (2000) shows that once we introduce Social Security in this model labor supply reacts dropping
right at the age in which individuals start receiving benefits, wealth accumulation also welfare are also negatively
affected. The author also extends this model to account for an endogenous annuity decision, and presents a possible
solution to the “annuity puzzle,” the question as to why the annuity market is so narrow.
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Figure 20: Simulated Consumption. Serial Stochastic Wages.

C for Serial Stochastic Wages, CRRA=1.5, rho=0.9. 5000 s.
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Figure 21: Simulated Labor Supply. Serial Stochastic Wages

Labor for Serial Stochastic Wages, CRRA=1.5, rho=0.9. 5000 s.
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Figure 22: Simulated Wealth Path. Serial Stochastic Wages

Wealth Path for Serial Stochastic Wages, CRRA=1.5, rho=0.9. 5000s.
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11 Conclusion

This section has yet to be written.

Appendix

In this Appendix we show the details of the derivations of closed form solutions of the decision
rules for the finite horizon version of the Phelps’(1962) problem for the CRRA and CARA utility
functions.

The derivation of the decision rules in the case of the CRRA utility function is also close in
nature to the one performed in Levhari and Srinivasan (1969) for the infinite horizon case. We can
again solve this problem relying on Dynamic Programming and Bellman’s principle of optimality,
using backward induction. In the last period of life agents solve
ct (w— )t

VT(U}) = OISncaéXw 1 ’y + K ﬁ ; (127)

where «y is the coefficient of relative risk aversion and K is the bequest factor, characterized as a
number between zero and one.3? By deriving the first order condition with respect to consumption

it is straightforward to show that
or = ——r, (128)
1+ K~

we can then write the analytical expression for the last period value function:

I—y 1\ =7
(o) ()
Vp(w) = K7 + K T . (129)

1—v 1—v

Then the problem that agents solve in the next to last period of life is:

cl=

Vr_1(w) = JuAX T 5 +BE Vp(w—c¢) . (130)
Using the previous results we can write
_ 1—
(F(w—c))l K (F(w—c)K%) 7

1—y 1 1

c 1+K7 14+K7
_ = E|—F—+K . 131
Vr_1(w) Ofgnfgxwl_,y‘Fﬂ 1~ + 1—~ (131)

Here in order to derive the first order condition with respect to consumption we assume, as in
Levhari and Srinivasan (1969), that the value function is differentiable and that the differential and
expected value operators can be interchanged. The f.o.c. is then,

-y 1\ —7 1
¢ = BE () ((w_c)> L 1k ((w_C)I“) Ko = 0.(132)

1
1+K7/) 1+K> 1+ K~ 1+ K~

30 We also follow in this case the “egoistic” model of bequests.
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Then some algebraic manipulation allows us to write the f.o.c. as

w=-o\"

¢’ = BE@FT) | —= : (133)
1+ K~

Some more tedious algebra leads to the following expression for the decision rule in the next to last

period

er1 = 2 (134)

1487 [B 0] 1+ k7]

that can be rewritten as

‘r-1 = 1 1 = 1 1 - (135)
L4 67 B (P + 67 B (P ) K

Assuming next that the interest rate, 7, follows a log-normal distribution with mean y and variance

0_2
o2, then given that F(7) = e#*2 and denoting E(7) as T we can write

2

E(@#77) = 7 e % (136)
We then substitute back in the formula for ¢7_1 and obtain
w
cr1 = T T (137)
Y

1+ B3 (FI*V e —Wl—”%) + 87 K7 (Flﬂ e —7(1—7)§) ”
given the similarity with expression (93) it is easy to see how backward induction would lead us to
the decision rules for the rest of the periods, for example we can write ¢y as

ery = = : (138)

1 +5% E (71=7) +ﬁ% E (7177) +...+6% K+ E (71=7)

where we come back to the compact notation for E (7177).

We can also see that if v is equal to 1 we are back to the logarithmic utility case and the
expression for ¢y_; above is equivalent to (93), which is a special case of the expression above.
It is also important to emphasize that this expression is the finite horizon counterpart to the one
obtained in Levhari and Srinivasan (1969), and also replicated in the previous section, once a
bequest motive is introduced, and that their results regarding the effects of uncertainty (decreasing
proportion of wealth consumed as the uncertainty grows if v > 1) go through in this case.

We next assume a constant absolute risk aversion (CARA) utility function. As discussed in the
text we have not found a closed form solution for this problem under uncertain returns that follow
a log-normal distribution as in the cases above. We therefore solve the finite horizon problem under
certainty. We can again solve this problem using backward induction. In the last period of life
agents solve

Vr(w) = max —-e “—-K [e _7(“’_6)] ) (139)
0<c<Lw
where < is the coefficient of absolute risk aversion and K is the bequest factor. We assume there is
no capital accumulation in the last period of life. By deriving the first order condition with respect
to consumption it can be shown that

1 InK
cr = min (max (O, % - = n_) ,w) , (140)



we can then write the analytical expression for the last period value function:

'waan) yw+in K

Velw) = _e (5 g [67( 5 )]_ (141)

Then the problem that agents solve in the next to last period of life is:

Vroi(w) = Jpax —e T+ BVr(w—c) . (142)

Using the previous results we can write

_(y(R(w=c))=In K _(4(R(w=e))+1n K
Vr—1(w) = max —e “+f [(—e 7(7 2 )) -K (e 7(7 2 )>] .(143)

0<ce<Lw

where R = 1 + r and r is the fixed rate of interest. In order to derive the first order condition
with respect to consumption we again assume that the value function is differentiable and that the
differential and expected value operators can be interchanged. The f.o.c. is then,

Vefvc_%ﬂ[e%[eh‘%JrKe“;‘K“ - 0. (144)

Then some algebraic manipulation allows us to write the f.o.c. as
1
ﬂ R InK —InK
N [6 2 4 Ke 2

. _7[ w— (22+R)C]

(145)

Some more tedious algebra leads to the following expression for the decision rule in the next to

last period
R 2 InKp_
¢r—1 = min (max (O, 2—|—wR 3T R - ’YT 1) ,'w) , (146)

where

Kr_1 = e 2 +Ke 2 (147)

,6 R [ In K —an]
5 .
We can then proceed recursively, finding w — ¢, and substituting in Vpr_1, and then writing the
problem solved in period T' — 2. After finding the f.o.c. we can again find a closed form solution
for cr_o,

c min | max | 0 Bow 2+ R InKr (148)
_ = — w
2 '2+R+R. 24R+R2 4 )V)>
where
R2 2 —RInKp_ n N
Kr_, 25—|- 7 [e 7r K71 +Be b [e e +Ke 12KH . (149)
Which in fact, can be rewritten as follows:
ﬂ R2 _2_ K —RInKp_y KT—l
Kr = 2+R T-1 2R . 1
T2 2+ R € +pBe ’82—R ( 50)
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Similarly, in recursive fashion and after a bit more algebra we find that

c = min ( max (0 Row - 2+ R+ R InKr w (151)
S '24R+R*+ R 2+R+R+R 4 )77

where in this case

R3 24+R 7R2 mKp 5 | Ko
Kiy = 5l |emiim WKrs g o~ [ﬂTRf”' e
2+R

From this we can characterize the decision rule for any other period up to the first period of life

. — o (e (o REw [2+R+...+ R ' InKry y (153)
T=k = "2+ R+...+ Rk 2+R+...+ Rk v )

where Kp_j is shown below and where we can write the expression 2 + R + R?> + ... + RF as
1+ [1_1}}’;1] and similarly for the other series,

1-Rk—1
1+[ R | RF " VinKp_pi4
Rk T, Tk TR | Kol
KT*k — % e 1+[ i—R + ,8 e 1+[ i—R ] ﬂTTIjTl . (154)
=3 ST
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