Copyrights to papers in the Duke Economics Working Paper Archive remain with the authors or their assignees. Archive users may download papers and produce them for their own personal use, but downloading of papers for any other activity, including reposting to other electronic bulletin boards or archives, may not be done without the written consent of the authors.

Duke Economics Working Paper #96-17

Qualitative and Asymptotic Performance of SNP Density Estimators

Victor M. Fenton
A. Ronald Gallant


The SNP estimator is the most convenient nonparametric method for simultaneously estimating the parameters of a nonlinear model and the density of a latent process by maximum likelihood. To determine if this convenience comes at a price, we assess the qualitative behavior of SNP in finite samples using the Marron--Wand test suite and verify theoretical convergence rates by Monte Carlo simulation. Our results suggest that there is no price for convenience because the SNP estimator is both qualitatively and asymptotically similar to the kernel estimator which is optimal.

Published in Journal of Econometrics, Vol. 74, No. 1, September 1996, pp. 77-118.