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Abstract

There are many situations in which buyers have a significant stake in what a firm learns about
their demands. Specifically, any time that price discrimination is possible on an individual bases
and repeat purchases are likely, buyers possess incentives for strategic manipulation of demand
information.

A simple two-period model in which a monopolist endeavors to learn about the demand
parameter of a repeat buyer is presented here. It is shown that high first-period prices may lead
to strategic rejections by high-valuation buyers who wish to conceal information (i.e., to pool),
while low first-period prices may lead to strategic rejections by low-valuation buyers who wish
to reveal information (i.e., to signal). The seller never experiments against patient buyers in
any equilibrium. Indeed, the seller often charges first-period prices that reveal no information
at all, and she may even set an equilibrium first-period price strictly below the buyer’s lowest
possible valuation.
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1 Introduction

In a classic paper, Rothschild (1974) showed that the pricing problem facing a monopolist with
unknown demand is often analogous to a two-armed bandit problem.1 Hence, the optimal policy for
such a firm is to experiment with prices in order to learn about its unknown demand parameters. It
is, however, well-known that the optimal policy may not result in complete learning because of the
opportunity cost of experimentation. In addition, the learning process may be severely hampered
unless the firm possesses significant prior knowledge about the type of uncertainty confronting it.
For instance, even when demand is deterministic, Aghion, Bolton, Harris, and Jullien (1991) show
that strong conditions such as continuity and quasi-concavity of the profit function are required to
guarantee that a monopoly will eventually learn all the relevant information.

In this paper, a very different – but important – caveat is added to the list of reasons that a
monopolist may have difficulty learning its demand. The firm may serve customers who do not
want their demand characteristics to be known!

In the prior literature on price experimentation, the possibility of strategic buyers has been
largely ignored.2 Specifically, it has typically been assumed either that the monopolist faces a
sequence of identical customers who exist in the market for only one period or that market demand
is composed of a large number of small customers.3 There are, however, many real-world situations
in which buyers have a significant stake in what a firm learns about their demands. Specifically,
any time that price discrimination is possible on an individual bases and repeat purchases are
likely, buyers possess incentives for strategic manipulation of demand information. In any long-
term supply relationship, the buyer wants the supplier to think that he has very elastic demand for
the product, and the buyer may even strategically reject some price offers in order to manipulate
the suppliers beliefs to this end.

In this paper, a simple two-period experimental pricing and learning environment is analyzed.
Specifically, there is assumed to be a single buyer whose underlying demand parameter, λ, is private
information. The seller makes a take-it-or-leave-it offer in the first period and updates her belief
about the value of λ based on the buyer’s acceptance decision. In particular, acceptance (rejection)
of a high first-period price implies that the buyer’s first-period valuation was high (low). This
leads the seller to update her beliefs about λ and, therefore, to infer that the buyer’s second-period
valuation for her product is also likely to be high (low). Indeed, it is shown that if the buyer is
myopic, then the informational value of a high first-period price can lead the seller to charge one
when it would otherwise not be optimal to do so.

Things are very different, however, if the buyer is as patient as the seller. In this case, it is shown
that if the buyer’s first-period valuation is high, then he will often attempt to conceal information
by strategically rejecting high first-period offers. In fact, a buyer with a high value of λ stands to
gain the most from concealing his high first-period valuation. This gives rise to ‘reverse screening’
at high prices in the sense that only buyers with low values of λ (and high valuations) will accept
high first-period prices. When the first-period price is low, however, two types of continuation
equilibria emerge, a Good equilibrium (for the seller) in which all buyer types purchase the product
and a Bad equilibrium in which a buyer with a relatively high value of λ but low valuation for the

1Many authors have subsequently refined and extended this observation. See, for example, Aghion, Bolton, Harris,
and Jullien (1991); Mirman, Samuelson, and Urbano (1993); Rustichini and Wolinsky (1995); Keller and Rady (1999).

2An exception is Kennan (2000) who shows that persistent private information may lead to stochastic cycles in
repeated labor negotiations.

3In a related paper, Segal (2002) considers a setting in which there is a finite number of buyers in the market from
the outset. He shows that if the common distribution of buyers’ valuations is unknown, then learning through price
experimentation is dominated by a multi-unit auction which sets a price to each buyer on the basis of the demand
distribution inferred statistically from other buyers’ bids.
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product may strategically reject an offer to signal his low valuation to the seller. This signaling
behavior at low prices is the mirror image of the screening that occurs at high prices. Hence,
strategic rejections at high prices conceal information while strategic rejections at low prices reveal
information.

Since all of the continuation equilibria involve a lower effective first-period demand relative to
the myopic buyer case, the seller generally finds it optimal to set a lower price when confronted
with a strategic buyer. In fact, she never ‘experiments’ by charging a high price in order to obtain
information. Indeed, the seller often charges first-period prices that reveal no information at all,
and she may even set an equilibrium first-period price strictly below the buyer’s lowest possible
valuation.

The pricing and acceptance behavior exhibited in the model presented here can be viewed as a
manifestation of the rachet effect familiar from the regulation and agency literature.4 Specifically,
the inability of the firm to commit not to use the information it learns in the first period harms it if
the buyer is relatively patient. The strategic rejections associated with patient buyers often result
in both a lower first-period equilibrium price and a lower probability of sale than would prevail if
the firm could commit to price non-contingently.

This paper also contributes to the burgeoning literature on behavior-based price discrimination.5

In Internet retailing as well as many other market settings, firms now have the ability to track the
purchasing behavior of individual customers and to tailor price offers to them.6 To the extent
that consumers are aware of this, the findings presented here indicate that they possess significant
incentives to manipulate the information collected. Hence, it will typically be necessary for firms to
offer their customers valuable benefits in order to induce them to reveal their private information.

The basic model is presented in the next section. In Section 3, the bench-mark setting in which
the buyer is not strategic is characterized. The analysis at the core of the paper is presented in
Section 4, where the first-period expected demand of a strategic buyer is derived. Sections 5 and 6
deal respectively with the best and worst equilibria for the seller and contain most of the economic
results. Some brief concluding remarks appear in Section 7. Proofs not appearing in the text have
been relegated to the Appendix.

2 The Model

There are two risk-neutral players, a seller (S, she) and a buyer (B, he), who possess respective
discount factors δ ∈ [0, 1] and β ∈ [0, 1]. In each period, t = 1, 2, B demands one unit of a good
which S may produce and sell to him. S’s production cost is normalized to zero. B’s valuation
for the good in period t, vt, is high, vH , with probability λ and low, vL, with probability 1 − λ,
vH > vL ≥ 0. In other words, B’s valuations are independent draws from a two-point distribution
with parameter λ.

The demand parameter λ, is itself the realization of a random variable which is continuously
distributed on [0, 1] with probability density function f(λ). (For instance, λ might represent B’s
income and f(λ) the distribution of income in the population of potential buyers.) Let E[λ] denote
its expected value under the prior. Also, it is notationally convenient to define the constant

λ∗ ≡ vL/vH .

4See, for example, Laffont and Tirole (1988), and especially Hart and Tirole (1988).
5See, for example, Acquisti and Varian (2002), Taylor (2002), Shaffer and Zhang (2000), Fudenberg and Tirole

(2000), and Villas Boas (1999).
6See Krugman (2000) and Streitfield (2000).
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At the beginning of the game, B privately observes λ and v1, and he privately observes v2 at
the beginning of the second period. Hence, in any given period, B’s ‘type’ has two components, his
permanent ‘long-run’ type λ ∈ [0, 1] and his transitory ‘short-run’ type vt ∈ {vL, vH}.7

In each period t = 1, 2, B and S play an extensive-form game with the following stages.

1. B observes his valuation vt ∈ {vL, vH}.
2. S announces price pt ∈ <+ at which she is willing to sell the good to B.

3. B either accepts (qt = 1) or rejects (qt = 0) S’s offer.

4. B’s (contemporaneous) payoff is qt(vt − pt), and S’s payoff is qtpt.

Note that while this game has a recursive structure, it is not a repeated game due to the presence
of asymmetric information. Specifically, S updates her prior beliefs about λ from the first period
to the second.

In particular, let hS ≡ (p1, q1) be the history of first-period events observed by S, and let
hB ≡ (λ, v1, p1, q1) be the history of first-period events observed by B at the beginning of period 2.
A behavior strategy for S is a pair of probability distributions, (Φ1(p1), Φ2(p2; hS)), over all possible
price offers. Similarly, a behavior strategy for B is a pair of functions, (γ1(λ, v1, p1), γ2(v2, p2; hB)),
where γt is the probability that B accepts S’s offer in period t.

Let f(λ|hS) denote S’s posterior beliefs about λ at the beginning of period 2. Likewise, let
E[λ|hS ] denote her updated expectation. The solution concept employed is efficient perfect Bayesian
equilibrium (PBE); i.e., a PBE in which indifference about pricing or purchasing is resolved in
favor of efficiency. (Since inefficient PBEs occur only for a non-generic set of parameter values, the
‘efficient’ qualifier is suppressed below.)

Observe that in the second period, B optimally accepts any price that does not exceed his
valuation regardless of the history. Given this, S believes the good will be sold for price p2 with
probability

D2(p2; hS) =





0, if p2 > vH

E[λ|hS ], if p2 ∈ (vL, vH ]
1, if p2 ≤ vL.

This is S’s expectation of B’s second-period demand for her product. Hence, S may either price at
vH and sell with probability E[λ|hS ], or she can price at vL and sell with probability one. Thus, S
optimally sets p2 = vL if vL > vHE[λ|hS ] and p2 = vH if vL < vHE[λ|hS ].

This serves as proof of the following proposition that gives necessary conditions on second-period
equilibrium strategies.

Proposition 1 (Second-Period Equilibrium Behavior) In any PBE, B’s strategy in period 2
is

γ2(v2, p2; hB) =

{
1, if v2 ≥ p2

0, if v2 < p2.

S offers p2 = vL with probability θ(hS) and p2 = vH with probability 1− θ(hS) according to

θ(hS) =





0, if λ∗ < E[λ|hS ]
any θ ∈ [0, 1], if λ∗ = E[λ|hS ]
1, if λ∗ > [λ|hS ].

The central concern of the next two sections is the first-period equilibrium behavior.
7While B’s type is multi-dimentional, the focus here is on pricing without commitment rather than on the optimal

monopolistic screening mechanism (e.g., Armstron (1996) and Rochet and Chone (1998)).
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3 Myopic Buyer

In this section the setting in which B completely discounts the future (i.e., β = 0) is analyzed.
There are two possible interpretations for this bench mark. First, it might occur because B is
unaware that S is tracking his purchasing history in order to learn about his preferences. Second,
B may actually consist of two stochastically equivalent (i.e., λ is the same), but distinct buyers,
B1 and B2, who arrive sequentially at S’s store. In this case, S learns about the preferences of B2

by observing the purchasing behavior of B1. Under either interpretation, B acts myopically in the
first period.

Denote by EL the expected value of λ given B’s first-period valuation was vL, and let EH be
the expected value of λ given v1 = vH . Straightforward calculations yield

EL ≡ E[λ|v1 = vL] =
E[λ]−E[λ2]

1−E[λ]

and

EH ≡ E[λ|v1 = vH ] =
E[λ2]
E[λ]

.

Observe that EL < E[λ] < EH .

Proposition 2 (Equilibrium Behavior when the Buyer is Myopic) Suppose β = 0. In any
PBE, B accepts in period t = 1, 2 if and only if vt ≥ pt. Equilibrium prices are given by:

(i) p1 = p2 = vH , if λ∗ < EL,

(ii) p1 = vH and p2 = q1vH + (1− q1)vL, if λ∗ ∈ [EL, λ),

(iii) p1 = p2 = vL, if λ∗ ≥ λ,

where

λ ≡ E[λ] + δE[λ2]
1 + δE[λ]

.

The intuition behind this result is easily grasped. First, β = 0 means that B treats each period
as a one-shot game in which he accepts any offer yielding him a non-negative payoff. From S’s
prospective, the probability B accepts an offer of p1 in the first period is

D1(p1) =





0, if p1 > vH

E[λ], if p1 ∈ (vL, vH ]
1, if p1 ≤ vL.

Second, note that charging p1 = vL provides no information about B’s second-period demand
because he always accepts this offer. Pricing at p1 = vH , however, does reveal information because
B accepts the high price if and only if v1 = vH . Hence, the probability that B accepts p2 conditional
on acceptance of p1 = vH is

D2(p2; vH , 1) =





0, if p2 > vH

EH , if p2 ∈ (vL, vH ]
1, if p2 ≤ vL,
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and the probability that B accepts p2 conditional on rejection of p1 = vH is

D2(p2; vH , 0) =





0, if p2 > vH

EL, if p2 ∈ (vL, vH ]
1, if p2 ≤ vL.

S finds it optimal to charge vH in both periods if λ∗ is low enough, and she charges vL in both
periods if it is high. In the intermediate range for λ∗, S charges p1 = vH in the first period, p2 = vH

following acceptance and p2 = vL following rejection in the second period.
The region where S prices contingently is λ∗ ∈ [EL, λ). Observe that λ ∈ [E[λ], EH). When

λ∗ ∈ [EL, E[λ]], the expected first-period payoff to S is maximized at p1 = vH . In contrast, when
λ∗ ∈ (E[λ], λ), S experiments: she is willing to run a significant risk of losing a first-period sale (her
expected first-period payoff is higher under p1 = vL) in order to obtain valuable information about
B’s demand parameter, λ.

Corresponding to the notion that the value of information gained through pricing at p1 = vH

increases as S becomes more patient, λ is an increasing function of δ:

∂λ

∂δ
=

E[λ2]− (E[λ])2

(1 + δE[λ])2
> 0.

When δ = 0 (S completely discounts the future), the experimentation region disappears altogether.
In order to focus on settings where information is potentially valuable to S, the following nec-

essary condition is assumed to hold throughout the remainder of the paper:

EL < λ∗ < EH .

If this fails to hold, then S is either so pessimistic (λ∗ ≥ EH) that she would set p2 = vL even if
she knew v1 = vH , or she is so optimistic (λ∗ ≤ EL) that she would set p2 = vH even if she knew
v1 = vL. In either case, learning v1 has no value to her.

Corollary 1 (below) compares the setting in which B is myopic with a setting where S can
publicly commit to not use any information she learns in period 1. When S can commit to price
non-contingently, B optimally accepts pt ≤ vt in period t = 1, 2, and equilibrium prices are given
by:

pt =

{
vH , if λ∗ < E[λ]
vL, if λ∗ ≥ E[λ].

For ease of exposition, this bench-mark case is called the Fixed-Price setting and the case without
commitment is called the Contingent-Price setting.

Corollary 1 (Welfare when the Buyer is Myopic) Suppose β = 0. Then, the following com-
parisons between the Contingent-Price setting and the Fixed-Price setting hold:

(i) S prefers the Contingent-Price setting if λ∗ < λ, and she is indifferent between the two settings
otherwise.

(ii) B prefers the Fixed-Price setting if λ∗ ∈ [E[λ], λ), and he is indifferent between the two settings
otherwise.

(iii) Welfare is higher under the Contingent-Price setting if λ∗ < E[λ]; it is higher under the
Fixed-Price one if λ∗ ∈ [E[λ], λ); and it is the same under the two settings if λ∗ ≥ λ.
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Corollary 1 indicates that, compared with the Contingent-Price setting, S would always be
(weakly) worse off and B would always be (weakly) better off if S committed herself not to learn
anything about B’s demand. When λ∗ < E[λ], S’s expected payoff is higher under the Contingent-
Price setting and B is indifferent between the two settings. Hence, welfare is higher under the
Contingent-Price setting.

When λ∗ ∈ [E[λ], λ), S’s expected payoff is higher under the Contingent-Price setting, because
the value of information obtained from charging p1 = vH , δE(λ)(EHvH−vL), outweighs the private
cost of experimentation, vL−E[λ]vH . B is worse off in this case under the Contingent-Price setting
because he would have received a low-price offer in the first period under the Fixed-Price setting.
Welfare is lower, because the social cost of experimentation, (1 − E[λ])vL, outweighs the value of
information.8

Attention now turns to situations in which β > 0 and B, therefore, has strategic considerations
regarding the revelation of his private information.

4 Strategic Buyer

Now, suppose β > 0 and that S offers p1 in the first period. By Proposition 1, the expected payoff
of B with first-period valuation v1 and long-run type λ is

v1 − p1 + βλθ(p1, 1)(vH − vL),

if he accepts p1, and
βλθ(p1, 0)(vH − vL),

if he rejects p1.
This simple observation serves as proof of the following claim.

Lemma 1 (Dynamic Incentives) Suppose β > 0. In any PBE, B accepts p1 if and only if

v1 − p1 ≥ βλ(θ(p1, 0)− θ(p1, 1))(vH − vL).

In any PBE, it must be the case that E[λ|p1, q1] is derived from B’s first-period behavior given
θ(p1, q1), and θ(p1, q1) is optimal for S given E[λ|p1, q1]. This interdependence between optimal
actions and beliefs is the key to the next important result.

Lemma 2 (Beliefs and Actions) Suppose β > 0. In any PBE, if D1(p1) ∈ (0, 1), then

E[λ|p1, 1] ≥ E[λ|p1, 0],

θ(p1, 1) ≤ θ(p1, 0).

Intuitively, since B is more likely to accept when v1 = vH , S’s beliefs about λ should be higher
when she observes q1 = 1 than when she observes q1 = 0. Along with Lemma 1, Lemma 2 implies
that B never accepts an offer yielding negative first-period surplus.

Corollary 2 (Honest Rejections) Suppose β > 0. In any PBE, B always rejects p1 > v1.

8To see this, note that λ∗ ∈ [E[λ], λ) implies λ∗ > E[λ2]. Then,

(1− E[λ])vL > E[λ2]vH − E[λ]vL = E[λ](EHvH − vL).
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Corollary 2 indicates that B never accepts p1 > vH and that he does not accept p1 ∈ (vL, vH ]
when v1 = vL.

The next step in deriving the equilibrium of the game is to consider B’s acceptance decision if
p1 ∈ (vL, vH ] and v1 = vH . To this end, define the constant

p ≡ vH − β(vH − vL).

Let p1 ∈ (vL, p]. Suppose, B with v1 = vH always accepts p1. S updates her beliefs: E[λ|p1, 0] =
EL < λ∗ and E[λ|p1, 1] = EH > λ∗. Hence, S sets p2 = vH following acceptance and p2 = vL

following rejection. Given this strategy for S, B faces a trade-off: grab the current surplus of
vH − p1 and face p2 = vH , or forego vH − p1 and face p2 = vL. The discounted expected value of
facing p2 = vL is βλ(vH − vL) ≤ vH − p1. Thus, it is optimal for B to accept p1 when v1 = vH .
This serves as a proof of part (i) of Lemma 4 (below).

Now let p1 ∈ (p, vH). First, suppose B with v1 = vH always accepts p1. S updates her beliefs
and sets p2 = vH following acceptance and p2 = vL following rejection. Given this strategy for
S, long-run type λ > (v1 − p1)/(β(vH − vL)) of B does better rejecting p1, which contradicts the
supposition.

Second, suppose B with v1 = vH always rejects p1 ∈ (p, vH). No updating occurs, S sets p2 = vL

if λ∗ > E[λ] and p2 = vH if λ∗ < E[λ]. In either case, B does better accepting p1, which contradicts
the supposition.

Summarizing the above, when p1 ∈ (p, vH), B’s purchasing decision must be based not only
on his first-period valuation, but also on his long-run type λ. Determining when B with v1 = vH

accepts p1 ∈ (p, vH) requires some additional notation and machinery. To start with, for any
µ ∈ [0, 1], define the functions

α(µ) ≡ E[λ|v1 = vH ∩ λ ≤ µ] =
∫ µ
0 λ2f(λ) dλ∫ µ
0 λf(λ) dλ

and

ρ(µ) ≡ E[λ|{v1 = vL} ∪ {v1 = vH ∩ λ > µ}] =
E[λ]− ∫ µ

0 λ2f(λ) dλ

1− ∫ µ
0 λf(λ) dλ

.

These functions have some important properties which are summarized in the following technical
lemma.

Lemma 3 (Geometric Properties of α and ρ) Functions α and ρ possess the following prop-
erties:

(i) α starts at α(0) = 0 and increases monotonicly until it ends at α(1) = EH .

(ii) ρ starts at ρ(0) = E[λ], increases until it crosses the 45-degree line, and then decreases until
it ends at ρ(1) = EL.

(iii) α and ρ cross once, and at their intersection, mmin, α(mmin) = ρ(mmin) = E[λ].

These functions are interpreted as follows. Suppose that B accepts some price p1 if and only if
v1 = vH and λ ≤ µ. Then, α(µ) is the expected value of λ conditional on acceptance, and ρ(µ) is
the expected value of λ conditional on rejection.

Lemma 3 implies that there exists a unique number m ∈ [mmin, 1) defined as follows:

m ≡
{

ρ−1(λ∗), if λ∗ ∈ (EL, E[λ]]
α−1(λ∗), if λ∗ ∈ (E[λ], EH).
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Figure 1: Geometric Properties of α and ρ
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In Figure 1, m is shown for the case λ∗ ∈ (E[λ], EH).
Given m, define the constant

p ≡ vH − βm(vH − vL)

and the function
µ(p1) ≡ vH − p1

β(vH − vL)
, p1 ∈ [p, p].

Observe that µ(p1) is monotone decreasing with µ(p) = 1 and µ(p) = m.

Lemma 4 (Strategic Rejections) Suppose β > 0 and v1 = vH . In any PBE, the following must
hold:

(i) If p1 ∈ (vL, p], then B always accepts the price. S sets p2 = vH following acceptance and p2 = vL

following rejection.

(ii) If p1 ∈ (p, p], then B accepts the price if and only if λ ≤ µ(p1). S sets p2 = vH following
acceptance and p2 = vL following rejection.

(iii) If p1 ∈ (p, vH ], then B accepts the price if and only if λ ≤ m. When λ∗ < E[λ], S sets p2 = vH

following acceptance and randomizes between p2 = vL and p2 = vH following rejection,

θ(p1, 0) =
vH − p1

βm(vH − vL)
.

When λ∗ > E[λ], S sets p2 = vL following rejection and randomizes between p2 = vH and
p2 = vL following acceptance,

θ(p1, 1) = 1− vH − p1

βm(vH − vL)
.
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To understand this result, first consider p1 ∈ (p, p]. Given that B accepts p1 if and only if v1 = vH

and λ ≤ µ(p1), S updates her beliefs: E[λ|p1, 1] = α(µ(p1)) ≥ λ∗ and E[λ|p1, 0] = ρ(µ(p1)) ≤ λ∗.
Hence, S optimally sets p2 = vH following acceptance and p2 = vL following rejection. Given this
strategy for S, B with v1 = vH faces a trade-off: grab the current surplus of vH − p1 and face
p2 = vH , or forego vH − p1 and face p2 = vL. The discounted expected value of facing p2 = vL is
βλ(vH − vL). Thus, if λ > µ(p1), then B strategically rejects p1.

Notice that ‘reverse screening’ occurs over this range in the sense that high prices induce rejec-
tion by high types. Indeed, as p1 increases, the ’marginal’ long-run type, µ(p1), falls and the set of
long-run types willing to strategically reject increases. Acceptance and rejection, therefore, become
less informative. Once p1 = p, further increases in p1 cannot induce more strategic rejection.

In particular, for p1 ∈ (p, vH ], the marginal type must remain at m. This requires S to randomize
between p2 = vL and p2 = vH . Specifically, if λ∗ > E[λ], then α(m) = λ∗ > ρ(m). S optimally sets
p2 = vL following rejection and mixes following acceptance, φ(p1, 1) is calibrated to make B with
λ = m and v1 = vH indifferent about accepting p1. Similarly, if λ∗ < E[λ], then α(m) > λ∗ = ρ(m).
S optimally sets p2 = vH following acceptance and mixes following rejection, φ(p1, 0) is calibrated
to make B with λ = m and v1 = vH indifferent about accepting p1.

To complete the characterization of equilibrium play, it remains to consider p1 ≤ vL. The
analysis over this range, however, is complicated by the fact that equilibrium behavior is not
unique. In particular, there exists a lower bound p̃ < vL such that B accepts in any PBE if p1 ≤ p̃.
For any p1 ∈ (p̃, vL], however, either pooling or signaling may occur in equilibrium. To illustrate
this, the two extreme equilibria that involve minimal signaling (i.e., all types accept p1 ≤ vL) and
maximal signaling (i.e., strategic rejections by some types for all p1 ∈ (p̃, vL]) are derived. For ease
of exposition, these equilibria are called (using S’s perspective) respectively the Good PBE and the
Bad PBE, with the recognition that they actually bracket a continuum of intermediate cases.

Interestingly, B’s behavior in the Bad PBE for prices p1 ∈ (p̃, vL] is the mirror image of his
behavior for prices in (p, p]. Specifically, for p1 ∈ (p, p], B always rejects if v1 = vL and rejects
strategically if v1 = vH and λ > µ(p1). In other words, strategic rejections conceal information. By
contrast, for p1 ∈ (p̃, vL], it is shown below that B always accepts if v1 = vH and rejects strategically
if v1 = vL and λ > µ̂(p1) (defined below). In other words, strategic rejections reveal information.

The following result is proved by applying Lemma 1 and Lemma 2.

Corollary 3 (Honest Acceptances) Suppose β > 0. In any PBE, B with v1 = vH always
accepts p1 ≤ vL.

Next, for any µ̂ ∈ [0, 1], define

α̂(µ̂) ≡ E[λ|{v1 = vH} ∪ {v1 = vL ∩ λ ≤ µ̂}] =
E[λ]− ∫ 1

µ̂ λ(1− λ)f(λ) dλ

1− ∫ 1
µ̂ (1− λ)f(λ) dλ

and

ρ̂(µ̂) ≡ E[λ|v1 = vL ∩ λ > µ̂] =

∫ 1
µ̂ λ(1− λ)f(λ) dλ
∫ 1
µ̂ (1− λ)f(λ) dλ

.

Lemma 5 establishes some important geometric properties of α̂ and ρ̂.

Lemma 5 (Geometric Properties of α̂ and ρ̂) Functions α̂ and ρ̂ possess the following prop-
erties:

(i) α̂ starts at α̂(0) = EH , decreases until it crosses the 45-degree line, and then increases until it
ends at α̂(1) = E[λ].

10



Figure 2: Geometric Properties of α̂ and ρ̂
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(ii) ρ̂ starts at ρ̂(0) = EL and increases monotonicly until it ends at ρ(1) = 1.

(iii) α̂ and ρ̂ cross once, and at their intersection, m̂max, α̂(m̂max) = ρ̂(m̂max) = E[λ].

These functions are interpreted as follows. Suppose that B rejects some price p1 if and only if
v1 = vL and λ > µ̂. Then, α̂(µ̂) is the expected value of λ conditional on acceptance, and ρ̂(µ̂) is
the expected value of λ conditional on rejection.

Lemma 5 implies that there exists a unique number m̂ ∈ (0, m̂max] defined as follows:

m̂ ≡
{

ρ̂−1(λ∗), if λ∗ ∈ (EL, E[λ]]
α̂−1(λ∗), if λ∗ ∈ (E[λ], EH).

In Figure 2, m̂ is shown for the case λ∗ ∈ (E[λ], EH).
Given m̂, define the constant

p̃ ≡ vL − βm̂(vH − vL)

and the function
µ̂(p1) ≡ vL − p1

β(vH − vL)
, p1 ∈ [p̃, vL].

Observe that µ̂(p1) is monotone decreasing with µ̂(p̃) = m̂ and µ̂(vL) = 0.
Corollary 3 indicates that B with v1 = vH always accepts p1 ≤ vL. However, it is silent about

B’s purchasing decision when v1 = vL.

Lemma 6 (The Good, the Bad, and the Ugly) Suppose β > 0 and v1 = vL. There is a Good
PBE in which B always accepts p1 ≤ vL, S sets p2 = vH if λ∗ < E[λ] and p2 = vL if λ∗ > E[λ].
There is also a Bad PBE in which the following holds:

11



(i) If p1 ≤ p̃, then B always accepts. S sets p2 = vH if λ∗ < E[λ] and p2 = vL if λ∗ > E[λ].

(ii) If p1 ∈ (p̃, vL], then B accepts if and only if λ ≤ µ̂(p1). S sets p2 = vH following acceptance
and p2 = vL following rejection.

The strategic rejection exhibited in the Bad PBE for prices p1 ∈ (p̃, vL] warrants some discussion.
Given that B rejects if and only if v1 = vL and λ > µ̂(p1), S updates her beliefs: E[λ|p1, 0] =
ρ̂(µ̂(p1)) ≤ λ∗ and E[λ|p1, 1] = α̂(µ̂(p1)) ≥ λ∗. Hence, S optimally sets p2 = vL following rejection
and p2 = vH following acceptance. Given this strategy for S, B faces a trade-off: grab the current
surplus of vL − p1 and face p2 = vH , or forego vL − p1 and face p2 = vL. The discounted expected
value of facing p2 = vL is βλ(vH − vL). Thus, if λ > µ̂(p1), then B strategically rejects p1.

Notice that as p1 falls, µ̂(p1) increases and the set of long-run types willing to strategically
reject shrinks. Acceptance and rejection, thus, provide weaker information about λ. For prices
p1 ≤ p̃, signaling is not possible and Lemma 6 shows that any such price must induce acceptance
by all types in any PBE.

With Lemmas 1 through 6 in hand, it is now possible to calculate the expected first-period
demand (which is depicted in Figure 3, and the expected values of λ conditional on acceptance and
rejection of the first-period price.

Proposition 3 (Expected First-Period Demand and Posterior Beliefs) Suppose β > 0. Then,
the expected probability that B accepts p1 and the expected values of λ conditional on acceptance
and rejection of p1 are as follows:

(i) If p1 > vH , then D1(p1) = 0 and E[λ|p1, 0] = E[λ].

(ii) If p1 ∈ (p, vH ], then D1(p1) =
∫ m
0 λf(λ) dλ and

E[λ|p1, q1] =

{
α(m), if q1 = 1
ρ(m), if q1 = 0.

(iii) If p1 ∈ (p, p], then D1(p1) =
∫ µ(p1)
0 λf(λ) dλ and

E[λ|p1, q1] =

{
α(µ(p1)), if q1 = 1
ρ(µ(p1)), if q1 = 0.

(iv) If p1 ∈ (vL, p], then D1(p1) = E[λ] and

E[λ|p1, q1] =

{
EH , if q1 = 1
EL, if q1 = 0.

(v) If p1 ≤ vL and the Good PBE obtains, then D1(p1) = 1 and E[λ|p1, 1] = E[λ]. If the Bad PBE
obtains, then

D1(p1) =

{
E[λ] +

∫ µ̂(p1)
0 (1− λ)f(λ) dλ, if p1 ∈ (p̃, vL]

1, if p1 ≤ p̃,

E[λ|p1, q1] =





α̂(µ̂(p1)), if q1 = 1 and p1 ∈ (p̃, vL]
ρ̂(µ̂(p1)), if q1 = 0 and p1 ∈ (p̃, vL]
E[λ], if q1 = 1 and p1 ≤ p̃.
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Figure 3: Expected First-Period Demand

p ~ 

v
L
 

p 
− 

p − 

v
H
 

0 D
1
(p)− E[λ] D

1
(p)~ 1 µ

Bad PBE

Good PBE

Myopic
Buyer

Strategic 
Buyer 

Given the above, S’s expected payoff is

ΠS(p1) ≡ D1(p1)p1 + δ[D1(p1)max{E[λ|p1, 1], λ∗}+ (1−D1(p1))max{E[λ|p1, 0], λ∗}]vH .

The final step in deriving the players’ equilibrium behavior is to determine the value of p1 that
maximizes ΠS(p1). Of course, the solution to this problem depends on whether the Good or the
Bad PBE obtains. These cases are investigated respectively in the next two sections.

5 The Good Equilibrium

In this section, the Good PBE in which B always accepts p1 ≤ vL is explored. For any µ ∈ [0, 1],
it is notationally convenient to define

I(µ) ≡
∫ µ

0
λf(λ) dλ.

First, suppose S offers p1 ∈ [p, vH ], then her expected payoff can be written as

ΠS(p1) = I(m)p1 + δ max{E[λ], λ∗}vH .

The value of the information to S conveyed by B’s acceptance/rejection decision is zero in this case.
Indeed, if λ∗ > E[λ], then E[λ|p1, 1] = λ∗ > E[λ|p1, 0]. Thus, charging p2 = vL (which is optimal
under the prior beliefs) maximizes S’s expected payoff following acceptance as well as rejection. If
λ∗ < E[λ], then E[λ|p1, 1] > λ∗ = E[λ|p1, 0]. Thus, charging p2 = vH (which is optimal under the
prior beliefs) maximizes S’s expected payoff following acceptance as well as rejection. Observe that
S’s expected payoff over p1 ∈ [p, vH ] is maximized at p1 = vH .
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Second, suppose S offers p1 ∈ (p, p), then

ΠS(p1) = I(µ(p1))p1 + δ[I(µ(p1))E[λ|p1, 1]vH + (1− I(µ(p1)))vL].

The information conveyed by B’s purchasing decision is valuable to S. In the second period, she
optimally sets p2 = vH following acceptance and p2 = vL following rejection, as E[λ|p1, 1] > λ∗ >
E[λ|p1, 0] in this case.

Next, suppose S offers p1 ∈ (vL, p], then

ΠS(p1) = E[λ]p1 + δ[E[λ]EHvH + (1− E[λ])vL].

The value of information is maximal, as no strategic rejections occur over this range of prices.
Obviously, S’s expected payoff over p1 ∈ (vL, p] is maximized at p1 = p.

Finally, suppose S offers p1 ≤ vL, then

ΠS(p1) = p1 + δ max{E[λ], λ∗}vH .

Observe that S’s expected payoff is maximized at p1 = vL in this case.
Summarizing the above, in equilibrium S charges some p1 ∈ {vL, vH} ∪ [p, p), depending on the

parameters of the model, λ∗, β, δ and f(λ). The following result establishes that if S’s prior beliefs
are ’pessimistic’, λ∗ ≥ E[λ], and B is at least as patient as S, then S charges vL in both periods.

Proposition 4 (Optimal Prices with a Patient Buyer and Pessimistic Beliefs) Suppose λ∗ ≥
E[λ] and β ≥ δ > 0. Then, S offers p1 = vL and p2 = vL in the Good PBE.

Recall from Proposition 2 that when β = 0, it is optimal for S to experiment by charging
p1 = vH if λ∗ ∈ [E[λ], λ). When β > 0, S must either pay B high information rent (set p1 = p), or
run the risk that he will strategically reject her offer (marginal type, µ(p1), falls as p1 goes from p
to p).

For any p1 ∈ [p, p), Proposition 4 shows that as β approaches δ, the information rent domi-
nates the value of the information obtained through experimentation, and S, therefore, opts not
to experiment. In addition, since S learns nothing by setting p1 = vL in the Good PBE, she also
sets p2 = vL. This, of course, maximizes welfare because B buys the good in both periods with
probability one.

When λ∗ < E[λ] (’optimistic’ beliefs), the story is somewhat more complicated. The following
result shows that in this case, S also has incentives to select a price that generates no valuable
information.

Proposition 5 (Optimal Prices with a Patient Buyer and Optimistic Beliefs) Suppose λ∗ <
E[λ] and β ≥ δ > 0.

(i) There exists ε > 0 such that if λ∗ ∈ [E[λ] − ε, E[λ]), then S sets p1 = vL and p2 = vH in the
Good PBE.

(ii) There exists ξ > 0 such that if λ∗ ∈ (EL, EL + ξ], then S sets p1 = vH and p2 = vH in the
Good PBE.

The story behind this result is similar to the previous one. When B is as patient as S, the
information rent S must pay outweighs the value of information she obtains. Hence, S prefers
prices that obtain information that has zero value. In the Good PBE, there are two potentially
optimal prices for which this is true, p1 = vL and p1 = vH . When λ∗ is close to E[λ], then m
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is relatively small and vL > I(m)vH (i.e., the first-period return to p1 = vL is greater than the
expected first-period return to p1 = vH). On the other hand, when λ∗ is close to EL, then m is
relatively large and I(m)vH > vL.

The next result follows naturally in light of Propositions 4 and 5.

Corollary 4 (Welfare in the Good PBE) Suppose β ≥ δ > 0 and the Good PBE obtains.
Then, the following comparisons between the Contingent-Price setting and the Fixed-Price setting
hold:

(i) S strictly prefers the Fixed-Price setting to the Contingent-Price one if λ∗ < E[λ], and she is
indifferent between the two settings otherwise.

(ii) B is indifferent between the two settings if λ∗ ≥ E[λ] or if λ∗ ≤ EL + ξ for some ξ > 0, and
he prefers the Contingent-Price setting to the Fixed-Price one otherwise.

(iii) Welfare is higher under the Contingent-Price setting if λ∗ ∈ [E[λ]− ε, E[λ]) for some ε > 0; it
is higher under the Fixed-Price one if λ∗ ≤ EL + ξ; and it is the same under the two settings
if λ∗ ≥ E[λ].

Comparing Corollaries 1 and 4 reveals some striking welfare reversals. Specifically, when B is
myopic, B is always (weakly) worse off and S is always (weakly) better off under the Contingent-
Price setting. Moreover, experimental pricing reduces welfare because the value of the information
obtained by S is outweighed by the social cost of experimentation. By contrast, when B is relatively
patient, B is always (weakly) worse off and S is always (weakly) better off under the Fixed-Price
setting.

The reason for this reversal is clear. When β ≥ δ, B aggressively protects his private information
by rejecting offers that do not provide him with sufficient information rent. In this case, the direct
cost of acquiring information typically outweighs its value to S. Hence, when β ≥ δ and λ∗ ≥ E[λ],
S sets p1 = vL and learns nothing about B’s preferences. This is, of course, the same outcome as
in the Fixed-Price setting.

Now, suppose λ∗ < E[λ]. In the Fixed-Price setting, S sets p1 = vH . Since S cannot use
information obtained, B demands no information rent, and he, therefore, accepts this offer with
expected probability E[λ]. In the Contingent-Price setting, however, S cannot commit not to
use information, and she must either lower the price price or face a substantially lower expected
probability of sale. In either case, S is worse off and B is weakly better off as compared with the
Fixed-Price setting. It is not surprising that the Contingent-Price setting generates lower welfare
than the Fixed-Price one when λ∗ is close to EL. Indeed, the prices are the same under the two
settings, p1 = p2 = vH , but B with v1 = vH strategically rejects p1 when λ > m.

Corollary 4 raises the question how S might commit not to learn about B’s preferences or not to
use any information she learns. First, it seems unlikely that S could commit not to learn because
such a commitment is difficult (if not impossible) to verify. Second, while it seems plausible that
S could commit not to raise prices, a commitment not to lower them is not renegotiation proof.
Note, however, that it is the commitment not to lower prices that has strategic value to S.

If S is actually composed of two sellers, S1 and S2, selling distinct but related products, then it
might be possible for S1 to commit not to share information with S2. This commitment may, how-
ever, still be difficult for B to verify. In other words, strategic rejections by B and the concomitant
inefficiency may be difficult for S to eliminate through commitment.
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6 The Bad Equilibrium

In this section, the Bad PBE described in Lemma 6 is investigated. For any µ̂ ∈ [0, 1] it is convenient
to define

Î(µ̂) ≡ E[λ] +
∫ µ̂

0
(1− λ)f(λ) dλ.

First, suppose S offers p1 ∈ (p̃, vL], then S’s expected payoff can be written as

ΠS(p1) = Î(µ̂(p1))p1 + δ[Î(µ̂(p1))α̂(µ̂(p1))vH + (1− Î(µ̂(p1)))vL].

The information conveyed by B’s purchasing decision is valuable to S. In the second period, she
optimally sets p2 = vH following acceptance and p2 = vL following rejection, as E[λ|p1, 1] < λ∗ <
E[λ|p1, 0] in this case.

Second, suppose S offers p1 ≤ p̃, then S’s expected payoff can be written as

ΠS(p1) = p1 + δ max{E[λ, λ∗}.
Obviously, p1 = p̃ dominates any p1 < p̃.

Summarizing the above, in equilibrium S charges some p1 ∈ {p̃, vH} ∪ (p̃, vL]∪ [p, p), depending
on the parameters of the model. The following result establishes that the Bad PBE is really bad.
That is, worse for S than the Good PBE.

Proposition 6 (The Bad PBE v.s. the Good PBE) The expected payoff to S is (weakly) higher
in the Good PBE than in the Bad one.

This result is easily understood. If the Bad PBE involves a first-period price of p1 > vL, then S
can get the same payoff in the Good PBE by adopting the same strategy. If the Bad PBE involves
p1 ∈ (p̃, vL], then the probability of a first-period sale is so low relative to the Good PBE that it
outweighes the value of the information obtained in the Bad PBE.

Combining Corollary 4 and Proposition 6 yields the following result.

Corollary 5 (The Seller’s Welfare in the Bad PBE) Suppose β ≥ δ > 0 and the Bad PBE
obtains. Then, S always strictly prefers the Fixed-Price setting to the Contingent-Price setting.

Corollary 4 indicates that if the Good PBE obtains, the Contingent-Price setting is as good for
S as the Fixed-Price one if λ∗ ≥ E[λ]. In this range for parameter λ∗, S’s expected payoff from
charging any p1 ∈ (p̃, vL] in the Bad PBE is strictly lower than her expected equilibrium payoff in
the Good PBE. Thus, S strictly prefers the Fixed-Price setting.

If λ∗ < E[λ], S prefers the Fixed-Price setting to the Contingent-Price setting when the Good
PBE obtains, and, thus, when the Bad PBE obtains. Hence, she is strictly worse off under the
Contingent-Price setting when the Bad PBE obtains relative to the Fixed-Price setting for all values
of parameter λ∗.

The final result in this section demonstrates that the Bad PBE is not necessarily bad for B. In
particular, in order to preempt signaling by B, S may find it optimal to induce complete pooling
by setting a price lower than vL.

Proposition 7 (Optimal Prices when Beliefs are Pessimistic) Suppose β > 0. There exists
ψ > 0 such that if λ∗ ∈ [EH − ψ, EH), then in the Bad PBE, S offers p1 = p̃ and p2 = vL, and B
accepts both offers with probability one.

The intuition here is easily understood. When λ∗ is close to EH , the value of any information
S can obtain is small. Also, p̃ is close to vL in this case (because m̂ is small). S, therefore, preferrs
to sell at p̃ with certainty rather than at a slightly higher price with much lower probability.
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7 Conclusion

This paper was concerned with learning from a strategic agent in the context of monopoly pricing.
Two settings were analyzed: the Contingent-Price setting, where the monopolist learns information
about a demand parameter of a specific customer and uses this information to tailor future offers to
him, and the Fixed-Price setting, where the monopolist publicly commits to price non-contingently.

It was shown that the buyer fared poorly and the firm well under the Contingent-Price setting
when the buyer was myopic. Indeed, the opportunity to price contingently can give the firm an
incentive to charge a high ‘experimental’ price in the first period. Such experimentation unambigu-
ously lowers welfare because the value of information obtained by the firm is outweighed by the
loss in expected consumer surplus.

When the buyer is non-myopic, he may strategically reject the firm’s first-period offers for
one of two reasons. First, in order to conceal information (i.e., to pool), a high-valuation buyer
may reject high prices that would never be accepted by a low-valuation buyer. Second, in order
to reveal information (i.e., to signal), a low-valuation buyer may reject low prices that would
always be accepted by a high-value buyer. Given these strategic reactions, the firm often finds it
optimal to post prices that generate no useful information. It was shown that the firm did better
committing to price non-contingently when the buyer was farsighted. Lacking this commitment,
the buyer possessed strong incentives to manipulate the information acquired by the firm, and this
manipulation typically results in either low prices or low sales or both. In short, the ability of a
monopolist to learn about the demand characteristics of a strategic consumer through experimental
pricing appears to be very limitted.
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Appendix

Proof of Proposition 2: When β = 0, it is evidently optimal for B to accept in period t = 1, 2
if and only if vt ≥ pt. Given this behavior of B, S would never charge pt 6= vL or vH .

Case 1: λ∗ < EL. If S sets p1 = vH , then the expected values of λ conditional on acceptance and
rejection are EH and EL, respectively. In either case, S sets p2 = vH by Proposition 1. On
the other hand, if S sets p1 = vL, then the expected value of λ conditional on acceptance is
E[λ], and the expected value conditional on rejection is immaterial since rejection does not
occur in equilibrium. Hence, S sets p2 = vH . It is optimal for S to set p1 = p2 = vH rather
than p1 = vL and p2 = vH since

vL + δE[λ]vH > E[λ]vH + δE[λ]vH

holds for λ∗ < EL.

Case 2: λ∗ ∈ [EL, λ). If S sets p1 = vH , then she optimally sets p2 = vL following rejection and
p2 = vH following acceptance. On the other hand, if S sets p1 = vL, then she optimally sets
p2 = vH if λ∗ ∈ [EL, E[λ]) and p2 = vL if λ∗ ∈ (E[λ], λ).

First, suppose λ∗ ∈ [EL, E[λ]). It is optimal for S to charge p1 = vH and p2 = q1vH+(1−q1)vL

rather than p1 = vL and p2 = vH , since

E[λ]vH + δ[E[λ]EHvH + (1−E[λ])vL] > vL + δE[λ]vH

holds for λ∗ ∈ [EL, E[λ]).

Second, suppose λ∗ ∈ (E[λ], λ). It is optimal for S to charge p1 = vH and p2 = q1vH+(1−q1)vL

rather than p1 = p2 = vL, since

E[λ]vH + δ[E[λ]EHvH + (1− E[λ])vL] > vL + δvL

holds for λ∗ ∈ [E[λ], λ).

Case 3: λ∗ ≥ λ. If S sets p1 = vL, then she optimally sets p2 = vL. First, suppose λ∗ ∈ [λ,EH).
If S sets p1 = vH , then she optimally sets p2 = vH following acceptance and p2 = vL

following rejection. It is optimal for S to charge p1 = p2 = vL rather than p1 = vH and
p2 = q1vH + (1− q1)vL, since

vL + δvL ≥ E[λ]vH + δ[E[λ]EHvH + (1−E[λ])vL]

holds for λ∗ ∈ [λ,EH).

Second, suppose λ∗ ≥ EH . If S sets p1 = vH , then she optimally sets p2 = vL whether p1

was accepted or rejected. It is optimal for S to charge p1 = p2 = vL rather than p1 = vH and
p2 = vL, since

vL + δvL > E[λ]vH + δvL

holds λ∗ ≥ EH . 2

Proof of Lemma 2: The proof consists of 3 steps.

Step 1. By way of contradiction, suppose θ(p1, 1) = θ(p1, 0) and E[λ|p1, 1] < E[λ|p1, 0]. Then,
Lemma 1 implies the following:
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1. If p1 > vH , then B always rejects the first-period offer. D1(p1) = 0 in this case.

2. If p1 ∈ (vL, vH ], then B accepts iff v1 = vH . Hence, E[λ|p1, 1] = EH > E[λ|p1, 0] = EL,
which contradicts the supposition.

3. If p1 ≤ vL, then always B accepts the first-period offer. D1(p1) = 1 in this case.

Step 2. By way of contradiction, suppose θ(p1, 1) > θ(p1, 0). Then Lemma 1 implies the following:

1. If p1 > vH , then B accepts iff v1 = vH and λ ≥ λ′, where

λ′ =
p1 − vH

β(θ(p1, 1)− θ(p1, 0))(vH − vL)
.

(If calculated λ′ ≥ 1, then B always rejects the first-period offer, D1(p1) = 0.) Hence,
E[λ|p1, 1] ≥ EH > E[λ] ≥ E[λ|p1, 0]. This along with Proposition 1 implies that
θ(p1, 1) = 0 ≤ θ(p1, 0) must hold, which contradicts the supposition.

2. If p1 ∈ (vL, vH ], then B rejects iff v1 = vL and λ < λ′, where

λ′ =
p1 − vL

β(φ(p1, 1)− φ(p1, 0))(vH − vL)
.

(If calculated λ′ ≥ 1, then B accepts p1 iff v1 = vH .) Hence, E[λ|p1, 1] ≥ E[λ] > EL ≥
E[λ|p1, 0]. This along with Proposition 1 implies that θ(p1, 1) ≤ θ(p1, 0) = 1 must hold,
which contradicts the supposition.

3. If p1 ≤ vL, then B always accepts the first-period offer. D1(p1) = 1 in this case.

Step 3. By way of contradiction, suppose θ(p1, 1) 6= θ(p1, 0) and E[λ|p1, 1] < E[λ|p1, 0]. This
implies either E[λ|p1, 1] < λ∗ ≤ E[λ|p1, 0] or E[λ|p1, 1] ≤ λ∗ < E[λ|p1, 0]. Thus, it must be
θ(p1, 1) > θ(p1, 0), which cannot happen in equilibrium by Step 2. 2

Proof of Lemma 3: Each part is proven in turn.

(i) Differentiating α gives

α′(µ) =
µf(µ)

∫ µ
0 (µ− λ)λf(λ) dλ

(
∫ µ
0 λf(λ) dλ)2

.

This is positive for µ > 0.

(ii) Differentiating ρ gives

ρ′(µ) =
µf(µ)[(E[λ]− ∫ µ

0 λ2f(λ) dλ)− µ(1− ∫ µ
0 λf(λ) dλ)]

(1− ∫ µ
0 λf(λ) dλ)2

.

This is positive for sufficiently small µ > 0. Hence, ρ is initially increasing. Moreover, setting
the above expression equal to zero establishes that ρ has a unique critical point where it
crosses the 45-degree line. Hence, ρ is increasing up to this point and decreasing thereafter.

(iii) Equating α(mmin) and ρ(mmin) and performing simple algebra reveals α(mmin) = E[λ]. 2

Proof of Lemma 4: Each part is proven in turn.
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(i) Consider p1 ∈ (vL, p]. Given B’s strategy to accept p1 iff v1 = vH , S’s posterior beliefs are
E[λ|p1, 0] = EL < λ∗ and E[λ|p1, 1] = EH > λ∗. It then follows from Proposition 1 that
setting θ(p1, 0) = 1 and θ(p1, 1) = 0 is optimal. By Lemma 1, B accepts p1 iff

v1 − p1 ≥ βλ(vH − vL),

or v1 = vH .

(ii) Consider p1 ∈ (p, p]. Given B’s strategy to accept p1 iff v1 = vH and λ ≤ µ(p1), S’s posterior
beliefs are E[λ|p1, 0] = ρ(µ(p1)) ≤ λ∗ and E[λ|p1, 1] = α(µ(p1)) ≥ λ∗. It then follows from
Proposition 1 that setting θ(p1, 0) = 1 and θ(p1, 1) = 0 is optimal. By Lemma 1, B accepts
p1 iff

v1 − p1 ≥ βλ(vH − vL),

or v1 = vH and λ ≤ µ(p1).

(iii) Consider p1 ∈ (p, vH ] and suppose λ∗ > E[λ]. Given B’s strategy to accept p1 iff v1 = vH

and λ ≤ m, S’s posterior beliefs are E[λ|p1, 0] = ρ(m) < λ∗ and E[λ|p1, 1] = α(m) = λ∗. It
then follows from Proposition 1 that setting θ(p1, 0) = 1 and any θ(p1, 1) ∈ [0, 1] is optimal.
Mixing probability θ(p1, 1) is calibrated to make B with v1 = vH and λ = m indifferent
between accepting and rejecting,

v1 − p1 = βm(1− θ(p1, 1))(vH − vL).

Now suppose λ∗ < E[λ]. Given B’s strategy to accept p1 iff v1 = vH and λ ≤ m, S’s
posterior beliefs are E[λ|p1, 0] = ρ(m) = λ∗ and E[λ|p1, 1] = α(m) > λ∗. It then follows from
Proposition 1 that setting θ(p1, 1) = 0 and any θ(p1, 0) ∈ [0, 1] is optimal. Mixing probability
θ(p1, 0) is calibrated to make B with v1 = vH and λ = m indifferent between accepting and
rejecting,

v1 − p1 = βmθ(p1, 0)(vH − vL).

2

Proof of Lemma 5: Each part is proven in turn.

(i) Differentiating α̂ gives

α̂′(µ̂) =
−(1− µ̂)f(µ̂)

[(
E[λ]− ∫ 1

µ̂ λ(1− λ)f(λ) dλ
)
− µ̂

(
1− ∫ 1

µ̂ (1− λ)f(λ) dλ)
)]

(
1− ∫ 1

µ̂ (1− λ)f(λ) dλ
)2 .

This is negative for small µ̂ > 0. Hence, α̂ is initially decreasing. Moreover, setting the above
expression equal to zero establishes that α̂ has a unique critical point where it crosses the
45-degree line. Hence, α̂ is decreasing up to this point and increasing thereafter.

(ii) Differentiating ρ̂ gives

ρ̂′(µ̂) =
(1− µ̂)f(µ̂)

∫ 1
µ̂ (λ− µ̂)(1− λ)f(λ) dλ

(∫ 1
µ̂ (1− λ)f(λ) dλ

)2 .

This is strictly positive for µ̂ < 1.
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(ii) Equating α̂ and ρ̂ and performing simple algebra reveals α̂(m̂max) = E[λ]. 2

Proof of Lemma 6: First, consider the Good PBE. Given B’s strategy to accept p1 ≤ vL, S’s
beliefs remains unchanged, E[λ|p1, 1] = E[λ] and E[λ|p1, 0] = E[λ] (immaterial). It then follows
from Proposition 1 that setting θ(p1, 1) = θ(p1, 0) = 0 if E[λ] > λ∗ and θ(p1, 1) = θ(p1, 0) = 1 if
E[λ] < λ∗ is optimal. By Lemma 1, B has no incentives to reject p1 as

vL − p1 ≥ βλ(θ(p1, 0)− θ(p1, 1))(vL − vH)

holds for all λ ∈ [0, 1].
Second, consider the Bad PBE.

(i) Suppose p1 ≤ p̃. Given B’s strategy to accept the price, S’s beliefs are E[λ|p1, 1] = E[λ] and
E[λ|p1, 0] = E[λ] (immaterial). It then follows from Proposition 1 that setting θ(p1, 1) =
θ(p1, 0) = 0 if E[λ] > λ∗ and θ(p1, 1) = θ(p1, 0) = 1 if E[λ] < λ∗ is optimal. By Lemma 1, B
has no incentives to reject p1 as

vL − p1 ≥ βλ(θ(p1, 0)− θ(p1, 1))(vL − vH)

holds for all λ ∈ [0, 1].

(ii) Suppose p1 ∈ (p̃, vL]. Given B’s strategy to reject p1 iff v1 = vL and λ > µ̂(p1), S’s beliefs are
E[λ|p1, 1] = α̂(µ̂(p1)) ≥ λ∗ and E[λ|p1, 0] = ρ̂(µ̂(p1)) ≤ λ∗. It then follows from Proposition
1 that setting θ(p1, 1) = 0 and θ(p1, 0) = 1 is optimal. By Lemma 1, B accepts p1 iff

vL − p1 ≥ βλ(vL − vH),

or v1 = vH and λ ≤ µ̂(p1). 2

Proof of Proposition 4: Offering p1 = vL dominates p1 = vH if

vL + δvL > I(m)vH + δvL.

But, this follows from λ∗ ≥ E[λ] > I(m).
Thus, it is left to show that p1 = vL dominates all p1 ∈ [p, p), or

vL + δvL > I(µ)(vH − βµ(vH − vL)) + δ[I(µ)α(µ)vH + (1− I(µ))vL]

for all µ ∈ (m, 1]. Note that the right side of this inequality is increasing in β. Hence, if it holds
for β = δ, then it holds for all β ≥ δ. The condition may, therefore, be recast as

(vL − I(µ)vH) + δI(µ)(1− µ)vL + δ[I(µ)µ− I(µ)α(µ)]vH > 0.

The first two terms of this expression are non-negative. The third term is positive, as

I(µ)µ− I(µ)α(µ) =
∫ µ

0
(µ− λ)λf(λ) dλ > 0

for all µ ∈ (m, 1]. 2

Proof of Proposition 5: Each part is proven in turn.
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(i) Let λ∗ ≡ E[λ]− ε for some ε > 0. First, offering p1 = vL dominates p1 = vH if

vL + δE[λ]vH > I(m)vH + δE[λ]vH ,

or
vL > I(m)vH .

Plugging in for λ∗ ≡ E[λ]− ε gives

E[λ]− ε ≥ I(m(ε)),

where
m(ε) = ρ−1(E[λ]− ε).

Observe that limε→0 m(ε) = mmin. Taking the limit of the above inequality as ε goes to zero
gives

E[λ] > I(mmin).

Thus, the condition is satisfied for ε > 0 sufficiently small.

Second, offering p1 = vL dominates all p1 ∈ [p, p) if

vL + δE[λ]vH > I(µ)(vH − βµ(vH − vL)) + δ[I(µ)α(µ)vH + (1− I(µ))vL]

for all µ ∈ (m, 1]. Note that the right side of this inequality is increasing in β. Hence, if it
holds for β = δ, then it holds for all β ≥ δ. The condition may, therefore, be recast as

δ(E[λ]vH − vL) + δI(µ)(1− µ)vL + δ[I(µ)µ− I(µ)α(µ)]vH + (vL − I(µ)vH) > 0.

The first two terms of this expression are non-negative. The third term is positive (see the
proof of Proposition 4). The forth term is positive for ε > 0 sufficiently small.

(ii) Let λ∗ ≡ EL + ξ for some ξ > 0. First, offering p1 = vH dominates offering p1 = vL if

I(m)vH + δE[λ]vH > vL + δE[λ]vH ,

or
I(m)vH > vL.

Plugging in for λ∗ ≡ EL + ξ gives

I(m(ξ)) ≥ EL + ξ,

where
m(ξ) ≡ ρ−1(EL + ξ).

Observe that limξ→0 m(ξ) = 1. Taking the limit of the above inequality as ξ goes to zero
gives

E[λ] > EL.

Thus, the condition is satisfied for ξ > 0 sufficiently small.

Second, offering p1 = vH dominates all p1 ∈ [p, p) if

I(m)vH + δE[λ]vH > I(µ)(vH − βµ(vH − vL)) + δ[I(µ)α(µ)vH + (1− I(µ))vL]
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for all µ ∈ (m, 1]. Note that the right side of this inequality is increasing in β. Hence, if it
holds for β = δ, then it holds for all β ≥ δ. The condition may, therefore, be recast as

δ[E[λ]vH + I(µ)µ(vH − vL)− I(µ)α(µ)vH − (1− I(µ))vL] > (I(µ)− I(m))vH .

Observe that as ξ goes to zero, interval (m, 1] shrinks to {1}. Thus, if the above condition
holds strictly at the limit as µ goes to 1, then it holds for all µ ∈ (m, 1] when ξ is sufficiently
small. Taking the limit as µ goes to 1 gives

δ(2E[λ]−E[λ2]−EL) > 0,

which evidently holds since E[λ] > E[λ2] and E[λ] > EL. 2

Proof of Proposition 6: Suppose that in the Bad PBE, S offers p1 > vL, then she can get the
same payoff in the Good PBE by adopting the same strategy. Hence, suppose p1 ∈ {p̃} ∪ (p̃, vL].
There are two cases to consider.

Case 1: λ∗ ≥ E[λ]. S’s payoff in the Good PBE is at least vL +δvL. First, suppose S offers p1 = p̃
in the Bad PBE, then her expected payoff is

p̃ + δvL < vL + δvL.

Second, suppose S offers p1 ∈ (p̃, vL]. It must be shown that

Î(µ̂)(vL − βµ̂(vH − vL)) + δ[Î(µ̂)α̂(µ̂)vH + (1− Î(µ̂))vL] ≤ vL + δvL

for all µ̂ ∈ (0, m̂]. If this holds for all δ ≤ 1, then it holds for δ = 1. The condition may,
therefore, be recast as

βÎ(µ̂)µ̂(vH − vL) + (vL − Î(µ̂)α̂(µ̂)vH) ≥ 0.

The first term is non-negative, the second term is also non-negative, as

vL − Î(µ̂)α̂(µ̂)vH = vL −
(

E[λ]−
∫ 1

µ̂
λ(1− λ)f(λ) dλ

)
vH ≥ (λ∗ −E[λ])vH ≥ 0.

Case 2: λ∗ < E[λ]. S’s payoff in the Good PBE is at least vL +δvH . First, suppose S offers p1 = p̃
in the Bad PBE, then her expected payoff is

p̃ + δvH < vL + δvH .

Second, suppose S offers p1 ∈ (p̃, vL]. It must be shown that

Î(µ̂)(vL − βµ̂(vH − vL)) + δ[Î(µ̂)α̂(µ̂)vH + (1− Î(µ̂))vL] ≤ vL + δvH ,

for all µ̂ ∈ (0, m̂]. If this holds for all δ ≤ 1, then it holds for δ = 1. The condition may,
therefore, be recast as

βÎ(µ̂)µ̂(vH − vL) + vH(1− Î(µ̂)α̂(µ̂)) ≥ 0.

Obviously, both terms of the left side of the condition are non-negative. 2
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Proof of Proposition 7: Let λ∗ ≡ EH − ψ for some ψ > o. Also, let

m(ψ) ≡ α−1(EH − ψ)

and
m̂(ψ) ≡ α̂−1(EH − ψ).

Observe that limψ→0 m(ψ) = 1 and limψ→0 m̂(ψ) = 0.
First, offering p1 = p̃ dominates all p1 ∈ (p̃, vL] if

p̃ + δvL > Î(µ̂)(vL − βµ̂(vH − vL)) + δ[Î(µ̂)α̂(µ̂)vH + (1− Î(µ̂))vL]

for all µ̂ ∈ (0, m̂]. Note that if the condition holds for all δ ≤ 1, then it holds for δ = 1. The
condition may, therefore, be recast as

−βÎ(µ̂)µ̂(vH − vL)) + Î(µ̂)α̂(µ̂)vH < p̃.

Taking the limit as ψ goes to zero gives

E[λ]EH < EH .

Thus, the condition is satisfied for ψ > 0 sufficiently small.
Second, offering p1 = p̃ dominates all p1 ∈ [p, p) if

p̃ + δvL > I(µ)(vH − βµ(vH − vL)) + δ(I(µ)α(µ)vH + (1− I(µ))vL)

for all µ ∈ (m, 1]. Note that if the condition holds for all δ ≤ 1, then it holds for δ = 1. The
condition may, therefore, be recast as

−βI(µ)µ(vH − vL)) + I(µ)α(µ)vH < p̃.

Taking the limit as ψ goes to zero gives

−βE[λ](1−EH) + E[λ]EH < EH .

Thus, the condition is satisfied for ψ > 0 sufficiently small.
Finally, offering p1 = p̃ dominates p1 = vH if

p̃ + δvL > I(m)vH + δvL,

or
p̃ > I(m)vH .

Taking the limit as ψ goes to zero gives

EH > E[λ].

Thus, the condition is satisfied for ψ > 0 sufficiently small. 2

24



References

Acquisti, Alessandro, and Hal R. Varian: 2002, “Conditioning Prices on Purchase History,”
Mimeo, SIMS UC Berkeley.

Aghion, Philippe, Patrick Bolton, Christopher Harris, and Bruno Jullien: 1991, “Op-
timal Learning by Experimentation,” Review of Economic Studies, 58, 621–54.

Armstrong, Mark: 1996, “Multiproduct Nonlinear Pricing,” Econometrica, 64, 51–75.

Fudenberg, Drew, and Jean Tirole: 2000, “Customer Poaching and Brand Switching,” RAND,
31, 634–57.

Hart, Oliver D., and Jean Tirole: 1988, “Contract Renegotiation and Coasian Dynamics,”
Review of Economic Studies, 55, 509–40.

Keller, Godfrey, and Sven Rady: 1999, “Optimal Experimentation in a Changing Environ-
ment,” Review of Economic Studies, 66, 475–507.

Kennan, John: 2001, “Repeated Bargaining with Persistent Private Information,” Review of Eco-
nomic Studies, 68, 719–55.

Krugman, Paul: 2000, “Reckonings; What Price Fairness?” The New York Times, Oct, 4, A35.

Laffont, Jean-Jacques, and Jean Tirole: 1988, “The Dynamics of Incentive Contracts,” Eco-
nometrica 56, 1153–75.

Lazear, Edward P.: 1986, “Retail Pricing and Clearance Sales,” American Economic Review,
76, 14–32.

Mirman, Leonard J., Samuelson, Larry, and Amparo Urbano: 1993, “Monopoly Experi-
mentation,” International Economic Review, 34, 549–63.

Rochet, Jean-Charles, and Philippe Chone: 1998, “Ironing, Sweeping, and Multidimensional
Screening,” Econometrica, 66, 783–826.

Rothschild, Michael: 1974, “A Two-Armed Bandit Theory of Market Pricing,” Journal of Eco-
nomic Theory, 9, 185–202.

Rustichini, Aldo, and Asher Wolinsky: 1995, “Learning about Variable Demand in the Long
Run,” Journal of Economic Dynamics and Control, 19, 1283–92.

Segal, Ilya R.: 2002, “Optimal Pricing Mechanisms with Unknown Demand,” American Eco-
nomic Review, forthcoming.

Shaffer, Greg, and Z. John Zhang: 2000, “Pay to Switch or Pay to Stay: Preference-Based
Price Discrimination in Markets with Switching Costs,” Journal of Economics and Manage-
ment Strategy, 9, 397–424.

Streitfield, David: 2000 “On the Web Price Tags Blur: What You Pay Could Depend on Who
You Are,” The Washington Post, sep. 27, A1.

Taylor, Curtis R.: 2000 “Supplier Surfing: Competition and Consumer Behavior in Subscrip-
tion Markets,” RAND, forthcoming.

25



Villas-Boas, J. Miguel: 1999, “Dynamic Competition with Customer Recognition,” RAND,
30, 604–31.

26


