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Reprojecting Partially Observed Systems With 
Application to Interest Rate Diffusions 

A. Ronald GALLANT and George TAUCHEN 

We introduce reprojection as a general purpose technique for characterizing the dynamic response of a partially observed nonlinear 
system to its observable history. Reprojection is the third step of a procedure wherein first data are summarized by projection onto 
a Hermite series representation of the unconstrained transition density for observables; second, system parameters are estimated 
by minimum chi-squared, where the chi-squared criterion is a quadratic form in the expected score of the projection; and third, 
the constraints on dynamics implied by the nonlinear system are imposed by projecting a long simulation of the estimated system 
onto a Hermite series representation of the constrained transition density for observables. The constrained transition density can 
be used to study the response of the system to its observable history. We utilize the technique to assess the dynamics of several 
diffusion models for the short-term interest rate that have been proposed and to compare them to a new model that has feedback 
from the interest rate into both the drift and diffusion coefficients of a volatility equation. 

KEY WORDS: Efficient method of moments; Nonlinear dynamic models; Partially observed state; Stochastic differential 
equations. 

1. INTRODUCTION 

1.1 Interest Rate Diffusions 

The data used in this article are observations on the 
weekly 3-month Treasury bill rate from January 5, 1962 
to August 30, 1996, yielding 1,809 observations. Figure 1 
plots the data; Table 1 provides summary descriptive statis- 
tics. The rate of interest over a short time interval (called 
the short rate) is a fundamental time series in economics 
and finance. Its dynamics describe the equilibrium substitu- 
tion possibilities of goods, services, and wealth across time. 
Among other things, these dynamics play a central role in 
determining longer term bond prices and interest rates for 
various horizons. 

The finance literature normally treats the short rate as 
a diffusion, usually expressed as a stochastic differential 
equation. Our data would thus be regarded as having re- 
sulted from discretely sampling a diffusion. For example, a 
well-known scalar diffusion model proposed for the short 
rate is the square root model of Cox, Ingersoll, and Ross 
(1985): 

dUt (ao + a,Ut)dt + boU1/2dWt 0 < t <0o 

and 

Yt = Ut, t = 0,1,... (1 

where Ut, t E [0, oo), is the continuous-time short rate, Wt 
is a continuous-time Brownian motion, and Yt, t = 0, 1, . ... 
is the discretely sampled series. As discussed later, empiri- 
cal evidence from this and other studies strongly discredits 
models like (1). The difficulties lie not so much with the 
form of the drift and diffusion as functions of Ut in (1), but 
rather with inherent limitations imposed by presumption of 
a scalar Ut E R'. The evidence suggests that a more ap- 
propriate specification is a stochastic volatility model with 
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Duke University, Durham, NC 27708. This work was supported by the 
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Ut E 2; an elementary version of this model is 

dU1t = (oz1o + ocqiUlt)dt + eU2tdWit, 0 < t < 00, 

dU2t = (0O20 + 0122U2t)dt + i320dW2t, 

and 

Yt = Uit, t =0, 1, .. . ...... (2) 

In (2) Ult is the continuous-time short rate; U2t is the loga- 
rithm of instantaneous volatility, which cannot be observed; 
Wlt and W2t are independent, continuous-time Brownian 
motions; and Yt = Ult for t = 0, 1, ... represents discrete 
sampling. The sequence {Yt} is the observed Treasury bill 
series at the weekly frequency. More elaborate versions of 
these systems are discussed later in Section 3. The interpre- 
tation of systems such as (1) and (2) as diffusions follows 
that of Karatzas and Shreve (1991), but of more relevance 
here is the fact that such systems can be conveniently sim- 
ulated using algorithms from Kloeden and Platen (1992). 

1.2 Statistical Methods for Partially Observed Systems 

The specification (2) leads us to consider statistical meth- 
ods for the analysis of dynamic nonlinear models that have 
unobserved variables. Although the motivating problem (2) 
is a diffusion described by nonlinear stochastic differential 
equations, dynamic nonlinear models-expressed as dif- 
fusions, differential equations, or difference equations-in 
which the state vector is partially observed pervade science. 
For example, in epidemiology the SEIR model determines 
those susceptible to, exposed to, infected by, and recovered 
from a disease, whereas data usually are from case reports 
that report only those infected (Olsen and Schaffer 1990). 
The SEIR model is expressed as a system of differential 
equations. Noise can enter as random perturbation of coef- 
ficients, as noise that feeds back into the system, as observa- 
tional error, or as some combination of these three sources. 
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Figure 1. Weekly 3-Month Treasury Bill Rates from January 5, 1962 
to August 30, 1996. Plotted are Friday's quote from the secondary market 
with Thursday's quote substituted if Friday was a holiday. 

An example of the use of the estimation method described 
here with the SEIR model, but with a neural net score 
instead of a Hermite score, has been provided by Ellner, 
Gallant, and Theiler (1995). Other examples include dis- 
crete time stochastic volatility models of speculative mar- 
kets from finance (Ghysels, Harvey, and Renault 1995), 
general equilibrium models from economics (Gennotte and 
Marsh 1993), and compartment models from pharmacoki- 
netics (Mallet, Mentre, Steimer, and Lokiec 1988). 

To estimate the parameters of nonlinear models such 
as (2) that have observed variables Yt = Ult and un- 
observed variables U2t, standard statistical methods, both 
classical and Bayesian, are usually not applicable, be- 
cause one lacks a convenient closed-form expression for 
the density of Yt given a history xt-I = (Yt-L*... , Yt-1) 
of L observations from the past. This density, denoted 
by P(yt xt_1,p), is called the transition density and de- 
pends on the parameters of the system, which are p 
(?g10,?O11,?g20,?g22,a20) in the case of (2). Typically, a 
transition density is not available for a nonlinear dynam- 
ical system either because no tractable expression for the 
joint density of Ul,t-L, U2,tL,. . . , Ult, U2t can be found or 
because the integration to eliminate U2,t-L, .. ., U2t from 
the expression is too difficult. Without the transition den- 
sity, a likelihood is not available. Statistical methods are 
sometimes available for diffusions, differential equations, or 
difference equations whose structure happens to lend itself 
to Kalman filtering, Markov chain Monte Carlo, numeri- 
cal quadrature, or clever analytical manipulation. Usually, 
however, one's model does not have one of these special 
structures, and if it does, alterations suggested by a scien- 
tific theory or a statistical test will often destroy it. For in- 
stance, (1) can be estimated by maximum likelihood, but the 
statistical evidence favors (2), which cannot. Our purpose 
here is to describe methods that are generally applicable. 

Although computing the likelihood is often difficult if not 
infeasible, simulating the evolution of a state vector such as 
(ULJ, U2t) of (2) is often practicable. Our methods rely on 
this. Briefly, we project the observed data onto a Hermite se- 

ries representation of the transition density for observables. 
Given a parameter setting for the system, we use simulation 
to compute the expected score of the projection. The ex- 
pected score thus computed depends on system parameters 
and is used to form a chi-squared criterion function that is a 
quadratic form in the expected score. A nonlinear optimizer 
is used to find the parameter setting that minimizes the cri- 
terion. This is a method-of-moments-type procedure that is 
as efficient in large samples as if maximum likelihood had 
been used and is thus termed efficient method of moments 
(EMM). Diagnostic tests are available to assess system ad- 
equacy; among them are informative t ratios that suggest 
reasons for model failure. Subsequent reprojection of the 
estimated dynamical system onto a Hermite series provides 
a facility for model elucidation that is as convenient as if 
the transition density for observables were available. 

The use of method of moments together with simulation 
to estimate the parameters of dynamic models with unob- 
served variables is not new. Previous work includes that 
of Duffie and Singleton (1993), Gourieroux and Monfort 
(1996), Gourieroux, Monfort, and Renault (1993), Ingram 
and Lee (1991), and Smith (1993). The particular methods 
that we use are due to earlier work (Gallant and Tauchen 
1996a), in which we discussed the procedure, diagnostics, 
and asymptotics. The theoretical support for the projection 
that we use was provided by Gallant and Long (1997), who 
showed that it achieves the same efficiency as maximum 
likelihood. We sketch the ideas from this literature with 
the intent of making this article self-contained. 

A forceful criticism of simulation-based method-of- 
moments estimation has been that the method does not pro- 
vide a representation of the observables in terms of their 
own past as do maximum likelihood based on a conditional 
density and time series methods such as autoregressive in- 
tegrated moving average (ARIMA), autoregressive condi- 
tional heteroscedasticity (ARCH), and generalized autore- 
gressive conditional heteroscedasticity (GARCH) modeling 

Table 1. Descriptive Statistics for Weekly 3-Month Treasury 
Bill Rates From January 5, 1962 to August 30, 1996 

Mean 6.28 
Standard Deviation 2.68 
Variance 7.20 
Skewness 1.24 
Kurtosis 1.73 

Number of observations 1,809 

Min 2.63 

Q01 2.73 
Q05 2.93 
Q10 3.35 
Q25 4.46 

Median 5.66 

Q75 7.70 
Q90 9.54 
Q95 12.08 
Q99 15.15 
Max 1 6.68 

NOTE: Units are percentages. Kurtosis is ,S = ,u u- 3, where ,a is the ith central moment. 
QX denotes the X% quantile. 
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(Jacquier, Polson, and Rossi 1994). Thus the methodology 
cannot be used for model elucidation by providing, for ex- 
ample, descriptions of the volatility of the observed process 
as a function of its own past. This has provided motivation 
for ad hoc methods on a case-by-case basis. The primary 
methodological contribution of this article is to overcome 
this criticism. We introduce the notion of reprojection to 
get a representation of the observed process in terms of 
observables that incorporates the dynamics implied by the 
nonlinear system under consideration. Once done, the meth- 
ods of model elucidation introduced by Gallant, Rossi, and 
Tauchen (1992, 1993) may be applied. If required by the 
application, one can as easily get a representation for un- 
observables in terms of the observed past and present that 
incorporates system dynamics. 

We use the proposed methodology for estimation and di- 
agnostic assessment of several diffusion models of the short 
rate expressed as a partially observed system of stochas- 
tic differential equations. We undertake this application be- 
cause, as discussed earlier, interest rate diffusions are of 
considerable interest to economics and finance (see, e.g., 
AYt-Sahalia 1996a; Andersen and Lund 1996, 1997; Hansen 
and Scheinkman 1995; Lo 1988; Melino 1994), and we 
know of no other general-purpose method for elucidating 
the dynamics of a discretely sampled system of stochastic 
differential equations with a partially observed state. 

2. EFFICIENT METHOD OF MOMENTS 

2.1 Projection 

Let {yt}J?_O,, Yt E RM, be a discrete stationary 
time series. The stationary distribution of a contiguous 
subsequence Yt-L, ., Yt is presumed to have a den- 
sity P(Y-L, ,yo) defined over ER1,I = M(L + 1). Put 
y = yo,x = x_1 - (Y-L,... ,y-1), and write the sta- 
tionary, marginal, and conditional densities as p(x, y) - 
P(Y-L. , YO),P(X) = f p(Y-L, . . ., yo) dyo, and p(yIx) 
p(x, y)/p(x). Let { t}InL denote the realization from the 
process {yt} I_O, that is available for analysis. We require 
estimates of the conditional density p(ylx). 

We describe an expanding class of conditional densities 

HK = {fK(Y|X,O): 0 = (O1 v 02 - ...- OPK)} 

proposed in earlier work (Gallant and Tauchen 1989), which 
we termed SNP for seminonparametric, that has two prop- 
erties: 

* The union 'H = U?K=1RK is quite rich, and it is rea- 
sonable to assume that the density p(ylx) is contained 
in the closure of KH under a weighted Sobolev norm. 

* If 0 is estimated by quasi-maximum likelihood, 

In 
6n =argmax -! 10og[fK(Yt JYt-L, , Yt-l,0)], 

OERPK n t=o 

and if K grows with sample size n, either adaptively as 
a random variable Kn or deterministically as a func- 
tion K(ni), then 

Pn(YlX) = fK(yx,O) 6n 

is a consistent (Gallant and Nychka 1987) nonpara- 
metric estimator of p(ylx) with desirable qualitative 
features (Fenton and Gallant 1996). 

A standard method of describing a conditional density 
f(yIx, 0) is to set forth a location function u,; and a scale 
function Rx that reduce the process {yt} I 0 to an inno- 
vation process { zt}?___ via the transformation 

Zt = R -1 

The description is completed by setting forth a conditional 
density h(zlx) for the innovation process. We follow this 
recipe in describing fK(yIx, 0) E 'HK- 

The location function ptx is given by 

/xt_1 = bo + Bxt-1 (3) 

for a matrix B; ,uxt-, is presumed to depend on L,, < L 
lags, which is accomplished by putting leading columns of 
B to 0 as required. 

The scale function Rx is given by 

vech(Rxt_l) = po + Ple*_1, (4) 

where vech(R) denotes a vector of length M(M+ 1)/2 con- 
taining the elements of the upper triangle of R, P is a ma- 
trix, et-1 = [(yt-L, -Ixt_,L,_), (Yt-I -t2 ) and 
denotes elementwise absolute value. The scale function de- 
pends on Lr lagged (unnormalized) innovations (Yt - -x,_l) 
and Lr + LU < L lagged Yt in total. This is an ARCH-type 
process akin to that proposed by Nelson (1991). Later, we 
require the derivative of RX with respect to (b, B) and thus 
replace I e*- I in (4) by the twice continuously differentiable 
approximation a(e*e,), where 

a(u)_f (1100ul - wr/2 + 1)/100 1100uj > ?r/2 
a(u) -l(1 - cos(lOOu))/100 100u < 7r/2. 

For a with nonnegative integer elements, let z - 

z1 . .. zam and coil = Emk=c Ak; similarly for x:. Consider 
the density 

hK _X [K(Z,_X)]2q5(z) 5 
hK(|zi) [pK (U, X)]20(u) du (5) 

formed from the polynomial 

KZ Kx 

PK(Z,X) = Z (Za/,x/3 )zc 
oz=o /3=0 

where 0(z) (2wr)-M/2e-z'z/2. In (5) the term 
PK(Z,x);q5(z) is a Hermite polynomial of degree KZ in 
z whose coefficients are polynomials of degree KX in x; it 
enters (5) as the square to enforce positivity. The shape of 
the innovation density hK(ZtlXti1) varies with xt1, which 
permits hK (Zt Xt 1) to exhibit general conditional shape 
heterogeneity. By putting selected elements of the matrix 
A =[a/3c,] to 0, PK(Z, x) can be made to depend on only 
Lp <?Llags from x. In applications where M is large, the 
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coefficients ao, corresponding to monomials za that repre- 
sent high-order interactions, can be set to 0 with little effect 
on the adequacy of approximations. Let Iz = 0 indicate that 
no interaction coefficients are set to 0, let Iz 1 indicate 
that coefficients corresponding to interactions za of order 
larger than Kz - 1 are set to 0, and so on; similarly for x1 
and Ix. 

The change of variables Yt = R,t1 zt + /xt_ to obtain 
the density 

fK(Yt IXt , 0) 

PI,([R-Xt-1 (Yt - xt_,), xt-il P 
x {[RPR1 (yt(-yxt x $RXjt-i A1) (6) 

Idet(Rx,_l) I V1/ f[PK (U, xt_j )]10(u) du 

completes the description of the SNP density. The vector 0 
contains the coefficients A = [a3] of the Hermite polyno- 
mial, the coefficients [bo, B] of the location function, and the 
coefficients [po, P] of the scale function. To achieve identifi- 
cation, the coefficient a0,0 is set to 1. The tuning parameters 
are L,, Lr, LP, KZ, IZ, KX, and Ix, which determine K and 
the dimension PK of 0- 

Some characteristics of fK (yt Ixt, 0) may be noted. If 
KZ,KX, and L, are put to 0, then fK(yt xti ,0) defines a 
Gaussian vector autoregression. If KX and L, are put to 
0, then fK(yt xt_j,0) defines a non-Gaussian vector au- 
toregression model with homogeneous innovations. If Kz 
and KX are put to 0, then fK (yt xt 1, 0) defines a Gaussian 
ARCH model. If KX is put to 0, then fK(yt xt-l, 0) defines 
a non-Gaussian ARCH model with homogeneous innova- 
tions. If KZ > O, KX > O,)LP > O,L,, > O, and L, > ?, 
then fK (yt Ixt, 0) defines general nonlinear process with 
heterogeneous innovations. 

How best to select the tuning parameters Lu, Lr, LP, KZ, 
IZ, KX, and Ix is an open question. A strategy found to work 
well is to move upward along an expansion path using the 
Bayes information criterion (BIC), 

BIC =s,(O) + (1/2) (pK/n) log((n), 

n 

Sn (0) - - log[fK(pt It-L * ... v t-i, 0)], 
t=o 

(Schwarz 1978) to guide the search, with models having 
small values of BIC preferred. 

The expansion path has a tree structure. Rather than ex- 
amining the full tree, the strategy is to expand first in LU, 
with Lr = LP = KZ = KX = 0 until the BIC turns upward. 
Next, expand L, with LP = K X = 0; then expand KZ 
with KX = 0; and finally expand LP and KX. It is useful to 
expand in KZ, LP, and KX at a few intermediate values of 
L., because it sometimes happens that the smallest value of 
BIC lies elsewhere within the tree. 

When the estimated transition density fK (yt Ixti On) is 
used in connection with the estimator described in Section 
2.2, it is essential that fK(ytixt-l, On) not represent an ex- 
plosive process, as discussed in detail by Tauchen-(1997b). 
When estimated from persistent processes such as Figure 1, 
this can happen. We examine long simulations from candi- 

date estimates fK(yt Ixt-1, On) and exclude from considera- 
tion those that are explosive. This is only a partial solution 
because, as discussed in Section 2.2, fK(ytIxt-1, O) must 
be evaluated at simulations from systems such as (2), which 
can be unstable at trial parameter settings determined by the 
numerical optimizer. We find that transforming each com- 
ponent of xti, by the logarithmic spline 

[Xi - XC _ log(l - xi - xc)] xi < -xc 

Xi = < Xi -Xc < xi < xc 

[xi + xc + log(l + xixc)] xC < xi 

(7) 

with xc = 4 substantially enhances numerical stabil- 
ity and has a negligible effect on either evaluation of 
fK (Yt IXt -, On) over the data or on the value computed for 
On. To avoid cluttered notation, (7) presumes that the data 
{t }It=-L have been scaled so each component of the vec- 
tor Yt (hence of xti1) has a sample mean of 0 and a sample 
variance of 1, so xc = 4 means that the logarithmic spline 
has effect only 4 standard deviations beyond the mean. One 
should reexpress (7) in raw units for application. 

2.2 Estimation 

We now suppose that a dynamic system such as (2) de- 
fines the density p(Y-L, .. , YO Ip) for observables of Section 
2.1, where p E RPP is a vector of unknown system parame- 
ters to be estimated. We are interested in the situation where 
an analytic expression for P(Y-L, . . ., YO IP) is not available 
but yet an expectation of the form 

P (9)= .. /9(Y-L,..YO8) 

X P(Y-L, ...,yop) dyL ...dyo 

can be computed by simulation, quadrature, or other nu- 
merical means for given p. We focus on the case where 
simulation is used to compute 8p (g). That is, for given p, 
one generates the simulation {p }tV- from the system and 
puts 

N 

Sp (g) =NE9(Y&-L) .. Yt) 
t=o 

with N large enough so that Monte Carlo error is negligi- 
ble. Examples of this situation include the dynamical sys- 
tems from finance, epidemiology, and economics discussed 
in Section 1. 

Our objective is threefold: (1) estimate p; (2) test the 
hypothesis that the dynamical system under consideration 
generated the observed data {Ot}t=_L; and (3) provide diag- 
nostics that indicate how a rejected system should be mod- 
ified to better describe the distribution of the observable 
process {Yt}=-oo- 

In earlier work (Gallant and Tauchen 1996a), we pro- 
posed an estimator for p in the situation where 8Sp(g) is all 
that is available. Termed the EMM estimator, it would be re- 
garded as a minimum chi-squared estimator in the statistics 
literature and as a generalized method-of-moments (GMM) 
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estimator in the econometrics literature. Because it is min- 
imum chi-squared, the optimized chi-squared criterion can 
be used to test system adequacy. Also, as shown later the 
moments that enter the criterion provide diagnostics that in- 
dicate how a tentatively maintained system should be mod- 
ified when it is rejected by the test of system adequacy. 

The moment equations for the EMM estimator are ob- 
tained from the score vector (0/00) log f (y x, 0) of an aux- 
iliary model f(y x, 0) termed the score generator. We have 
shown (Gallant and Tauchen 1996a) that if the score gener- 
ator f (ylx, 0) encompasses the maintained model p(ylx, p), 
then the estimator is as efficient as maximum likelihood. 
Tauchen (1997a) set forth formulas that would lead one to 
expect that the EMM estimator will be nearly as efficient as 
maximum likelihood when the score generator f(yIx, 0) is 
a good statistical approximation to the process {yt }t=_O in 
the sense of passing diagnostic tests, and so on. Gallant and 
Long (1997) supported this conjecture by showing that if 
the score generator is the seminonparametric (SNP) density 
fK(y x, 0) described in Section 2.1, then the efficiency of 
the EMM estimator can be made as close to that of maxi- 
mum likelihood as desired by taking K large enough. 

The EMM estimator P is computed as follows. Use the 
score generator 

f (Yt |Yt-L, **. Yt-1, H) H c 0 

and the data {0t}1tgL to compute the quasi-maximum like- 
lihood estimate, 

n 
0? argmax E log[f(&t 1t_L, . , t-i, 0)], 

oE n te o 

and the corresponding estimate of the information matrix, 

In nZ - ?n =- [ -3 log f (t l xt- 7 OXn ) 

x [ log t(Yt|t-1), On)] 

This estimator presumes that the score generator f (y Ix, 0) 
provides an adequate statistical approximation to the transi- 
tion density of the data, so that {9(/&0) log f (& tL|t-i, on)} 
is essentially serially uncorrelated. If f(ylx, 0) is not ad- 
equate, then one of the more complicated expressions for 
In set forth previously (Gallant and Tauchen 1996a) must 
be used, although the EMM estimator is still consistent 
and asymptotically normal. If the SNP density fK(ylx, 0) 
of Section 2.1 is used as the score generator, and the 
model selection protocol of Section 2.1 is used to deter- 
mine (LU, Lr, X p, Kz, Iz, KX, IX ), then one may expect ?n 
as earlier to be appropriate (Gallant and Long 1997). 

Define 

m(' , 9) = ?p 10 f l[(YO IY- L... , Y- 1) 0)]J} 

which is computed by averaging over a long simulation: 

t=o 

The estimator is 

pn= argminm'(p On) (-En) m(p, 0 n) 
pERPP 

The asymptotics of the estimator are as follows. If p0 
denotes the true value of p and 00 is an isolated solution of 
the moment equations m(pO, 0) = 0, then 

liM Pn = p0 a.s. 
nr-+oo 

v/n(Pn -p) $ N{O, [(M0)'(1O)-1(M)]-1'} 

lim J4n =MO a.s. 
n-oo 

lim n 1= 1 a.s. (8) 
n-*oo 

where Mn = M(pn,),M? - M(p0,O0),M(p,0) - 

(0/0p')m(p, 0), and 

-TO = ?po[ log f (YOI [x_ , 00) ] f<- log Ix 18 [, 00)] 

As a referee noted, there are instances where the EMM 
technique is applicable but increasing N to reduce the error 
in computing ?p(g) is too costly to be feasible. Quadrature 
can be used instead in some instances (Gallant and Tauchen 
1996a). Another approach is to incorporate the Monte Carlo 
variance into reported standard errors (Gourieroux et al. 
1993). As the referee remarked, in some application areas 
finding an efficient means for computing 8p(g) is an active 
area of research. 

Under the null hypothesis that P(Y-L,... Y, O IP) is the cor- 
rect model, 

Lo= nmm'(fn n)(i7n) Tm(,n, n) (9) 

is asymptotically chi-squared on po - pp df. Under the null 
hypothesis that h(pO) = 0, where h maps RPP into Rq, 

A - - 
I - Lh = n[mT (n, Ofn)(A T1m(p3?l, in) 

-m (n,)(-tn)_ lm(Pn) (10) 

is asymptotically chi-squared on q df, where 

Pn = argminm'(p, n)(n) Tm(p, ). 
h(p)=O 

A Wald confidence interval on an element pi of p can be 
constructed in the usual way from an asymptotic standard 
error V&ii. A standard error may be obtained by comput- 
ing the Jacobian Mn(p, 0) numerically and taking the esti- 
mated asymptotic variance &ii to be the ith diagonal element 
of = (1/n)=[(MI)'(A>1(Mn) -1. These intervals, which 
are symmetric, are somewhat misleading because they do 
not reflect the rapid increase in the EMM objective func- 
tion Sn (p) = m' (p, fi) (?I>m(p, 0?2 ) when Pi approaches 
a value for which the system under consideration is explo- 
sive. Confidence intervals obtained by inverting the crite- 
rion difference test Lh do reflect this phenomenon and thus 
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are more useful. To invert the test, one puts in the interval 
those p? for which Lh for the hypothesis pi = p* is less 
than the critical point of a chi-squared on 1 df. To avoid 
reoptimization, one may use the approximation 

Pt - Pin^ 
Pn = pn + (i) 

in the formula for Lh, where E(i) is the ith column of E. 
As a referee pointed out, the foregoing remarks should 

be taken to imply only that confidence intervals obtained by 
inverting the criterion difference test have more desirable 
structural characteristics than those obtained by inverting 
the Wald test and not that they have more accurate coverage 
probabilities. It seems that the only way to assess coverage 
probabilities is by Monte Carlo. Simulations for a discrete- 
time stochastic volatility model by Andersen, Chung, and 
Sorensen (1997) and Chumacero (1997) and suggest that 
Wald intervals have coverage probabilities reasonably close 
to their nominal values. Their work does not cover the cri- 
terion difference test. We know of no other relevant Monte 
Carlo results. 

When Lo exceeds the chi-squared critical point, diagnos- 
tics that suggest improvements to the system are desirable. 
Because 

,/nTn(PnAvfn) 
__ N{O, 1 - (MO ) 

x K(M0)'(T0)-1(M0)1 (M?)' 

inspection of the t ratios 

Tn = Sn- (11) 

where Sn (diag{-n - 

(Mn)})/ can suggest reasons for failure. Different el- 
ements of the score correspond to different characteristics 
of the data, and large t ratios reveal those characteristics 
that are not well approximated. 

2.3 Reprojection 

Having the EMM estimate of system parameters P in 
hand, we should like to elicit the dynamics of the implied 
conditional density for observables 

P(YoJY-L, ...,Y-1) = P(YOIY-L, ..,Y-1, n). (12) 

Although analytic expressions are not available, an uncon- 
ditional expectation, 

?n(g) .. J 9(Y-L... ) YO) 
X P(Y-L,...,YO n) dyL ...dyo, 

can be computed by generating a simulation {t }t=- L from 
the system with parameters set to Pn and using 

N 

?P(9) = -N 9 (Yt-L... )Yt)- 
t=o 

With respect to unconditional expectation so computed, de- 
fine 

SK = argmax8?pn1og fK(YoIy-L, . .., y1,O) 
OEXPK 

where fK(Yo IY-L,. ., Y-1, 0) is the SNP density given by 
(6). Let 

fK(YOY-L, ..., Y-1) = fK(YOY-L, ..., Y-1, K) (13) 

Theorem 1 of Gallant and Long (1997) states that 

lim fK(YO|Y-L,...,Y-1)=IP(YoY-L,...,Y-1). 
K-*oo 

Convergence is with respect to a weighted Sobolev norm 
that they describe. Of relevance here is that convergence 
in their norm implies that fK, as well as its partial deriva- 
tives in (Y-L, . . . , Y-1, yo), converge uniformly over RI, 1 = 
M(L + 1) to those of p. We propose to study the dynamics 
of p by using fK as an approximation. This result provides 
the justification for our approach. 

To approximate p3 by fK, values of (L,,, Lr, LP, KZ, Iz, 
KX, IX) must be chosen. It seems natural to reuse the val- 
ues of the projection that determined fP, because, among 
other things, that choice facilitates a comparison of the con- 
strained dynamics determined by the estimated system with 
the unconstrained dynamics determined by the data. How- 
ever, if the estimated nonlinear system is to be sampled at a 
different frequency than the data, then it will be necessary 
to redetermine (L,,, Lr, LP, KZ, IZ, KX, IX) by the methods 
described in Section 2.1. We anticipate that the dynamics 
at a different sampling frequency often will not be of in- 
terest, and we presume in what follows that the sampling 
frequency of the nonlinear system is the same as that of the 
data. The modifications required when it differs are men- 
tioned as they occur. 

Of immediate interest in eliciting the dynamics of observ- 
ables are the first two one-step-ahead conditional moments: 

?(YO Y-L, ,Y-1) JYOfK(YO Ix-1, SK) dyO 

and 

var(yO y-L ..., Y-1) J[yo - 8(yo-1)] 

x [YO -?(yO Ix-1)]'fK (yo Ix-1, SK) dyo, 

where x1, = (Y-L, .. ., Y-1)- Owing to the form of a Her- 
mite expansion, expressions for these integrals as linear 
combinations of high-order moments of the normal distri- 
bution are available (Gallant and Tauchen 1992). The mo- 
ments themselves may be obtained from standard recursions 
for the moments of the normal (Johnson and Kotz 1970). 

Filtered volatility is the one-step-ahead conditional stan- 
dard deviation evaluated at data values; viz. 

;/var(yko Y-L,. * * *v Y-i) (Y-L. ,Y-1)=(Yt-L.,Yt-1) (14) 

for t - 0, ...,n. In (14) jt denotes data and Yko denotes 
the kth element of the vector Yo, k =1,... ,M. Because 
filtered volatility is a data-dependent concept, the dynamical 
system must be sampled at the same frequency as the data 
to determine fK. As mentioned earlier, it had been thought 
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that filtered volatility could not be recovered from method- 
of-moments estimates of a nonlinear dynamical system with 
partially observed state and that this has been a criticism of 
such estimates. However, as just seen, filtered volatility is 
easily computed using the reprojection notion. 

As a referee has pointed out, we are using the term "fil- 
tered volatility" with a purely ARCH-type meaning, as in 
the nonlinear impulse-response literature. Another usage of 
filtering, perhaps the predominant one, involves estimating 
an unobserved state variable conditional on all past and 
present observables. Filtering according to this notion (for 
L lags rather than back to the first observation) can be ac- 
complished through reprojection. This may be seen by not- 
ing that one can repeat the derivation of Section 2.1 with 
y taken to be a contemporaneous unobserved variable and 
x taken to be contemporaneous and lagged observed vari- 
ables. Denote y and x thus modified by y* and x*. The 
result is a density fK(y* {x*, 0) of the same form as (6) but 
with altered dimensions. One can simulate {yt,xt*} from 
the structural modal and perform the reprojection step to 
get fK(y* Ix*) as described earlier. The proof of Gallant and 
Long (1997) can be altered to justify these modifications. 
How one uses fK(y*lx*) will be application specific. The 
application mentioned by the referee is to obtain an estimate 
of U2t in a system such as (2) for the purpose of pricing an 
option. In this instance y* = U2t,X* = (Ul,t-L,... Ult), 
and U2t(x*) f y*fK(y* lx*) dy*. To avoid any confusion, 
hereafter we refer to (14) as reprojected volatility. We now 
return to the main discussion. 

One-step-ahead dynamics may be studied by means 
of plots of (the elements of) 8(YOIY-L... . )y-1 + A), 
var(yoIyL,... , Y- + A), or other conditional moments 
against 6, where A is an M vector with 6 in the ith element 
and Os elsewhere. More general perturbation strategies may 
be considered such as A = 6YT, where YT is a point chosen 
from the data such that perturbations in the direction 6yT 
take into account contemporaneous correlations among the 
components of Yt. Perturbations to a single element of y-, 
in a multivariate setting may represent a movement that is 
improbable according to the dynamics of the system. Some 
thought must be given to the perturbation scheme in multi- 
variate applications if plots of conditional moments against 
6 are to be informative. This issue has been discussed by 
Gallant et al. (1993). 

Two methods for choosing (Y-L, ... , Y-1) for these plots 
suggest themselves. The first method is to put Y-L, .. ., Y-1 
to the sample mean-that is, put (Y-L,. , Y-1) = 
(y,...,y-); where - = (1/n)ZEj0tot-and plot, for in- 
stance, 

var(yoly ,y + /\) (15) 

against 8. The second method is to average over the data 
and plot, for instance, 

(l/n~)ZEvar(ytt_L, . ..,iYt1?A /) (16) 
t=o 

against 8. If the estimated system is sampled at a differ- 
ent frequency than the data, then the average (1/N) EZ=o 
var(yt yt-L, ...,t-l + A) is plotted over a simulation 
{OtI}t=-L at the correct frequency instead. 

In an economic system, the graphics just described are 
interpreted as representing the consequences of a shock to 
the system that comes as a surprise to the economic agents 
involved, and similar interpretations hold in other contexts. 
If one wants to consider the consequences of forcing the 
system to a different equilibrium, then the graphic obtained 
by plotting var(yo y L + A)... y-1 + A) against 6 is rel- 
evant. We provide illustrations of both in Section 3. They 
can be quite different. 

Multistep-ahead dynamics may be studied by considering 
plots of the trajectories 

?[9(Yj-L, 1, Yj-l)|Y-L... ,Y-1 + /\] (17) 
against j = 0,1,... ,J, where g(Y-L, . ,Y-1) is a time- 
invariant function whose choice is discussed next. As dis- 
cussed by Gallant et al. (1993), if one sets the initial con- 
dition to (Y-L,..., Y- 1 + A) = (Y, ... , 

- + A), then it is 
helpful to net out transients by plotting either 

S[9(Yj-L) -) . yj-,l ) ... * - + A] 

- [9(Yj-L, vYj-1) lY-) .. ) ] (18) 
or 

n 

-X,?[9(Yt+j-L, -, Yt+j-l)lpt-L, , Y~t-1+ 5I (19) 
t=o 

against j = 0, 1, . . . , J instead of (17). Although (19) is con- 
ceptually superior, in the examples considered by Gallant 
et al. (1993), plots of (18) had nearly the same appearance 
and are much cheaper to compute. 

To compute (17), one exploits the fact that there are ef- 
ficient algorithms for sampling the density fK (YO Y-L,**, 
Y-1 + A) recursively to obtain R simulated futures 

{Yo,i, ..., YJ,i} i = 1) ... ) R) 

each conditional on Y-L, L.. , y- 1 + A (Gallant and Tauchen 
1992). Prepend {Y-L, .. ., Y-1 + A} to each future to obtain 
the sequences 

{Y-L,i , Y1,i) Y0,i) .., YJ,i} i I). R. 

Then 8[9(Yj-L, , Yj-1)Y-L,...,Y-1 + A] can be com- 
puted as 

?[9(yj_L, -, Yj-1)|Y-L, ,Y-1 + /\] 

1R 
=RE9%Y-L,i, v j-l,i) 

i=1 

A general discussion of appropriate choice of g(Y-L, , 
Y-1) for nonlinear impulse-response analysis, the analysis 
of turning points, and so on has been provided by Gal- 
lant et al. (1993). Of these, the more routinely useful are 
conditional mean profiles and conditional volatility profiles. 
Conditional mean profiles are plots of 

= ?[(Yk,jKY-L,.., Yj-1)IY-L,. ,Y-1 ?A/] 
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against j = -1,. . ., J for the components k = 1, ... . M 
of y, which extend the impulse-response profiles of Doan, 
Litterman, and Sims (1984) and Sims (1980) to nonlinear 
systems. Conditional volatility profiles are plots of 

(Jj2(Y-L,***, Y-1 + A) 

[var(yk,Jj-L,... *, Yj-1)|YL,.L,Y-1 + A] 

against j O, ... , J for the components k = 1,.. ., M of 
y, which extend the volatility impulse-response profiles of 
Bollerslev and Engle (1993) and Engle, Ito, and Lin (1990) 
to nonlinear systems. Plots of the conditional mean profile 
reveal the future dynamic response of system forecasts to 
a contemporaneous shock to the system. These generally 
will be nonlinear and can differ markedly when the sign of 
6 changes. This holds similarly for volatility. 

Persistence can be studied by inspection of profile bun- 
dles, which are overplots for t = 0, . . ., n of the profiles 

{11tj (Yt - L,*** ...Yt-l) j = - ifJ}. (20) 

That is, one overplots profiles conditional on each observed 
datum. If the thickness of the profile bundle tends to col- 
lapse to 0 rapidly, then the process is mean reverting. If 
the thickness tends to retain its width, then the process is 
persistent. Similarly, the profile bundles 

2{,5 fi-v* t-1)) i = 0, .. * * J}, t = 0, . , n} (21) 

can be used to examine volatility for persistence. These are 
extensions to nonlinear systems of notions of persistence 
due to Bollerslev and Engle (1993). Rather than comparing 
plots, one can instead compare half-lives. A half-life j can 
be obtained by computing the range Rj at each ordinate 
j = O, ... , J of either (20) or (21), regressing log Rj on jf, 
and using (- log 2)/3 as an estimate of half-life. 

Extensive examples of the use of the methods described 
here for elucidating the joint dynamics of stock prices and 
volume have been provided by Gallant et al. (1992, 1993). 
Here we also provide illustrations in Section 3. 

3. THE SHORT RATE 

The diffusion specifications that we consider are con- 
tained within the general setup 

(dU1 > ( aio +all d 
dU2 ,) - a20 + Ce21U1 + --22U2 ) 

? ((io 0+ llUDeU2 0 
V 0 f020+f021 Ul 

x dWI ) (22) 

Yt Ui t, t = 0, 1,2,... 

Here Ult is the continuous record of the short-term rate 
of interest whereas U2t is an unobserved volatility fac- 
tor; Yt is the discretely sampled short-term interest rate. 
The restriction ?a2o -?a22 iS imposed to achieve identi- 
fication; it implies a steady-state value of U2t 1 when 
?a2l 0. The initial condition U0 is a draw from the sta- 

tionary distribution, which is normally accomplished by let- 
ting the system run until transients dissipate. We interpret 
(Z21 -?l22 = /320 = /321 = 0 to mean U2t 1 for all 
t > 0, so that the volatility factor becomes irrelevant and 
the setup defines a one-factor scalar diffusion model for the 
short rate. The general setup encompasses several different 
models, which are defined in Table 2: 

* OU: cozo, o1l, and i10 free; all others set to 0, -y is 
irrelevant. This is the basic Ornstein-Uhlenbeck pro- 
cess used by Vasicek (1977) in one of the earliest 
continuous-time models of the yield curve. 

* SQRT: ozio,ozil, and /1, free and y 1 ; all other 
parameters set to 0. This is the well-known square root 
model used by Cox et al. (1985) to model the yield 
curve. 

* SQRTO: ajo,?aj,j/3o, and /13, free and -Y = ; all 
other parameters set to 0. This is the SQRT model with 
the intercept /10 included in the diffusion function. AYt- 
Sahalia (1996a) found that more flexibility near the ori- 
gin in the diffusion function is empirically important. 

* CKLS: olo,oll, and /3i free and y> ; all other pa- 
rameters set to 0. This is the constant elasticity of vari- 
ance model of Chan, Karolyi, Longstaff, and Sanders 
(1992). 

* CKLSO: The CKLS specification with an intercept /10 
in the diffusion function. 

* SQRT-SV, SQRTO-SV, CKLSO-SV: The corresponding 
preceding specifications with cY22 and /20 allowed to 
be free, which activates the volatility process U2 and 
generates a two-factor model. The stochastic volatility 
process U2 evolves autonomously. 

* CKLSO-SV-FB: Similar to CKLSO-SV, but cx21 and 
/21 are free, so that the interest rate process U1 feeds 
back into the drift and diffusion of the volatility pro- 
cess U2. 

The leading special cases are the SQRT and SQRTO spec- 
ifications, which are widely used in modeling the yield 
curve. The specifications offer manipulative convenience 
because they imply analytically tractable expressions for 
the interest rates and bond prices at different horizons in 
single-factor models of the yield curve. The task of solv- 
ing the usual partial differential equation of bond pric- 
ing (Ingersoll 1987, p. 396) can be reduced to solving an 
ordinary differential equation of the Riccatti type (as in 
Duffie and Kan 1996). Also, unlike the OU specification, 
which permits negative interest rates and thereby violates 
arbitrage, certain parameter constraints ensure that the in- 
terest rate cannot reach 0. As can be easily checked for 
the SQRTO specification, if -010/3/1 > 0 and alo + 
aj11Ul > 0, where U1 = (-O3o//31i)2, then U(J is a re- 
flecting barrier; if U10 > U*, then Ult > U* for all t > 0. 
Another feature is that the SQRT and SQRTO specifications 
are consistent with higher volatility at higher levels, which 
is a prominent characteristic of U.S. interest rates, at least 
during the monetarist experiment of 1978-1983 (see Fig. 1). 
Finally, because the discrete time transition density has a 
closed form, SQRT and SQRT0 are estimable by classical 
maximum likelihood (see, e.g., Duffie and Singleton 1994). 
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Table 2. Model Definitions and Minimized Chi-Squared Criterion 

Specification cg lo Cell Ce2l a22 /310 /311 320 321 -y N X2(,) df p value 

OU * * 0 0 * 0 0 0 10k 73.782 13 0 
OU * * 0 0 * 0 0 0 50k 72.064 13 0 
OU * * 0 0 * 0 0 0 75k 72.616 13 0 
SQRT * * 0 0 0 * 0 0 1/2 10k 74.447 13 0 
SQRT * * 0 0 0 * 0 0 1/2 50k 71.292 13 0 
SQRT * * 0 0 0 * 0 0 1/2 75k 64.863 13 0 
CKLS * * 0 0 0 * 0 0 1.0 10k 64.989 13 0 
CKLS * * 0 0 0 * 0 0 1.0 50k 56.097 13 0 
CKLS * * 0 0 0 * 0 0 1.0 75k 48.468 13 0 
SQRTO * * 0 0 * * 0 0 1/2 10k 51.204 12 0 
SQRTO * * 0 0 * * 0 0 1/2 50k 32.515 12 .0012 
SQRTO * * 0 0 * * 0 0 1/2 75k 32.435 12 .0012 

CKLSO * * 0 0 * * 0 0 1.0 10k 41.211 12 0 
CKLSO * * 0 0 * * 0 0 1.0 50k 40.962 12 0 
CKLSO * * 0 0 * * 0 0 1.0 75k 41.459 12 0 

SQRT-SV * * 0 * 0 * * 0 1/2 10k 19.475 1 1 .0531 
SQRT-SV * * 0 * 0 * * 0 1/2 50k 18.463 1 1 .0714 
SQRT-SV * * 0 * 0 * * 0 1/2 75k 18.267 1 1 .0756 
SQRTO-SV * * 0 * * * * 0 1/2 10k 10.652 10 .3853 
SQRTO-SV * * O * * * * 0 1/2 50k 16.770 10 .0796 
SQRTO-SV * * 0 * * * * 0 1/2 75k 14.192 10 .1644 
SQRTO-SV * * 0 * * * * 0 1/2 75kx 2 14.288 10 .1603 
CKLSO-SV * * 0 * * * * 0 1.0 10k 24.189 10 .0071 
CKLSO-SV * * 0 * * * * 0 1.0 50k 17.008 10 .0742 
CKLSO-SV * * 0 * * * * 0 1.0 75k 16.340 10 .0903 
CKLSO-SV-FB * * * * * * * * 1.0 10k 9.556 8 .2976 
CKLSO-SV-FB * * * * * * * * 1.0 50k 9.833 8 .2769 
CKLSO-SV-FB * * * * * * * * 1.0 75k 9.544 8 .2985 

NOTE: * denotes a free parameter; means not relevant. 75k X 2 denotes a simulation of length N = 75,000 weeks simulated at 1/A = 28 steps per week; all others are simulated at 14 
steps per week. 

These appealing features notwithstanding, both the SQRT 
and SQRTO specifications fare poorly when confronted with 
postwar U.S. interest rate data. AYt-Sahalia (1996a), Chan 
et al. (1992), Conley, Hansen, Luttmer, and Scheinkman 
(1997), and Tauchen (1997a) estimated single-factor dif- 
fusion models and uncovered evidence that the diffusion 
function is not well accommodated with ay = although 
values nY > 1 in the CKLS specification can improve 2 
the fit. 

Apart from OU, SQRT, and SQRTO, none of the afore- 
mentioned specifications is estimable by maximum likeli- 
hood, because the transition density of Yt is not available 
in closed form. Methods developed by Aft-Sahalia (1996a) 
and Hansen and Scheinkman (1995) do not entail simulation 
and apply directly when the interest rate is a scalar diffu- 
sion, as in the CHKLS and CHKLSO specifications. These 
methods can also handle certain forms of partial observ- 
ability (random time-scale changes due to subordination), 
with separate methods used to estimate the parameters of 
the subordinating process (Conley, Hansen, and Liu 1997). 

Anderson and Lund (1996, 1997) and Tauchen (1997a) 
have used the EMM technique to estimate diffusion mod- 
els for the short-term interest rate. Using weekly observa- 
tions on the 30-day Eurodollar rate, Tauchen (1997a) esti- 
mated scalar diffusions and found that a model similar to 
the CKLS specification with a = 1 performed far better 
than other single-factor models but still did not pass the 
omnibus chi-squared test defined in (9). The t-ratio diag- 

nostics defined in (11) suggest that the specification fails 
to accommodate the tail behavior (conditional leptokurto- 
sis) in movements in short-term interest rates. Andersen 
and Lund (1996, 1997) introduced unobserved stochastic 
volatility into the specification and found great improve- 
ment in the fit. Using weekly observations on the 3-month 
Treasury bill rate, they found that models very close to the 
SQRT-SV specification can pass the chi-squared test at con- 
ventional levels and provide substantial improvement on the 
t-ratio diagnostics, although not all t-ratios are reduced to 
insignificance. 

The CKLSO-SV-FB specification, which allows for feed- 
backs from the level of the interest into volatility dynamics, 
is new to this article. Much of the literature on modeling the 
short-term rate tries to capture the relationship between the 
level of the short-term interest rate and its variability. Here 
we consider the simple expedient of entering the interest 
rate U1 directly into the drift and diffusion functions of the 
latent volatility process U2, while the diffusion function of 
Ui is linear in U1. 

In what follows we estimate each of these models by 
EMM and use reprojection to represent the implied tran- 
sition density of the observed process given its past. We 
then use this representation to elucidate model characteris- 
tics and, among other things, generate new diagnostics for 
estimated diffusions. 

The data are 1,809 weekly observations, from January 
5, 1962 to August 30, 1996, on the 3-month Treasury bill 
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rate from the secondary market. Friday rates are used ex- 
cept when unavailable due to a holiday, in which case the 
Thursday rate is used. Secondary market rates are annual- 
ized using a 360-day year and quoted on a discount basis. 
These data are plotted in Figure 1, with descriptive statistics 
shown in Table 1, and are available from STATLIB. 

The theoretically appropriate interest rate is an idealized 
instantaneous rate applicable to a loan over an infinitesi- 
mally small interval. There is no such rate in practice. Rates 
on overnight, 7-day, and 30-day loans are quoted on instru- 
ments that occasionally are thinly traded and display large 
movements due to short-term liquidity effects unrelated to 
market fundamentals. A common approach is to use the 3- 
month rate as a proxy for the idealized instantaneous rate, 
as we do here. Although these data are available at daily 
frequency, we use a weekly sampling rate because daily 
data are so highly correlated that little statistical efficiency 
can be gained by going from weekly to daily frequency, 
and bias due to statistical corrections to location and scale 
for day-of-the-week and weekend effects is avoided when 
weekly data are used. 

The first step is to determine the appropriate specification 
of the SNP score generator. In doing so, the first 26 obser- 
vations are reserved as the provision for initial lags, thus 
permitting L < 26, and t = -26,... , 1,783 n indexes 
the complete dataset. Following the protocol described in 
Section 2, we find that Lu = 1, Lr = 4, LP = 1,1 Kz 4, 
and K1 = 1 is the preferred specification of the score gen- 
erator model. (Iz and I, are irrelevant.) There are PK = 16 
components of the score vector. 

To implement the simulator for the EMM estimation, the 
week is divided into 14 subintervals, and an explicit order 
2 weak scheme (Kloeden and Platen 1992, pp. 486-487) is 
used. To generate weekly data, every 14th simulated value 
is retained. (For SQRTO-SV, as a check on sensitivity, simu- 
lations at 28 steps per week were used as well.) Simulation 
length N (after discarding transients) ranges from 10,000 
up to 75,000 retained values. To eliminate transients, 5,000 
leading simulated values were discarded for N > 50,000; 
500 were discarded for N = 10,000. 

Our simulation schemes are related to linear stochastic 
differential equations (SDEs) and to theorem 1 of Gallant 
and Long (1997) as follows. Two main classes of simulation 
schemes are available: strong and weak. With linear interpo- 
lation between the points Uo, UA, U2, .2 . , UN+L, defined 
by an SDE such as (22), an order-E strong scheme satisfies 
S(SUPO<t<N+L I Ut- Ut |) < BYE for some B under regular- 
ity conditions (Kloeden and Platen 1992, cor. 10.6.5). An 
order-E weak scheme satisfies maxt=o,A , .N+L 8sg(Ut) - 

Sg(Ut)j < BgZX6 for some Bg under regularity conditions 
(Kloeden and Platen 1992, sec. 14.5). An order-E strong 
scheme is an order-26 weak scheme. We use a weak scheme 
because a strong scheme simulation takes much longer 
to compute for multivariate system; the difference in run 
times is two orders of magnitude for nonsparse versionls of 
(22). There is some latitude in the implementation of these 
schemes. Our implementation is available as an algebraic 
display in earlier work (Gallant and Tauchen 1996b) and as 

Fortran code from STATLIB. A discretely sampled linear 
SDE, such as OU, has a transition density that is a discrete- 
time autoregression. Thus a discretization scheme can be 
devised that will simulate from it exactly. Our scheme co- 
incides with this discretization in the scalar case. One may 
view the use of these schemes as a matter of numerical 
analysis: A choice of N and A that will compute rm,, (p, 0) 
sufficiently accurately can be found with a little common 
sense and experimentation. Under this view, theorem 1 of 
Gallant and Long (1997) applies without alteration. Another 
view is that the SDE is just an abstraction, and it is the 
scheme used together with the specific choice of A that 
actually defines the nonlinear model under consideration. 
This is the most conservative view, and with it theorem 1 
applies without alteration. A third view is that Monte Carlo 
noise and discretization bias must be taken into account 
and some version of theorem 1 must be proved that has K 
and N tending to infinity and A tending to 0 in a specific 
relationship. This is well beyond the scope of this article. 
Strong schemes lend themselves better to this sort of analy- 
sis. Some results in this direction have been given by Duffie 
and Glynn (1995). 

Table 2 shows minimized chi-squared criterion from esti- 
mation by EMM of the various specifications just discussed. 
(The line N = 75k x 2 for SQRTO-SV reports the simula- 
tions at 28 steps per week.) Consistent with some previous 
studies, it proved very difficult to estimate -y as a free param- 
eter for many of the specifications, so the table just shows 
results for the CKLS specifications with -y set to unity. 

Table 2, shows that first, a simulation size of N 10,000 
is too small for reliable results (although useful for get- 
ting starting values), whereas the computations stabilize at 
N = 50,000. Second, as expected, the OU and SQRT spec- 
ifications are sharply rejected. Third, SQRTO and CKLSO 
do much better, indicating the importance of the intercept 
/310 in the diffusion specification. Nonetheless, both SQRTO 
and CKLSO are still sharply rejected and, as will be seen, 
provide poor models of the interest rate. Fourth, introduc- 
tion of the second stochastic volatility factor dramatically 
improves the fit, and in the case of SQRTO-SV and CKLSO- 
SV-FB, the chi-squared statistic is insignificant at conven- 
tional levels. This improvement in fit is consistent with the 
findings of Aft-Sahalia (1996b), who provided nonparamet- 
ric evidence on the failure of scalar diffusion specifications 
of the interest rate. 

Table 3 shows parameter estimates along with standard 
errors and the lower and upper limits of 95% confidence 
intervals computed by (approximately) inverting the crite- 
rion difference test (10) as described at the end of Section 
2.2. (In Table 3 and all subsequent tables and figures, the fits 
from Table 2 for the line with N = 75k are used, except for 
in SQRTO-SV, where line N = 75k x 2 is used.) The stan- 
dard errors are based on the asymptotic distribution (8) and 
provide the usual symmetric two-sigma confidence inter- 
vals of the Wald theory. The criterion-difference confidence 
intervals, on the other hand, reflect the asymmetry of the 
objective function. Generally, the criterion-difference con- 
fidence intervals are somewhat tighter than the two-sigma 
Wald intervals. In some cases, and in particular for the es- 
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Table 3. Parameter Estimates, Standard Errors, and Criterion-Difference Confidence Intervals 

Specification ac a11 a21 ?a22 310 /311 20 321 y 

ou 
Estimate .026 -.005 .086 
Standard error .001 .001 .002 
95% lower .024 -.005 .085 
95% upper .027 -.004 .090 

SQRT 
Estimate .030 -.006 .037 .50 
Standard error .004 .001 .002 
95% lower .023 -.006 .034 
95% upper .030 -.004 .037 

SQRTO 
Estimate .306 -.042 1.742 -.583 .50 
Standard error .006 .001 .045 .022 
95% lower .306 -.042 1.719 -.583 
95% upper .308 -.042 1.742 -.573 

SQRTO-SV 
Estimate .274 -.059 -33.161 .094 -.046 8.230 .50 
Standard error .163 .037 71.413 .416 .206 20.178 0 
95% lower .219 -.071 -41.253 .047 -.069 6.044 0 
95% upper .318 -.045 -25.424 .139 -.023 10.507 0 

CKLSO-SV-FB 
Estimate .014 -.002 -.006 -.157 .043 -.018 .593 -.052 1.00 
Standard error .001 .001 .003 .021 .008 .003 .028 .005 
95% lower .013 -.002 -.006 -.163 .041 -.018 .587 -.053 
95% upper .014 -.002 -.005 -.157 .043 -.017 .601 -.050 

timate of a1l in the SQRTO-SV specification, a two-sigma 
Wald interval extends well into the unstable region but the 
criterion-difference confidence interval does not. 

Some of the parameter estimates are interpretable. For 
example, for the drift, aio/all defines a point where the 
drift in U1 vanishes and, in simpler models, defines a steady- 
state value of the interest rate. For the diffusion, if i1o and 
i1, are of opposite sign, then the value (-Ojo/0jj)1/7 de- 
fines an interest rate at which the diffusion in U1 vanishes, 
which is a reflecting barrier that reflects either to the left or 
right depending on the sign of the drift function evaluated 
at the barrier. For the fitted SQRTO model, the barrier is 
at an interest rate of 8.94% (= -!3o/!311)2 and the drift 

Table 4. Diagnostic t Statistics 

Coefficient SQRT SQRTO-SV CKLSO-SV-FB 

Location function 
bo .77 1.73 .82 
bi -.65 -.07 -.80 

Scale function 
ro 1.44 -.09 1.50 
ri 2.77 .02 .58 
r2 2.64 -1.07 .13 
r3 2.23 -.44 .19 
r4 3.88 .83 1.71 

Hermite polynomial 
a1,0 .93 -.52 -.22 
ao,1 1.46 1.56 1.14 
a1,,1 -.79 -.05 .03 
ao,2 3.28 1.13 1.00 
a1,2 -.47 -1.42 -.38 
ao,3 2.68 1.21 .19 
a1,3 -2.15 -.22 -.13 
a0,4 6.36 1.64 1.74 
a1,4 -2.01 -1.74 -.66 

is negative there, so the reflection is to the left (inspection 
of simulations bears this out). Placement of a left-reflecting 
barrier at this point partly explains why this model does so 
poorly on the chi-squared test and why it is not a usable 
model. On the other hand, for SQRTO-SV there is a right- 
reflecting barrier at 4.11%, which is within the range of 
the data but not unreasonably high. For CKLSO-SV-FB, the 
right-reflecting barrier is at 2.44% (= -310/!3i), which is 
just outside the range of the data and more reasonable. 

Table 4 gives the t-ratio diagnostics for the SQRT, 
SQRTO-SV, and CKLSO-SV-PB specifications. As to be ex- 
pected from the large value of the chi-squared statistic in 
Table 2, many of the t ratios for the SQRT specification 
are well above 2.0 in magnitude, especially in the Hermite 
component of the score vector. This suggests that the tran- 
sition density implied by the SQRT model does not have 
the appropriate shape. The large t ratios for the scale func- 
tion suggest that conditional volatility is not well approxi- 
mated. On the other hand, the low statistics for the location 
function suggest that the conditional mean is adequately 
approximated by the SQRT model. For the SQRTO-SV and 
CKLSO-SV-FB specifications, all t ratios are below 2.0 in 
magnitude. 

Figure 2 shows volatility scatterplots, which are plots of 
Yt - Yt-i against nt-,. For the raw data (Fig. 2a), 1,808 
points are plotted. For the SQRT, SQRTO-SV, and CKLSO- 
SV-FB specifications (Figs. 2b-2d), 74,999 simulated values 
are plotted. One must remain aware of the different series 
length when comparing the scatter of any fit to that of the 
raw data, which is inherently more sparse. The SQRT spec- 
ification fails to generate enough large movements in inter- 
est rates. In contrast, the SQRTO-SV specification generates 
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Figure 2. Volatility Scatterplots for Yt - Yt- 1 Versus Yt- 1. (a) The 
data, 1,808 points; (b) the SQRT model, 74,999 points; (c) the SQRTO- 
SV model, 74,999 points; (c) the CKLSO-SV-FB model, 74,999 points. 

many more larger movements but fails to generate enough 
realizations at higher rates. The CKLSO-SV-FB specifica- 
tion appears to better capture the features of the data, pro- 
vided that one bears in mind that Figure 2a has 1,808 points, 
whereas 2c has 74,999 points. 

Figure 3 shows one-step-ahead conditional volatility 
computed on the observed data. The Figures 3a and 3b 
show volatility obtained directly from the data by taking 
the square root of a moving average of squared residuals, 
{(mn + 1) 1-IoE * _}1/2, t = O ... ., 1,808 - mr-1, from 
estimation of the AR(1) model Yt = bo + fbiYt_i + et. 
Figure 3a is for m = 4, and 3b is for m = 26. Figure 3c 
shows the projected volatility from the SNP score generator. 

C 0 

1960 1970 1980 1990 2000 Y1960 1970 1980 1990 2000 

(a) (b) 

C- 
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(c) (d) 
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0 r 

0 ~~~~~~~0 
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(e) (f) 

Figure 3. Time Series Plots of One-Step-Ahead Volatility Plotted is 
the conditional standard deviation computed as follows: (a) from equally 
weighted MA(4) of squared AR(1) residuals; (b) from equally weighted 
MA(26) of squared AR(1) residuals; (c) projected volatility from the SNP 
score generator; (d) the reprojected volatility from the SQRT specifica- 
tion; (e) the reprojected volatility from the SQRTO-SV specification; and 
(f) the reprojected volatility from the CKLSO-SV-FB specification. 

Projected volatility is the one-step-ahead conditional stan- 
dard deviation of the SNP projection, and it appears to be a 
reasonable compromise between 3a and 3b. Figures 3d, 3e, 
and 3f show reprojected volatility (14) for three estimated 
specifications of the interest rate diffusion: SQRT, SQRTO- 
SV, and CKLSO-SV-FB. The SQRT specification (Fig. 3d) 
appears to over-smooth conditional volatility, whereas on 
the other hand, the SQRTO-SV (3e) specification overstates 
fluctuations in volatility. Interestingly, the CKLSO-SV-FB 
(3f) specification closely mimics the general characteristics 
of the SNP projection. 

We now investigate shape characteristics of the repro- 
jected transition densities (13) of the SQRT, SQRTO-SV, 
and CKLSO-SV-FB specifications. We want to condition on 
histories located in various quantiles of the observed data. 
For this purpose, let t, be the smallest value of the in- 
dex t for which Y -1 equals the ath quantile of the ob- 
served data {yt}1J8t6. Figure 4 shows a reprojected tran- 
sition density fK(Yt It -4, .. ., as defined in (13), 
standardized to have mean 0 and unit variance along with a 
reference standard normal density shown as a dashed line. 
Figures 4a and 4b show reprojected transition densities for 
the SQRT specification at a = .25 and a = .75. Evidently, 
the transition density is close to the Gaussian, which high- 
lights a chief empirical shortcoming of the basic square- 
root model. (Inspection of the Hermite coefficients of the 
reprojection reveal departures from the Gaussian, as should 
be the case; however, the plots indicate that these depar- 
tures are quite mild.) Figures 4c and 4d show the repro- 
jected transition density for the SQRTO-SV specification, 
also at a = .25,.75. Activation of the unobserved stochas- 
tic volatility process introduces some leptokurtosis into the 
transition density, which explains the improvement in fit. 

0-4 -2 0 2 4 -4 -2 0 2 4 

(a) (b) 

-4 -2 0 2 ?-4 -2 0 2 4 

(c) (d) 

-4 -2 0 2 4 -4 -2 0 2 4 

(e) (f) 

Q -4 -2 0 2 4 -4 -2 0 2 4 

(g) (h) 

Figure 4. Reprojected Transition Densities. The solid line in (a) is the 
reprojected transition density for the SQRT specification conditional on 
being at the 25% quantile of the data. The density has been standard- 
ized to have mean zero and variance one. The dashed line is a standard 
normal density. (b) The same for the 75% quantile; (c) and (d) the same 
for the SQRTO-SV specification conditional on the 25% and 75% quan- 
tiles of the data; (e), (f), (g), and (h) the same for the CKLSO-SV-FB 
specification conditional on the 5%, 25%, 75%, and 95% quantiles. 
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Because the support of the unconditional density implied 
by the SQRTO-SV specification does not fully cover that 
of the observed data (see Fig. 2), the reprojected transition 
density for this specification is not well determined con- 
ditional on histories (Yt-4,... , Yt -i) with oa near 0 or 
unity. On the other hand, the reprojected transition density 
for CKLSO-SV-FB is well determined for extreme oa. Fig- 
ures 4e-4h show the reprojected transition density for the 
CKLSO-SV-FB specification at oa = .05,.25,.75,.95. The 
transition density is seen to be leptokurtic relative to the 
normal density. 

Following ideas set forth in Section 2.3, additional in- 
sight into one-step-ahead dynamics is available from study 
of plots of conditional moments against perturbations to 
the initial conditions. Because all systems considered here 
are linear in the mean with extreme persistence, one-step- 
ahead mean dynamics are not interesting. However, one- 
step-ahead volatility dynamics are quite interesting and re- 
veal further differences in the characteristics of the esti- 
mated diffusions. 

The volatility structure of U.S. short-term interest rates 
is known to be quite complicated, as documented and dis- 
cussed at length by Andersen and Lund (1997) and Bren- 
ner, Harjes, and Kroner (1994). These authors pointed out 
that interest rate volatility contains an ARCH-like compo- 
nent, where recent unforeseen movements in interest rates 

C\j 

cx 

._ . SQRT0-SV 

KLSO-SV-FB 
CZ C0 

C\j* 

CORT 
ou 

-1 0 2 
Delta 
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SQ_;RT ou 
-1 6~0 

Delta 
(b) 

increase conditional volatility. This component is a com- 
mon characteristic of financial markets. Unforeseen finan- 
cial movements in either direction tend to raise volatility, 
although not necessarily symmetrically (Bollerslev and En- 
gle 1993; Gallant et al. 1993; Nelson 1991). But the short- 
term interest rates also display a second component known 
as the "levels effect," in which the higher the overall level of 
the interest rate, the higher the volatility. Figure 5 plots re- 
projected one-step-ahead conditional volatility (16) against 
both anticipated and unanticipated shocks to investigate 
how well the various diffusion models can accommodate 
both the levels and the ARCH components of conditional 
volatility. 

Figure 5a shows plots of 

n 1/2 

(I /an) E var(yt J t-4, ... ., t-l + 1/ 
t=o 

against 6 for four estimated diffusions computed from the 
reprojected density as defined in (13). Because only the 
most recent value of the interest rate is perturbed, the move- 
ment 6 is to be interpreted as unforeseen relative to the 
history of the interest rate. Also, because {Yt} is a scalar 
process, there is no distinction between 6 and A, as in Sec- 
tion 2.3. 

The response for the OU specification is perfectly flat, 
whereas that for SQRT is slightly upward sloping. These 
patterns are the only possible ones for these two models. 
The responses for SQRTO-SV and CKLSO-SV-FB are more 
interesting, as they show a more U-shaped pattern (although 
not symmetric), consistent with an ARCH effect. 

We now consider systematic movements in the entire his- 
tory of the interest rate, not just the most recent value. Fig- 
ure Sb shows plots of 

/,n) 
n I 1/2 

(l/n) E var(yt JYt-4 +..... , at-i + 6) 
L t=o 

against 6 for the same four estimated diffusions. Now the 
movement 6 is to be interpreted as a foreseen movement 
of the interest rate. For OU, SQRT, and SQRTO-SV, there 
is hardly any difference in the responses relative to those 
of the upper panels, which reflect empirical shortcomings 
of these specifications. For CKLSO-SV-FB, there is a sharp 
contrast in the responses. Comparing Figures 5a and 5b, one 
sees that CKLSO-SV-FB volatility responds in the ARCH- 
like and slightly asymmetric manner to the unforeseen 
movement and responds monotonically and similarly to the 
SQRT model to the foreseen movement. Apparently, the 
feedbacks built into the CKLSO-SV-FB specification are 
needed to separate ARCH and levels components of interest 
rate volatility. 

Finally, we consider multistep dynamics by examining re- 
projected profile bundles, as defined by (20) and (21). Table 
5 shows the half-lives of reprojected mean profile bundles 
(20) for the OU, SQRT, SQRTO-SV, and CKLSO-SV-FB 
specifications. Table 6 shows the half-lives of reprojected 
volatility profile bundles (21) for the same specifications. 
To prevent plots (not shown) from being excessively dense, 
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profiles were computed at every tenth datum rather than 
at each datum. As indicated in Table 5, the OU, SQRT, 
and CKLSO-SV-FB specifications exhibit the extreme per- 
sistence known to be present in interest rate data, whereas 
the SQRTO-SV specification does not. The half-life of con- 
ditional mean profile bundles for the SQRTO-SV specifica- 
tion is 8.5 weeks, compared to half-lives of more than 2 
years for the other three models. These half-lives are gen- 
erally consistent with the point estimates of the parame- 
ter all shown in Table 2. The conditional standard devia- 
tion half-lives in Table 6 are quite interesting and show the 
sharp contrast between the implied dynamics of diffusion 
models without and with stochastic volatility, and thereby 
help reveal why the latter fit the data so much better. Inter- 
estingly, the CKLSO-SV-FB specification shows sensitivity 
of volatility to initial conditions that is attenuated relative 
to that of SQRTO-SV (consistent with Fig. 5) but is much 
more persistent, with a hard-life of 49.6 weeks, compared 
to a half-life of 10.6 weeks for SQRTO-SV. 

The low persistence results reported for SQRTO-SV do 
not appear to be attributable to point estimates obtained 
from a local rather than global minimum of the chi-squared 
objective function. Similar results were obtained when dif- 
ferent simulation increments for the SQRTO-SV specifica- 
tion were used (Table 2) and when the data were extended 
for all specifications. Higher persistence results would be 
expected over the period January 5, 1992 to March 31, 1995 
(Gallant and Tauchen 1996c), but results reported here are 
for data extended to August 30, 1996. 

4. CONCLUSION 

Reprojection is a general-purpose technique for estimat- 
ing the transition dynamics of the observed variables of an 
estimated nonlinear dynamic model with latent variables, 
which are usually due to partial observation of the state 
vector. Understanding these dynamics is essential for di- 
agnostic analysis and prediction. The key idea is to use a 
nonparametric series estimator to reestimate the transition 
dynamics from a long simulation of the estimated model. 
Using a nonparametric estimator in reprojection is essen- 
tial for the technique to have generality. To our knowledge, 
there is no other all-purpose way to determine these transi- 
tion dynamics, although in some circumstances specialized 
strategies might work. 

We have applied the technique for diagnostic evaluation 
of continuous-time diffusion models for the short-term in- 
terest rate. We set forth additional evidence consistent with 
work of Ait-Sahalia (1996b) and Andersen and Lund (1996, 
1997) that the short-term U.S. interest rate is not well mod- 
eled by a scalar diffusion process and is better modeled as 

Table 5. Half-Lives of Reprojected Mean Profile Bundles 

OU SQRT SQRTO-SV CKLSO-SV-FB 

Minimum at j -1 2.63 2.63 2.63 2.63 
Maximum at] j =-1 15.70 15.70 15.70 15.70 

Range at j = -1 13.07 13.07 13.07 13.07 
Half-life (weeks) 179.5 128.7 8.5 264.7 
Standard error 1.0 .3 .2 4.6 

Table .6. Half-Lives of Reprojected Mean Profile Bundles 

OU SQRT SQRTO-SV CKLSO-SV-FB 

Minimum at] = 0 .091 .072 .012 .053 
Maximum at] = 0 .103 .155 3.05 1.039 

Range at] = 0 .013 .083 3.037 .986 
Half-life (weeks) 152.8 10.6 49.6 
Standard error 19.1 .3 17.6 

a component of a larger system with unobserved stochastic 
volatility. We also presented evidence on the importance of 
an intercept term in the diffusion function and introduced 
a new continuous-time model that permits feedbacks from 
the interest rate into the drift and diffusion functions of 
stochastic volatility. This new specification does quite well 
across a broad range of diagnostic assessments. 

[Received July 1996. Revised August 1997.] 
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