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Abstract While the diffuse prior has been widely used in applied economic theory for its technical
convenience and as a way of modeling complete lack of knowledge, it is not formally defined, nor are ex
ante payoffs in games under this prior. In this paper, we provide a formal treatment of the diffuse prior
which can validate its application in games. We consider stationary games, in which players’ signals are
translation invariant in the true state and players’ payoffs are translation invariant in actions together
with the state. We show that strategies which admit well-defined expected payoffs under the diffuse
prior are essentially stationary, being almost translation invariant in signals. Our analysis builds on two
formal definitions. We define the diffuse prior through a limit construction, using sequences of well-
defined priors that become increasingly dispersed. A class of strategy profiles is admissible if for any
strategy profile, each player’s ex ante payoff along these sequences converges to a limit that does not
depend on the particular sequence. A secondary contribution of the paper is an extension of the concept
of distributional strategies (Milgrom and Weber 1985) to a class of multistage games.
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1 Introduction

The diffuse, or uninformative, prior is often interpreted informally as a uniform distribution on the real
line. This prior has two advantages for use in economics: first, as it represents complete ignorance, it is
appropriate for modeling situations in which agents have no advance knowledge of the environment; and
second, it makes updating beliefs through Bayes’ rule computationally simpler. This tractability comes
from ex ante symmetry across all states. When signals are the sum of the state and a conditionally i.i.d.
noise, posterior beliefs about the state given two signal values are simply translations of one another.
However, although the diffuse prior is commonly used, it is not formally defined: any uniform distribution
must have constant density and must integrate to one, but any positive constant density, integrated over
the real line, yields infinity, and zero density integrates to zero. This lack of a formal representation
means that ex ante expected payoffs are not defined when driven by a random variable drawn from a
diffuse prior distribution. The existing literature has circumvented this issue by leaving expected payoffs
undefined and instead focusing on payoffs conditional on signal realizations (for example, Friedman
(1991), Klemperer (1999), Morris and Shin (2002, 2003), and Myatt and Wallace (2014)).

In this paper, we develop a method for formally defining expected payoffs under a diffuse prior, and
thereby bringing them into the realm of traditional game theory, where expected payoffs are assumed to
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be well-defined for all strategy profiles of a game. This can be directly useful in applications for various
reasons. One might be interested in ex ante (or behind the veil of ignorance) welfare evaluation. Or in
some contexts it is natural to allow for an ex ante participation constraint for one of the players. For
example, when a management consultant is hired to examine and improve a firm’s performance, the
management consultant has to decide whether to accept the task before inspecting the firm’s internal
structure and production. In other contexts an agent might need her strategy approved by a principal
ex ante, before acquiring private information, which only leads to a well-defined problem if the principal
can form ex ante payoff expectations. Our method validates the conventional but informal approach
of handling a diffuse prior, and providing rigorous foundations for diffuse prior might encourage more
applied theory research to feature analytically tractable games with diffuse prior.

We claim that the diffuse prior can be rigorously constructed as a limit of well-defined distributions,
and that expected payoffs under a diffuse prior can be defined in certain cases. We define a class of games
with stationary information and payoff structures, where signals and payoffs are translation invariant in
the following way: the distribution of signals is translation invariant in the true state, and payoffs are
translation invariant in all actions together with the true state. We then show that as long as a class
of strategy profiles includes all stationary strategies, then admissibility requires that all strategies are
nearly stationary in a precise sense.

We capture the main features of this uninformative prior by using a sequence of (proper) measures that
diffuse in a formal sense (Definition 4). We say that a class of strategies is admissible (Definition 5) when
ex ante expected payoffs, taken along any diffusing sequence of proper priors, have a well-defined limit
that does not depend on the particular sequence.1 Stationary strategies are unsurprisingly admissible,
as given any stationary strategy profile, expected payoffs conditional on all signal realizations are the
same. Our main result (Theorem 1) states roughly that in any class of admissible strategy profiles that
includes all stationary strategies, every strategy is nearly stationary in a particular sense (Definition 3).
Furthermore, every such strategy is payoff-equivalent to some stationary strategy. We extend this result
to a class of multistage games in Section 4.

An interpretation of our results is as follows. We offer a limit construction of the diffuse prior which
allows ex ante payoffs under this prior to be defined as limits of payoffs under proper priors. However,
the existence of such ex ante payoffs places limits on the strategy profiles available. To the extent that
formal equilibrium concepts or welfare analyses require well-defined ex ante payoffs, it is useful to identify
an admissible class of strategy profiles within which ex ante payoffs are guaranteed to be well-defined,
and hence we define admissibility as a property of strategy profiles. In stationary games it is natural
to assume that strategy sets include stationary strategies, and hence we require an admissible class to
include all stationary strategies; in other words, strategies must yield well-defined payoffs when played
against stationary strategies. This notion of admissibility then implies that all strategies are close to
stationary strategies.2

We demonstrate the applicability of our results in two contexts: (i) in the context of beauty contest
games introduced in Morris and Shin (2002),3 and (ii) in the delegation framework of Ambrus et al.
(2019).

A secondary contribution of our paper is an extension of the concept of distributional strategies
(Milgrom and Weber 1985) to a class of multistage games. The key additional feature of distributional
strategies for multistage games is that a player’s actions in later stages can depend on actions by other
players in earlier stages, and thus the distributional strategy includes dimensions for past actions.

Before proceeding, we briefly comment on the existing literature in statistics and probability theory
on the subject of non-informative priors. Analysts have long debated the best way to impose a prior belief
when performing parameter estimation and have recognized various desirable features. Laplace (1951)
argued for a uniform or flat prior, from a principle of insufficient reason: without further information, any
two possible values of the parameter should be considered equally likely. Jeffreys (1946, 1961) proposed a
particular rule for selecting a prior, later known as the Jeffreys prior, for a given data-generating process

1 In a paper largely unrelated to our work, Dale and Morgan (2015) consider specific sequences of proper priors diffusing in
a similar sense as in our definition, in the context of a specific game from Morris and Shin (2002). They do not investigate
the possibility of defining ex ante expected payoffs in the game; instead they are interested in comparing equilibrium
predictions of the model with proper versus improper priors. Equilibrium (and in general, strategic) analysis is not part of
the current paper.

2 In Section 6, we explore alternative notions of admissibility.
3 See also Hellwig and Veldkamp (2009) and Angeletos et al. (2010).
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which would be invariant to reparameterizations.4 While the Jeffreys prior need not be uniform, in the
case of data drawn from a unidimensional normal distribution with known variance and unknown mean
(as in many economic applications, including those considered in this paper), the Jeffreys prior is indeed
uniform. (Of course, over the real line, this results in an improper prior.) Hence our use of a diffuse prior
is consistent both with economic applications and with both approaches mentioned above. We refer the
reader to Kass and Wasserman (1996) for an extensive review of the literature on non-informative priors,
and to Yang and Berger (1998) for a catalog of such priors.

The paper is structured as follows. Section 2 gives an overview of the main ideas and outlines the
steps of the main proof. Section 3 gives the formal analysis for single-stage games, and Section 4 extends
this analysis to multistage games. Section 5 shows how our results can be applied to a beauty contest
game and to a companion paper on delegation. Section 6 discusses alternative approaches to handling
nonstationary strategies, and Section 7 concludes. The appendix contains proofs not provided in the
body of the paper.

2 Overview

To capture the diffuse prior as a limit object, we define sequences of proper measures to be diffusing
if, roughly, the measures become increasingly uniform and spread out over the real line. Our definition
allows for a large class of diffusing sequences, including sequences of uniform distributions on [−n, n] or
sequences of normal distributions with variance n, with n going to infinity.

We will define payoffs under a diffuse prior in cases where the limit of payoffs taken along any diffusing
sequence exists and is independent of the sequence. Before defining the class of games we consider, we
demonstrate how some concrete functions from R to R stand up to this criterion. Clearly, a constant
function, when integrated with respect to any probability measure, integrates to that constant, and so
all diffusing sequences result in the same limit, and thus a constant function is admissible. In addition,
the function x 7→ 1[0,1](x), which takes the value 1 if x ∈ [0, 1] and 0 otherwise, is also admissible; it is
not difficult to show that along any diffusing sequence, the expected value approaches 0. On the other
hand, a function like x 7→ 1[0,∞) is not admissible. One could obtain a limit of 0 by defining a diffusing

sequence (P1
n)n∈N with the densities

1[−n2,n]

n2+n and a limit of 1 by a different diffusing sequence (P2
n)n∈N

with densities
1[−n,n2]

n2+n . The key property of admissible functions here is that they are constant or “nearly”
constant in some formal sense. As we are interested in games of asymmetric information, and not real-
valued functions per se, the exercise is more subtle than the above examples suggest. Nonetheless, the
above intuition plays a key role in the analysis that follows.

In the baseline model, we analyze static n-player games with asymmetric information. At the begin-
ning of the game, the state of the world θ ∈ R is drawn according to a diffuse prior, and players receive
private, conditionally i.i.d. signals si about θ. Players then simultaneously choose real-valued actions.
We assume that the game has a stationary structure in terms of signals and payoffs: (i) for each player
there is some distribution Fi such that for all θ, si− θ is drawn from this distribution and (ii) payoffs are
invariant to a translation of all actions and θ by a constant. The model also accommodates uninformed
players.

Strategies must specify (distributions over) actions given a player’s private signal. Since we start
from strategy sets that are not restricted to be stationary, we need to provide a flexible and careful
formal definition of strategies. Since the state space is uncountable, it is not practical to define strategies
as products of signal-dependent distributions over actions. The key tension is that desirable topologies
should be both rich enough so that payoff functions are continuous in strategies, but also coarse enough
so that the strategy space is compact. We follow the approach of Milgrom and Weber (1985) in using
distributional strategies, which are measures µ over the product space of signals and actions. A distribu-
tional strategy induces a conditional distribution on actions for any given signal, and by integrating over
signals, it induces a conditional distribution on actions for any given θ.

It is convenient to normalize distributional strategies by setting the marginal distribution over the
signal dimension to be some fixed, arbitrary distribution G with full support on the real line.5 To describe
behavior and payoffs conditional on arbitrary θ, it is useful to exploit the stationary structure of the

4 For a parameter θ and data X ∼ f(x|θ), the prior density is, up to a scaling factor, det(I(θ))1/2, where I(θ) is the

Fisher information matrix I(θ)ij = E
[
− ∂2l
∂θi∂θj

]
and where l is the log-likelihood ratio.

5 Here we emphasize that G is not necessarily the actual distribution over player types, in a departure from Milgrom
and Weber (1985). See the discussion following Definition 1.
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game and define “recentered” strategies µxi , which, roughly speaking, specify behavior relative to the
private signal as if that signal had been shifted down by the constant x. A stationary strategy then, as
we define it, is one which is translation invariant, in the sense that if the signal is shifted by a constant,
then actions are shifted by the same constant; it follows that for stationary strategies, all of its recentered
strategies are the same strategy. Under a mild assumption on the action sets, we show that the space
of all distributional strategies, denoted Mi, is compact.6 We say that a strategy µi has a limit strategy
µ∗i ∈Mi if limθ→−∞ µθi = limθ→+∞ µθi = µ∗i (Definition 3). We show that whenever this property holds,
the strategy µ∗i must be stationary, and hence we call µ nearly stationary.

We assume that the game is irreducible in the sense that there are no redundant strategies – there are
no two strategies which always yield the same payoffs. Without this assumption, there would be no hope
of disciplining the set of admissible strategies, since a player could combine such redundant strategies in
arbitrary ways without affecting payoffs.

Our main result, Theorem 1, has two components. First, it says that the class of nearly stationary
strategies is admissible, so near stationarity is sufficient for admissibility. Second, it says that in any
admissible class of strategies which is at least as large as the set of stationary strategies, all strategies
are nearly stationary. Since these strategies are payoff-equivalent to stationary strategies, we argue that
for a game with diffuse prior to have well-defined ex ante expected payoffs, essentially all strategies have
to be stationary.

We begin the proof of the necessity part of Theorem 1 by establishing the existence of some distri-
bution µ∗i ∈ Mi with the following property: for all η > 0, µθi is within η of µ∗i for an infinite measure
set of θ (Lemma 7). We then call µ∗i an attraction. We show that this is a weaker condition than near
stationarity; a necessary condition for µi to be near µ∗i is that µ∗i is an attraction.

Next, we argue that there can be at most one such attraction for any strategy which is part of an
admissible class. The proof of this claim is by contradiction and contains several steps. We suppose that
µ∗i and µ̂i are two distinct attractions for player i’s strategy µi. We argue that by the irreducibility
assumption, there must exist some profile of stationary strategies of the rivals, µ−i, against which these
distributions yield distinct expected payoffs. Given η > 0, we can construct a sequence of measures
(P1
n)n∈N (resp. (P2

n)n∈N) that places increasing mass on θ such that µθi is within η of µ∗i (resp. µ̂i). By
continuity and translation, the limit of expected payoffs can be close to either of two distinct values.
This violates admissibility, giving the desired contradiction.

Given the unique attraction µ∗i , we show that µ∗i is a limit strategy for µi. If µi has any limit strategy,
that strategy must be an attraction, so µ∗i is the only candidate. We show that if µ∗i is not a limit strategy
for µi, then there is a compact set of strategies that does not contain µ∗i but contains µθi for a measurable
set of infinitely many θ. This compact set itself contains an attraction, and this contradicts the uniqueness
of the attraction µ∗i .

To complete the proof, we argue that µ∗i is stationary, so that µi is nearly stationary.

3 Model

In this section, for expositional reasons, we consider single-stage games; we later extend the results
to multistage games in Section 4. Before analyzing the diffuse prior, we specify the class of games we
consider, which consists of an information structure and a payoff structure.7

3.1 Setup

Let Γ denote the game. There are n players indexed by i ∈ I := {1, 2, . . . , N}. All players assign a
diffuse prior (formalized in Section 3.3) to the state of the world, θ ∈ Θ := R. Players are categorized
as either informed or uninformed. Informed players receive signals si ∈ Si := R which are conditionally
independent given θ with distributions si − θ =: ŝi ∼ Fi for some cumulative distribution function
Fi on R admitting a positive density fi; uninformed players do not receive such a signal. We use Iinf
and Iun to denote the sets of informed and uninformed players, respectively. Let S := ×i∈IinfSi (and
likewise for s and ŝ) and let F be the joint CDF, F (ŝ) = ×i∈IinfFi(ŝi). We let Xi denote a copy of
R, one for each player; each player simultaneously chooses an action ai from a set of available actions,

6 We use the topology of weak convergence for measures and distributions, which is metrized by the Prokhorov distance,
dP , and we use the usual topology for R; continuity and compactness are with respect to these topologies.

7 Since we are concerned with admissibility, equilibrium plays no role in our analysis, and we do not specify an equilibrium
concept.
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denoted Ai(si) ⊂ Xi for i ∈ Iinf and Ai ⊂ Xi for i ∈ Iun. Given θ and a vector of actions a = (ai, a−i)
where a−i := (a1, . . . , ai−1, ai+1, . . . , aN ), players receive payoffs ui(ai, a−i, θ). We assume that the payoff
functions ui are continuous in all arguments.

Informally, a mixed strategy is a randomization over pure strategies. However, in games of incomplete
information with uncountable type spaces (such as in our class of games), topological problems arise
from interpreting strategies as mixed strategies (i.e., distributions over pure strategies) or behavioral
strategies (i.e., products of history-contingent distributions over actions). Although the standard way
to define mixed strategies in games with finite or countable signal spaces is as products, over signals,
of signal-dependent distributions, this approach runs into problems when signal spaces are uncountable.
As an alternative, Milgrom and Weber (1985) (hereafter “MW”) introduce the notion of distributional
strategies, whereby strategies are defined as joint distributions over signals and actions. We adapt this
concept to our needs in Definition 1.

Toward Definition 1, let G be an arbitrary distribution over R (the common signal space for informed
players) with full support, and let φ denote the measure induced by this distribution G. Let λ denote the
Lebesgue measure. We impose one additional requirement on φ, that φ and λ are mutually absolutely
continuous, that is, they have the same zero-measure sets.8 We use µi(·|si) to denote (versions of) the
conditional distribution over actions given signals. We are now ready to define strategies, which for
informed players take the form of distributional strategies.

Definition 1 (Strategies) A strategy for a player i ∈ Iinf is a probability measure µi on Si ×Xi such
that:

– (Marginal Distribution over Signals) For all measurable T ⊆ Si, µi(T ×Xi) = φ(T ).
– (Proper Support) For any version of the conditional distribution µi(·|si), for si ∈ Si except on a set

of measure zero, the support of µi(·|si) is a subset of Ai(si).

A strategy for a player i ∈ Iun is a probability measure µi on Xi whose support is a subset of Ai.

A few comments on Definition 1 are in order. The first property is a normalization and represents a
departure from MW. The key feature is that the distribution G (which defines φ) has full support over
the reals. The strategic content of a distributional strategy is in the conditional distributions µi(·|si)
which describe how the player behaves given a particular signal si; this content is independent of the
particular marginal distribution G. In contrast, MW use the actual distribution over types (here, signals)
to play the role of G. We argue that this is not necessary, since the strategic content is contained in
the conditional distributions, and the marginal distribution is merely a tool for “packaging” these into a
joint distribution. In addition, it is not possible to use the actual type distribution in our setting since,
prior to the θ realization, signals for informed players have ex ante diffuse distributions over R. The same
applies to our multistage version in Section 4.

The second property in Definition 1 ensures that with probability one, actions are chosen from Ai(si).
For uninformed players, we can dispense with the signal dimension and define strategies as measures over
actions alone.

Under the above definition, a pure strategy for an informed player i is one such that for all si, µi(·|si)
places all mass on a single point (which can depend on si), where µi(·|si) here denotes the regular
conditional probability. That is, for each si, there exists x ∈ Xi such that for all measurable Y ⊆ Xi,
µi(Y |si) = 1 if x ∈ Y and 0 otherwise. (A pure strategy for an uninformed player has the analogous
property.)

Since Xi and Si × Xi are complete and separable, the spaces of probability measures ∆(Xi) and
∆(Si ×Xi), under the topology of weak convergence, are metrized by the Prokhorov distance.9 We let
Mi denote the space of all strategies for player i, where Mi ⊂ ∆(Xi) if player i is uninformed and
Mi ⊂ ∆(Si ×Xi) if player i is informed; on each Mi, we use the same Prokhorov distance.

3.2 Stationarity

As the diffuse prior implies symmetry across states, we focus on games where this symmetry holds for
all components of the game. We label these games stationary. Below we define stationarity of signals,
payoffs and strategies.

8 For example, if G is the CDF of the standard normal distribution, then G and its associated φ satisfy these properties.
9 See Billingsley (2009, Theorem 6.8).
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We assume that the signal structure of the game is stationary so that conditional on any realization
θ, the values si are drawn i.i.d. with si − θ ∼ Fi for some distribution Fi on R as described earlier. In
addition, we assume that payoffs are stationary, in the sense that for any fixed strategy profile of the
uninformed players, all players’ payoffs are invariant to a shift in the informed players’ actions and the
state shifted by the same constant: for all i ∈ I, and strategy profiles a, ui(a, θ) = ui(a− θinf, 0), where
we use θinf to denote the vector of length N whose ith component takes the value θ if i ∈ Iinf and 0
otherwise.10

Compactness of the strategy space is useful throughout our analysis. We therefore assume that the
action space available after each signal is a compact set; since we are focusing on stationary games, we
also assume that action sets after different signals are translations of one another.

Assumption 1 For any player i ∈ Iinf, the action space available after signal 0, Ai(0), is compact and
for all si 6= 0, Ai(si) = Ai(0) + si. For i ∈ Iun, the action space available Ai is compact.

For example, suppose action sets are compact intervals, centered at the signal for informed players;
specifically, suppose that for each informed player i there exists some constant Mi > 0 such that for
all si, Ai(si) = [si − Mi, si + Mi], and for each uninformed player i there exists Mi > 0 such that
Ai = [−Mi,Mi]. Then Assumption 1 is satisfied. An implication of Assumption 1 with our notion of
strategies is the following.

Lemma 1 Under Assumption 1, each Mi is compact.

For informed players, a strategy as defined above gives a distribution over signals and actions with
an arbitrary fixed marginal distribution over the signal dimension G. To describe joint distributions over
actions and signals (and ultimately, to describe payoffs) conditional on arbitrary θ values, it is useful to
define a “recentering function.” Formally, for any i ∈ Iinf, strategy µi ∈ Mi, and x ∈ R, we define a
strategy µxi by specifying its conditional distributions µxi (Y |si) = µi(Y − x|si − x) for all Y ⊆ Xi and
all si ∈ Si except on a set of measure zero under φ, where Y − x denotes the set Y shifted by −x. We
then say that µxi is a recentered strategy ; note that in the case of x = 0, we have µ0

i = µi. For intuition,
it is helpful for a moment to interpret strategies as inducing distributions over markups, that is, actions
minus signals. Then the strategy µxi gives the same distribution over markups after signal si as strategy
µi does after signal si − x. Example 1 below gives more detail. For completeness, we define µxi = µi for
uninformed players in this section.

The recentering function also allows us to readily define stationarity of strategies.

Definition 2 (Stationary Strategies) For i ∈ Iinf, a strategy µi is stationary if the distribution over
i’s action and i’s private signal are together translation invariant: for all x ∈ R, µi = µxi . For i ∈ Iun, all
strategies are stationary.

A stationary strategy in the case of single-stage games can be described by a single distribution over
Ai(0), interpreted as a (possibly random) markup x so that the action chosen after receiving signal si
is ai = si + x. As we prove later (see Lemma 5 in the appendix), for an arbitrary strategy µi, the map
θ 7→ µθi from R to Mi is uniformly continuous.

Example 1 Suppose the (nonstationary) strategy µi specifies

– if si < 1, play ai ∼ U [si, si + 1] (i.e., a markup distributed U [0, 1],)
– if si ≥ 1, play ai ∼ U [si + 2, si + 3] (i.e., a markup distributed U [2, 3].)

The recentered strategy µ
1/2
i (where x = 1/2) prescribes the following behavior. If si < 3/2 is

observed, apply a random markup distributed U [0, 1] (as the original strategy µi specifies for a signal
si−x = si−1/2 < 1), that is, play ai ∼ U [si, si+ 1]; if si ≥ 3/2 is observed, apply a markup distributed
U [2, 3] (as µi specifies for a signal si−x = si− 1/2 ≥ 1), that is, play ai ∼ U [si + 2, si + 3]. Note that µi
here is not stationary, but given the first bullet point, it would be stationary if for all si, ai ∼ U [si, si+1].

As mentioned, the recentering function allows us to easily express ex interim expected payoffs (that is,
conditional on θ) for arbitrary θ realizations. Since we consider a stationary payoff and signal structure,
we can calculate expected payoffs under strategies µi conditional on θ = x as the expected payoffs under
strategies µ−xi conditional on θ = 0 (see equation (1) below). Let µx denote the strategy profile where
each player i ∈ I plays µxi (and in particular, each player i ∈ Iun plays µi).

10 Likewise, we use θinf−i to denote the vector of length N − 1 formed from θinf by excluding player i.
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A profile of strategies induces ex interim expected payoffs for each player as follows:

ui(µ, θ) :=

∫
ŝ∈R|Iinf|

∫
a∈X

ui(a, θ) d((×j∈Iinfµj,Xj (aj |ŝj + θ))× (×j∈Iunµj(aj)))dF (ŝ)

=

∫
ŝ∈R|Iinf|

∫
a∈X

ui(a− θinf, 0) d((×j∈Iinfµj,Xj (aj |ŝj + θ))× (×j∈Iunµj(aj)))dF (ŝ)

=

∫
ŝ∈R|Iinf|

∫
a∈X

ui(a, 0) d((×j∈Iinfµj,Xj (aj + θ|ŝj + θ))× (×j∈Iunµj(aj)))dF (ŝ)

=

∫
ŝ∈R|Iinf|

∫
a∈X

ui(a, 0) d((×j∈Iinfµ−θj,Xj (aj |ŝj))× (×j∈Iunµj(aj)))dF (ŝ)

= ui(µ
−θ, 0), (1)

where the second line uses stationarity of payoffs, the third line performs a change of variables for each aj ,
j ∈ Iinf, the fourth line uses the definition of the recentering function, and the fifth line uses the definition
from the first line. Note that if all players play stationary strategies, then it can be seen from (1) that
they obtain the same interim payoffs for all θ realizations, as µ−θ = µ and hence ui(µ

−θ, 0) = ui(µ, 0) in
that case.

In general, ex post payoffs can vary widely due to the noise in the signals. To ensure that the ex
interim payoffs (given a realization of θ, but not the signal realization) are finite, we impose the following
assumption, which is a joint condition on the payoff function, action sets and signal distribution. Here,
for each noise realization ŝ, A(ŝ+ θ) denotes the set of action profiles a such that aj ∈ Aj(ŝj + θ) for all
j ∈ Iinf and aj ∈ Aj for all j ∈ Iun.

Assumption 2 (Bounded Interim Payoffs) Together, the signal distributions, action sets, and pay-
off functions are such that

∫
ŝ∈R|Iinf| supa∈A(ŝ+θ) |ui(ai, a−i, θ)|dF (ŝ) is bounded over all i ∈ I and θ ∈ R.

Assumption 2 holds, for example, when payoff functions are finite polynomial, the signal distributions
conditional on the state are normal (which includes the commonly analyzed case of normally distributed
signals and quadratic loss functions), and action sets are intervals of bounded size containing the signal.
This assumption ensures that expected interim payoffs are bounded.

Lemmas 5 and 6 in the appendix establish useful continuity properties of the recentering function
and interim payoffs.

Next we define a weakening of stationarity that we will later prove to be both necessary and sufficient
for admissibility. Recall that our arbitrary specification G for the marginal distribution over signals
allows us operate with distributional strategies, which are joint distributions over signals and actions.
Hence, to describe the distance between strategies, we must use a suitable metric for distances between
distributions, and thus we use the Prokhorov metric. Convergence of strategies in the Prokhorov metric
means that the measure these strategies assign to well-behaved sets (of pairs of signals and actions)
also converge. Toward defining near stationarity, we begin by defining a limit strategy (if it exists) as a
strategy that a given strategy approaches in the limit when recentering at extreme states, with distance
between strategies being measured by the Prokhorov metric. In other words, the original strategy behaves
increasingly similar to the limit strategy when the state becomes very high or very low.

Definition 3 (Limit Strategies and Near Stationarity) For any i ∈ I and any strategy µi, we say
that a strategy µ∗i is a limit strategy for µi if limθ→−∞ µθi = limθ→+∞ µθi = µ∗i , with limits taken with
respect to the Prokhorov metric. If µ∗i is stationary, then we classify µi as nearly stationary.

Note that stationarity implies near stationarity, as a stationary strategy is its own limit strategy. In
particular, for i ∈ Iun in static games, any µi is nearly stationary.

It is immediate from Definition 3 that a strategy can have at most one limit strategy. However, a
strategy need not have any limit strategy. For a counterexample, consider a game with a single player
receiving some signal si where si − θ has distribution Fi conditional on θ, and suppose the action space
given si is {si, si+1}. Then the following strategy, call it µi, has no limit strategy: assign action ai = si+1
for all signals si ≥ 0 and action ai = si for all signals si < 0. As θ → +∞, µθi → κ0, where we use κx to
denote the stationary strategy characterized by ai(si) = si + x with probability 1 for all si ∈ R. Hence
κ0 is the only candidate for a limit strategy. But as θ → −∞, µθi → κ1 6= κ0, and thus µi has no limit
strategy.

To see that nearly stationary does not imply stationary, modify the example above so that µi is
characterized by ai = si + 1 for all si ∈ [−K,K] for some K > 0, and ai = 0 otherwise. We have
limθ→−∞ µθi = limθ→+∞ µθi = κ0, so µi is nearly stationary, but it is not stationary.
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The next lemma provides a useful property equivalent to the one in Definition 3. It says that a
strategy µ∗i is a limit strategy for µi if and only if µi is close to µ∗i for “most” θ, that is for all θ except
for some set of finite measure. Recall that λ denotes the Lebesgue measure.

Lemma 2 For i ∈ Iinf, a strategy µ∗i is a limit strategy for µi if and only if λ
(
{θ : dP,i(µ

θ
i , µ
∗
i ) ≥ η}

)
<

∞ for all η > 0, where dP,i is the Prokhorov metric.

The following Lemma shows that the first part of Definition 3 implies the second.

Lemma 3 If µ∗i is a limit strategy of µi in the sense of Definition 3, then µ∗i is stationary and thus µi
is nearly stationary.

Proof If µ∗i is not stationary, then there exists θ such that µ∗,θi 6= µ∗i . Now if µ∗i is a limit strategy of µi,

then µ∗,θi is a limit strategy of µθi . But also note that if µ∗i is a limit strategy of µi, then µ∗i is a limit

strategy of µθ
′

i for all θ′ ∈ R, including θ′ = θ, and thus µ∗i is a limit strategy of µθi . Since a strategy can

have at most one limit strategy, we have µ∗,θi = µ∗i , a contradiction. We conclude that µ∗i is stationary.

For ease of exposition, from now on we require that the game involves no redundant strategies, i.e.,
strategies which are indistinguishable from other strategies in their payoff implications.

Assumption 3 (Irreducibility) The game is irreducible in that there are no distinct strategies µi 6= µ′i
for any player i such that for all θ ∈ R and all profiles µ−i of stationary strategies for the rivals,
ui(µi, µ−i, θ) = ui(µ

′
i, µ−i, θ).

3.3 The Diffuse Prior

The informal concept of diffuse prior has two key properties. The first property is that all real numbers
are in the support of the prior. The second property is uniformity — all points are weighted equally.
Hence, we define a sequence of proper measures to be diffusing if these properties hold in the limit —
that is, sufficiently far into the sequence, the properties hold arbitrarily closely. The following definition
formalizes this idea.

Definition 4 (Diffusing Sequence) Consider a sequence (Pn)n∈N of Borel probability measures on R.
We say that this sequence is diffusing if for any set W with λ(W ) ∈ (0,∞) and any η > 0, there exists
N ∈ N such that for all n ≥ N ,

– Pn(W ) > 0, and

– for all measurable Y ⊆W ,
∣∣∣ Pn(Y )
Pn(W ) −

λ(Y )
λ(W )

∣∣∣ < η.

From the definition, we can establish the following property of diffusing sequences as a result.

Lemma 4 If (Pn) is diffusing, then for any set E ⊂ R with λ(E) <∞, limn→∞ Pn(E) = 0.

Proof Consider any set E ⊂ R with λ(E) <∞ and any diffusing sequence (Pn). We establish the result
for λ(E) > 0, from which the result for λ(E) = 0 immediately follows. Choose any arbitrarily small η > 0.
Choose M > 1 sufficiently large that (i) 1

M < η and (ii) λ(E \ [−M,M ]) < ηλ(E). Let WM := [−M,M ]
and WM2 := [−M2,M2]. By applying Definition 4 twice, first with the set E playing the role of W in
the definition and again with WM2 playing the role of W , there exists K such that for all n ≥ K,

Pn(WM2) > 0

Pn(E) > 0∣∣∣∣Pn(E \WM )

Pn(E)
− λ(E \WM )

λ(E)

∣∣∣∣ < η (2)∣∣∣∣ Pn(WM )

Pn(WM2)
− λ(WM )

λ(WM2)

∣∣∣∣ < η. (3)

In (2), recall that by construction λ(E\WM )
λ(E) < η and thus rearranging (2) yields

Pn(E \WM ) < 2ηPn(E) < 2η. (4)
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In (3), we have λ(WM )
λ(WM2 )

= 1
M < η and thus

Pn(WM ) < 2ηPn(WM2) < 2η. (5)

Adding (4) and (5) then yields

Pn(E) ≤ Pn(E \WM ) + Pn(WM ) < 4η.

Since η is arbitrary, we have Pn(E)→ 0.

For illustrative purposes, we highlight two specific diffusing sequences (see Figure 1). As one would
expect, flattening sequences of the uniform distribution or normal distribution are diffusing according to
our definition.

Example 2 Both (P1
n) given by the density 1

2n1[−n,n] and (P2
n) given by N(0, n) are diffusing.

Proof If λ(W ) ∈ (0,∞), then W ∩ [−n, n] 6= ∅ and thus P1
n(W ) > 0 for sufficiently large n. Moreover, for

any measurable Y ⊆W ,
∣∣∣ P1

n(Y )
P1
n(W ) −

λ(Y )
λ(W )

∣∣∣ =

∣∣∣∣ ∫
y∈Y

1
2n1[−n,n](y)dy∫

w∈W
1
2n1[−n,n](w)dw

− λ(Y )
λ(W )

∣∣∣∣ =
∣∣∣ ∫

y∈Y 1[−n,n](y)dy∫
w∈W 1[−n,n](w)dw

− λ(Y )
λ(W )

∣∣∣→
0 by dominated convergence. Now P2

n(W ) > 0 for all n ∈ N. Using a similar argument, for any Y ⊆ W ,∣∣∣ P2
n(Y )

P2
n(W ) −

λ(Y )
λ(W )

∣∣∣ =

∣∣∣∣ ∫
y∈Y

1√
2πn

e−y
2/(2n)dy∫

w∈W
1√
2πn

e−w2/(2n)dw
− λ(Y )

λ(W )

∣∣∣∣ =

∣∣∣∣ ∫
y∈Y e

−y2/(2n)dy∫
w∈W e−w2/(2n)dw

− λ(Y )
λ(W )

∣∣∣∣→ 0.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

θ

(a) Flattening Normal Distributions

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

θ

(b) Flattening Uniform Distributions

Fig. 1: Examples of Diffusing Sequences

3.4 Admissibility

Recall the example from Section 2, where we asked which functions of θ are “admissible” in the sense
that they yield consistent limits when integrated along certain kinds of sequences of distributions. We
suggested that admissible functions are nearly constant in a particular way: there exists some constant
such that for any ε > 0, the set of θ on which the function deviates from that constant by more than ε
has finite measure. As we show in our main result, the spirit of this example extends to admissibility of
strategies. Since players only observe noisy signals of θ, their strategies are not directly functions of θ but
functions of their private signals. Nonetheless, having well-defined expected payoffs will place restrictions
on players’ strategies, similar to how admissible functions are nearly constant.

Definition 5 (Admissibility) A class M0 ⊂M of strategy profiles is said to be admissible if for any
profile (µ1, µ2, ..., µN ) of strategies in M0, there exists a vector u∗ ∈ RN such that for any diffusing
sequence (Pn) and all i ∈ I, limn→∞

∫
θ∈R ui(µi, µ−i, θ) dPn(θ) = u∗i .

Let Ki denote the class of stationary strategies for player i. Note that for profiles µ = (µi, µ−i)
of stationary strategies, the mapping θ 7→ ui(µ, θ) is constant, and hence the sequence of integrals in
Definition 5 trivially converges to the same limit for every diffusing sequence. Thus the class of profiles
of stationary strategies is admissible.

Given the definition of admissibility, we can define (ex ante) payoff equivalence between two strategies.
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Definition 6 (Payoff Equivalence) Let M0 be a class of admissible strategy profiles. Two strategies µi
and µ′i are said to be payoff equivalent for player i if for all strategy profiles µ−i of the remaining players
such that (µi, µ−i), (µ

′
i, µ−i) ∈ M0, player i gets the same payoff under µi as under µ′i: for all diffusing

sequences (Pn),

lim
n→∞

∫
θ∈R

ui(µi, µ−i, θ) dPn(θ) = lim
n→∞

∫
θ∈R

ui(µ
′
i, µ−i, θ) dPn(θ).

We now present our main result for single-stage games. For the necessity direction, our proof technique
makes use of the assumption that the class of strategy profiles contains stationary strategies. The reason
is that when we consider payoffs conditional on various θ, stationarity of the rivals’ strategies (together
with stationarity of signals and payoffs) means that an informed player i’s payoff is changing as if one
is holding θ fixed and changing the actual strategy of player i. By irreducibility, this means that if i’s
strategy is not nearly stationarity, then i’s payoff conditional on θ varies significantly with θ, which we
then show is inconsistent with admissibility.

Theorem 1 Suppose the game Γ satisfies Assumptions 1-3. Then

– (Sufficiency) The class of profiles of nearly stationary strategies is admissible.
– (Necessity) If M0 = ×i∈IM0

i is admissible and Ki ⊆ M0
i for all i, then every µi ∈ M0

i is nearly
stationary and payoff equivalent to some stationary strategy.

4 Multistage Games

We now extend the analysis to a class of multistage games. The game has stages indexed by t = 1, 2, . . . , τ
for τ ∈ N. In each stage t, some nonempty subset of players choose actions ati ∈ R; we use I(t) to denote
this subset. As in the static model, a subset of players Iinf are informed and obtain a private signal si
with the same properties as in the static game, while the remaining players receive no such signal. Each
player acts in exactly one stage, denoted T (i). We assume that informed players act in stage 1, while
all uninformed players act in later stages. We assume that uninformed players have a finite action set.
Players observe other players’ past actions perfectly. The public history at stage t > 1 is a record of all
players’ past actions through stage t−1 and it is denoted ht. An informed player’s history is simply that
player’s initial signal si. To economize on notation, we define the history observed by player i ∈ I(t) by
hti := ht when t > 1 (and thus i ∈ Iun) and hti := si when t = 1 (and thus i ∈ Iinf). The set of available
actions for i ∈ I moving in stage t is Ati(h

t
i).

A pure strategy specifies for each player’s observed history hti an action in Ati(h
t
i). Given a realization

of θ and sequence of action profies taken in each stage, players receive payoffs ui(ai, a−i, θ), where a−i is
defined as before. In Definition 7, we extend the definition of distributional strategies from Section 3.

In order to extend Theorem 1, we must first adapt some other concepts from Section 3. As in Section
3, payoffs are assumed stationary in that they are invariant to shifts in θ and all informed players’ actions
by the same constant. We adapt Assumption 1 to the following:

Assumption 4 For all i ∈ I(1), A1
i (h

1
i ) is compact and satisfies A1

i (si) = A1
i (0) + si. For all t > 1 and

all i ∈ I(t), Ati(h
t
i) is finite and independent of hti.

Given Assumption 4, we use Ati to denote the action sets available to uninformed players.
Given a realization of θ and sequence of action profiles taken in each stage, players receive payoffs

ui(ai, a−i, θ) for the game, where a−i is defined as before. As before, we assume that the payoff functions
ui are continuous in all arguments, and we assume they are stationary in the same sense as in Section 3.

As in the static game, informed players’ only information is their private signal, so their strategies
are defined exactly as in the static game. For uninformed players, their information is the past actions of

other players. For t > 1, let Ht := (×i∈IinfXi) ×
(
×i∈Iun:T (i)<tA

T (i)
i

)
denote the set of public histories

at stage t. We formulate the strategies for players acting in stage t > 1 as joint distributions over Ht and
their stage t actions, fixing a marginal distribution over Ht. Any version of the conditional distribution
specifies behavior after a given history; under regularity conditions discussed below, any two versions of
the conditional distribution are outcome-equivalent.

Definition 7 [Strategies — Multistage Version] A strategy for player i ∈ Iinf is a probability measure
µi on Si ×Xi satisfying the properties of Definition 1. A strategy for player i ∈ Iun acting in stage t is
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a probability measure µi on Ht × Ati with the following property: the random variables induced by the
marginal distributions over the dimensions for actions of players acting earlier are mutually independent
and have distribution N(0, 1) for informed players and (discrete) uniform distribution for uninformed
players.

For an uninformed player i, the distributional strategy µi includes dimensions for all the other players’
past actions. This results in some arbitrary detail which serves a technical purpose only. The strategically
meaningful information from µi is in the distributions on the Ati dimension conditional on each history.
The marginal distributions for the past actions are not strategically meaningful, so for concreteness we
normalize those to the normal distribution for past actions by informed players and discrete uniform
distributions over finite sets for past actions by uninformed players; we wish to emphasize that µi does
not contain any conjecture about other players’ behavior. Part (iii) of Assumption 5 below ensures that all
actions by informed players occur with probability zero (such as when all informed players play stationary
strategies, due to the signal noise), and hence an uninformed player i’s behavior is well-defined, as all
versions of the uninformed players’ strategies are outcome-equivalent.

Hence, there is an equivalence between distributional strategies under our formulation and behavioral
strategies, given the regularity condition mentioned above. Specifically, for every distributional strategy,
there exists an outcome-equivalent behavioral strategy, and conversely, for every behavioral strategy,
there exists an outcome-equivalent distributional strategy. A distributional strategy specifies behavior at
each on-path decision node via the conditional distributions over that player’s actions, conditioning on the
history; these conditional distributions and hence the player’s behavior are uniquely determined except
on a set of measure zero. Given a behavioral strategy, one can construct a distributional strategy by
specifying the marginal distributions on earlier actions as in Definition 7, and by defining the conditional
distributions as those under the behavioral strategy.

Each player has a set of available strategies denoted Mi; as in Section 3, it is metrized by the
Prokhorov distance. In multistage games, some technical issues not present in static games arise. For
instance, small changes in one player’s strategy can lead to discontinuous changes in the induced dis-
tribution over outcomes. To avoid such issues, we assume that M := ×i∈IMi satisfies some regularity
conditions (Assumption 5). Part (iii) ensures that each zero-measure set of actions occurs with zero
probability, as described above. Part (v) of the definition adapts irreducibility from Assumption 3. As
in the single-stage case, given any θ realization, a profile of distributional strategies (µi, µ−i) induces a
distribution over payoffs ui(ai, a−i, θ). We again abuse notation and let ui(µi, µ−i, θ) denote ex interim
payoffs conditional on θ.

Assumption 5 The class M = ×i∈IMi of profiles of available strategies satisfies the following con-
ditions: (i) Mi closed for all i ∈ I, (ii) µi ∈ Mi implies µθi ∈ Mi for all θ ∈ R and i ∈ I, (iii)
µi(Si × Y ) = 0 for all i ∈ I and Y ⊂ Xi such that λ(Y ) = 0, (iv) for all i ∈ I, µ 7→ ui(µ, 0) is
continuous on M, and (v) for all i ∈ I and strategies µi 6= µ′i in Mi, there exists θ0 ∈ R and a profile
µ−i ∈M−i of stationary strategies for the other players such that ui(µi, µ−i, θ0) 6= ui(µ

′
i, µ−i, θ0).

Given Definition 7 and Assumption 4, Lemma 1 can be applied to the space of measures satisfying
Definition 7, and hence each Mi, as a closed subspace by Assumption 5, is compact. By continuity of
interim payoffs in strategies, interim payoffs are bounded.

Recentered strategies: The recentering function for an informed players is exactly as in the static
model. For uninformed players, let ht,xi denote the history hti modified by adding x to all informed players’
(past) actions. We define the recentered strategy µxi as the strategy which satisfies, for all hti ∈ Ht except
on a set of measure zero and all Y ⊆ Ati(hti), µxi (Y |hti) = µi(Y −x|ht,−xi ). As in the single-stage case, for
x = 0, we have µ0

i = µi. For strategy profiles, we define µx as the profile in which each player plays µxi .
Under the generalized recentering function defined above, we can now adapt Definition 2 to multistage
games.

Definition 8 A strategy µi is stationary if for all x ∈ R, µi = µxi .

We can import several statements from Section 3 with no change in notation and therefore there is
no need to reproduce them here. In particular, we maintain the following definitions: (i) the definition of
limit strategies and nearly stationary strategies (Definition 3), (ii) the definition of a diffusing sequence
(Definition 4), (iii) the definition of admissible strategies (Definition 5), and (iv) the definition of payoff
equivalence (Definition 6). We define Ki as the class of stationary strategies in Mi.

We now extend Theorem 1 to multistage games.

Theorem 2 Suppose Assumptions 4 and 5 are satisfied.
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– (Sufficiency) The class of profiles of nearly stationary strategies is admissible.
– (Necessity) If M0 = ×i∈IM0

i is admissible and Ki ⊆ M0
i for all i, then every µi ∈ M0

i is nearly
stationary and payoff equivalent to some stationary strategy.

5 Applications

In this section, we apply our single-stage model to a beauty contest game and our multistage model to
a delegation (sender-receiver) game.

5.1 Beauty Contests

An application of the single-stage version of our model is an adaptation of the beauty contest model
of Morris and Shin (2002). We assume that there is a finite number N ≥ 2 of agents i ∈ {1, 2, . . . , N}
and an underlying state of the world θ drawn from a diffuse prior distribution. Each agent has a bias
parameter bi and receives a private signal si = θ + εi, where εi ∼ N(0, σ2

ε ) and where the εi and θ are
mutually independent. Each agent chooses an action ai ∈ [si−M, si+M ] for some large constant M > 0
and receives a payoff

u(ai, a−i, θ) = −λ(ai − θ − bi)2 − (1− λ)(ai − ā)2,

where λ ∈ (0, 1) is a constant and ā =:=
∑
j aj

N is the average of all players’ actions, including player i.
In other words, players want to choose actions that balance their idiosyncratic preferences with a desire
to match other agents’ actions.

The game described here has stationary payoffs and satisfies Assumptions 1-3, and thus Theorem
1 applies. Hence, in order to guarantee well-defined ex ante expected payoffs, the analyst must restrict
strategy sets to nearly stationary strategies. In the game we have described, stationary strategies are
mixtures over constant markups: each player chooses a (possibly random) markup ki ∈ [−M,M ] and,
given any si, plays the action ai(si) = si + ki.

If we restrict players to stationary strategies, there is a unique Bayesian Nash Equilibrium of the
game with diffuse prior, in which each player plays a pure strategy characterized by ai(si) = si + ki,
where

ki = λbi + (1− λ)

∑
j bj

N
. (6)

Each player’s signal si is that player’s posterior mean belief about the state θ and about all other agent’s
signals sj for j 6= i, and thus the mean action of each other player is si + kj . Each player’s payoff is a
concave function and thus has a unique maximizer given the strategies of the other players. It follows
that any equilibrium is in pure strategies. Equation (6) says that each player’s equilibrium markup is
a convex combination of all players’ biases, and the weight assigned to one’s own bias is an increasing
function of λ. In the extreme case λ = 1, each player cares only about his idiosyncratic preferences, and
optimally sets ki = bi. For the other extreme, λ = 0, the game is a pure coordination game and multiple

equilibria exist, but in the limit as λ → 0, ki →
∑
j bj

N ; with agents coordinating on the average bias of
all agents.

5.2 Delegation

As a direct application of our model, we can also consider sender-receiver games. To illustrate, consider
games with two stages: one stage in which n senders simultaneously choose actions after observing private
signals, and a second stage in which the receiver observes the senders’ actions and chooses an action.
Depending on the application in mind, the receiver’s action could be interpreted as a continuous variable
(as in games of cheap talk) or as a sender’s identity (as in games of delegation with multiple experts).

In the case of delegation, the receiver’s available action choices may depend on the actions chosen by
the senders. For example, in a companion paper by Ambrus et al. (2019), the senders are two experts
who propose action choices, and the receiver must choose one of them. All players have quadratic loss
functions; senders have biases bi relative to the receiver. The game unfolds as follows:

1. A state of the world θ ∈ R is realized, drawn from a diffuse prior distribution.
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2. Senders (experts) i = 1, 2 receive conditionally i.i.d. signals si ∼ N(θ, σ2).
3. Senders choose markups ki ∈ [−M,M ] where M is some large constant.
4. The receiver (principal or decision maker, labeled player 3) observes ai = si + ki for i ∈ {1, 2} and

chooses the expert whose action will be implemented. Specifically, the receiver chooses an action j
from {1, 2}.

5. Payoffs are realized: receiver gets −(sj + kj − θ)2, sender j gets −(sj + kj − θ − bj)2, sender i 6= j
gets −(sj + kj − θ − bi)2.

A stationary strategy for the receiver must have the property that C(a1, a2) = C(a1 + x, a2 + x) for
all x. This includes mixtures of the following fundamental strategies: (i) always choose the higher offer,
(ii) always choose the lower offer, (iii) always choose the offer from sender 1, and (iv) always choose the
offer from sender 2. Ambrus et al. (2019) show that these are essentially the only possible best responses
of the principal to a pair of stationary strategies of the experts.

Suppose the receiver is restricted to the four pure strategies above, and denote this strategy space by
R. We show that this strategy space alone is enough to establish irreducibility for the senders. Specifically,
we show that any classM =M1×M2×R of strategy profiles that satisfies parts (i)-(iv) of Assumption
5 must also satisfy part (v), and hence Theorem 2 applies: all admissible strategies are nearly stationary,
and in particular, are nearly “constant markup strategies” — that is, each sender’s strategy is nearly a
stationary strategy in which there is a single “markup” distribution Hi over [−M,M ] and actions are
simply si plus the draw from Hi.

Proposition 1 In the stationary game of Ambrus et al. (2019), suppose that strategy spaces M1 and
M2 are such that the class of strategy profiles M =M1×M2×R satisfies parts (i)-(iv) of Assumption
5. Then part (v) is also satisfied, and Theorem 2 applies to the game.

6 Alternative Approaches to Nonstationary Strategies

In this section, we consider alternative approaches to handling ex ante payoffs under the diffuse prior.11

First, in some cases it is possible to make comparisons across strategy profiles — for example, when an
individual player considers a deviation — without requiring that ex ante payoffs be well-defined before
and after the deviation. For instance, consider a single-stage game and suppose that all players are
playing stationary strategies which are mutual best responses within the class of stationary strategies.
To verify that such a strategy profile is a Bayesian Nash equilibrium, one would like to verify that no
player can benefit by deviating, including deviations to nonstationary strategies. While nonstationary
strategies (except nearly stationary strategies) do not yield well-defined ex ante payoffs, the limit suprema
of payoffs are well-defined; optimality implies these must be bounded above by the (well-defined) payoff
of the original, stationary strategy. In this sense, deviations can be ruled out. Hence, while our approach
would already rule out such deviations on the basis of admissibility, an equilibrium concept could be
defined using a stronger notion of best response which allows deviations outside the admissible class.

Second, in some cases it is possible to obtain well-defined expected payoffs from profiles of strategies
which are not nearly stationary. Our admissibility criterion has imposed the inclusion of stationary
strategies in an admissible class; we consider this inclusion to be a natural requirement for stationary
games. However, dropping this requirement allows one to construct smaller admissible classes. Consider
the following example: two players i = 1, 2 obtain perfect signals si = θ and choose actions ai ∈ [si, si+1].
Their payoffs are ui(a1, a2, θ) = −(a1 − a2)2(ai − θ)2. Consider the (singleton) class of strategy profiles
{(a∗1, a∗2)} where a∗i (si) := si + 1si≥0. This class is clearly admissible, but the a∗i are neither stationary
nor nearly stationary. On the other hand, the strategy a∗2 does not yield a well-defined payoff against
the stationary strategy ã1 defined by ã1(s1) = s1; player 2’s ex post payoff would be 0 when θ < 0 but
it would be −1 when θ ≥ 0.

Third, there may be a “natural” labeling of the state space, or a natural choice of the origin in some
games, such as a status quo. In such games, strategies such as a∗i (si) above may be quite reasonable,
and one might wish to find an admissible class which includes these. To that end, one could relax our
requirement that all diffusing sequences of priors yield the same expected payoffs in the limit and instead
focus on a restricted class of sequences of priors, or a particular sequence of priors such as U([−k, k]) for
k = 1, 2, . . . . Note that even a particular sequence of priors such as this one still disciplines the strategies.
For example, consider perfect signals si = θ and payoffs ui(ai, θ) = −(ai − θ)2, and define strategies by
ai(si) = si + 1 on intervals of the form [−22n+1,−22n] or [22n, 22n+1] and ai(si) = si elsewhere. The

11 The authors thank an anonymous referee for several observations upon which this section is based.
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expected payoff converges to −2/3 along a subsequence U([−22n+1, 22n+1]) but converges to −1/3 along
a subsequence U([−22n, 22n]). On the other hand, the strategy a∗i (si) from above, which is not nearly
stationary, yields a well-defined expected payoff of 1/2 in this case. Hence, restriction to a smaller class
of sequences of priors appropriate for a given problem can admit new strategy profiles while continuing
to exclude others.

7 Conclusion

We have presented a formal method for defining ex ante payoffs in games with diffuse prior. The key
features of the diffuse prior can be captured using a limit construction, in which sequences of proper
priors exhibit these properties in a limiting sense. Under our construction, stationary strategies admit
well-defined payoffs in stationary games, and conversely, all strategies admitting well-defined payoffs are
nearly stationary in a precise sense.

Our methodology can be readily extended in several directions. Although we have considered a one-
dimensional state of the world θ, in many applications, there is uncertainty over multiple dimensions.
One could model a diffuse prior over a multi-dimensional state by generalizing our notion of a diffusing
sequence. Another, related direction would be to consider renewed uncertainty; in a multistage game,
each stage t might introduce more uncertainty through the realization of a state θt. We leave detailed
exploration of these directions to future work.

Although we have considered exogenous uncertainty over the state θ, our construction could also be
used to allow a player to choose the diffuse prior as a mixed strategy. That is, suppose an additional
player i = 0 is introduced who chooses an action θ at the beginning of the game. Under our construction,
this player can play the diffuse prior as a mixed strategy with a well-defined payoff.

A Proofs

Proof (Proof of Lemma 1.) We prove the result for informed players; the arguments for uninformed players are essentially
a subset of those here. Note thatMi is a metric space, as it is a subspace of the metric space (with the Prokhorov metric)
consisting of measures over the complete and separable metric space (Si ×Xi, dSi×Xi ) where dSi×Xi ((si, xi), (s

′
i, x
′
i)) =

1
2

max{|si − s′i|, |xi − x′i|}.12 To show that Mi is compact it suffices to show that it is relatively compact and that it is
closed. Below we show that Mi is relatively compact; to verify that Mi is also closed is straightforward and only requires
the tedious steps of showing that convergent sequences of strategies converge to limits which satisfy the key properties of
Definition 1.

Given any η > 0, pick any compact T ⊂ Si such that φ(T ) > 1−η. Define Zi ⊂ Si×Xi by Zi := {(si, xi) : xi ∈ Ai(si)}.
Now Zi is compact as a consequence of Assumption 1, and it satisfies µi(Zi) = φ(T ) > 1 − η. Hence, Mi is tight and by
Prokhorov’s Theorem,13 it is relatively compact. Together with closedness, we conclude that Mi is compact.

Before proving Lemma 2, we first state and prove Lemmas 5 and 6; this does not involve any circularity.

Lemma 5 For all i ∈ I and all strategies µi ∈Mi, the map θ 7→ µθi from R to Mi is uniformly continuous.

Proof The result is trivial for uninformed players, since µθi is constant in θ. Hence, we prove the result for informed players.
We first specify a few preliminaries. We recall the space Si ×Xi is metrized by dSi×Xi defined in the proof of Lemma 1.
For any subset Y ⊆ Si×Xi and η > 0, let Y η :=

⋃
z∈Y Nη(z), the union of all η-neighborhoods (under the metric dSi×Xi )

centered at points in Y . It follows from these definitions that for any η ∈ R (possibly negative), Y + η ⊆ Y |η|, where by
our notational convention Y + η denotes the translation of the set Y by η (with respect to the standard metric on R) in all
dimensions. The space Mi is metrized by the Prokhorov metric, dP,i(µ, µ̂) := inf{η > 0 : µ(Y ) ≤ µ̂(Y η) + η and µ̂(Y ) ≤
µ(Y η) + η for all Y ⊆ Si ×Xi}.

For the proof, we show that for all η > 0, if |θ− θ′| < η, then dP,i(µ
θ, µθ

′
) < η. For all Y ⊆ Si×Xi and si ∈ Si, define

Y (si) := {xi ∈ Xi : (si, xi) ∈ Y }. We have

µθ(Y ) =

∫
si∈Si

µθ(Y (si)|si)dG(si) =

∫
si∈Si

µθ
′
(Y (si) + θ′ − θ|si)dG(si)

≤
∫
si∈Si

µθ
′
(Y |θ

′−θ|(si)|si)dG(si) = µθ
′
(Y |θ

′−θ|) < µθ
′
(Y η) + η,

and by a symmetric argument µθ
′
(Y ) < µθ(Y η) + η. By the definition of dP,i, dP,i(µ

θ, µθ
′
) < η.

Lemma 6 For all i ∈ I, ui(µ, θ) is uniformly continuous in µj for each j ∈ I, and in θ.

12 The factor of 1/2 here is not necessary, but it is useful in the proof of Lemma 5, so we adopt it here for consistency.
13 See, Billingsley (2009, Theorem 5.1).
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Proof To establish that ui(µ, θ) is continuous in each µj , for all strategy profiles µ and all θ, define µ̃ is the product measure
over Z := (×i∈IXi)× S induced by the strategy profile µ, modified so that the marginal distribution over Si has density
fi(si − θ). We can then write u(µ, θ) =

∫
(a,s)∈Z ui(a, θ)dµ̃(a, s). Let ε > 0 and µ ∈ M be arbitrary. Fix any compact

set S ⊆ R|Iinf| of the form S = ×i∈Iinf [si, si] large enough so that
∫
ŝ/∈S supa∈A(ŝ+θ) |u(ai, a−i, θ)|dF (ŝ) < ε, where we

have used Assumption 2. Let Z := (×i∈IXi) × S, which is compact and has zero-measure boundary under µ̃. Suppose a
sequence (µn)n∈N converges to µ; then µ̃n → µ̃, and thus for sufficiently large N , for all n ≥ N ,

|
∫
(a,s)∈Z

ui(a, θ)dµ̃
n(a, s)−

∫
(a,s)∈Z

ui(a, θ)dµ̃(a, s)| ≤ |
∫
(a,s)∈Z

ui(a, θ)dµ̃
n(a, s)−

∫
(a,s)∈Z

ui(a, θ)dµ̃(a, s)|

+ |
∫
(a,s)∈Z\Z

ui(a, θ)dµ̃
n(a, s)|+ |

∫
(a,s)∈Z\Z

ui(a, θ)dµ̃(a, s)|

< 3ε.

Hence ui(µ, θ) is continuous in each µj , and since the µj lie in a compact domain, this continuity is uniform. Next,

since ui(µ, θ) = ui(µ
−θ, 0) and by Lemma 5 each µ−θj term is uniformly continuous in θ, we have uniform continuity in θ.

Proof (Proof of Lemma 2.) For the “only if” direction, note that by the definition of a limit, limθ→+∞ µθi = limθ→−∞ µθi =

µ∗i implies that for all η > 0, there exists M > 0 such that for all θ ≤ −M and all θ ≥ M , dP,i(µ
θ
i , µ
∗
i ) < η. Hence {θ :

dP,i(µ
θ
i , µ
∗
i ) ≥ η} ⊆ [−M,M ] and thus λ

(
{θ : dP,i(µ

θ
i , µ
∗
i ) ≥ η}

)
<∞. For the “if” direction, we prove the contrapositive.

Suppose that some arbitrary strategy µ∗i is not a limit strategy for µi. Then given any η > 0, it is possible to construct a

sequence (θj)j∈N such that (i) for all j, k ∈ N with j 6= k, |θj − θk| > 1 and (ii) for all j ∈ N, dP,i(µ
θj
i , µ

∗
i ) ≥ 2η. Since the

map θ 7→ µθi is uniformly continuous (Lemma 5), there exists δ > 0 such that whenever |θ − θ′| < δ, dP,i(µ
θ
i , µ

θ′
i ) < η. It

follows that for all k ∈ N and all θ′ ∈ (θk − δ, θk + δ), dP,i(µ
θ′
i , µ

∗
i ) ≥ dP,i(µ

θk , µ∗i ) − dP,i(µ
θk
i , µθ

′
i ) > 2η − η = η. Hence⋃

k∈N(θk−δ, θk+δ) ⊆ {θ : dP,i(µ
θ
i , µ
∗
i ) ≥ η}, and since λ

(⋃
k∈N(θk − δ, θk + δ)

)
=∞, we have λ

(
{θ : dP,i(µ

θ
i , µ
∗
i ) ≥ η}

)
=

∞, concluding the proof of the contrapositive.

For the proof of the main result, we make use of a weaker property than that of Definition 3.

Lemma 7 For any i ∈ I and strategy µi ∈Mi, there exists µ∗i ∈Mi with the property that for all η > 0,

λ
(
{θ ∈ R : dP,i(µ

θ
i , µ
∗
i ) < η}

)
=∞, where λ denotes the Lebesgue measure and dP,i denotes the Prokhorov distance defined

on Mi. We say that any such µ∗i is an attraction for µi.

Proof We prove a more general result. Let (C, d) be a compact metric space, B ⊆ R with λ(B) = ∞, and π : B → C a
Lebesgue measurable function. We show there exists c ∈ C with the property that for all η > 0, λ ({b ∈ B : d(π(b), c) < η}) =
∞. Suppose on the contrary that for each c ∈ C, there exists ηc > 0 such that λ ({b ∈ B : d(π(b), c) < ηc}) < ∞. The
collection {Nηc (c) : c ∈ C} is an open covering of C, and by compactness, it has a finite subcovering denoted {Nηi (ci)}ni=1
for some n ∈ N. It follows that B ⊆ ∪ni=1π

−1(Nηi (ci)) and thus λ(B) ≤
∑n
i=1 λ

(
π−1(Nηi (ci))

)
< ∞, a contradiction.

Thus there exists c such that the property holds. To conclude, note that this result specializes to the lemma statement by
setting C =Mi, d = dP,i, B = Θ = R and π to be the map θ 7→ µθi ; given the existence of c as above, we set µ∗i = c.

Lemma 7 says that every strategy has at least one attraction. Note that the example immediately following Definition
3 has two attractions, κ0 and κ1, but as shown in that example, it is not nearly stationary.

Proof (Proof of Theorem 1.) We begin with sufficiency.
Sufficiency: LetM∗i be the class of nearly stationary strategies for each player i, and consider any profile (µ1, µ2, . . . , µN )

of such strategies.
By definition, for each µi ∈ M∗i , there exists a strategy µ∗i such that µ∗i is a limit strategy for µi; by Lemma 3, this

µ∗i is stationary and by Lemma 2, for all η > 0,

λ
(
{θ : dP,i(µ

θ
i , µ
∗
i ) ≥ η}

)
<∞. (7)

Next, for all η > 0, define Θ≥η = {θ ∈ R : maxi∈I dP,i(µ
θ
i , µ
∗
i ) ≥ η}, which has finite measure by (7) and the fact that

there are finitely many players. Let Pn be any diffusing sequence. For all n, by definition of the recentering function,∫
θ∈R

ui(µi, µ−i, θ) dPn(θ) =

∫
θ∈R

ui(µ
−θ
i , µ−θ−i , 0) dPn(θ). (8)

We can write the RHS of (8) as∫
θ∈Θ≥η

ui(µ
−θ
i , µ−θ−i , 0) dPn(θ) +

∫
θ∈R\Θ≥η

ui(µ
−θ
i , µ−θ−i , 0) dPn(θ). (9)

In the first term of (9), by Assumption 2, the integrand ui(µ
−θ
i , µ−θ−i , 0) is bounded in absolute value by some quantity, call

it M . For the second term of (9), note that by uniform continuity of ex interim payoffs, for any ε > 0, there exists η > 0
such that for any profile of strategies (µ̃1, µ̃2, . . . , µ̃N ), if dP,i(µ̃i, µ

∗
i ) < η for all i ∈ I, then

|ui(µ̃i, µ̃−i, 0)− ui(µ∗i , µ∗−i, 0)| < ε.

Define u∗i := ui(µ
∗
i , µ
∗
−i, 0) and note that by the definition of Θ≥η , for θ ∈ R \Θ≥η we have maxi∈I dP,i(µ

θ
i , µ
∗
i ) < η and

thus |ui(µ−θi , µ−θ−i , 0)− ui(µ∗i , µ∗−i, 0)| < ε. Putting these together,∣∣∣∣∫
θ∈R

ui(µi, µ−i, θ) dPn(θ)− u∗i

∣∣∣∣ ≤ ∫
θ∈Θ≥η

|ui(µ−θi , µ−θ−i , 0)− u∗i | dPn(θ)
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+

∫
θ∈R\Θ≥η

|ui(µ−θi , µ−θ−i , 0)− u∗i | dPn(θ)

≤ Pn(Θ≥η)(M + |u∗i |) + ε · Pn(R \Θ≥η)

≤ Pn(Θ≥η)(M + |u∗i |) + ε. (10)

Since Θ≥η has finite Lebesgue measure, by Lemma 4 there exists K such that for n ≥ K, Pn(Θ≥η) < ε
M+|u∗i |

, and thus

the RHS of (10) is less than 2ε. Since ε is arbitrary, we have shown that
limn→∞

∫
θ∈R ui(µi, µ−i, θ) dPn(θ) = u∗i , so by definition, the class of nearly stationary strategies is admissible.

Necessity: We prove by contradiction that every strategy µi ∈M0
i is nearly stationary. Since strategies for uninformed

players are stationary (and nearly stationary), assume i is an informed player. Suppose toward a contradiction that µi ∈M0
i

but µi is not nearly stationary. By Lemma 7, there exists an attraction µ∗i ∈Mi for µi.
Next, given the existence of an attraction µ∗i , we establish uniqueness. Suppose there also exists an attraction µ̂i ∈Mi

for µi with µ̂i 6= µ∗i . We show that there exists a profile of stationary strategies of the rivals such that if player i plays
µi, there is not a well-defined expected payoff in the limit. By irreducibility of payoffs (Assumption 3), there exists a
state θ0 ∈ R and a profile µ−i of stationary rival strategies such that u(µ∗i , µ−i, θ0) 6= u(µ̂i, µ−i, θ0). We show that this
contradicts admissibility.

Note that by Lemma 6, for any ε > 0, there exists η > 0 such that if dP,i(µ
θ
i , µ
∗
i ) < η, then

ε > |ui(µθi , µ−i, θ0)− ui(µ∗i , µ−i, θ0)|. (11)

An analogous statement holds for µ̂i, so let us redefine η so that for µ̃i ∈ {µ∗i , µ̂i}, dP,i(µθi , µ̃i) < η implies |ui(µθi , µ−i, θ0)−
ui(µ̃i, µ−i, θ0)| < ε.

Recall that by admissibility, there is some u∗i such that limn→∞
∫
ui(µi, µ−i, θ)dPn(θ) = u∗i for all diffusing sequences

(Pn). For the contradiction, we construct two sequence of measures (P1
n) and (P2

n) along which the limits
limn→∞

∫
ui(µi, µ−i, θ)dP1

n(θ) and limn→∞
∫
ui(µi, µ−i, θ)dP2

n(θ) differ. Let v∗ = ui(µ
∗
i , µ−i, θ0) and v̂ = ui(µ̂i, µ−i, θ0),

and recall from above that v∗ 6= v̂. Since µ∗i is an attraction for µi and λ
(
{θ : dP,i(µ

θ0−θ
i , µ∗i ) < η}

)
= ∞, for each

n ∈ N, there exists C1
n ⊂ {θ : dP,i(µ

θ0−θ
i , µ∗i ) < η} \ [−n, n] with λ(C1

n) = 2n2. Define B1
n := [−n, n] ∪ C1

n, and define
P1
n(θ) := 1B1

n
(θ)/λ(B1

n). By construction, (P1
n)n∈N is a diffusing sequence of measures, and by the assumption that µi is

admissible, we must have limn→∞
∫
ui(µi, µ−i, θ)dP1

n = u∗i . Pick any C > |v∗| such that C is an upper bound, over all θ,

on the magnitude of ui(µi, µ−i, θ) = ui(µ
θ0−θ
i , µ−i, θ0).14 We have∣∣∣∣∫

θ∈R
ui(µi, µ−i, θ)dP1

n(θ)− v∗
∣∣∣∣ =

∣∣∣∣∫
θ∈R

ui(µ
θ0−θ
i , µ−i, θ0)dP1

n(θ)− v∗
∣∣∣∣

≤
∫
θ∈R

∣∣∣ui(µθ0−θi , µ−i, θ0)− v∗
∣∣∣ dP1

n(θ)

=

∫
θ∈B1

n

∣∣∣ui(µθ0−θi , µ−i, θ0)− v∗
∣∣∣ dP1

n(θ)

=

∫
θ∈C1

n

∣∣∣ui(µθ0−θi , µ−i, θ0)− v∗
∣∣∣ dP1

n(θ)

+

∫
θ∈[−n,n]

∣∣∣ui(µθ0−θi , µ−i, θ0)− v∗
∣∣∣ dP1

n(θ)

≤
ε · 2n2 + 2C · 2n

2n2 + 2n
→ ε,

where the final inequality uses (i) that, by the earlier construction, θ ∈ C1
n implies dP,i(µ

θ0−θ
i , µ∗i ) < η which implies

|ui(µθ0−θi , µ−i, θ0)− v∗| < ε and (ii) that for all θ, C > max{|v∗|, ui(µθ0−θi , µ−i, θ0)}. It follows that u∗i ∈ [v∗ − ε, v∗ + ε].

Likewise, µ̂i is an attraction, so λ
(
{θ : dP,i(µ

θ0−θ
i , µ̂i) < η}

)
=∞, and choose C2

n ⊂ {θ : dP,i(µ
θ0−θ
i , µ̂i) < η}\ [−n, n]

with λ(C2
n) = 2n2, B2

n := [−n, n]∪C2
n, and P2

n(θ) := 1B2
n

(θ)/λ(B2
n), such that |

∫
ui(µi, µ−i, θ)dP2

n−v̂| ≤ ε·2n2+2C·2n
2n2+2n

→ ε,

and thus u∗i ∈ [v̂ − ε, v̂ + ε]. Since η is arbitrary, we choose ε <
|v∗−v̂|

2
and obtain a contradiction of the fact that v∗ 6= v̂.

Hence we conclude that there is a unique attraction µ∗i .
We now prove that µ∗i is a limit strategy for µi in the sense of Definition 3. We derive a contradiction by showing

that otherwise, the uniqueness result above would be violated. Suppose by way of contradiction that µ∗i is not a limit

strategy of µi, and hence by Lemma 2, for some η > 0, λ(Θ≥η) = ∞ where Θ≥η := {θ : dP,i(µ
θ
i , µ
∗
i ) ≥ η}. Let

Q := {µ̃i ∈ Mi : ∃θ ∈ Θ≥η s.t. µ̃i = µθi }. By (the more general result shown in the proof of) Lemma 7, there exists
an attraction µ̂i ∈ Q for µi. By construction, µ̂i 6= µ∗i . This contradicts the uniqueness of the attraction µ∗i as argued
previously, so µ∗i must be a limit strategy for µi, as desired.

Finally, µ∗i is stationary by Lemma 3, and µi is nearly stationary. Payoff equivalence between µi and µ∗i follows from
a straightforward argument similar to the one given for the sufficiency part of the proof.

Proof (Proof of Theorem 2.) For sufficiency, consider any profile of nearly stationary strategies µ ∈M. Lemma 3 applies,
and hence there exists a unique profile of stationary strategies (µ∗1, µ

∗
2, . . . , µ

∗
N ) such that µ∗i is a limit strategy of µi for

each i ∈ I. SinceM is closed, µ∗ ∈M. By continuity of each ui in strategies, as θ → ±∞, we have ui(µ, θ) = ui(µ
−θ, 0)→

u∗i := ui(µ
∗, 0). Now for any ε > 0, choose θ, θ ∈ R with θ < θ such that θ /∈ [θ, θ] =⇒ |ui(µ−θ, 0)− u∗i | < ε for all i ∈ I.

For any diffusing sequence, Pn([θ, θ])→ 0. Since ui(·, 0) is bounded in magnitude by some M , the rest of the argument for
sufficiency in the proof of Theorem 1 applies.

14 Here we have used that µθ0−θ−i = µ−i by the stationarity of µ−i.
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For necessity, suppose that there exists i ∈ I and µi ∈ M0
i such that µi is not nearly stationary. Note that by

Assumption 4, an extension of the arguments used in the proof of Lemma 1 shows that each space of measures satisfying
Definition 7 is compact, and since each Mi is a closed subspace, each Mi is also compact. Hence, for each i there exists
an attraction µ∗i ∈ Mi in the sense of Lemma 7. If µi is not nearly stationary, then by definition µ∗i is not a limit

strategy. Hence, there exists η > 0 such that the set Θ≥η := {θ ∈ R : di(µ
θ
i , µ
∗
i ) ≥ η} satisfies λ(Θ≥η) =∞. Since the set

Mi,≥η := {µ̃i ∈Mi : di(µ̃i, µ
∗
i ) ≥ η} is a closed subspace ofMi, it is compact, and there exists an attraction µ̂i ∈Mi,≥η

for µi. Since µ∗i /∈ Mi,≥η by construction, µ∗i 6= µ̂i. Hence, there exists θ0 ∈ R and a profile of stationary strategies
µ−i ∈ M0

−i for the remaining players such that v∗ := ui(µ
∗
i , µ−i, θ0) 6= v̂ := ui(µ̂i, µ−i, θ0). Now choose any ε > 0 such

that ε < |v∗ − v̂|/2. Since payoffs are continuous in strategies, and the space Mi is compact, this continuity is uniform, so
we can choose η′ > 0 sufficiently small that µ̃i ∈ {µ∗i , µ̂i}, dP,i(µθi , µ̃i) < η′ implies |ui(µθi , µ−i, θ0)− ui(µ̃i, µ−i, θ0)| < ε.
Then, by the same construction as in the proof of Theorem 1, there exist two diffusing sequences (P1

n) and (P2
n) along which

ex ante payoffs for player i from playing µi against µ−i converge to limits in (v∗− ε, v∗+ ε) and (v̂− ε, v̂+ ε), respectively.
As these are disjoint intervals, the limits are distinct, and hence µi is not part of an admissible class.

Proof (Proof of Proposition 1.) Stationarity of signals and payoffs are immediate from the definition of the game, as is
compactness (Assumption 4), and finiteness of payoffs follows from the quadratic payoff structure with normally distributed
signals. For concreteness, let the marginal G in the senders’ strategies be simply N(0, σ2), the distribution of signals
conditional on θ = 0. Suppose the classM satisfies parts (i)-(iv) of Assumption 5; we establish irreducibility. Irreducibility
for the principal is straightforward, since for two distinct principal strategies, one can marginally adjust one or both of the
sender strategies and change the principal’s payoffs under those two strategies by different amounts. We show irreducibility
for sender 1, which by symmetry implies irreducibility for sender 2. Suppose the principal always chooses the lower offer:
given offers a1 and a2, she chooses C(a1, a2) = arg min{a1, a2}. Consider two distinct strategies of expert 1, µ1 and µ̂1.
We consider only b1 = 0; similar arguments apply for any b1. We show that there exists a constant markup strategy
κm for player 2 such that u1(µ1, κm, C, 0) 6= u1(µ̂1, κm, C, 0). By the definition of payoffs and signals in the model,
u1(µ1, κm, C, 0) = −

∫
R2 (min{a1, s2 +m})2(Q⊗ Φ)(d(a1, s2)), where Q is the CDF over player 1’s action induced by the

strategy µ1, defined by Q(x) = µ1({a1 : a1 ≤ x}), and where Φ is the CDF of N(0, σ2). Define Q̂(x) for µ̂1 likewise. Next,
we show that we can differentiate w.r.t. m under the integral. Write a := (a1, s2), g(a,m) := (min{a1, s2 + m})2, and
ν = Q⊗ Φ. Note that for all a ∈ R2, g(a,m) is absolutely continuous in m on bounded intervals. We have

a(m) :=

∫
R2
g(a,m)ν(da) (12)

=

∫
R2

[
g(a,m0) +

∫ m

m0

gm(a, z)dz

]
ν(da) (13)

=

∫
R2
g(a,m0)ν(da) +

∫ m

m0

∫
R2
gm(a, z)ν(da)dz (14)

=⇒ a′(m) :=

∫
R2
gm(a,m)ν(da) a.e. m, (15)

where m0 < m can be chosen arbitrarily. To obtain (13) we have used the fact that absolutely continuous functions are the
integral of their derivatives.15 Fubini’s Theorem is used to obtain (14). Differentiability-a.e. of the integral yields (15).16

By the same arguments, we obtain a′′(m) =
∫
gmm(a,m)ν(da) = 2

∫
{a:a1>s2+m}

ν(da) a.e. m. Applying this to ν = Q⊗Φ
and ν̂ = Q̂⊗Φ, it follows that if u1(µ1, κm, C, 0) = u1(µ̂1, κm, C, 0) for all m ∈ R, then

∫
{a:a1>s2+m}

(Q⊗Φ)(d(a1, s2)) =∫
{a:a1>s2+m}

(Q̂⊗ Φ)(d(a1, s2)) a.e. m. Rearranging, we have∫
S2

(1−Q(s2 +m))f2(s2)ds2 =

∫
S2

(1− Q̂(s2 +m))f2(s2)ds2

=⇒ 0 =

∫
S2

(Q(m− s2)− Q̂(m− s2))f2(s2)ds2, (16)

by the evenness of the normal distribution, where f2 is the PDF of N(0, σ2), the noise distribution for player 2. Letting

K := Q− Q̂, (16) is a convolution equation:

[K ∗ f ](m) = 0 a.e. m.

Let F denote the normalized Fourier transform, F(g)(z) :=
∫∞
−∞ e−2πizxg(x)dx. Both K and f are Lebesgue integrable

functions, and thus by the convolution theorem,17 F(K ∗ f) = F(K) · F(f). But since K ∗ f ≡ 0, F(K ∗ f) ≡ 0. Since

F(f)(z) = e−2(πσz)2 > 0 for all z, we must have F(K) ≡ 0. Applying the inverse Fourier transform, we have K = 0 almost

everywhere. This contradicts the assumption Q 6= Q̂, so it must be that u1(µ1, κm, C, 0) 6= u1(µ̂1, κm, C, 0) for some m.
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